JP5408687B2 - Shear stress sensor and distributed shear stress sensor - Google Patents

Shear stress sensor and distributed shear stress sensor Download PDF

Info

Publication number
JP5408687B2
JP5408687B2 JP2008067405A JP2008067405A JP5408687B2 JP 5408687 B2 JP5408687 B2 JP 5408687B2 JP 2008067405 A JP2008067405 A JP 2008067405A JP 2008067405 A JP2008067405 A JP 2008067405A JP 5408687 B2 JP5408687 B2 JP 5408687B2
Authority
JP
Japan
Prior art keywords
piezoelectric thin
thin plate
adhesive layer
plate
shear stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008067405A
Other languages
Japanese (ja)
Other versions
JP2009222556A (en
Inventor
由紀夫 藤本
アリフ セテイアント タウフィック
英司 新宅
義和 田中
貴志 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2008067405A priority Critical patent/JP5408687B2/en
Publication of JP2009222556A publication Critical patent/JP2009222556A/en
Application granted granted Critical
Publication of JP5408687B2 publication Critical patent/JP5408687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ずれ応力(摩擦力)を測定するずれ応力センサ及び分布型ずれ応力センサに関する。特に、薄いシート状で、曲面部にも設置可能な1軸又は2軸のずれ応力センサと、このずれ応力センサを複数配置して構成した分布型ずれ応力センサに関する。   The present invention relates to a shear stress sensor for measuring shear stress (friction force) and a distributed shear stress sensor. In particular, the present invention relates to a uniaxial or biaxial misalignment stress sensor that is thin and can be installed on a curved surface portion, and a distributed misalignment stress sensor configured by arranging a plurality of misalignment stress sensors.

指先などの摩擦力や身体部位とベッドの間の摩擦力、各種力学量の計測用、ロボット用等、ずれ応力を測定するための薄型のずれ応力センサが求められており、これらのずれ応力を検出するものとして、従来から使用されてきた歪みゲージに代わり、歪みゲージを用いたセンサよりも非常に薄い圧電フィルムを応用したセンサの開発が期待されている。   There is a need for thin shear stress sensors for measuring shear stress, such as fingertip friction force, friction force between body part and bed, measurement of various mechanical quantities, and robots. As a detection, instead of a strain gauge that has been used conventionally, development of a sensor that uses a piezoelectric film that is much thinner than a sensor using a strain gauge is expected.

例えば、特許文献1では、圧電フィルムを用い、剪断方向の変動荷重や圧縮方向の変動荷重を検知するセンサについて開示されている。圧電フィルムの表面上に離間して配設された一対の同一形状の表電極と、圧電フィルムの裏面上に表電極と同一形状で投影面が重なる一対の裏電極を配置し、表電極及び圧電フィルムの表面を表歪増幅部材で覆うとともに、裏電極及び圧電フィルムの裏面を表歪増幅部材で覆っている。そして、表歪増幅部材の上面に荷重伝達部材を配設し、この荷重伝達部材に加わるずれ応力で表歪増幅部材及び裏歪増幅部材を変形させることにより、圧電フィルムの歪み量を増大させ、その歪みに伴う分極で発生する電荷量を増大させて測定感度を高めている。
特開2006−226858号公報
For example, Patent Document 1 discloses a sensor that uses a piezoelectric film and detects a fluctuating load in a shearing direction and a fluctuating load in a compression direction. A pair of front electrodes having the same shape spaced apart on the surface of the piezoelectric film and a pair of back electrodes having the same shape as the front electrode and overlapping the projection surface are disposed on the back surface of the piezoelectric film. The surface of the film is covered with a surface strain amplifying member, and the back electrode and the back surface of the piezoelectric film are covered with a surface strain amplifying member. And by arranging a load transmitting member on the upper surface of the front strain amplifying member, and deforming the front strain amplifying member and the back strain amplifying member with a deviation stress applied to the load transmitting member, the strain amount of the piezoelectric film is increased, The measurement sensitivity is increased by increasing the amount of charge generated by polarization accompanying the distortion.
JP 2006-226858 A

特許文献1では、圧電フィルムを表歪増幅部材及び裏歪増幅部材で覆っており、この歪増幅部材の厚みはそれぞれ1mm〜5mm必要としている。1mmよりも薄いと歪増幅部材自体の歪み量が小さくなり、増幅効果を得ることができないため、これ以上薄いセンサを得るには限界がある。   In Patent Document 1, the piezoelectric film is covered with a front strain amplifying member and a back strain amplifying member, and the thickness of the strain amplifying member needs to be 1 mm to 5 mm, respectively. If it is thinner than 1 mm, the strain amount of the strain amplifying member itself becomes small, and the amplification effect cannot be obtained, so there is a limit to obtain a sensor thinner than this.

そして、表歪増幅部材の上面に荷重伝達部材を設置しなければならず、実施の際にはこの荷重伝達部材をゴム等で覆う必要があることから、更に厚みが増し、全体で5mm程度の厚みになってしまう。   And since it is necessary to install a load transmission member on the upper surface of the surface distortion amplifying member, and it is necessary to cover this load transmission member with rubber or the like in the case of implementation, the thickness further increases, and the total is about 5 mm. It will be thick.

このため、センサの設置が狭い隙間に挟み込んで設置しなければならない状況下では、その厚みゆえに使用ができないという問題がある。そして、5mm程度厚さがあると、ベッド身体部位と対象物の間に挟み込んで使用した場合に、センサの厚さ分の段差によって違和感が生じるという問題があった。   For this reason, there is a problem that the sensor cannot be used due to its thickness in a situation where the sensor must be installed in a narrow gap. When the thickness is about 5 mm, there is a problem that a sense of incongruity is generated due to a difference in level corresponding to the thickness of the sensor when used by being sandwiched between the body part of the bed and the object.

このような状況において、本発明が解決しようとする課題は、厚さが1mm程度の、薄く曲面部にも設置可能で、ずれ応力を精度良く測定できるシート型のずれ応力センサを提供することである。また、複数のシート型のずれ応力センサを直線上または二次元状に配置した分布型ずれ応力センサを提供することである。   In such a situation, the problem to be solved by the present invention is to provide a sheet-type shear stress sensor that can be installed on a thin curved surface with a thickness of about 1 mm and can accurately measure the shear stress. is there. Another object of the present invention is to provide a distributed shear stress sensor in which a plurality of sheet shear stress sensors are arranged linearly or two-dimensionally.

本発明は、圧電材料からなる圧電薄板と、前記圧電薄板を挟むように設けた上側伝達板及び下側伝達板とを備え、前記圧電薄板は前記上側伝達板と上接着部で接着され、前記下側伝達板と下接着部で接着され、前記上下接着部は実質的に重畳しないように配置され、ずれ応力によって前記上側伝達板及び下側伝達板にそれぞれ逆向きに作用する力を、前記上下接着部を介して前記圧電薄板に伝え、前記圧電薄板を圧縮又は伸張させて電荷を発生させてずれ応力を測定することを特徴とする。   The present invention includes a piezoelectric thin plate made of a piezoelectric material, and an upper transmission plate and a lower transmission plate provided so as to sandwich the piezoelectric thin plate, and the piezoelectric thin plate is bonded to the upper transmission plate at an upper adhesive portion, The lower transmission plate is bonded to the lower bonding portion, the upper and lower bonding portions are arranged so as not to substantially overlap, and the forces acting in the opposite directions on the upper transmission plate and the lower transmission plate due to the shift stress, It is transmitted to the piezoelectric thin plate through an upper and lower adhesive portion, and the piezoelectric thin plate is compressed or stretched to generate an electric charge to measure a shear stress.

また、本発明は、隣接して配置した圧電材料からなる第1圧電薄板及び第2圧電薄板と、前記第1圧電薄板及び前記第2圧電薄板を挟むように設けた上側伝達板及び下側伝達板とを備え、前記第1圧電薄板は前記上側伝達板と上接着部で接着され、前記下側伝達板と下接着部で接着され、且つ、前記上下接着部は実質的に重畳しないように配置され、前記第2圧電薄板は前記上側伝達板と上接着部で接着され、前記下側伝達板と下接着部で接着され、且つ、前記上下接着部は実質的に重畳しないように配置され、更に、前記第1圧電薄板の上接着部と前記第2圧電薄板の上接着部が逆転して配置され、ずれ応力により前記上側伝達板及び下側伝達板にそれぞれ逆向き作用する力を、前記接着部を介して前記第1圧電薄板及び前記第2圧電薄板に伝え、前記第1圧電薄板を圧縮又は伸張させて電荷を発生させるとともに、前記第2圧電薄板を伸張又は圧縮させて前記第1圧電薄板と逆方向の電荷を発生させて両電荷の出力差からずれ応力を測定することを特徴とする。   The present invention also provides a first piezoelectric thin plate and a second piezoelectric thin plate made of piezoelectric materials arranged adjacent to each other, an upper transmission plate and a lower transmission provided so as to sandwich the first piezoelectric thin plate and the second piezoelectric thin plate. The first piezoelectric thin plate is bonded to the upper transmission plate at the upper bonding portion, bonded to the lower transmission plate at the lower bonding portion, and the upper and lower bonding portions are not substantially overlapped with each other. The second piezoelectric thin plate is bonded to the upper transmission plate by an upper bonding portion, is bonded to the lower transmission plate and a lower bonding portion, and the upper and lower bonding portions are not substantially overlapped with each other. Furthermore, the upper adhesive portion of the first piezoelectric thin plate and the upper adhesive portion of the second piezoelectric thin plate are disposed in reverse, and forces acting in opposite directions on the upper transmission plate and the lower transmission plate, respectively, due to displacement stress, The first piezoelectric thin plate and the second piezoelectric thin plate via the adhesive portion The first piezoelectric thin plate is compressed or expanded to generate a charge, and the second piezoelectric thin plate is expanded or compressed to generate a charge in the opposite direction to the first piezoelectric thin plate. The shear stress is measured.

更に、本発明は、前記圧電薄板は圧電材料を延伸して形成されてなり、前記圧電薄板の前記上下接着部を延伸方向に直線上に配置し、前記圧電薄板を延伸方向に圧縮又は伸張させることを特徴とする。   Further, according to the present invention, the piezoelectric thin plate is formed by stretching a piezoelectric material, the upper and lower adhesive portions of the piezoelectric thin plate are linearly arranged in the stretching direction, and the piezoelectric thin plate is compressed or stretched in the stretching direction. It is characterized by that.

更に、本発明は、前記圧電薄板と前記上側伝達板及び前記下側伝達板とは前記上下接着層を介してそれぞれ接着され、前記上下接着層と同じ厚みの滑りシートを前記上下接着層に隣接して配置し、前記上側伝達板及び前記下側伝達板と前記圧電薄板とを平坦に接触させることを特徴とする。   Further, in the present invention, the piezoelectric thin plate, the upper transmission plate, and the lower transmission plate are bonded to each other via the upper and lower adhesive layers, and a sliding sheet having the same thickness as the upper and lower adhesive layers is adjacent to the upper and lower adhesive layers. The upper transmission plate, the lower transmission plate, and the piezoelectric thin plate are brought into flat contact with each other.

更に、本発明は、圧電材料からなる圧電薄板と、前記圧電薄板を挟むように設けた上側伝達板及び下側伝達板と、前記圧電薄板と前記上側伝達板を接着する上接着層と、前記圧電薄板と前記下側伝達板を接着する下接着層と、前記上接着層と前記下接着層と同じ厚みの滑りシートから成り、前記圧電薄板の中央を境に圧電薄板の延伸方向に直線上に前記上接着層と前記下接着層が配置され、前記上接着層は前記圧電薄板の上面側の前記上接着層の全てで前記上側伝達板と接着され、前記下接着層は前記圧電薄板の下面側の前記下接着層の全てで前記下側伝達板と接着され、且つ、前記上接着層と前記下接着層は実質的に重畳しないように配置され、前記滑りシートは前記上接着層と前記下接着層に隣接して配置され、水平方向のずれ応力によって前記上側伝達板及び前記下側伝達板にそれぞれ逆向きに作用する力を、前記上接着層及び前記下接着層を介して前記圧電薄板に伝え、前記圧電薄板を収縮又は伸張させて発生した電荷で前記ずれ応力の大きさを測定するずれ応力検出要素を有し、互いに対向する前記ずれ応力検出要素を少なくとも二組以上備え、一の互いに対向する前記ずれ応力検出要素を前記圧電薄板の延伸方向をX軸方向に一致させて配置し、各圧電薄板の歪み量に応じた出力の差分からX軸方向の前記ずれ応力の大きさを測定し、他の互いに対向する前記ずれ応力検出要素を前記圧電薄板の延伸方向をY軸方向に一致させて配置し、各圧電薄板の歪み量に応じた出力の差分からY軸方向の前記ずれ応力の大きさを測定
することを特徴とする。
Further, the present invention provides a piezoelectric thin plate made of a piezoelectric material, an upper transmission plate and a lower transmission plate provided so as to sandwich the piezoelectric thin plate, an upper adhesive layer for bonding the piezoelectric thin plate and the upper transmission plate, It consists of a lower adhesive layer for bonding the piezoelectric thin plate and the lower transmission plate, and a sliding sheet having the same thickness as the upper adhesive layer and the lower adhesive layer, and linearly extends in the extending direction of the piezoelectric thin plate with the center of the piezoelectric thin plate The upper adhesive layer and the lower adhesive layer are disposed on each other, and the upper adhesive layer is bonded to the upper transmission plate at all of the upper adhesive layer on the upper surface side of the piezoelectric thin plate, and the lower adhesive layer is formed of the piezoelectric thin plate. All of the lower adhesive layers on the lower surface side are bonded to the lower transmission plate, and the upper adhesive layer and the lower adhesive layer are arranged so as not to substantially overlap, and the sliding sheet is connected to the upper adhesive layer. Adjacent to the lower adhesive layer and due to horizontal shear stress The force acting in the opposite direction on the upper transmission plate and the lower transmission plate is transmitted to the piezoelectric thin plate via the upper adhesive layer and the lower adhesive layer, and is generated by contracting or extending the piezoelectric thin plate. It has a shear stress detection element for measuring the magnitude of the shear stress with electric charge, and includes at least two sets of the shear stress detection elements facing each other, and the piezoelectric stress plate is stretched with one shear stress detection element facing each other. The direction is aligned with the X-axis direction, the magnitude of the shear stress in the X-axis direction is measured from the difference in output corresponding to the amount of strain of each piezoelectric thin plate, and the other shear stress detection elements facing each other are measured. The extending direction of the piezoelectric thin plate is arranged to coincide with the Y-axis direction, and the magnitude of the deviation stress in the Y-axis direction is measured from the difference in output corresponding to the amount of strain of each piezoelectric thin plate.

更に、本発明は、請求項1から請求項3のいずれか1つに記載したずれ応力センサを複数個同一平面上に一次元状あるいは二次元状に並べて配置し、それぞれの前記ずれ応力センサから個別に電荷を取り出し、ずれ応力の大きさの分布を測定することを特徴とする。
Further, according to the present invention, a plurality of displacement stress sensors according to any one of claims 1 to 3 are arranged one-dimensionally or two-dimensionally on the same plane, and each of the displacement stress sensors is arranged. It is characterized by taking out the electric charges individually and measuring the distribution of the magnitude of the shear stress .

本発明に依れば、圧電薄板の上面の一部を上側伝達板と接着し、圧電薄板の下面を下側伝達板に接着した簡単な構造であり、しかも圧電薄板及び上下の伝達板はいずれも数10μmから数100μmの薄いものから構成できる。このため、厚さ1mm以下の薄い1軸又は2軸のずれ応力センサを構成することができる。これにより、センサを狭い隙間に挟み込んで設置しなければならない状況下においても支障なく使用できる。   According to the present invention, the piezoelectric thin plate has a simple structure in which a part of the upper surface of the piezoelectric thin plate is bonded to the upper transmission plate, and the lower surface of the piezoelectric thin plate is bonded to the lower transmission plate. Also, it can be constructed from a thin one of several tens of micrometers to several hundreds of micrometers. For this reason, a thin uniaxial or biaxial displacement stress sensor having a thickness of 1 mm or less can be configured. Thus, the sensor can be used without any trouble even in a situation where the sensor must be installed in a narrow gap.

また、本発明に依れば、上下の接着部は実質的に重畳しないように配置しており、ずれ応力が加わった場合に、上下の伝達板がそれぞれ逆向きに作用する。ずれ応力の全ては接着層を介して圧電薄板に負荷され、圧縮或いは伸張することになる。これにより、圧電薄板は歪み、ずれ応力に応じた電荷を発生させるので、この電荷量を取り出すことでずれ応力を測定することができる。   Further, according to the present invention, the upper and lower adhesive portions are arranged so as not to substantially overlap, and when a shift stress is applied, the upper and lower transmission plates act in opposite directions. All of the shear stress is applied to the piezoelectric thin plate through the adhesive layer and is compressed or stretched. As a result, the piezoelectric thin plate generates electric charges according to the strain and the deviation stress, and the deviation stress can be measured by taking out this amount of electric charge.

更に、本発明に依れば、2組のずれ応力検出要素を平行に配置するとともに、その接着部が互い違いになるよう、それぞれの上接着部を逆転して配置している。一方のずれ応力検出要素に過度の圧縮荷重を受けると上下の伝達板が浮いて圧電薄板が面外にたわむ変形を生じるが、他方のずれ応力検出要素は引っ張り荷重を受けるので、上下の伝達板は圧電薄板を上下方向から押さえ付けるように働く。これにより、上下の伝達板が浮かず、圧縮荷重を受ける圧電薄板が面外にたわむ変形を抑えるので、ずれ応力を正確に検出することが出来る。   Furthermore, according to the present invention, two sets of displacement stress detection elements are arranged in parallel, and the upper adhesive portions are arranged in reverse so that the adhesive portions are staggered. When one shear stress detection element receives an excessive compressive load, the upper and lower transmission plates float and the piezoelectric thin plate deforms out of the plane, but the other shear stress detection element receives a tensile load. Works to hold down the piezoelectric thin plate from above and below. Accordingly, the upper and lower transmission plates do not float and the piezoelectric thin plate that receives the compressive load is prevented from being deformed out of the plane, so that the deviation stress can be detected accurately.

更に、本発明に依れば、圧電薄板の延伸方向をずれ応力の方向に合わせて構成している。圧電薄板は延伸方向に歪みが生じた際に、もっとも大きな分極が生じ電荷が発生するので、より検出精度の高いずれ応力センサを提供できる。   Further, according to the present invention, the extending direction of the piezoelectric thin plate is configured to match the direction of the shear stress. When the piezoelectric thin plate is distorted in the stretching direction, the greatest polarization is generated and electric charges are generated. Therefore, it is possible to provide a stress sensor with higher detection accuracy.

更に、本発明に依れば、接着層に隣接して接着層と同じ厚みの滑りシートを配置しているので、圧電薄板の撓みによる段差が生じず、ずれ応力の検出精度を高めている。   Furthermore, according to the present invention, since the sliding sheet having the same thickness as the adhesive layer is disposed adjacent to the adhesive layer, a step due to the bending of the piezoelectric thin plate does not occur, and the detection accuracy of the deviation stress is improved.

更に、本発明に依れば、上側伝達板の縁と下側伝達板の縁とをゴム等の接続部材で接続しているので、伝達板がめくれ上がることもない。   Furthermore, according to the present invention, since the edge of the upper transmission plate and the edge of the lower transmission plate are connected by a connecting member such as rubber, the transmission plate does not turn up.

更に、本発明に依れば、上側伝達板及び下側伝達板に樹脂薄板あるいは金属薄板を用いると、面外曲げ剛性の小さい構成が可能になるので、曲面部にも設置可能なシート型ずれ応力センサを作製することができる。   Furthermore, according to the present invention, when a resin thin plate or a metal thin plate is used for the upper transmission plate and the lower transmission plate, a configuration with a small out-of-plane bending rigidity is possible. A stress sensor can be produced.

更に、本発明に依れば、2組以上のずれ応力検出要素を直交させて配置しているので、X軸及びY軸方向のずれ応力を一度に検出することが出来る。   Furthermore, according to the present invention, since two or more sets of shear stress detection elements are arranged orthogonally, the shear stress in the X-axis and Y-axis directions can be detected at a time.

更に、本発明に依れば、複数のずれ応力検出要素を一次元状或いは二次元状に配置しているので、広範囲に作用するずれ応力を分布して検出することができる。   Furthermore, according to the present invention, since the plurality of displacement stress detection elements are arranged in a one-dimensional or two-dimensional manner, it is possible to detect the distributed stress acting in a wide range.

図1から図3を参照し、第1実施形態に係るずれ応力センサ1について説明する。図1はずれ応力センサ1の概略構成を示す斜視図及び断面図、図2は圧電薄板の電荷の発生状況を示す斜視図、また、図3はずれ応力センサの検出原理を示す断面図である。本発明のずれ応力センサ1は図1の斜視図に示すように、薄いシート状のずれ応力センサである。   A shear stress sensor 1 according to the first embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 is a perspective view and a cross-sectional view showing a schematic configuration of a shear stress sensor 1, FIG. 2 is a perspective view showing a charge generation state of a piezoelectric thin plate, and FIG. 3 is a cross-sectional view showing a detection principle of the shear stress sensor. The shear stress sensor 1 of the present invention is a thin sheet-like shear stress sensor as shown in the perspective view of FIG.

図1に示すように、ずれ応力センサ1は、主に、圧電薄板11、圧電薄板11を挟むように設けた上側伝達板16及び下側伝達板17、圧電薄板11の両面に付された電極膜12a、12b、電極膜12a、12bを介して圧電薄板11と上下の伝達板16,17を接着する上接着層13、下接着層14、上下の接着層13,14に隣接して配置した滑りシート15a、15bから構成される。   As shown in FIG. 1, the shear stress sensor 1 mainly includes a piezoelectric thin plate 11, an upper transmission plate 16 and a lower transmission plate 17 provided so as to sandwich the piezoelectric thin plate 11, and electrodes attached to both surfaces of the piezoelectric thin plate 11. Adjacent to the upper adhesive layer 13, the lower adhesive layer 14, and the upper and lower adhesive layers 13, 14 for bonding the piezoelectric thin plate 11 and the upper and lower transmission plates 16, 17 through the films 12a, 12b and the electrode films 12a, 12b. It comprises sliding sheets 15a and 15b.

圧電薄板11は、歪みに応じて分極し、電流を流す圧電材料から形成されたものを用いる。例えば、ポリフッ化ビニリデンやシアン化ビニリデン等の高分子圧電材料を延伸して形成されたものを用いると良い。このように延伸して形成された圧電薄板11は、延伸方向に収縮或いは伸張する歪みに対して、最も大きな電荷が生じる。従って、ずれ応力が加わる方向と圧電薄板11の延伸方向を一致させるとよい。小さなずれ応力でも分極効率が良いため、精度良く測定できることになる。   The piezoelectric thin plate 11 is made of a piezoelectric material that is polarized in accordance with strain and allows current to flow. For example, a material formed by stretching a polymer piezoelectric material such as polyvinylidene fluoride or vinylidene cyanide may be used. The piezoelectric thin plate 11 formed by stretching in this way generates the largest electric charge with respect to a strain that contracts or expands in the stretching direction. Therefore, the direction in which the shear stress is applied and the extending direction of the piezoelectric thin plate 11 are preferably matched. Since polarization efficiency is good even with a small shear stress, it can be measured with high accuracy.

図2は、圧電薄板11の正極面を上側に配置した場合について、圧電薄板11が圧縮又は伸張した際の、電荷の発生状況を示したものである。このように、圧電薄板11の上面を正極面(+)、下面を負極面(−)として配置した場合、図2(A)の矢印のように、圧電薄板11が延伸方向に伸張すると、圧電薄板11の上面には正の電荷(+Q)が発生し、下面には負の電荷(−Q)が生じる。一方、図2(B)の矢印のように、圧電薄板11が延伸方向に収縮すると、上記とは逆に圧電薄板の上面に負の電荷(−Q)が発生し、下面には正の電荷(+Q)が発生することになる。このように発生する電荷量は、圧電薄板の収縮又は伸張による歪み量と比例する。   FIG. 2 shows the state of charge generation when the piezoelectric thin plate 11 is compressed or expanded when the positive electrode surface of the piezoelectric thin plate 11 is disposed on the upper side. In this way, when the piezoelectric thin plate 11 is arranged with the upper surface as the positive electrode surface (+) and the lower surface as the negative electrode surface (−), the piezoelectric thin plate 11 expands in the extending direction as indicated by the arrow in FIG. A positive charge (+ Q) is generated on the upper surface of the thin plate 11, and a negative charge (-Q) is generated on the lower surface. On the other hand, as shown by the arrow in FIG. 2B, when the piezoelectric thin plate 11 contracts in the extending direction, a negative charge (−Q) is generated on the upper surface of the piezoelectric thin plate and the positive charge is generated on the lower surface. (+ Q) will occur. The amount of charge generated in this way is proportional to the amount of strain due to contraction or expansion of the piezoelectric thin plate.

電極膜12a、12bは、圧電薄板11表裏面に蒸着、スパッタリングなどによって設けられ、電極膜12a、12bに導電塗料、カシメなどで電気端子を取り付け、それぞれ配線21a、21bが接続されている。これにより、圧電薄板11の歪みによる出力信号を取り出している。なお、市販の圧電薄板11に電極膜12a、12bが設けられたものを用いればよいが、本発明の趣旨からして、圧電薄板11及び電極膜12a、12bはできるだけ薄く形成されたもの、例えば厚さ20μm〜200μmからなるものを用いると良い。   The electrode films 12a and 12b are provided on the front and back surfaces of the piezoelectric thin plate 11 by vapor deposition, sputtering, etc., and electrical terminals are attached to the electrode films 12a and 12b with conductive paint, caulking, etc., and wirings 21a and 21b are connected thereto, respectively. Thereby, an output signal due to distortion of the piezoelectric thin plate 11 is taken out. Although a commercially available piezoelectric thin plate 11 provided with electrode films 12a and 12b may be used, for the purpose of the present invention, the piezoelectric thin plate 11 and the electrode films 12a and 12b are formed as thin as possible, for example, It is preferable to use one having a thickness of 20 μm to 200 μm.

上側伝達板16及び下側伝達板17には、樹脂板、金属板、繊維強化樹脂板など、面内に剛性を有する板を用いる。面内に剛性を有する部材であれば、面外に曲げ変形可能な樹脂薄板、金属薄板、繊維強化樹脂薄板などの薄いシート部材を使用しても良い。   As the upper transmission plate 16 and the lower transmission plate 17, a plate having rigidity in the plane, such as a resin plate, a metal plate, or a fiber reinforced resin plate, is used. As long as the member has rigidity in the plane, a thin sheet member such as a resin thin plate, a metal thin plate, or a fiber reinforced resin thin plate that can be bent and deformed out of the surface may be used.

そして、圧電薄板11の上面側の接着層13は、上側伝達板16と全て接着し、圧電薄板11の下面側の接着層14は、下側伝達板17と全て接着する。
The adhesive layer 13 on the upper surface side of the piezoelectric thin plate 11 is bonded to the upper transmission plate 16, and the adhesive layer 14 on the lower surface side of the piezoelectric thin plate 11 is bonded to the lower transmission plate 17.

この場合、上下の接着層13、14は、圧電薄板11の延伸方向に沿って逆方向に配置する。上述のように、圧電薄板11は延伸方向に歪みが生じる際に、最も大きく分極し、精度良くずれ応力を検出精度が高くなるからである。   In this case, the upper and lower adhesive layers 13 and 14 are arranged in the opposite direction along the extending direction of the piezoelectric thin plate 11. As described above, when the piezoelectric thin plate 11 is strained in the stretching direction, the piezoelectric thin plate 11 is polarized most greatly, and the accuracy of detecting the deviation stress with high accuracy is increased.

上下の接着層13、14は、上側伝達板16又は下側伝達板17に加わるずれ応力を圧電薄板11に伝え、圧電薄板11を圧縮或いは伸張させて分極させる役割を有する。このため、各接着層13、14は、圧電薄板11の厚み方向から見て実質的に重畳しないように配置する。そして、各接着層13、14が圧電薄板11の延伸方向に沿って直線上に配置する。このように接着層13、14を配置することで、上側伝達板16又は下側伝達板17にずれ応力が作用した場合、それぞれの接着層13、14を介して圧電薄板11を圧縮或いは伸張させるように作用する。   The upper and lower adhesive layers 13 and 14 have a role of transmitting a displacement stress applied to the upper transmission plate 16 or the lower transmission plate 17 to the piezoelectric thin plate 11 and polarizing the piezoelectric thin plate 11 by compressing or expanding the piezoelectric thin plate 11. For this reason, the adhesive layers 13 and 14 are arranged so as not to substantially overlap when viewed from the thickness direction of the piezoelectric thin plate 11. The adhesive layers 13 and 14 are arranged on a straight line along the extending direction of the piezoelectric thin plate 11. By arranging the adhesive layers 13 and 14 in this way, when a shear stress acts on the upper transmission plate 16 or the lower transmission plate 17, the piezoelectric thin plate 11 is compressed or expanded via the respective adhesive layers 13 and 14. Acts as follows.

接着層13、14としては、電極膜12a、12bを付けた圧電薄板11を上側伝達板16及び下側伝達板17に固定できるもので有れば特に限定されない。例えば、接着剤或いは強度の強い粘着シートを用いることができる。   The adhesive layers 13 and 14 are not particularly limited as long as the piezoelectric thin plate 11 provided with the electrode films 12a and 12b can be fixed to the upper transmission plate 16 and the lower transmission plate 17. For example, an adhesive or a strong adhesive sheet can be used.

滑りシート15は、ずれ応力が加わって歪みが生じても、圧電薄板11が平面を保つようにする役割を有する。このため、滑りシート15は圧電薄板11に引っ張り荷重或いは収縮荷重が加わっても平面を保持できるよう、接着層13、14の厚みと略同じにするとよい。そして、接着層13,14と滑りシート15は圧電薄板11の中央を境に設け、出来るだけ隙間が生じないように設けると良い。また、接着層13と同じ厚みとすることで、ずれ応力センサ1に段差が生じることを抑えることができ、上下の伝達板16,17と圧電薄板11とが、電極膜12、接着層13,14及び滑りシート15を介して平坦に接触させることができる。   The sliding sheet 15 has a role to keep the piezoelectric thin plate 11 in a flat plane even when a distortion is applied due to a shift stress. For this reason, it is preferable that the sliding sheet 15 has substantially the same thickness as the adhesive layers 13 and 14 so that the flat surface can be maintained even when a tensile load or a contraction load is applied to the piezoelectric thin plate 11. The adhesive layers 13 and 14 and the sliding sheet 15 are preferably provided with the center of the piezoelectric thin plate 11 as a boundary so that a gap is not generated as much as possible. Moreover, by making it the same thickness as the adhesive layer 13, it can suppress that a level | step difference arises in the shift | offset | difference stress sensor 1, and the upper and lower transmission plates 16 and 17 and the piezoelectric thin plate 11 are the electrode film 12, the adhesive layer 13, 14 and the sliding sheet 15 can be contacted flat.

滑りシート15は、上側伝達板16或いは下側伝達板17と圧電薄板11の間を低摩擦抵抗で滑る素材を用いる。抵抗が大きいとずれ応力が摩擦力で緩和され、圧電薄板11を歪ませる力が小さくなるからである。このような素材として、フッ素樹脂やロウ引き紙等を用いると良い。   The sliding sheet 15 uses a material that slides between the upper transmission plate 16 or the lower transmission plate 17 and the piezoelectric thin plate 11 with low frictional resistance. This is because when the resistance is large, the shear stress is relaxed by the frictional force, and the force for distorting the piezoelectric thin plate 11 is reduced. As such a material, fluororesin or waxed paper may be used.

滑りシート15は、圧電薄板11及び伝達板16,17のいずれにも固定する必要はないが、滑りシート15が離脱してしまわないよう、いずれか一方に接着剤等で固定して用いるとよい。   The sliding sheet 15 does not need to be fixed to either the piezoelectric thin plate 11 or the transmission plates 16 and 17, but is preferably fixed to either one with an adhesive or the like so that the sliding sheet 15 is not detached. .

続いて、図3を参照し、ずれ応力の検出原理について説明する。図3(A)は、上側伝達板16にずれ応力が紙面右から左へ加わった場合の図1のA−A’断面図、(B)はずれ応力が紙面左から右に加わった場合の図1のA−A’断面図である。   Next, with reference to FIG. 3, the principle of detecting the shear stress will be described. 3A is a cross-sectional view taken along the line AA ′ of FIG. 1 when a displacement stress is applied to the upper transmission plate 16 from the right to the left of the drawing, and FIG. 3B is a view when the displacement stress is applied from the left to the right of the drawing. 1 is a cross-sectional view taken along line AA ′ of FIG.

まず、ずれ応力センサ1は、圧電薄板11の延伸方向に、ずれ応力による引っ張り或いは圧縮が作用するように設置する。   First, the displacement stress sensor 1 is installed so that tension or compression due to displacement stress acts in the extending direction of the piezoelectric thin plate 11.

図3(A)に示すように、ずれ応力が上側伝達板16に紙面右から左に加わった場合、滑りシート15aは上側伝達板16或いは圧電薄板11と接着されておらず、また、圧電薄板11の右側上面は上接着層13によって上側伝達板16と接着されているから、白抜き矢印に示すように、圧電薄板11の右側は圧電薄板11の中央に向けて圧縮荷重を受ける。   As shown in FIG. 3A, when a shear stress is applied to the upper transmission plate 16 from right to left in the drawing, the sliding sheet 15a is not bonded to the upper transmission plate 16 or the piezoelectric thin plate 11, and the piezoelectric thin plate 11 is bonded to the upper transmission plate 16 by the upper adhesive layer 13, so that the right side of the piezoelectric thin plate 11 receives a compressive load toward the center of the piezoelectric thin plate 11 as indicated by the white arrow.

また、下側伝達板17は下面を固定して用いることから、矢印に示すように紙面左から右へと反力がかかる。滑りシート15bは下側伝達板17或いは圧電薄板11と接着されておらず、また、圧電薄板11の左側下面は下接着層14によって下側伝達板17と接着されているから、白抜き矢印に示すように、圧電薄板11の左側は圧電薄板11の中央に向けて圧縮荷重を受ける。
Further, since the lower transmission plate 17 is used with its lower surface fixed, a reaction force is applied from the left to the right as shown by the arrow. Since the sliding sheet 15b is not bonded to the lower transmission plate 17 or the piezoelectric thin plate 11, and the lower left surface of the piezoelectric thin plate 11 is bonded to the lower transmission plate 17 by the lower adhesive layer 14, the white arrow indicates As shown, the left side of the piezoelectric thin plate 11 receives a compressive load toward the center of the piezoelectric thin plate 11.

この結果、圧電薄板11は両側から圧縮され、収縮して歪み、分極する。これにより歪み量に応じた電荷が生じる。例えば、圧電薄板11の上面を正極、下面を負極として配置している場合、圧電薄板11が収縮すると上面の正極側には負の電荷(−Q)、下面の負極側には正の電荷(+Q)が生じることになる。   As a result, the piezoelectric thin plate 11 is compressed from both sides and contracts by being contracted and polarized. As a result, charges corresponding to the amount of distortion are generated. For example, in the case where the upper surface of the piezoelectric thin plate 11 is disposed as a positive electrode and the lower surface is disposed as a negative electrode, when the piezoelectric thin plate 11 contracts, a negative charge (−Q) on the positive electrode side of the upper surface and a positive charge (− + Q) will occur.

ここで発生する電荷量はずれ応力の大きさに比例するので、この電荷を電極膜12a、12bを介して取り出すことで、ずれ応力に応じた出力信号が得られ、ずれ応力の大きさを測定することができる。   Since the amount of charge generated here is proportional to the magnitude of the shear stress, an output signal corresponding to the shear stress is obtained by taking out this charge through the electrode films 12a and 12b, and the magnitude of the shear stress is measured. be able to.

一方、図3(B)に示すように、ずれ応力が上側伝達板16に紙面左から右へ加わった場合、圧電薄板11の右側上面は上接着層13によって上側伝達板16と接着されているから、白抜き矢印に示すように、圧電薄板11は右側の端部に向けて引っ張り荷重を受ける。   On the other hand, as shown in FIG. 3B, when a shear stress is applied to the upper transmission plate 16 from the left side to the right side of the drawing, the right upper surface of the piezoelectric thin plate 11 is bonded to the upper transmission plate 16 by the upper adhesive layer 13. Thus, as indicated by the white arrow, the piezoelectric thin plate 11 receives a tensile load toward the right end.

また、下側伝達板17は下面を固定していることから、矢印に示すように紙面右から左へと反力がかかる。圧電薄板11の左側下面は下接着層14によって下側伝達板17と接着されているから、白抜き矢印に示すように、圧電薄板11は左側の端部に向けて引っ張り荷重を受ける。   Further, since the lower transmission plate 17 has its lower surface fixed, a reaction force is applied from the right side to the left side as shown by the arrow. Since the left lower surface of the piezoelectric thin plate 11 is bonded to the lower transmission plate 17 by the lower adhesive layer 14, the piezoelectric thin plate 11 receives a tensile load toward the left end as shown by the white arrow.

この結果、圧電薄板11は両端へ向けて左右に引っ張られ、伸張して歪むので、歪み量に応じた電荷が生じる。例えば、圧電薄板11の上面を正極、下面を負極として配置している場合、圧電薄板11が伸張すると、上述の収縮とは逆に、上面の正極側には正の電荷(+Q)、下面の負極には負の電荷(−Q)が生じることになる。   As a result, the piezoelectric thin plate 11 is pulled left and right toward both ends and stretched and distorted, so that an electric charge corresponding to the amount of distortion is generated. For example, in the case where the upper surface of the piezoelectric thin plate 11 is disposed as a positive electrode and the lower surface is disposed as a negative electrode, when the piezoelectric thin plate 11 expands, a positive charge (+ Q) is present on the positive electrode side of the upper surface, and Negative charge (-Q) is generated in the negative electrode.

発生する電荷量はずれ応力の大きさに比例するので、この電荷を電極膜12a、12bを介して取り出すことで、ずれ応力に応じた出力信号が得られ、ずれ応力の大きさを測定することができる。   Since the amount of generated charge is proportional to the magnitude of the shear stress, an output signal corresponding to the shear stress can be obtained by taking out this charge through the electrode films 12a and 12b, and the magnitude of the shear stress can be measured. it can.

なお、本発明のずれ応力センサ1はずれ応力検出要素の一方の面とずれ応力伝達板との間が接合されていない部分があるので、ずれ応力伝達板に垂直方向の圧縮荷重がほとんど作用しない状態でずれ応力のみが作用した場合、ずれ応力伝達板の縁部分がめくれあがることがある。   Since the shear stress sensor 1 of the present invention has a portion where one surface of the shear stress detection element and the shear stress transmission plate are not joined, a compressive load in the vertical direction hardly acts on the shear stress transmission plate. When only the shear stress is applied, the edge portion of the shear stress transmission plate may be turned up.

これを抑制するため、上側および下側の伝達板16、17の周囲の縁部分を上下の伝達板16、17の水平方向のずれ変形を拘束しない形態で接続すると良い。例えば、図4に一例を示すように、上下の伝達板16、17の縁部分を薄いゴム板や、布帛などの接続部材41a、41b、41c、41dでゆるやかに接続すると、上下の伝達板16,17のずれ変形を拘束することなく、縁部分がめくれあがるのを防止できる。   In order to suppress this, it is preferable to connect the peripheral portions of the upper and lower transmission plates 16 and 17 in a form that does not constrain the horizontal displacement deformation of the upper and lower transmission plates 16 and 17. For example, as shown in FIG. 4, when the edge portions of the upper and lower transmission plates 16, 17 are gently connected with thin rubber plates or connecting members 41 a, 41 b, 41 c, 41 d such as cloth, the upper and lower transmission plates 16 , 17 can be prevented from curling up without restraining the displacement deformation.

次に、図5から図8を参照して、第2実施形態のずれ応力センサ2について説明する。図5は、概略構成を示す斜視図、図6は、図5のX−X’及びY−Y’断面図、図7は、ずれ応力が加わった状態を示す図5のX−X’及びY−Y’断面図、また、図8は配線構造を示す図5のZ−Z’断面図である。   Next, the shear stress sensor 2 of the second embodiment will be described with reference to FIGS. 5 is a perspective view showing a schematic configuration, FIG. 6 is a cross-sectional view taken along XX ′ and YY ′ in FIG. 5, and FIG. 7 is a cross-sectional view taken along XX ′ in FIG. YY ′ sectional view, and FIG. 8 is a ZZ ′ sectional view of FIG. 5 showing a wiring structure.

図5からわかるように、第2実施形態のずれ応力センサ2は、概略として上述のずれ応力センサ1を同一平面上に2組平行に配置したものである。なお、一組の圧電薄板11、電極膜12、上下の接着層13、14、及び上下の滑りシート15を、以下、ずれ応力検出要素31a、31bとして説明する。   As can be seen from FIG. 5, the shear stress sensor 2 of the second embodiment is roughly the above-described shear stress sensor 1 arranged in parallel on the same plane. The pair of piezoelectric thin plate 11, the electrode film 12, the upper and lower adhesive layers 13 and 14, and the upper and lower sliding sheets 15 will be described below as displacement stress detection elements 31a and 31b.

図6の断面図に示すように、ずれ応力検出要素31aと31bは、上接着層13aと上接着層13bが逆転して配置した形態である。つまり、ずれ応力検出要素31bは、ずれ応力検出要素31bを水平に180°回転させた状態である。   As shown in the cross-sectional view of FIG. 6, the shear stress detection elements 31 a and 31 b have a form in which the upper adhesive layer 13 a and the upper adhesive layer 13 b are arranged in reverse. That is, the shear stress detection element 31b is a state in which the shear stress detection element 31b is horizontally rotated by 180 °.

また、後述するが、圧電薄板11a(第1圧電薄板)と圧電薄板11b(第2圧電薄板)は、正極面と負極面がそれぞれ反転した状態に配置することが好ましい。例えば、圧電薄板11aは、負極面を上方に向けて配置し、一方の圧電薄板11bは、正極面を上方に向けて配置する。
As will be described later, the piezoelectric thin plate 11a (first piezoelectric thin plate) and the piezoelectric thin plate 11b (second piezoelectric thin plate) are preferably arranged in a state in which the positive electrode surface and the negative electrode surface are inverted. For example, the piezoelectric thin plate 11a is disposed with the negative electrode surface facing upward, and one piezoelectric thin plate 11b is disposed with the positive electrode surface facing upward.

前述のずれ応力センサ1の場合、ずれ応力が図3(A)のように作用すると、電極膜を付けた圧電薄板11は圧縮されて電荷を生じるが、圧電薄板11は薄いため、圧縮荷重がある程度大きくなると、上下の伝達板16、17を浮かせて面外にたわむ変形をするようになる。   In the case of the above-described shear stress sensor 1, when the shear stress acts as shown in FIG. 3A, the piezoelectric thin plate 11 provided with the electrode film is compressed to generate an electric charge. However, since the piezoelectric thin plate 11 is thin, a compressive load is applied. When it becomes large to some extent, the upper and lower transmission plates 16 and 17 are lifted and deformed to be bent out of the plane.

このたわむ変形を防止するために、ずれ応力センサ2では、ずれ応力検出要素31を2組設置している。そして、ずれ応力検出要素31aと31bは、上接着層13a、13
bが逆転した形態とし、平行に配設することで、一方のずれ応力検出要素31の圧電薄板11に圧縮荷重が作用した場合でも、他方のずれ応力検出要素31の圧電薄板11が引っ張り荷重を受け、上下の伝達板16、17を浮かず、圧電薄板11が面外にたわむ変形が生じなくなる。
In order to prevent this deformation, the deviation stress sensor 2 has two sets of deviation stress detection elements 31. The displacement stress detection elements 31a and 31b are connected to the upper adhesive layers 13a and 13b.
When b is reversed and arranged in parallel, even when a compressive load is applied to the piezoelectric thin plate 11 of one of the shear stress detection elements 31, the piezoelectric thin plate 11 of the other shear stress detection element 31 applies a tensile load. The upper and lower transmission plates 16 and 17 are not floated, and the piezoelectric thin plate 11 is not deformed to be bent out of plane.

例えば、図7に示すように、ずれ応力が左から右へとかかる場合、図7(B)に示すずれ応力検出要素31bでは圧縮荷重がかかるので、圧電薄板11bは圧縮され、たわみ変形を生じるおそれがある。しかし、このようにずれ応力がかかっている場合、図7(A)に示す他方のずれ応力検出要素31aでは引っ張り荷重がかかり、上下の伝達板16、17が圧電薄板11a、11bを上下から押さえ込むように作用することから、上下の伝達板16、17が浮くことはない。上下の伝達板16、17は上下の接着層13、14を介して双方のずれ応力検出要素31a、31b双方と接着しているため、結果として上下の伝達板16、17を浮かせて圧電薄板11bが面外にたわもうとすることを抑えている。   For example, as shown in FIG. 7, when the shear stress is applied from left to right, a compressive load is applied to the shear stress detection element 31b shown in FIG. 7B, so that the piezoelectric thin plate 11b is compressed and causes deformation. There is a fear. However, when the shear stress is applied in this way, a tensile load is applied to the other shear stress detection element 31a shown in FIG. 7A, and the upper and lower transmission plates 16 and 17 press the piezoelectric thin plates 11a and 11b from above and below. Thus, the upper and lower transmission plates 16 and 17 do not float. Since the upper and lower transmission plates 16 and 17 are bonded to both the shear stress detecting elements 31a and 31b via the upper and lower adhesive layers 13 and 14, as a result, the upper and lower transmission plates 16 and 17 are floated and the piezoelectric thin plate 11b. Keeps you from going out of the way.

また、ずれ応力検出要素31を2組設置することで、ずれ応力をより精度良く検出することができる。図8は、ずれ応力検出要素対31aと31bの配線方法を説明する図である。一例として、第1のずれ応力検出要素31aの圧電薄板11aの正極面(引っ張り荷重に対してプラスの信号が生じる面)を上側に、また、第2のずれ応力検出要素31bの圧電薄板11bの正極面が下側に配置されている場合について説明する。   Further, by installing two sets of the deviation stress detection elements 31, the deviation stress can be detected with higher accuracy. FIG. 8 is a diagram for explaining a wiring method of the shear stress detecting element pair 31a and 31b. As an example, the positive electrode surface of the piezoelectric thin plate 11a of the first shear stress detection element 31a (the surface on which a positive signal is generated with respect to the tensile load) is on the upper side, and the piezoelectric thin plate 11b of the second shear stress detection element 31b is on the upper side. A case where the positive electrode surface is disposed on the lower side will be described.

まず、圧電薄板11bの正極面の電極膜12cと、圧電薄板11aの負極面の電極膜12bを配線21cで接続する。次に、圧電薄板11bの負極面の電極膜12dと圧電薄板11aの正極面の電極膜12aを配線21dで接続する。次に、どちらか一方の圧電薄板11の正極面と負極面にそれぞれ配線を接続(ここでは圧電薄板11aの負極面に配線21a、正極面に配線21b)して外部に引き出す。   First, the electrode film 12c on the positive electrode surface of the piezoelectric thin plate 11b and the electrode film 12b on the negative electrode surface of the piezoelectric thin plate 11a are connected by the wiring 21c. Next, the electrode film 12d on the negative electrode surface of the piezoelectric thin plate 11b and the electrode film 12a on the positive electrode surface of the piezoelectric thin plate 11a are connected by a wiring 21d. Next, wiring is connected to the positive electrode surface and the negative electrode surface of either one of the piezoelectric thin plates 11 (here, the wiring 21a is connected to the negative electrode surface of the piezoelectric thin plate 11a and the wiring 21b is connected to the positive electrode surface), and is drawn out to the outside.

図8(B)に示すように、ずれ応力検出要素31bが引っ張られた場合、圧電薄板11bは伸張するので、前述したように、圧電薄板11bの上面の正極面には正の電荷+Q、下面の負極面に負の電荷−Qを生じる。 As shown in FIG. 8B, when the shear stress detecting element 31b is pulled, the piezoelectric thin plate 11b expands. As described above, the positive electrode + Q 1 , resulting in negative charge -Q 1 on the negative electrode surface of the lower surface.

一方、ずれ応力検出要素31aには圧縮荷重が作用するので、圧電薄板11aは収縮し、前述したように、圧電薄板11a上面の負極面には正の電荷+Q、下面の正極面に負の電荷−Qを生じる。 On the other hand, since the compressive load acts on the shear stress detecting element 31a, the piezoelectric thin plate 11a contracts, and as described above, the negative charge on the upper surface of the piezoelectric thin plate 11a is positive + Q 1 , and the negative electrode on the lower positive electrode surface is negative. results in a charge -Q 1.

そして、圧電薄板11bと圧電薄板11aの極性を逆転させて出力の差分を検出するように配線されているので、大きさが2Q(=+Q―(−Q))の電荷を得ることができる。 Since the wiring is detected so as to detect the difference in output by reversing the polarities of the piezoelectric thin plate 11b and the piezoelectric thin plate 11a, a charge having a magnitude of 2Q 1 (= + Q 1 − (− Q 1 )) is obtained. Can do.

発生する電荷2Qはずれ応力の大きさと比例するので、本発明のずれ応力センサ2は、この電荷2Qの時間変動d(2Q)/dtを、配線21a、21bを接続して取り出し、電気回路で積分して2Qに比例する信号を計測する。 Since the generated charge 2Q 1 is proportional to the magnitude of the shear stress, the shear stress sensor 2 of the present invention extracts the time fluctuation d (2Q 1 ) / dt of the charge 2Q 1 by connecting the wirings 21a and 21b, measuring a signal proportional to 2Q 1 by integrating the circuit.

このように、二組のずれ応力検出要素31a、31bを配置し、2枚の圧電薄板11a、11bから逆向きの電荷を発生させ、両電荷の出力差分を検出することにより、小さなずれ応力でも精度良く検出することができる。   In this way, by arranging two sets of shear stress detection elements 31a and 31b, generating opposite charges from the two piezoelectric thin plates 11a and 11b, and detecting the output difference between the two charges, even with a small shear stress. It can be detected with high accuracy.

なお、ずれ応力が上記とは逆向きに作用する場合、図8(C)に示すように、ずれ応力検出要素31bに圧縮荷重がかかり、圧電薄板11bは収縮して、圧電薄板11bの上面の正極面には負の電荷−Q、下面の負極面に正の電荷+Qを生じる。一方、ずれ応力検出要素31aには引っ張り荷重が作用するので、圧電薄板11aは伸張し、圧電薄板11a上面の負極面には負の電荷−Q、下面の正極面に正の電荷+Qを生じ、−2Qの電荷を得ることができる。 When the shear stress acts in the opposite direction, as shown in FIG. 8C, a compressive load is applied to the shear stress detection element 31b, the piezoelectric thin plate 11b contracts, and the upper surface of the piezoelectric thin plate 11b is contracted. negative charge -Q 1 to Seikyokumen produces a positive charge + Q 1 on the negative electrode surface of the lower surface. On the other hand, since a tensile load acts on the shear stress detection element 31a, the piezoelectric thin plate 11a expands, and a negative charge −Q 1 is applied to the negative electrode surface on the upper surface of the piezoelectric thin plate 11a and a positive charge + Q 1 is applied to the positive electrode surface on the lower surface. And a charge of -2Q 1 can be obtained.

このように、圧電薄板11aと圧電薄板11bの極性をそれぞれ逆に配置することで、ずれ応力検出要素31aとずれ応力検出要素31bをつなぐ配線が交差することなく簡単に行える。   Thus, by arranging the polarities of the piezoelectric thin plate 11a and the piezoelectric thin plate 11b in opposite directions, the wiring connecting the displacement stress detection element 31a and the displacement stress detection element 31b can be easily performed without crossing.

なお、圧電薄板11bと圧電薄板11aの上側がともに正極になるように配置されている場合には、2つの配線21c、21dを表裏面で交差させて接続する。すなわち、圧電薄板11bの正極面の電極膜と圧電薄板11aの負極面の電極膜を配線で接続し、圧電薄板11bの負極面の電極膜と圧電薄板11aの正極面の電極膜を配線で接続すれば、2枚の圧電薄板11a、11bの出力の差分を検出することができる。   When the piezoelectric thin plate 11b and the piezoelectric thin plate 11a are disposed so that the upper sides thereof are both positive electrodes, the two wirings 21c and 21d are crossed and connected at the front and back surfaces. That is, the electrode film on the positive electrode surface of the piezoelectric thin plate 11b and the electrode film on the negative electrode surface of the piezoelectric thin plate 11a are connected by wiring, and the electrode film on the negative electrode surface of the piezoelectric thin plate 11b and the electrode film on the positive electrode surface of the piezoelectric thin plate 11a are connected by wiring. Then, the difference between the outputs of the two piezoelectric thin plates 11a and 11b can be detected.

その他の点については、前述のずれ応力センサ1と同様であるため、説明を省略する。   Since the other points are the same as those of the above-described shear stress sensor 1, description thereof will be omitted.

続いて、図9及び図10を参照し、第3実施形態に係るずれ応力センサ3について説明する。ずれ応力センサ3は、前述のずれ応力検出要素を4組配置した構成である。   Subsequently, the shear stress sensor 3 according to the third embodiment will be described with reference to FIGS. 9 and 10. The shear stress sensor 3 has a configuration in which four pairs of the shear stress detection elements described above are arranged.

ずれ応力検出要素31a、31b、31c、31dを同一平面上に、圧電薄板11の延伸方向に合わせ全て平行に配置している。上下の伝達板16、17の表面に沿うずれ応力の大きさに比例する出力信号を計測するずれ応力センサ3である。   The deviation stress detection elements 31a, 31b, 31c, and 31d are all arranged in parallel on the same plane in accordance with the extending direction of the piezoelectric thin plate 11. This is a shear stress sensor 3 that measures an output signal proportional to the magnitude of the shear stress along the surfaces of the upper and lower transmission plates 16 and 17.

図10は、4組のずれ応力検出要素31a、31b、31c、31dを上方から見た平面図であるが、それぞれ接着層13と滑りシート15が互い違いに配置されていることがわかる。このように配置することで、上述のように圧電薄板11に圧縮荷重がかかっても、上下の伝達板16、17が浮いて圧電薄板11が面外にたわみ変形を生じることがない。   FIG. 10 is a plan view of the four pairs of shear stress detection elements 31a, 31b, 31c, and 31d as viewed from above, and it can be seen that the adhesive layers 13 and the sliding sheets 15 are alternately arranged. By arranging in this way, even when a compressive load is applied to the piezoelectric thin plate 11 as described above, the upper and lower transmission plates 16 and 17 do not float and the piezoelectric thin plate 11 does not bend and deform out of plane.

そして、ずれ応力検出要素31aとずれ応力検出要素31cの圧電薄板11は紙面の表側が正極になるように配置され、ずれ応力検出要素31bとずれ応力検出要素31dの圧電薄板11は紙面の表側が負極になるように配置されている。したがって、紙面の表側の各電極膜12(図示せず)を連続して配線21cで接続して引き出した配線21bと、紙面の裏側の各電極膜(図示せず)を連続して配線21dで接続して引き出した配線21a
から、上記第2実施形態のずれ応力センサ2で説明したように、ずれ応力の総和に比例する出力信号を計測することができる。
The piezoelectric thin plates 11 of the shear stress detection element 31a and the shear stress detection element 31c are arranged so that the front side of the paper surface is a positive electrode, and the piezoelectric thin plates 11 of the shear stress detection element 31b and the shear stress detection element 31d are on the front side of the paper surface. It arrange | positions so that it may become a negative electrode. Accordingly, each electrode film 12 (not shown) on the front side of the paper surface is continuously connected by the wiring 21c and drawn out, and each electrode film (not shown) on the back side of the paper surface is continuously connected by the wiring 21d. Connected and drawn wiring 21a
Thus, as described in the shear stress sensor 2 of the second embodiment, an output signal proportional to the sum of the shear stresses can be measured.

このように、ずれ応力検出要素31を複数配設すると、接着層13が細かく分布するようになるので、上下の伝達板16、17に作用するずれ応力を分散させて各ずれ応力検出要素に伝達することができる。また、ずれ応力検出要素31を更に複数配置することで、所望の大きさに対応する広い面積のずれ応力センサを作製することができる。   As described above, when a plurality of shear stress detection elements 31 are provided, the adhesive layer 13 is finely distributed. Therefore, the shear stress acting on the upper and lower transmission plates 16 and 17 is dispersed and transmitted to each shear stress detection element. can do. Further, by disposing a plurality of shear stress detection elements 31, it is possible to produce a shear stress sensor having a large area corresponding to a desired size.

他の点については、前述同様であるので説明を省略する。   The other points are the same as described above, and the description is omitted.

次に、図11を参照し、2方向(X軸とY軸)のずれ応力を検出できる第4実施形態のずれ応力センサ4について説明する。図11(A)は、ずれ応力センサ4のずれ応力検出要素31の配置を示す平面図、(B)は、X軸方向のずれ応力を検出するずれ応力検出要素31を抜き出して示した平面図である。   Next, a shear stress sensor 4 according to a fourth embodiment capable of detecting shear stress in two directions (X axis and Y axis) will be described with reference to FIG. FIG. 11A is a plan view showing the arrangement of the shear stress detection elements 31 of the shear stress sensor 4, and FIG. 11B is a plan view showing the displacement stress detection elements 31 that detect the shear stress in the X-axis direction. It is.

ずれ応力検出要素31a、31bは、X軸と平行に配置されており、これらが対になり、X軸方向のずれ応力を検出する。そして、ずれ応力検出要素31a、31bは互いに対向するよう、上接着層13と滑りシート15を左右反転させた形態で配置している。そして、ずれ応力検出要素31a、31bを配線21e、21fで接続し、歪みによる出力の差分を配線21a、21bから取り出して、X軸方向のずれ応力を検出している。   The shear stress detection elements 31a and 31b are arranged in parallel with the X axis, and they are paired to detect shear stress in the X axis direction. And the deviation stress detection elements 31a and 31b are arranged in a form in which the upper adhesive layer 13 and the sliding sheet 15 are reversed left and right so as to face each other. Then, the deviation stress detection elements 31a and 31b are connected by the wirings 21e and 21f, and the difference in output due to the distortion is taken out from the wirings 21a and 21b to detect the deviation stress in the X-axis direction.

一方、ずれ応力検出要素31c、31dはY軸と平行に配置されており、これらが対になり、Y軸方向のずれ応力を検出する。そして、ずれ応力検出要素31c、31dは互いに対向するよう、上接着層13と滑りシート15を上下反転させた形態で配置している。そして、ずれ応力検出要素31c、31dを配線21g、21hで接続し、歪みによる出力の差分を配線21c、21dから取り出して、軸方向のずれ応力を検出している。
On the other hand, the deviation stress detection elements 31c and 31d are arranged in parallel with the Y axis, and they are paired to detect deviation stress in the Y axis direction. And the deviation stress detection elements 31c and 31d are arranged in the form that the upper adhesive layer 13 and the sliding sheet 15 are turned upside down so as to face each other. Then, the deviation stress detecting elements 31c and 31d are connected by the wirings 21g and 21h, and the difference in output due to the distortion is taken out from the wirings 21c and 21d to detect the deviation stress in the Y- axis direction.

上側および下側の伝達板16,17は4つのずれ応力検出要素31a、31b、31c、31d全てを覆う形態に取り付ける。   The upper and lower transmission plates 16 and 17 are attached so as to cover all four displacement stress detection elements 31a, 31b, 31c and 31d.

このように配置することで、ずれ応力検出要素が同一平面上に一層から構成した2軸のずれ応力センサを構成できるので、センサの厚みを増すことなく、薄く製作することができる。   By arranging in this way, a biaxial shear stress sensor in which the shear stress detection elements are formed from a single layer on the same plane can be constructed, so that the sensor can be made thin without increasing the thickness of the sensor.

図11(B)は、図11(A)のX軸方向のずれ応力を計測するずれ応力検出要素31a、31bと上下の伝達板16、17の部分(波線で表示)を取り出して描いたものであるが、いずれのずれ応力検出要素31aと31bもX軸と平行に配置されるとともに、互いに対向するよう、滑りシート15と上接着層13を左右反転させた形態にて設けられている。Y軸方向のずれ応力を計測するずれ応力検出要素31c、31dも同様である。   FIG. 11 (B) is a drawing obtained by taking out the portions (indicated by wavy lines) of the shear stress detecting elements 31a and 31b and the upper and lower transmission plates 16 and 17 for measuring the shear stress in the X-axis direction of FIG. 11 (A). However, both the shear stress detection elements 31a and 31b are arranged in parallel with the X axis, and are provided in a form in which the sliding sheet 15 and the upper adhesive layer 13 are horizontally reversed so as to face each other. The same applies to the shear stress detection elements 31c and 31d that measure the shear stress in the Y-axis direction.

もちろん、前述のずれ応力センサ1、2又は3に示したような1方向のみのずれ応力を検出する1軸のずれ応力センサを、2つ直交させて重ね、重なる面を接合して2軸のシート型ずれ応力センサを構成することもできる。   Of course, two uniaxial shear stress sensors that detect shear stress in only one direction as shown in the aforementioned shear stress sensors 1, 2, or 3 are overlapped in an orthogonal manner, and the overlapping surfaces are joined to form a biaxial A sheet type deviation stress sensor can also be configured.

その他の点については、前述と同様なので説明を省略する。   Since other points are the same as described above, the description thereof is omitted.

図12は、分布型ずれ応力センサを説明する平面図である。上記の第1実施形態〜第4実施形態のいずれかのずれ応力センサを、多数個同一平面上に一次元状或いは二次元状(マトリクス状)に配置し、それぞれのずれ応力センサから個別に電荷を取り出すことで、ずれ応力の分布を測定することができる。例えば、図12に示すように、所定のシート又は基板51の上にずれ応力センサ2を16個配置し、各センサからの配線21を束ねた配線束52をシート又は基板51の一部分から外部に引き出すことで容易に構成することができる。   FIG. 12 is a plan view for explaining the distributed shear stress sensor. A large number of the shear stress sensors of any of the first to fourth embodiments described above are arranged on the same plane in a one-dimensional or two-dimensional form (matrix), and the individual charges from the respective shear stress sensors. It is possible to measure the distribution of shear stress. For example, as shown in FIG. 12, 16 displacement stress sensors 2 are arranged on a predetermined sheet or substrate 51, and a wire bundle 52 in which the wires 21 from each sensor are bundled is sent from a part of the sheet or substrate 51 to the outside. It can be easily configured by pulling out.

これにより、ベッドに使用する等、広範な面積でどの部分にどの程度のずれ応力がかかっているかを測定したい場合に、各部のずれ応力を検出でき効果的である。なお、図12ではシート又は基板51内部の配線を省略して描いている。   Accordingly, when it is desired to measure how much shear stress is applied to which part in a wide area, such as when used for a bed, it is effective to detect the shear stress of each part. In FIG. 12, wiring inside the sheet or substrate 51 is omitted.

図9で説明した、第3実施形態に係る1軸のずれ応力センサ3を作製して実験を行った。圧電薄板はアルミ蒸着の電極膜が表裏面についた80μm厚さのものを9×40mmの寸法に4枚切り出して、正極面と負極面を交互に逆転させて1mm間隔で平行に並べたものをずれ応力検出要素とした。   An experiment was performed with the uniaxial displacement stress sensor 3 according to the third embodiment described with reference to FIG. Piezoelectric thin plates were obtained by cutting four 80 μm-thick aluminum vapor-deposited electrode films with a size of 9 × 40 mm and arranging them in parallel at 1 mm intervals by alternately reversing the positive and negative electrode surfaces. The shear stress detection element was used.

滑りシートには塗装用のマスキングテープを使用し、接着層には0.15mm厚さの両面粘着シートを使用した。上下の伝達板にはそれぞれ厚さ0.2mmのペット樹脂板を使用した。ずれ応力センサの寸法は一辺が約40mmの正方形で、全体厚さは0.75mmである。   A masking tape for painting was used for the sliding sheet, and a double-sided pressure-sensitive adhesive sheet having a thickness of 0.15 mm was used for the adhesive layer. PET resin plates having a thickness of 0.2 mm were used for the upper and lower transmission plates, respectively. The size of the shear stress sensor is a square having a side of about 40 mm, and the overall thickness is 0.75 mm.

次に、市販のロードセル(容量500N)の上に垂直な剛性板を立てて固定し、剛性板の一方の面にずれ応力センサを貼り付けた。そして、表面側の伝達板の上に滑り止めのシリコンゴムシートを置いて、その上から指で上下方向に繰り返し擦る実験を行った。   Next, a vertical rigid plate was fixed upright on a commercially available load cell (capacity 500 N), and a shear stress sensor was attached to one surface of the rigid plate. Then, an experiment was conducted in which a non-slip silicon rubber sheet was placed on the transmission plate on the front side and repeatedly rubbed in the vertical direction with a finger from above.

ずれ応力センサから引き出した配線からは、ずれ応力の時間微分に比例した出力が生じるので、これを静電容量が4.4μFのコンデンサを並列接続して積分し、ずれ応力に比例する出力にした後、入力抵抗1Mオームの電圧記録計(オムニエースRA1300(NEC三栄))で記録した。   The wiring drawn from the shear stress sensor produces an output proportional to the time derivative of the shear stress, and this was integrated by connecting a capacitor with a capacitance of 4.4 μF in parallel to obtain an output proportional to the shear stress. Thereafter, the voltage was recorded with a voltage recorder (Omniace RA1300 (NEC Sanei)) having an input resistance of 1 M ohm.

その結果を図13、図14に示す。図13(A)がロードセルで計測したずれ応力の波形、(B)がずれ応力センサで計測した出力信号の波形である。図13(B)を見ると、指の温度がセンサに伝わることにより、ずれ応力センサの波形に焦電効果によるドリフトが少し見られるが、ずれ応力センサの波形は、図13(A)のロードセルの波形とよく一致していることがわかる
図14は、ロードセルで計測したずれ応力の変動幅と、ずれ応力センサで計測した出力信号の変動幅の関係をプロットしたものである。図14より、ロードセルに加わった力とずれ応力センサから得られた出力信号は比例関係にあることがわかる。
The results are shown in FIGS. FIG. 13A shows the waveform of the shear stress measured by the load cell, and FIG. 13B shows the waveform of the output signal measured by the shear stress sensor. As shown in FIG. 13B, a slight drift due to the pyroelectric effect is seen in the waveform of the shear stress sensor due to the finger temperature being transmitted to the sensor. The waveform of the shear stress sensor is similar to that of the load cell of FIG. FIG. 14 is a plot of the relationship between the fluctuation width of the deviation stress measured by the load cell and the fluctuation width of the output signal measured by the deviation stress sensor. FIG. 14 shows that the force applied to the load cell and the output signal obtained from the shear stress sensor are in a proportional relationship.

このことから、本発明のずれ応力センサは、伝達板にかかるずれ応力の大きさに応じた出力信号を得られ、精度良くずれ応力を検出できることを実証できた。   From this, it was proved that the shear stress sensor of the present invention can obtain an output signal corresponding to the magnitude of the shear stress applied to the transmission plate and can detect the shear stress with high accuracy.

なお、本実施例では第3実施形態に係るずれ応力センサ3について説明したが、第1実施形態のずれ応力センサ1、又は第2実施形態のずれ応力センサ2についても、ほぼ同様の結果となる。例えば、1枚の圧電薄板を備える剪断力センサ1に、ある力のずれ応力が加わった場合の圧電薄板の歪み量を1とすると、同じ力のずれ応力を加えた4枚の同寸法の圧電薄板を備える剪断力センサ4では、各圧電薄板に伝わる力が分散されるので歪み量はそれぞれ0.25となる。圧電薄板が生じる電荷量は、歪み量に比例することから、いずれのずれ応力センサにおいても発生する電荷量が同じになるからである。   In this example, the shear stress sensor 3 according to the third embodiment has been described. However, the shear stress sensor 1 according to the first embodiment or the shear stress sensor 2 according to the second embodiment has almost the same result. . For example, assuming that the amount of strain of a piezoelectric thin plate when a shear stress of a certain force is applied to a shear force sensor 1 including a single piezoelectric thin plate is 1, four piezoelectric elements of the same size to which the same force shear stress is applied. In the shear force sensor 4 provided with a thin plate, since the force transmitted to each piezoelectric thin plate is dispersed, the amount of strain is 0.25. This is because the amount of charge generated by the piezoelectric thin plate is proportional to the amount of strain, and thus the amount of charge generated in any shear stress sensor is the same.

ただし、歪み量には圧電薄板の歪み量には限界があることから、圧電薄板の枚数が少なく、過剰の力が加わるとそれ以上歪むことができず、電荷量が一定となり、大きなずれ応力の測定が困難になるので、複数の圧電薄板を用いたずれ応力センサとすることが好ましい。   However, since the strain amount of the piezoelectric thin plate is limited, the number of piezoelectric thin plates is small, and when excessive force is applied, it cannot be further distorted, the charge amount becomes constant, and a large displacement stress Since measurement becomes difficult, it is preferable to use a shear stress sensor using a plurality of piezoelectric thin plates.

次に、図11に示した第4実施形態に係る2軸のずれ応力センサ4を試作して実験を行った。電極膜を付けた圧電フィルムは実施例1と同じものを15mm×30mm寸法に切り出して、対になる一方の圧電薄板の表裏面を逆転させて対向するように平行に配置したものをずれ応力検出要素対とした。これを図11のように並べて上下の伝達板に挟み込んだ。滑りシートと接着層、およびずれ応力伝達板の材料は実施例1と同じである。2軸のシート型ずれ応力センサの寸法は一辺が約47mmの正方形で、全体厚さは0.75mmである。   Next, the biaxial shear stress sensor 4 according to the fourth embodiment shown in FIG. Piezoelectric film with electrode film is cut out to the same size as in Example 1 to 15 mm x 30 mm dimension, and a pair of piezoelectric thin plates that are paired and placed in parallel so as to face each other in reverse is detected as shear stress Element pairs were used. These were arranged as shown in FIG. 11 and sandwiched between upper and lower transmission plates. The materials of the sliding sheet, the adhesive layer, and the shear stress transmission plate are the same as those in the first embodiment. The dimension of the biaxial sheet type stress sensor is a square with a side of about 47 mm, and the overall thickness is 0.75 mm.

図15は、実験に用いた装置を示したもので、剛性板62を前記ロードセル61の上に垂直に立てて固定し、剛性板62の一方の面にずれ応力センサ4を貼り付けた。そして、表面側の伝達板の上に滑り止めのシリコンゴムシートを置いて、その上から指で上下方向に繰り返し擦る実験を行った。実験は図15に示すようにずれ応力センサ4の取り付け角度θを種々変化させて貼り付けた。測定回路と記録計は実施例1と同じである。   FIG. 15 shows an apparatus used in the experiment. A rigid plate 62 is vertically fixed on the load cell 61 and fixed, and the displacement stress sensor 4 is attached to one surface of the rigid plate 62. Then, an experiment was conducted in which a non-slip silicon rubber sheet was placed on the transmission plate on the front side and repeatedly rubbed in the vertical direction with a finger from above. In the experiment, as shown in FIG. 15, the attachment angle θ of the shift stress sensor 4 was varied and pasted. The measurement circuit and the recorder are the same as those in the first embodiment.

図16にその結果を示す。図16(A)は、ずれ応力センサの取り付け角度θが約30度の場合に計測したX軸方向およびY軸方向のセンサの出力電圧とロードセルで計測した垂直方向の荷重との関係をプロットしたもの、(B)はずれ応力センサの取り付け角度θが約45度の場合に計測したX軸方向およびY軸方向のセンサの出力電圧とロードセルで計測した垂直方向の荷重との関係をプロットしたものである。いずれにおいても、ずれ応力センサのX軸の出力電圧とロードセルのX軸の荷重、及びずれ応力センサのY軸の出力電圧とロードセルのY軸の荷重は比例関係にあることがわかる。   FIG. 16 shows the result. FIG. 16A plots the relationship between the output voltage of the sensor in the X-axis direction and the Y-axis direction measured when the mounting angle θ of the shear stress sensor is about 30 degrees and the vertical load measured by the load cell. (B) is a plot of the relationship between the output voltage of the sensor in the X-axis direction and the Y-axis direction measured when the mounting angle θ of the shear stress sensor is about 45 degrees and the vertical load measured by the load cell. is there. In any case, it can be seen that the X-axis output voltage of the shear stress sensor and the load on the X-axis of the load cell, and the Y-axis output voltage of the shear stress sensor and the load on the Y-axis of the load cell are in a proportional relationship.

図17はX軸方向のセンサの出力信号VXと、Y軸方向のセンサの出力電圧VYから垂直方向の出力信号をベクトル和(VX+VY1/2で求め、ロードセルで計測した垂直方向の荷重の変動幅と比較したものである。図17より2軸のせん断力センサの出力はセンサの設置角度によらずほぼ一本の直線になっている。 FIG. 17 shows the vertical direction measured by the load cell by calculating the vector output (VX 2 + VY 2 ) ½ of the vertical output signal from the output signal VX of the sensor in the X-axis direction and the output voltage VY of the sensor in the Y-axis direction. It is compared with the fluctuation range of the load. From FIG. 17, the output of the biaxial shear force sensor is almost a straight line regardless of the installation angle of the sensor.

これらから、本発明の2軸のずれ応力センサは、伝達板にかかるずれ応力のX軸方向及びY軸方向にかかるそれぞれの大きさに応じた出力信号を得られ、精度良くずれ応力を検出できることを実証した。   From these, the biaxial shear stress sensor of the present invention can obtain an output signal corresponding to the magnitude of the shear stress applied to the transmission plate in the X-axis direction and the Y-axis direction, and can detect the shear stress with high accuracy. Proved.

本発明の第1実施形態に係るずれ応力センサの概略構成を示す斜視図である。It is a perspective view showing a schematic structure of a shear stress sensor concerning a 1st embodiment of the present invention. 本発明に用いる圧電薄板の電荷の発生状態を示す斜視図である。It is a perspective view which shows the electric charge generation state of the piezoelectric thin plate used for this invention. 本発明のずれ応力センサの検出原理を示す断面図である。It is sectional drawing which shows the detection principle of the shear stress sensor of this invention. 本発明の接続部材で上下の伝達板を接続したずれ応力センサの斜視図である。It is a perspective view of the shift | offset | difference stress sensor which connected the upper and lower transmission board with the connection member of this invention. 本発明の第2実施形態に係るずれ応力センサの斜視図である。It is a perspective view of the shear stress sensor concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係るずれ応力センサの断面図である。It is sectional drawing of the shear stress sensor which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るずれ応力センサの検出原理を示す断面図である。It is sectional drawing which shows the detection principle of the shear stress sensor which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るずれ応力センサの配線構造及び電荷の発生状態を示す断面図である。It is sectional drawing which shows the wiring structure of the shear stress sensor which concerns on 2nd Embodiment of this invention, and the generation | occurrence | production state of an electric charge. 本発明の第3実施形態に係るずれ応力センサの斜視図である。It is a perspective view of a shear stress sensor concerning a 3rd embodiment of the present invention. 本発明の第3実施形態に係るずれ応力センサの内部構成を示す平面図である。It is a top view which shows the internal structure of the shear stress sensor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るずれ応力センサの内部構成を示す平面図である。It is a top view which shows the internal structure of the shear stress sensor which concerns on 4th Embodiment of this invention. 本発明の分布型ずれ応力センサの構成を示す平面図である。It is a top view which shows the structure of the distributed shear stress sensor of this invention. 本発明の第2実施形態に係るずれ応力センサの出力波形を示す測定図である。It is a measurement figure which shows the output waveform of the shear stress sensor which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るずれ応力センサの出力と荷重との関係を示す測定図である。It is a measurement figure which shows the relationship between the output of the shear stress sensor which concerns on 2nd Embodiment of this invention, and a load. 本発明のずれ応力センサのずれ応力測定に用いた装置の概略を示す正面図である。It is a front view which shows the outline of the apparatus used for the shear stress measurement of the shear stress sensor of this invention. 本発明の第4実施形態に係るずれ応力センサの出力と荷重との関係を示す測定図である。It is a measurement figure which shows the relationship between the output of the shear stress sensor which concerns on 4th Embodiment of this invention, and a load. 本発明の第4実施形態に係るずれ応力センサの出力と荷重との関係を示す測定図である。It is a measurement figure which shows the relationship between the output of the shear stress sensor which concerns on 4th Embodiment of this invention, and a load.

符号の説明Explanation of symbols

1 ずれ応力センサ
2 ずれ応力センサ
3 ずれ応力センサ
4 ずれ応力センサ
5 分布型ずれ応力センサ
11 圧電薄板
12 電極膜
13 上接着層
14 下接着層
15 滑りシート
16 上側伝達板
17 下側伝達板
21 配線
31 ずれ応力検出要素
41 伝達板接続部材
51 シート又は基板
52 配線束
61 ロードセル
62 剛性板
DESCRIPTION OF SYMBOLS 1 Shear stress sensor 2 Shear stress sensor 3 Shear stress sensor 4 Shear stress sensor 5 Distribution type shear stress sensor 11 Piezoelectric thin plate 12 Electrode film 13 Upper adhesive layer 14 Lower adhesive layer 15 Sliding sheet 16 Upper transmission plate 17 Lower transmission plate 21 Wiring 31 Displacement stress detection element 41 Transmission plate connecting member 51 Sheet or substrate 52 Wiring bundle 61 Load cell 62 Rigid plate

Claims (4)

圧電材料からなる圧電薄板と、
前記圧電薄板を挟むように設けた上側伝達板及び下側伝達板と、
前記圧電薄板と前記上側伝達板を接着する上接着層と、前記圧電薄板と前記下側伝達板を接着する下接着層と、
前記上接着層と前記下接着層と同じ厚みの滑りシートを備え、
前記圧電薄板の中央を境に圧電薄板の延伸方向に直線上に前記上接着層と前記下接着層が配置され、前記上接着層は前記圧電薄板の上面側に設けた前記上接着層の全てで前記上側伝達板と接着され、前記下接着層は前記圧電薄板の下面側に設けた前記下接着層の全てで前記下側伝達板と接着され、
前記上接着層と前記下接着層は実質的に重畳しないように配置され、
前記滑りシートは前記上接着層と前記下接着層に隣接して配置され、
水平方向のずれ応力によって前記上側伝達板及び前記下側伝達板にそれぞれ逆向きに作用する力を、前記上接着層及び前記下接着層を介して前記圧電薄板に伝え、
前記圧電薄板を収縮又は伸張させて電荷を発生させ、前記ずれ応力の大きさを測定することを特徴とするずれ応力センサ。
A piezoelectric thin plate made of a piezoelectric material;
An upper transmission plate and a lower transmission plate provided so as to sandwich the piezoelectric thin plate;
An upper adhesive layer for bonding the piezoelectric thin plate and the upper transmission plate; a lower adhesive layer for bonding the piezoelectric thin plate and the lower transmission plate;
A slip sheet having the same thickness as the upper adhesive layer and the lower adhesive layer,
The upper adhesive layer and the lower adhesive layer are arranged in a straight line in the extending direction of the piezoelectric thin plate with the center of the piezoelectric thin plate as a boundary, and the upper adhesive layer is all of the upper adhesive layer provided on the upper surface side of the piezoelectric thin plate. And the lower adhesive layer is bonded to the lower transmission plate in all of the lower adhesive layer provided on the lower surface side of the piezoelectric thin plate,
The upper adhesive layer and the lower adhesive layer are arranged so as not to substantially overlap,
The sliding sheet is disposed adjacent to the upper adhesive layer and the lower adhesive layer,
A force acting in opposite directions on the upper transmission plate and the lower transmission plate due to a horizontal displacement stress is transmitted to the piezoelectric thin plate via the upper adhesive layer and the lower adhesive layer,
A shear stress sensor, wherein the piezoelectric thin plate is contracted or stretched to generate an electric charge, and the magnitude of the shear stress is measured.
隣接して配置した圧電材料からなる第1圧電薄板及び第2圧電薄板と、
前記第1圧電薄板及び前記第2圧電薄板を挟むように設けた上側伝達板及び下側伝達板と、
前記第1圧電薄板と前記上側伝達板を接着する第1圧電薄板の上接着層と、前記第1圧電薄板と前記下側伝達板を接着する第1圧電薄板の下接着層と、前記第2圧電薄板と前記上側伝達板を接着する第2圧電薄板の上接着層と、前記第2圧電薄板と前記下側伝達板を接着する第2圧電薄板の下接着層と、
前記第1圧電薄板の上接着層と前記第1圧電薄板の下接着層と同じ厚みの第1圧電薄板の滑りシートと、前記第2圧電薄板の上接着層と前記第2圧電薄板の下接着層と同じ厚みの第2圧電薄板の滑りシートを備え、
前記第1圧電薄板の中央を境に第1圧電薄板の延伸方向に直線上に前記第1圧電薄板の上接着層と前記第1圧電薄板の下接着層が配置され、前記第1圧電薄板の上接着層は前記第1圧電薄板の上面側に設けた前記第1圧電薄板の上接着層の全てで前記上側伝達板と接着され、前記第1圧電薄板の下接着層は前記第1圧電薄板の下面側に設けた前記第1圧電薄板の下接着層の全てで前記下側伝達板と接着され、且つ、前記第1圧電薄板の上接着層と前記第1圧電薄板の下接着層は実質的に重畳しないように配置され、
また、前記第2圧電薄板の中央を境に第2圧電薄板の延伸方向に直線上に前記第2圧電薄板の上接着層と前記第2圧電薄板の下接着層が配置され、前記第2圧電薄板の上接着層は前記第2圧電薄板の上面側に設けた前記第2圧電薄板の上接着層の全てで前記上側伝達板と接着され、前記第2圧電薄板の下接着層は前記第2圧電薄板の下面側に設けた前記第2圧電薄板の下接着層の全てで前記下側伝達板と接着され、且つ、前記第2圧電薄板の上接着層と前記第2圧電薄板の下接着層は実質的に重畳しないように配置され、
前記第1圧電薄板の上接着層と前記第2圧電薄板の上接着層が互い違いになるように前記第1圧電薄板あるいは前記第2圧電薄板の延伸方向に対して逆転して配置され、
前記第1圧電薄板の滑りシートは前記第1圧電薄板の上接着層と前記第1圧電薄板の下接着層に隣接して配置され、また前記第2圧電薄板の滑りシートは前記第2圧電薄板の上接着層と前記第2圧電薄板の下接着層に隣接して配置され、
水平方向のずれ応力によって前記上側伝達板及び前記下側伝達板にそれぞれ逆向きに作用する力を、一方の前記第1圧電薄板の上接着層及び前記第1圧電薄板の下接着層を介して前記第1圧電薄板に伝え、他方の前記第2圧電薄板の上接着層及び前記第2圧電薄板の下接着層を介して前記第2圧電薄板に伝え、
前記第1圧電薄板を収縮又は伸張させて電荷を発生させるとともに、前記第2圧電薄板を伸張又は収縮させて前記第1圧電薄板と逆方向の電荷を発生させ、両電荷の出力差から前記ずれ応力の大きさを測定することを特徴とするずれ応力センサ。
A first piezoelectric thin plate and a second piezoelectric thin plate made of piezoelectric materials disposed adjacent to each other;
An upper transmission plate and a lower transmission plate provided so as to sandwich the first piezoelectric thin plate and the second piezoelectric thin plate;
An upper adhesive layer of the first piezoelectric thin plate for bonding the first piezoelectric thin plate and the upper transmission plate, a lower adhesive layer of the first piezoelectric thin plate for bonding the first piezoelectric thin plate and the lower transmission plate, and the second An upper adhesive layer of a second piezoelectric thin plate that bonds the piezoelectric thin plate and the upper transmission plate; a lower adhesive layer of the second piezoelectric thin plate that bonds the second piezoelectric thin plate and the lower transmission plate;
The first piezoelectric thin plate sliding sheet having the same thickness as the first piezoelectric thin plate upper adhesive layer and the first piezoelectric thin plate lower adhesive layer, and the second piezoelectric thin plate upper adhesive layer and the second piezoelectric thin plate lower adhesive A second piezoelectric thin sheet sliding sheet having the same thickness as the layer,
Under the adhesive layer on the adhesive layer and the first piezoelectric thin plate of said first piezoelectric sheet in a straight line in the extending direction of the first piezoelectric thin plate is disposed in the boundary center of the first piezoelectric sheet, said first piezoelectric sheet The upper adhesive layer is bonded to the upper transmission plate by all the upper adhesive layers of the first piezoelectric thin plate provided on the upper surface side of the first piezoelectric thin plate, and the lower adhesive layer of the first piezoelectric thin plate is the first piezoelectric thin plate All the lower adhesive layers of the first piezoelectric thin plate provided on the lower surface side of the first piezoelectric thin plate are bonded to the lower transmission plate, and the upper adhesive layer of the first piezoelectric thin plate and the lower adhesive layer of the first piezoelectric thin plate are substantially Are arranged so as not to overlap,
The lower adhesive layer on the adhesive layer and the second piezoelectric sheet of the second piezoelectric sheet in a straight line in the extending direction of the second piezoelectric thin plate is disposed in the boundary center of the second piezoelectric thin plate, said second piezoelectric The upper adhesive layer of the thin plate is bonded to the upper transmission plate in all of the upper adhesive layer of the second piezoelectric thin plate provided on the upper surface side of the second piezoelectric thin plate, and the lower adhesive layer of the second piezoelectric thin plate is the second adhesive layer . All of the lower adhesive layer of the second piezoelectric thin plate provided on the lower surface side of the piezoelectric thin plate is bonded to the lower transmission plate, and the upper adhesive layer of the second piezoelectric thin plate and the lower adhesive layer of the second piezoelectric thin plate Are arranged so as not to substantially overlap,
The upper adhesive layer of the first piezoelectric thin plate and the upper adhesive layer of the second piezoelectric thin plate are alternately arranged so as to be reversed with respect to the extending direction of the first piezoelectric thin plate or the second piezoelectric thin plate,
The sliding sheet of the first piezoelectric thin plate is disposed adjacent to the upper adhesive layer of the first piezoelectric thin plate and the lower adhesive layer of the first piezoelectric thin plate, and the sliding sheet of the second piezoelectric thin plate is the second piezoelectric thin plate. Disposed adjacent to the upper adhesive layer and the lower adhesive layer of the second piezoelectric thin plate,
Forces acting in opposite directions on the upper transmission plate and the lower transmission plate due to a horizontal displacement stress are applied to the upper adhesive layer of the first piezoelectric thin plate and the lower adhesive layer of the first piezoelectric thin plate, respectively. Transmitted to the first piezoelectric thin plate, transmitted to the second piezoelectric thin plate through the upper adhesive layer of the other second piezoelectric thin plate and the lower adhesive layer of the second piezoelectric thin plate,
The first piezoelectric thin plate is contracted or expanded to generate electric charge, and the second piezoelectric thin plate is expanded or contracted to generate electric charge in the opposite direction to the first piezoelectric thin plate. A shear stress sensor characterized by measuring the magnitude of stress.
圧電材料からなる圧電薄板と、
前記圧電薄板を挟むように設けた上側伝達板及び下側伝達板と、
前記圧電薄板と前記上側伝達板を接着する上接着層と、前記圧電薄板と前記下側伝達板を接着する下接着層と、
前記上接着層と前記下接着層と同じ厚みの滑りシートから成り、
前記圧電薄板の中央を境に圧電薄板の延伸方向に直線上に前記上接着層と前記下接着層が配置され、前記上接着層は前記圧電薄板の上面側の前記上接着層の全てで前記上側伝達板と接着され、前記下接着層は前記圧電薄板の下面側の前記下接着層の全てで前記下側伝達板と接着され、且つ、前記上接着層と前記下接着層は実質的に重畳しないように配置され、
前記滑りシートは前記上接着層と前記下接着層に隣接して配置され、
水平方向のずれ応力によって前記上側伝達板及び前記下側伝達板にそれぞれ逆向きに作用する力を、前記上接着層及び前記下接着層を介して前記圧電薄板に伝え、前記圧電薄板を収縮又は伸張させて発生した電荷で前記ずれ応力の大きさを測定するずれ応力検出要素を有し、
互いに対向する前記ずれ応力検出要素を少なくとも二組以上備え、
一の互いに対向する前記ずれ応力検出要素を前記圧電薄板の延伸方向をX軸方向に一致させて配置し、各圧電薄板の歪み量に応じた出力の差分からX軸方向の前記ずれ応力の大きさを測定し、
他の互いに対向する前記ずれ応力検出要素を前記圧電薄板の延伸方向をY軸方向に一致させて配置し、各圧電薄板の歪み量に応じた出力の差分からY軸方向の前記ずれ応力の大きさを測定することを特徴とするずれ応力センサ。
A piezoelectric thin plate made of a piezoelectric material;
An upper transmission plate and a lower transmission plate provided so as to sandwich the piezoelectric thin plate;
An upper adhesive layer for bonding the piezoelectric thin plate and the upper transmission plate; a lower adhesive layer for bonding the piezoelectric thin plate and the lower transmission plate;
The upper adhesive layer and the lower adhesive layer are composed of a sliding sheet having the same thickness,
The upper adhesive layer and the lower adhesive layer are arranged in a straight line in the extending direction of the piezoelectric thin plate with the center of the piezoelectric thin plate as a boundary, and the upper adhesive layer is the entire upper adhesive layer on the upper surface side of the piezoelectric thin plate. Bonded to the upper transmission plate, the lower adhesive layer is bonded to the lower transmission plate in all of the lower adhesive layer on the lower surface side of the piezoelectric thin plate, and the upper adhesive layer and the lower adhesive layer are substantially It is arranged so as not to overlap,
The sliding sheet is disposed adjacent to the upper adhesive layer and the lower adhesive layer,
Forces acting in opposite directions on the upper transmission plate and the lower transmission plate due to a horizontal displacement stress are transmitted to the piezoelectric thin plate via the upper adhesive layer and the lower adhesive layer, and the piezoelectric thin plate contracts or A shear stress detecting element for measuring the magnitude of the shear stress with the electric charge generated by stretching;
Comprising at least two sets of the shear stress detection elements facing each other,
One shift stress detecting element facing each other is arranged so that the extending direction of the piezoelectric thin plate coincides with the X-axis direction, and the magnitude of the shift stress in the X-axis direction is determined from a difference in output according to the strain amount of each piezoelectric thin plate. Measuring
The other offset stress detecting elements facing each other are arranged such that the extending direction of the piezoelectric thin plate coincides with the Y-axis direction, and the magnitude of the offset stress in the Y-axis direction is determined from the difference in output according to the strain amount of each piezoelectric thin plate. A shear stress sensor characterized by measuring the thickness.
請求項1から請求項3のいずれか1つに記載したずれ応力センサを複数個同一平面上に一次元状あるいは二次元状に並べて配置し、それぞれの前記ずれ応力センサから個別に電荷を取り出し、ずれ応力の大きさの分布を測定することを特徴とする分布型ずれ応力センサ。
A plurality of displacement stress sensors according to any one of claims 1 to 3 are arranged one-dimensionally or two-dimensionally on the same plane, and electric charges are individually taken out from each of the displacement stress sensors, A distributed shear stress sensor characterized by measuring the distribution of the magnitude of shear stress.
JP2008067405A 2008-03-17 2008-03-17 Shear stress sensor and distributed shear stress sensor Expired - Fee Related JP5408687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067405A JP5408687B2 (en) 2008-03-17 2008-03-17 Shear stress sensor and distributed shear stress sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067405A JP5408687B2 (en) 2008-03-17 2008-03-17 Shear stress sensor and distributed shear stress sensor

Publications (2)

Publication Number Publication Date
JP2009222556A JP2009222556A (en) 2009-10-01
JP5408687B2 true JP5408687B2 (en) 2014-02-05

Family

ID=41239503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067405A Expired - Fee Related JP5408687B2 (en) 2008-03-17 2008-03-17 Shear stress sensor and distributed shear stress sensor

Country Status (1)

Country Link
JP (1) JP5408687B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5694757B2 (en) * 2010-12-24 2015-04-01 京セラ株式会社 Portable electronic devices
CN102539030B (en) * 2011-12-29 2014-01-29 中国科学技术大学 Dynamic compress-shearing stress meter
CN103389775A (en) * 2012-05-07 2013-11-13 联想(北京)有限公司 Electronic equipment
WO2013175848A1 (en) 2012-05-24 2013-11-28 株式会社村田製作所 Sensor device and electronic apparatus
JP6835354B2 (en) * 2016-03-18 2021-02-24 国立大学法人神戸大学 Pressure sensor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136202A (en) * 1990-08-31 1992-08-04 Atochem North America, Inc Material sensor
DE4236985C1 (en) * 1992-11-04 1994-02-24 Hottinger Messtechnik Baldwin Strain gauges
US5341687A (en) * 1992-11-16 1994-08-30 The Goodyear Tire & Rubber Company 3-dimensional pressure sensor
JPH09280970A (en) * 1996-04-09 1997-10-31 Mitsubishi Heavy Ind Ltd Shearing force detector
JP3508585B2 (en) * 1998-11-02 2004-03-22 株式会社大林組 Flexible shear measurement sensor
JP4700180B2 (en) * 2000-09-26 2011-06-15 株式会社モルテン Deviation force measuring device
JP2003262502A (en) * 2002-03-07 2003-09-19 Yukio Fujimoto Strain sensor and stress sensor using anisotropic piezoelectric
JP3931104B2 (en) * 2002-03-29 2007-06-13 株式会社ケープ Triaxial load measuring sensor
JP2006226858A (en) * 2005-02-18 2006-08-31 Hiroshima Univ Fluctuation load sensor, and tactile sensor using the same
JP4761186B2 (en) * 2005-03-10 2011-08-31 独立行政法人産業技術総合研究所 Swimming element using a switching element and a switching element

Also Published As

Publication number Publication date
JP2009222556A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP4427665B2 (en) Bending deformation sensor and deformation measuring apparatus
KR101673884B1 (en) Pressure detector and touch panel provided with pressure detector
JP5408687B2 (en) Shear stress sensor and distributed shear stress sensor
US8327721B2 (en) Sensor fabric for shape perception
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
JP7143941B2 (en) vibration device
JP5950053B2 (en) Press detection sensor
JP6004123B2 (en) Method for manufacturing piezoelectric sensor
WO2015080109A1 (en) Piezoelectric sensor and portable terminal
JP7128506B2 (en) pressure sensor
WO2015107932A1 (en) Piezoelectric sensor
JP6488698B2 (en) External force detection array module
JP6287166B2 (en) Inspection method of piezoelectric sensor
JP6624343B2 (en) Sensors, touch panels, and electronic devices
JP2011043442A (en) Fluctuation load detection pad, fluctuation load detection plate using the same, distributed type fluctuation load detection plate, and fluctuation load detector
JP6652882B2 (en) Pressure detector
JP6324566B2 (en) Sensor using polymer gel
WO2015083678A1 (en) Pressing force sensor
JPWO2015098723A1 (en) Method for manufacturing piezoelectric sensor
WO2015093357A1 (en) Operation input apparatus
JP6324803B2 (en) Pressure-sensitive sensor and manufacturing method thereof
JP2018013339A (en) Strain sensor, sensor for crack detection and crack detector
JP2009025065A (en) Pressure sensor and distributed pressure sensor using the same
JP6052431B2 (en) Piezoelectric sensor
JP2021050926A (en) Pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5408687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees