JP5408659B2 - Apparatus and method for determining quality of composite container - Google Patents

Apparatus and method for determining quality of composite container Download PDF

Info

Publication number
JP5408659B2
JP5408659B2 JP2009268616A JP2009268616A JP5408659B2 JP 5408659 B2 JP5408659 B2 JP 5408659B2 JP 2009268616 A JP2009268616 A JP 2009268616A JP 2009268616 A JP2009268616 A JP 2009268616A JP 5408659 B2 JP5408659 B2 JP 5408659B2
Authority
JP
Japan
Prior art keywords
composite container
void
voids
volume
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009268616A
Other languages
Japanese (ja)
Other versions
JP2011112484A (en
Inventor
宏猷 鬼鞍
隆生 佐島
順二 岡崎
幸次郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Eneos Corp
Original Assignee
Kyushu University NUC
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, JXTG Nippon Oil and Energy Corp filed Critical Kyushu University NUC
Priority to JP2009268616A priority Critical patent/JP5408659B2/en
Publication of JP2011112484A publication Critical patent/JP2011112484A/en
Application granted granted Critical
Publication of JP5408659B2 publication Critical patent/JP5408659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、容器を形作る金属製ライナーをこれに巻装された繊維材料と樹脂とで強化した複合容器の品質管理を行うための品質判定装置及び方法に関する。   The present invention relates to a quality determination apparatus and method for quality control of a composite container in which a metal liner forming a container is reinforced with a fiber material and a resin wound around the metal liner.

近年、水素をはじめとする気体の貯蔵・輸送をすることが注目されている。この際、できるだけ多量の気体を取り扱えるように、容器に高圧で封入することが行われている。
高圧で気体を封入する容器は、高圧ボンベと呼ばれ、容器を形作る金属製のライナーを強化して製造され、かかる強化の典型的な方法として、熱硬化性樹脂で繊維を固着または封止しながら巻装を行う方法がある(特許文献1参照)。
In recent years, attention has been focused on storing and transporting gases including hydrogen. At this time, the container is sealed at a high pressure so that as much gas as possible can be handled.
A container that encloses gas at high pressure is called a high-pressure cylinder, and is manufactured by reinforcing a metal liner that forms the container. As a typical method of such reinforcement, a fiber is fixed or sealed with a thermosetting resin. There is a method of winding while (see Patent Document 1).

こうした繊維と樹脂を使用しライナーを強化する場合は、均一に巻装しかつ樹脂の空隙の少ないものが求められる。特に樹脂の空隙は劣化や強度不足の原因となるため、樹脂の空隙のないものを製造することが求められる。   When using such fibers and resin to reinforce the liner, it is required to uniformly wrap and reduce resin voids. In particular, since the voids of the resin cause deterioration and insufficient strength, it is required to produce a resin without voids.

特開2007−190697号公報JP 2007-190697 A

従来の技術においては、樹脂の空隙は直接測定されず、こうした強度不足の高圧ボンベを発見する方法として、ボンベに充填圧力の1〜3倍程度の高圧気体を封入し、破裂、圧壊や漏れがおこるものを不合格として廃棄することが主に行われてきた。
しかし、こうした高圧気体の封入による品質管理は、工程が複雑となり、大掛かりな設備が必要とされる。また、高圧を使用する際に破裂をさせることは、時には危険が伴うこともあるので、安全にも配慮した設備が必要である。
In the prior art, the voids of the resin are not directly measured. As a method of finding such a high-pressure cylinder with insufficient strength, a high-pressure gas of about 1 to 3 times the filling pressure is sealed in the cylinder, and rupture, crushing or leakage is caused. It has been mainly done to dispose of what happens as a failure.
However, quality control by filling such a high-pressure gas complicates the process and requires large-scale equipment. In addition, rupturing when using high pressures can be dangerous at times, so safety-friendly equipment is required.

本発明においては、こうした工程や設備を使用することなく、簡易に強度不足の複合容器(高圧ボンベ)を発見することができる複合容器の品質判定装置及び方法を提供することを目的とする。   An object of the present invention is to provide a quality determination device and method for a composite container that can easily find a composite container (high pressure cylinder) with insufficient strength without using such processes and equipment.

このため、本発明に係る複合容器の品質判定装置は、
前記複合容器を非破壊検査して、樹脂内部の空隙の体積を空隙ごとに測定する測定手段と、
各空隙の体積と予め定められた第1閾値とを比較して、第1閾値を超える空隙が存在する場合に、測定した複合容器を排除する第1の判定手段と、
全ての空隙の総体積と予め定められた第2閾値とを比較して、空隙の総体積が第2閾値を超える場合に、測定した複合容器を排除する第2の判定手段と、を含んで構成される。
For this reason, the quality determination device for a composite container according to the present invention is:
Non-destructive inspection of the composite container, measuring means for measuring the volume of voids inside the resin for each void,
A first determination unit that compares the volume of each void with a predetermined first threshold value and excludes the measured composite container when there is a void that exceeds the first threshold value;
Comparing the total volume of all the voids with a predetermined second threshold value, and, when the total volume of the voids exceeds the second threshold value, including a second determination means that excludes the measured composite container. Composed.

また、本発明に係る複合容器の品質判定方法は、
前記複合容器を非破壊検査して、樹脂内部の空隙の体積を空隙ごとに測定し、
各空隙の体積と予め定められた第1閾値とを比較して、第1閾値を超える空隙が存在する場合に、測定した複合容器を排除する第1の判定と、
全ての空隙の総体積と予め定められた第2閾値とを比較して、空隙の総体積が第2閾値を超える場合に、測定した複合容器を排除する第2の判定と、を行う。
Moreover, the quality determination method of the composite container according to the present invention is as follows.
Nondestructive inspection of the composite container, the volume of voids inside the resin is measured for each void,
Comparing the volume of each void with a predetermined first threshold, and if there is a void that exceeds the first threshold, a first determination that excludes the measured composite container;
The total volume of all the voids is compared with a predetermined second threshold value, and when the total volume of the voids exceeds the second threshold value, a second determination for excluding the measured composite container is performed.

ここで、前記測定では、前記複合容器の特定方向の断面(例えば円筒状の複合容器の軸線と直交する断面)について、前記断面と直交する方向の位置(前記軸線方向の位置)を所定幅ずつ変えて、非破壊検査を繰り返すことにより、空隙の3次元データを得るようにするとよい。   Here, in the measurement, with respect to a cross section in a specific direction of the composite container (for example, a cross section orthogonal to the axis of the cylindrical composite container), a position in the direction orthogonal to the cross section (position in the axial direction) is determined by a predetermined width. It is preferable to obtain the three-dimensional data of the air gap by repeating the nondestructive inspection.

本発明によれば、検査対象の複合容器(高圧ボンベ)に通常の充填圧力より大きな高圧気体を封入したり、これにより複合容器を破壊したりすることなく、手軽に、また安全に、強度不足の複合容器を確実に発見することができるという効果を奏する。   According to the present invention, the strength of the composite container (high-pressure cylinder) to be inspected is insufficient, easily and safely without enclosing a high-pressure gas larger than the normal filling pressure or destroying the composite container. There is an effect that the composite container can be surely found.

本発明の対象とする複合容器について例示する複合容器の断面図Sectional drawing of the composite container illustrated about the composite container made into the object of this invention 同上の複合容器の要部拡大断面図The principal part expanded sectional view of a composite container same as the above 本発明の一実施形態を示す複合容器の品質判定装置の構成図The block diagram of the quality determination apparatus of the composite container which shows one Embodiment of this invention 空隙の体積の求め方の例を示す図Diagram showing an example of how to determine the volume of the air gap 面積を求める方法について例示する図Diagram illustrating the method for determining the area 品質判定のフローチャートQuality judgment flowchart

以下、本発明の実施の形態について、詳細に説明する。
本発明の対象とする複合容器は、金属製のライナーに繊維を巻装し、内部に高圧気体を封入することにも耐えるようにしたものである。
使用する繊維としては、炭素繊維が好ましい。こうした炭素繊維をライナーに巻装するには、FW(フィラメントワインディング)法で巻装していくのが一般的である。
Hereinafter, embodiments of the present invention will be described in detail.
The composite container which is the subject of the present invention is such that a fiber is wound around a metal liner and can withstand high pressure gas inside.
As the fiber to be used, carbon fiber is preferable. In order to wind such a carbon fiber around a liner, it is common to wind the carbon fiber by a FW (filament winding) method.

FW法とは、ライナーを回転させながら、繊維に一定の張力をかけ、必要な箇所に繊維を巻装していく方法である。ウエット法であれば、溶融した樹脂のバスに炭素繊維を浸しライナーに巻装した後、硬化炉で加熱し固化させる。ドライ法であれば、炭素繊維に予め樹脂を含浸させて樹脂を半固化したトウプリプレグと呼ばれる材料を巻装した後、硬化炉で加熱し固化させるものである。   The FW method is a method in which a constant tension is applied to the fiber while rotating the liner, and the fiber is wound around a necessary portion. In the wet method, carbon fiber is immersed in a molten resin bath, wound around a liner, and then heated and solidified in a curing furnace. In the case of the dry method, a material called a tow prepreg obtained by impregnating a resin into carbon fiber in advance and semi-solidifying the resin is wound, and then heated and solidified in a curing furnace.

ここで、使用する樹脂は硬化性の樹脂であり、例えばエポキシ樹脂等の熱硬化性の樹脂や光硬化性の樹脂を使用するのが一般的である。
こうして巻装された樹脂と繊維は、例えば図1に示すように、ライナーの周囲に強化層を形成する。その厚さは、使用する目的、封入する気体の圧力、ライナーの大きさ、強化繊維や樹脂の種類等により適宜変更されるものであるが、ライナーの肉厚の1〜10倍程度が良い。
Here, the resin to be used is a curable resin. For example, a thermosetting resin such as an epoxy resin or a photocurable resin is generally used.
The resin and fibers wound in this way form a reinforcing layer around the liner as shown in FIG. 1, for example. The thickness is appropriately changed depending on the purpose of use, the pressure of the gas to be sealed, the size of the liner, the type of reinforcing fiber or resin, etc., but it is preferably about 1 to 10 times the thickness of the liner.

本発明の対象とする複合容器は、前記の強化層によって高圧に耐えるものとなる。しかしながら、こうした強化層は樹脂を含浸した繊維により形成されるため、樹脂に空隙があれば、その空隙が破壊点となり、気体を封入した際に破壊の原因となることがある。
図2は複合容器の要部拡大図であり、ライナーの周囲の強化用繊維を含む強化層の樹脂内部に空隙(ボイド)を生じている例を示している。
The composite container which is the subject of the present invention can withstand high pressure by the reinforcing layer. However, since such a reinforcing layer is formed of fibers impregnated with a resin, if there is a void in the resin, the void becomes a break point, which may cause breakage when gas is sealed.
FIG. 2 is an enlarged view of a main part of the composite container, and shows an example in which voids are generated inside the resin of the reinforcing layer including reinforcing fibers around the liner.

本発明はこうした破壊の原因となるような空隙が生じている複合容器を発見しようとする装置及び方法である。
本発明の装置においては、上述の複合容器を非破壊検査して樹脂内部の空隙の体積を測定する測定手段を有する。
非破壊検査の方法は、超音波、X線、核磁気共鳴等、任意の方法を使用できる。
The present invention is an apparatus and method that seeks to find a composite container having voids that cause such destruction.
The apparatus of the present invention has a measuring means for measuring the volume of the void inside the resin by nondestructive inspection of the above composite container.
As a nondestructive inspection method, any method such as ultrasonic waves, X-rays, and nuclear magnetic resonance can be used.

以下、X線で非破壊検査を行う場合について説明するが、これに限定されるものではない。
具体的には、図3に示すようなX線CT装置を使用する。X線CT装置は、試料ステージ1、X線発生器(X線光源)2、X線検出器3、及び、これらを制御しつつ測定を行う測定システム4を含んで構成される。また、測定システム4は、測定位置(スキャン位置)決定手段5、空隙解析手段6、品質判定手段7などを含んで構成される。また、測定システム4は、空隙の2次元データ及び解析後の3次元データなどを含む測定データの記録部8や、閾値データを記憶する記憶部9と連係している。また、判定結果の表示を付与するマーカー10を備える場合は、測定システム4にマーカー作動手段11が含まれる。
Hereinafter, although the case where a nondestructive inspection is performed with X-rays will be described, the present invention is not limited to this.
Specifically, an X-ray CT apparatus as shown in FIG. 3 is used. The X-ray CT apparatus includes a sample stage 1, an X-ray generator (X-ray light source) 2, an X-ray detector 3, and a measurement system 4 that performs measurement while controlling them. The measurement system 4 includes a measurement position (scan position) determination means 5, a gap analysis means 6, a quality determination means 7, and the like. Further, the measurement system 4 is linked to a measurement data recording unit 8 including two-dimensional data of gaps and three-dimensional data after analysis, and a storage unit 9 for storing threshold data. In addition, when the marker 10 that gives the display of the determination result is provided, the marker system 11 is included in the measurement system 4.

X線CT装置では、試料ステージ1上にセットされた複合容器Bを挟んで、X線光源2とX線検出器3とが対向配置され、光源2から発せられたX線を検出器3により検出する。かかる検出器3は、光源2から発せられて試料たる複合容器Bを透過するX線の強度を検出するものである。この際、検出器3は広角でX線の強度データを測定できるものがよい。すなわち、試料の1方向からX線をあて広角で強度のデータを取るものである。この際、検出器3は直線状のものであっても、光源2からの距離を一定にするため曲線を描くものであってもよい。このように設置された光源2と検出器3は、試料を360度回転させて、又は光源2と検出器3そのものを試料の周りに回転させて、X線の強度データを記録し、その後、画像に再構成するものである。こうした画像は、断面の2次元の画像として記録される。   In the X-ray CT apparatus, the X-ray light source 2 and the X-ray detector 3 are arranged to face each other with the composite container B set on the sample stage 1 interposed therebetween, and X-rays emitted from the light source 2 are detected by the detector 3. To detect. The detector 3 detects the intensity of X-rays emitted from the light source 2 and transmitted through the composite container B as a sample. At this time, the detector 3 is preferably capable of measuring X-ray intensity data at a wide angle. That is, X-rays are applied from one direction of the sample to obtain intensity data at a wide angle. At this time, the detector 3 may be a straight line or a curved line in order to make the distance from the light source 2 constant. The light source 2 and the detector 3 installed in this way record the X-ray intensity data by rotating the sample 360 degrees or rotating the light source 2 and the detector 3 itself around the sample, The image is reconstructed. Such an image is recorded as a two-dimensional image of the cross section.

このデータを測定する断面に垂直に位置を変えて同様に非破壊検査を行っていく。一般的には0.1〜10mm、好ましくは0.5〜5mmの幅で検査される。この際、断面積を1つ1つ計測しても良いし、螺旋を描くように計測してもよい。
最終的には、測定システム4により検出されたX線データを、フーリエ変換などを行う再構成システムによって、3次元データ化する。必要に応じてこの際に、3次元データを可視化してもよい。
The non-destructive inspection is similarly performed by changing the position perpendicular to the cross section for measuring this data. In general, the inspection is performed with a width of 0.1 to 10 mm, preferably 0.5 to 5 mm. At this time, the cross-sectional areas may be measured one by one or may be measured so as to draw a spiral.
Finally, the X-ray data detected by the measurement system 4 is converted into three-dimensional data by a reconstruction system that performs Fourier transformation or the like. At this time, the three-dimensional data may be visualized as necessary.

本発明においてはこうした3次元データのなから空隙のデータを調べその体積を算出する。こうした方法は任意であるが、具体的には、空隙として検知されるところを細分化して求める方法や、測定した2次元データの空隙部分の面積を測定し、2次元測定の幅を乗じて体積として計算する等の方法がある。例えば、粒子解析アプリケーションプログラムのような市販のプログラムも存在するので、そちらを使用しても良い。   In the present invention, the void data is examined from the three-dimensional data, and the volume is calculated. Such a method is arbitrary, but specifically, a method of subdividing the area detected as a void or measuring the area of the void portion of the measured two-dimensional data and multiplying the width of the two-dimensional measurement by the volume There is a method of calculating as. For example, there is a commercially available program such as a particle analysis application program, which may be used.

空隙(ボイド)の体積の求め方の例を、図4及び図5により説明する。図4を参照し、2次元の非破壊検査の画面上に空隙(ボイド)が見つかった場合、先ず、その面積Sを測定する。
面積Sを求める方法は、例えば図5(a)に示すように、画面上で、空隙の2次元画像に、予め定めた小さな面積をどれだけ書き込めるかを計算する。すなわち、小さな面積をs、書き込める個数をmとすると、面積S=s×mとして計算する。
An example of how to obtain the volume of voids will be described with reference to FIGS. Referring to FIG. 4, when a void is found on the two-dimensional nondestructive inspection screen, first, the area S is measured.
For example, as shown in FIG. 5A, the area S is calculated by calculating how much a predetermined small area can be written in the two-dimensional image of the void on the screen. That is, if the small area is s and the number of writable data is m, the area S is calculated as S = s × m.

又は、例えば図5(b)に示すように、空隙の2次元画像に、所定幅(Δd2)の平行な直線を引いて、各直線の長さLiを測定し、隣の直線との距離であるΔd2を乗じ、面積S=ΣLi×Δd2として計算する。
そして、このようにして求めた空隙の2次元画像の面積Sと、非破壊検査の幅Δdとから、体積を求める。すなわち、次式により、個々の空隙(ボイド)の体積を求める。
Or, for example, as shown in FIG. 5 (b), a parallel straight line having a predetermined width (Δd2) is drawn on the two-dimensional image of the gap, and the length Li of each straight line is measured, and the distance to the adjacent straight line is measured. Multiply by some Δd2 and calculate as area S = ΣLi × Δd2.
Then, the volume is obtained from the area S of the two-dimensional image of the void thus obtained and the width Δd of the nondestructive inspection. That is, the volume of each void is obtained by the following equation.

個々の空隙の体積=ΣSi×Δd (i=1〜n)
Siは測定位置i=1〜nでの空隙の2次元画像の面積である。但し、当該空隙が存在しない測定位置iでの面積Siは、0となる。
本発明においては、こうして求めた個々の空隙ごとの体積と予め入力した体積の閾値(第1閾値)とを比較し、この第1閾値よりも大きな体積の空隙があれば、不合格と判定して排除する。
Individual void volume = ΣSi × Δd (i = 1 to n)
Si is the area of the two-dimensional image of the void at the measurement positions i = 1 to n. However, the area Si at the measurement position i where the gap does not exist is 0.
In the present invention, the volume for each individual void thus obtained is compared with the threshold value (first threshold value) of the volume input in advance, and if there is a void having a volume larger than the first threshold value, it is determined as rejected. And eliminate.

ここで個々の空隙とは、3次元の画像データにおいて、他の空隙とつながっていない空隙である。1つでも大きな空隙が存在する場合、複合容器の破裂の原因となるからである。この際、第1閾値は1〜5mm3 程度に設定される。
次にこうして求めた個々の空隙の体積について合計をし、その合計値(空隙の総体積)と予め入力した別の閾値(第2閾値)とを比較し、第2閾値よりも大きな合計体積であれば、不合格と判定して排除する。1つ1つの空隙は大きくなくても、数が多いときなどは、複合容器の破裂の原因となるからである。この際、第2閾値は、樹脂層の全体積に占める割合で、5〜15%程度に設定される。
Here, each gap is a gap that is not connected to another gap in the three-dimensional image data. This is because if even one large gap exists, it will cause the composite container to burst. At this time, the first threshold is set to about 1 to 5 mm 3 .
Next, the volume of individual voids thus obtained is summed, and the total value (total volume of voids) is compared with another threshold value (second threshold value) input in advance, and the total volume larger than the second threshold value is compared. If there is, it is judged as rejected and eliminated. This is because, even if each gap is not large, it may cause the composite container to rupture when the number of the gaps is large. At this time, the second threshold is a ratio of the total volume of the resin layer and is set to about 5 to 15%.

どちらにも当てはまらないもの、すなわち、第1閾値を超える空隙が存在せず、かつ、空隙の総体積が第2閾値を超えないものは、合格の判定とする。
図6は測定から最終判定までの品質判定の具体例を示すフローチャートである。本フローは試料ステージに複合容器をセットするごとに実行される。
S1では、測定位置(スキャン位置)を初期設定する。すなわち、複合容器の特定方向の断面(円筒状の複合容器であれば、その軸線と直交する断面)について、スキャンして、非破壊的に樹脂内部の空隙(ボイド)を測定するに際に、前記断面と直交する方向(前記軸線方向)の位置を初期設定する。具体的には、予め定めた一方の端部に位置させ、スキャン位置番号i=1とする。
If neither of these applies, that is, if there are no voids that exceed the first threshold and the total volume of the voids does not exceed the second threshold, the determination is acceptable.
FIG. 6 is a flowchart showing a specific example of quality determination from measurement to final determination. This flow is executed every time the composite container is set on the sample stage.
In S1, a measurement position (scan position) is initialized. That is, when a cross section in a specific direction of the composite container (in the case of a cylindrical composite container, a cross section orthogonal to the axis thereof) is scanned and non-destructively measuring voids (voids) inside the resin, A position in a direction orthogonal to the cross section (the axial direction) is initially set. Specifically, the scan position number i = 1 is set at one predetermined end.

S2では、複合容器の特定方向の断面(円筒状の複合容器であれば、その軸線と直交する断面)について、非破壊的に樹脂内部の空隙(ボイド)を測定し、空隙の2次元データを取得する。
S3では、予め定めた全てのスキャン(n箇所でのスキャン)が終了したか否か、すなわちスキャン位置番号i=nとなっているか否かを判定し、終了していない場合(i<nの場合)は、S4へ進む。
In S2, a void (void) inside the resin is measured nondestructively about a cross section in a specific direction of the composite container (a cross section orthogonal to the axis of a cylindrical composite container), and two-dimensional data of the void is obtained. get.
In S3, it is determined whether or not all predetermined scans (scans at n locations) have been completed, that is, whether or not the scan position number i = n, and if not completed (i <n If), go to S4.

S4では、スキャン位置を、予め定めた移動距離Δd、移動する。また、スキャン位置番号iをカウントアップする(i=i+1)。そして、S2へ戻る。
従って、S2〜S4の繰り返しにより、Δdずつ移動させたスキャン位置にて、空隙の2次元データが得られる。
全てのスキャンが終了すると、S3での判定で、ループから抜け、S5へ進む。
In S4, the scan position is moved by a predetermined movement distance Δd. Also, the scan position number i is counted up (i = i + 1). Then, the process returns to S2.
Therefore, by repeating S2 to S4, two-dimensional data of the gap is obtained at the scan position moved by Δd.
When all the scans are completed, the determination at S3 exits from the loop and proceeds to S5.

S5では、以上により得られた各スキャン位置での2次元データを解析し、これにより空隙の3次元データを取得する。
S6では、空隙ごとに体積を算出する。具体的には、空隙ごとに識別番号j=1〜mを付し、各空隙jについて、各スキャン位置(i=1〜n)での面積Siの総和にΔdを乗じて、各空隙jの体積Vj=ΣSi×Δd(i=1〜n)を求める。尚、空隙jが存在しないスキャン位置iでの面積Siは0とする。
In S5, the two-dimensional data at each scan position obtained as described above is analyzed, thereby obtaining the three-dimensional data of the gap.
In S6, the volume is calculated for each gap. Specifically, identification numbers j = 1 to m are assigned to each gap, and for each gap j, the sum of the areas Si at each scan position (i = 1 to n) is multiplied by Δd to A volume Vj = ΣSi × Δd (i = 1 to n) is obtained. The area Si at the scan position i where no gap j exists is 0.

S7では、第1閾値を超える体積の空隙が存在するか否かを判定する。すなわち、全ての空隙の各体積Vj(j=1〜m)について、第1閾値と比較することで、第1閾値を超える体積の空隙が存在するか否かを判定する。
S7での判定でYESの場合、すなわち第1閾値を超える体積の空隙が存在する場合は、S10へ進み、測定した複合容器を、不合格として、排除する。1つでも大きな空隙が存在する場合、複合容器の破裂の原因となるからである。
In S7, it is determined whether or not there is a void having a volume exceeding the first threshold. That is, by comparing each volume Vj (j = 1 to m) of all the voids with the first threshold value, it is determined whether or not there is a void having a volume exceeding the first threshold value.
If the determination in S7 is YES, that is, if there is a void having a volume exceeding the first threshold, the process proceeds to S10, and the measured composite container is rejected as rejected. This is because if even one large gap exists, it will cause the composite container to burst.

S7での判定でNOの場合は、S8へ進む。
S8では、全ての空隙の総体積ΣVj(j=1〜m)を算出する。
S9では、空隙の総体積ΣVjと第2閾値とを比較し、空隙の総体積ΣVjは第2閾値を超えるか否かを判定する。
S9での判定でYESの場合、すなわち空隙の総体積ΣVjが第2閾値を超える場合は、S10へ進み、測定した複合容器を、不合格として、排除する。1つ1つの空隙は大きくなくても、数が多いときなどは、複合容器の破裂の原因となるからである。
If the determination in S7 is NO, the process proceeds to S8.
In S8, the total volume ΣVj (j = 1 to m) of all the voids is calculated.
In S9, the total volume ΣVj of the air gap is compared with the second threshold value, and it is determined whether or not the total volume ΣVj of the air gap exceeds the second threshold value.
If the determination in S9 is YES, that is, if the total volume ΣVj of the void exceeds the second threshold value, the process proceeds to S10, and the measured composite container is rejected as rejected. This is because, even if each gap is not large, it may cause the composite container to rupture when the number of the gaps is large.

S9での判定でNOの場合、すなわち、第1閾値を超える体積の空隙が存在せず、かつ、空隙の総体積ΣVjが第2閾値を超えない場合は、S11へ進み、測定した複合容器について、合格と判定する。
ここで、不合格とした複合容器の排除の方法は、少なくとも不合格品と合格品とについて判別ができればよい。例えば、機械的に合格品と不合格品とを別により分けることでもよいし、不合格品に不合格のペイントを行うものであってもよい。
If the determination in S9 is NO, that is, if there is no void having a volume exceeding the first threshold and the total volume ΣVj of the void does not exceed the second threshold, the process proceeds to S11, and the measured composite container Judged as passing.
Here, as a method of removing the rejected composite container, it is sufficient that at least the rejected product and the accepted product can be discriminated. For example, the acceptable product and the rejected product may be mechanically separated, or the rejected product may be subjected to failed paint.

具体的には、製造した複合容器を任意の輸送手段により台の上に安置し、非破壊検査によって空隙を測定し、合格をしたものは別の輸送手段により合格品の保管場所に安置し、不合格品は不合格品の保管場所に安置するようにしてもよいし、合格品には何もせず、不合格品の場合には、不合格の判断が行われた後に、電気・ソフトウェア的手段によりマーカー(ペイント手段)を作動させ、不合格のペイントをするようにしてもよい。図3には、試料ステージ1の上方にペイント用のマーカー10を設けた例を示した。   Specifically, the manufactured composite container is placed on a table by any means of transportation, the void is measured by non-destructive inspection, and those that pass are placed in a storage place for the acceptable product by another means of transportation, The rejected product may be stored in the storage location of the rejected product, or the rejected product is not operated, and in the case of the rejected product, after the failure is judged, The marker (painting means) may be actuated by the means so that the paint is rejected. FIG. 3 shows an example in which a paint marker 10 is provided above the sample stage 1.

尚、以上に本発明の実施形態を図面に基づいて説明したが、図示の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、特許請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。   Although the embodiments of the present invention have been described above with reference to the drawings, the illustrated embodiments are merely illustrative of the present invention, and the present invention is not limited to those shown directly by the described embodiments. It goes without saying that various modifications and changes made by those skilled in the art are included within the scope of the claims.

ビスフェノールA型エポキシ樹脂80重量部、ビスフェノールF型エポキシ樹脂20重量部にジシアンジアミド18重量部および3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア9重量部を混合し、樹脂組成物とした。
この樹脂組成物を東レ(株)製の炭素繊維T800SCの24000フィラメントに、FW工程内で含浸して中央部分の外径99mm、内径95mmのアルミ製円筒菅に軸方向から70度の角度で巻装し、条件を変更してヘリカル巻きしたものを100個作成した。そして、これらを130度で2時間加熱して硬化させた。
80 parts by weight of a bisphenol A type epoxy resin, 20 parts by weight of a bisphenol F type epoxy resin, 18 parts by weight of dicyandiamide and 9 parts by weight of 3- (3,4-dichlorophenyl) -1,1-dimethylurea were mixed, did.
This resin composition was impregnated into 24000 filaments of carbon fiber T800SC manufactured by Toray Industries, Inc. in the FW process, and wound at an angle of 70 degrees from the axial direction on an aluminum cylindrical rod having an outer diameter of 99 mm and an inner diameter of 95 mm at the center. 100 pieces of helically wound under different conditions were created. These were cured by heating at 130 degrees for 2 hours.

図3に示したような装置を構成し、測定した。不合格品には赤のインクを吹き付けるものとした。二次元面の測定の幅は、2mmとし、X線光源2と検出器3が固定され、試料(複合容器B)が回転し、かつ上下に動くものとした。
第1閾値(個々の空隙の許容最大値)を2mm3 、第2閾値(樹脂層の全体積に対する空隙の総体積の比についての許容最大値)を8%に設定した。
An apparatus as shown in FIG. 3 was constructed and measured. Red ink was sprayed on rejected products. The measurement width of the two-dimensional surface was 2 mm, the X-ray light source 2 and the detector 3 were fixed, the sample (composite container B) was rotated, and moved up and down.
The first threshold value (allowable maximum value of each void) was set to 2 mm 3 , and the second threshold value (allowable maximum value for the ratio of the total void volume to the total volume of the resin layer) was set to 8%.

このような条件で、100個の複合容器の品質判定を行った結果、不合格品とされたものは23個、合格品とされたものは77個であった。
検証のため、これらの破壊圧力を測定した結果、合格品とされたものの破壊圧力の平均は125MPa、不合格とされたものの破壊圧力の平均は97MPaであった。この結果から、本発明による品質判定の有効性が立証されたと言える。
As a result of quality judgment of 100 composite containers under such conditions, 23 were rejected and 77 were acceptable.
As a result of measuring these burst pressures for verification, the average of the burst pressures of those that were accepted was 125 MPa, and the average of the burst pressures of those that were rejected was 97 MPa. From this result, it can be said that the effectiveness of the quality judgment according to the present invention has been proved.

本発明によれば、高圧で使用する複合容器について、複合容器を破壊をすることなく、安全かつ手軽に、不良品を発見することができ、産業上の利用可能性は大である。   According to the present invention, regarding a composite container used at high pressure, a defective product can be found safely and easily without destroying the composite container, and industrial applicability is great.

1 試料ステージ
2 X線発生器(光源)
3 X線検出器
4 測定システム
5 測定位置決定手段
6 空隙解析手段
7 品質判定手段
8 測定データの記録部
9 閾値データの記憶部
10 マーカー
11 マーカー作動手段
1 Sample stage 2 X-ray generator (light source)
DESCRIPTION OF SYMBOLS 3 X-ray detector 4 Measurement system 5 Measurement position determination means 6 Air gap analysis means 7 Quality judgment means 8 Measurement data recording part 9 Threshold data storage part 10 Marker 11 Marker operation means

Claims (4)

容器を形作る金属製ライナーをこれに巻装された繊維材料と樹脂とで強化した複合容器の品質判定装置であって、
前記複合容器を非破壊検査して、樹脂内部の空隙の体積を空隙ごとに測定する測定手段と、
各空隙の体積と予め定められた第1閾値とを比較して、第1閾値を超える空隙が存在する場合に、測定した複合容器を排除する第1の判定手段と、
全ての空隙の総体積と予め定められた第2閾値とを比較して、空隙の総体積が第2閾値を超える場合に、測定した複合容器を排除する第2の判定手段と、
を含んで構成される、複合容器の品質判定装置。
A quality judgment device for a composite container in which a metal liner forming a container is reinforced with a fiber material and a resin wound around the metal liner,
Non-destructive inspection of the composite container, measuring means for measuring the volume of voids inside the resin for each void,
A first determination unit that compares the volume of each void with a predetermined first threshold value and excludes the measured composite container when there is a void that exceeds the first threshold value;
A second determination means for comparing the total volume of all the voids with a predetermined second threshold value and excluding the measured composite container when the total volume of the voids exceeds the second threshold value;
A quality determination device for a composite container, comprising:
前記測定手段は、前記複合容器の特定方向の断面について、前記断面と直交する方向の位置を所定幅ずつ変えて、非破壊検査を繰り返すことにより、空隙の3次元データを得るものである、請求項1記載の複合容器の品質判定装置。   The measurement means obtains three-dimensional data of voids by changing the position in a direction perpendicular to the cross section by a predetermined width for a cross section in a specific direction of the composite container, and repeating nondestructive inspection. Item 3. The composite container quality judging device according to Item 1. 容器を形作る金属製ライナーをこれに巻装された繊維材料と樹脂とで強化した複合容器の品質判定方法であって、
前記複合容器を非破壊検査して、樹脂内部の空隙の体積を空隙ごとに測定し、
各空隙の体積と予め定められた第1閾値とを比較して、第1閾値を超える空隙が存在する場合に、測定した複合容器を排除する第1の判定と、
全ての空隙の総体積と予め定められた第2閾値とを比較して、空隙の総体積が第2閾値を超える場合に、測定した複合容器を排除する第2の判定と、
を行う、複合容器の品質判定方法。
A method for judging the quality of a composite container in which a metal liner forming a container is reinforced with a fiber material and a resin wound around the metal liner,
Nondestructive inspection of the composite container, the volume of voids inside the resin is measured for each void,
Comparing the volume of each void with a predetermined first threshold, and if there is a void that exceeds the first threshold, a first determination that excludes the measured composite container;
Comparing the total volume of all the voids with a predetermined second threshold and, if the total volume of the voids exceeds the second threshold, a second determination to exclude the measured composite container;
A method for judging the quality of a composite container.
前記測定では、前記複合容器の特定方向の断面について、前記断面と直交する方向の位置を所定幅ずつ変えて、非破壊検査を繰り返すことにより、空隙の3次元データを得る、請求項3記載の複合容器の品質判定方法。   The said measurement WHEREIN: About the cross section of the said specific direction of the said composite container, the position of the direction orthogonal to the said cross section is changed for every predetermined width, The non-destructive inspection is repeated, The three-dimensional data of a space | gap are obtained. A method for judging the quality of composite containers.
JP2009268616A 2009-11-26 2009-11-26 Apparatus and method for determining quality of composite container Active JP5408659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268616A JP5408659B2 (en) 2009-11-26 2009-11-26 Apparatus and method for determining quality of composite container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268616A JP5408659B2 (en) 2009-11-26 2009-11-26 Apparatus and method for determining quality of composite container

Publications (2)

Publication Number Publication Date
JP2011112484A JP2011112484A (en) 2011-06-09
JP5408659B2 true JP5408659B2 (en) 2014-02-05

Family

ID=44234927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268616A Active JP5408659B2 (en) 2009-11-26 2009-11-26 Apparatus and method for determining quality of composite container

Country Status (1)

Country Link
JP (1) JP5408659B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783437B2 (en) * 2010-09-30 2015-09-24 東京電力株式会社 LNG open rack type vaporizer heat transfer tube panel diagnostic method
FR2994481B1 (en) * 2012-08-07 2014-08-29 Snecma METHOD FOR CHARACTERIZING AN OBJECT IN COMPOSITE MATERIAL
JP6238901B2 (en) * 2012-10-11 2017-11-29 Jxtgエネルギー株式会社 Inspection method and inspection system for composite container
JP6634777B2 (en) * 2015-10-22 2020-01-22 住友ゴム工業株式会社 Performance evaluation method and performance evaluation device
JP6965789B2 (en) * 2018-02-27 2021-11-10 トヨタ自動車株式会社 High-pressure tank inspection method
JP7430323B2 (en) 2020-03-05 2024-02-13 リョーエイ株式会社 X-ray inspection method and X-ray inspection device for cylindrical containers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108743A (en) * 1980-12-26 1982-07-06 Minatogumi:Goushi Method and apparatus for x-ray automatic photographing inspection of high-pressure gas receptacle
JP2594835B2 (en) * 1989-11-06 1997-03-26 川崎重工業株式会社 A method of extracting the thinned part of a double-walled pipe made of dissimilar materials and measuring the thickness of the thinned part
JP3161151B2 (en) * 1993-05-06 2001-04-25 トヨタ自動車株式会社 Inspection method of safety pad
US5602890A (en) * 1995-09-27 1997-02-11 Thermedics Detection Inc. Container fill level and pressurization inspection using multi-dimensional images
JP2004093443A (en) * 2002-09-02 2004-03-25 Katsuhiko Ogiso Measuring method for dimension of multilayer structured vessel
JP2005249426A (en) * 2004-03-01 2005-09-15 Toyota Motor Corp Casting inside flaw inspection support device and inspection support method using the same
JP4211702B2 (en) * 2004-05-12 2009-01-21 トヨタ自動車株式会社 Cast hole measurement method
JP4632812B2 (en) * 2005-03-03 2011-02-16 株式会社ブリヂストン Internal defect inspection device for tire side wall

Also Published As

Publication number Publication date
JP2011112484A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5408659B2 (en) Apparatus and method for determining quality of composite container
Zhou et al. Review on optimization design, failure analysis and non-destructive testing of composite hydrogen storage vessel
US20110135872A1 (en) In-line inspection methods and closed loop processes for the manufacture of prepregs and/or laminates comprising the same
CN110645470B (en) Hydrogen filling system including hydrogen storage container and method of operating the same
Arhant et al. Carbon/polyamide 6 thermoplastic composite cylinders for deep sea applications
JP6238901B2 (en) Inspection method and inspection system for composite container
Özaslan et al. Investigation of effects of manufacturing defects on bursting behavior of composite pressure vessels with various stress ratios
Behera et al. Structural integrity assessment of filament wound composite pressure vessel using through transmission technique
Nebe et al. The effect of stacking sequence and circumferential ply drop locations on the mechanical response of type IV composite pressure vessels subjected to internal pressure: A numerical and experimental study
Dahmene et al. Towards efficient acoustic emission testing of COPV, without Felicity ratio criterion, during hydrogen-filling
Wagner et al. In-situ X-ray computed tomography of composites subjected to fatigue loading
Pavlopoulou et al. Numerical and experimental investigation of the hydrostatic performance of fibre reinforced tubes
CN115479210B (en) Deformation analysis device for pressure vessel and method for manufacturing pressure vessel
Lee et al. Evaluation of manufacturing defects in 3D printed carbon fiber reinforced cylindrical composite structure based on laser ultrasonic testing
Ning Structural health condition monitoring of carbon-fibre based composite materials using acoustic emission techniques
Mortada et al. Noncontact nondestructive ultrasonic techniques for manufacturing defects monitoring in composites: a review
Ziehl et al. Fiber reinforced vessel design with a damage criterion approach
Chand A comprehensive review on the performance analysis of composite overwrapped pressure vessels.
Newhouse et al. Development of ASME section X code rules for high pressure composite hydrogen pressure vessels with nonload sharing liners
Toscano et al. Lockin thermography to monitor propagation of delamination in CFRP composites during compression tests
De Freitas et al. Residual strength of a damaged laminated CFRP under compressive fatigue stresses
Mair et al. Concept of interactive determination of safe service life for composite cylinders by destructive tests parallel to operation
Ueda et al. Voids in type-IV composite pressure vessels manufactured by a dry filament-winding process
Shi et al. Research on Defect Detection of Fully-Wrapped Carbon Fiber Reinforced Hydrogen Storage Cylinder With an Aluminum Liner by Industrial Computed Tomography
Ramirez et al. Nondestructive evaluation of FRP design criteria with primary consideration to fatigue loading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

R150 Certificate of patent or registration of utility model

Ref document number: 5408659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250