JP5408530B2 - Compression molding apparatus and method, and fiber reinforced composite material and preform manufacturing method - Google Patents

Compression molding apparatus and method, and fiber reinforced composite material and preform manufacturing method Download PDF

Info

Publication number
JP5408530B2
JP5408530B2 JP2009017847A JP2009017847A JP5408530B2 JP 5408530 B2 JP5408530 B2 JP 5408530B2 JP 2009017847 A JP2009017847 A JP 2009017847A JP 2009017847 A JP2009017847 A JP 2009017847A JP 5408530 B2 JP5408530 B2 JP 5408530B2
Authority
JP
Japan
Prior art keywords
reinforcing fiber
mold
shaping
fiber base
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009017847A
Other languages
Japanese (ja)
Other versions
JP2010173166A (en
Inventor
治彦 辻
保 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009017847A priority Critical patent/JP5408530B2/en
Publication of JP2010173166A publication Critical patent/JP2010173166A/en
Application granted granted Critical
Publication of JP5408530B2 publication Critical patent/JP5408530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、強化繊維を含み傾斜面を有する強化繊維基材を所定の形状に賦形する圧縮賦形装置および方法、並びにその方法を用いた繊維強化複合材料とプリフォーム製造方法に関する。 The present invention relates to a compression shaping apparatus and method for shaping a reinforcing fiber base material containing reinforcing fibers and having an inclined surface into a predetermined shape, and a method for producing a fiber reinforced composite material and a preform using the method.

炭素繊維やガラス繊維、アラミド繊維を強化繊維として用いた繊維強化プラスチック(FRP)は、軽量でかつ高い耐久性を有するものであることから、自動車や航空機などを構成する各種の構成部材として理想的な材料である。このFRPの成形方法としては、例えば強化繊維材を複数枚積層した積層体からなる強化繊維基材を、相対する金型で挟み加圧することにより所定の形状に賦形し、含浸樹脂を硬化させて所定の形状のFRPに成形する方法が知られている。   Fiber reinforced plastic (FRP) using carbon fiber, glass fiber, or aramid fiber as a reinforcing fiber is lightweight and highly durable, making it ideal as a component for automobiles and aircraft. Material. As a method of molding this FRP, for example, a reinforcing fiber base material composed of a laminate in which a plurality of reinforcing fiber materials are laminated is sandwiched between and pressed by opposing molds and shaped into a predetermined shape, and the impregnating resin is cured. Thus, a method of forming a FRP having a predetermined shape is known.

強化繊維基材としては、例えば強化繊維をシート状に複数本引き揃え、エポキシ樹脂等のマトリックス樹脂を含浸させ、シート状に成形したプリプレグシートが用いられている。このプリプレグシートを複数枚積層し、金型内で加圧・加熱してマトリックス樹脂を硬化させ所定形状のFRPに成形する。また、マトリックス樹脂が含浸されていない、ドライの強化繊維基材を用いたFRPの成形も行われている。これはResin Transfer Molding(以下、RTMという)成形方法や真空RTM成形方法などと呼ばれる成形方法であり、例えば層間接着樹脂が付加された強化繊維材を複数枚積層し、その積層体を金型で賦形してプリフォームと呼ばれる形態の中間成形品を製作した後、このプリフォームに低粘度の液状マトリックス樹脂を注入して硬化させるものである。   As the reinforcing fiber base, for example, a prepreg sheet formed by arranging a plurality of reinforcing fibers in a sheet shape and impregnating a matrix resin such as an epoxy resin into a sheet shape is used. A plurality of the prepreg sheets are laminated, and the matrix resin is cured by pressurizing and heating in a mold to form a FRP having a predetermined shape. Further, FRP molding using a dry reinforcing fiber base material not impregnated with a matrix resin is also performed. This is a molding method called a Resin Transfer Molding (hereinafter referred to as RTM) molding method or a vacuum RTM molding method. For example, a plurality of reinforcing fiber materials to which an interlayer adhesive resin is added are laminated, and the laminated body is molded with a mold. After forming and forming an intermediate molded product called a preform, a low-viscosity liquid matrix resin is injected into the preform and cured.

これらFRPの成形においては、I形やH形の横断面形状を持つ梁部材を製造する装置も知られている(例えば、特許文献1参照)。これは積層体を所定の断面形状に金型で賦形した後、金型を開き積層体を所定量移動させ、再度賦形するということを繰り返し、長尺の成形品を成形する装置である。このような装置を用いることで、長手方向に一様な断面形状を持つ梁部材の成形を、その梁部材の全長分、大型の金型を用いることなく、小さな金型にて製造することができる。   In forming these FRPs, an apparatus for manufacturing a beam member having an I-shaped or H-shaped cross-sectional shape is also known (see, for example, Patent Document 1). This is an apparatus for forming a long molded product by repeatedly shaping a laminated body with a mold into a predetermined cross-sectional shape, then opening the mold, moving the laminated body by a predetermined amount, and shaping again. . By using such an apparatus, it is possible to manufacture a beam member having a uniform cross-sectional shape in the longitudinal direction with a small mold without using a large mold for the entire length of the beam member. it can.

しかしながら、例えば片持ちの構造物を考えた場合、一般的にそれを支える梁部材は根元にいくほど剛性が高くなることが求められる。そのため、長尺の成形品を製造するための積層体では、強化繊維材の積層枚数(積層体成形品の厚み)を長手方向の根元に対して増加していくことでこの要求に対応している。一方、上記従来技術は、基本的に一定形状、一定厚みの断面にて順次成形していくものであるため、このような成形品の厚み変化の要求には対応できなかった。すなわち、強化繊維材の積層枚数を長手方向に対して変化させ、それに伴って所定形状に賦形すべき強化繊維基材の厚みが長手方向に変化する場合には、賦形対象となる強化繊維基材部位に傾斜面が存在することになるが、基本的に一定形状、一定厚みの断面にて順次成形していく従来の賦形技術では、このような傾斜面が存在する強化繊維基材部位に対して精度よく所定形状に賦形することが困難であった。   However, for example, when a cantilever structure is considered, it is generally required that the beam member supporting the structure has higher rigidity toward the root. Therefore, in a laminate for manufacturing a long molded product, this requirement is met by increasing the number of laminated reinforcing fiber materials (the thickness of the laminate molded product) with respect to the base in the longitudinal direction. Yes. On the other hand, the above-mentioned prior art is basically formed in order with a cross section having a constant shape and a constant thickness, and therefore cannot meet such a change in thickness of the molded product. That is, when the number of reinforcing fiber materials is changed with respect to the longitudinal direction, and the thickness of the reinforcing fiber base material to be shaped into a predetermined shape changes accordingly, the reinforcing fibers to be shaped There will be an inclined surface in the base material part, but in the conventional shaping technology in which the cross-section of the basic shape and the constant thickness are sequentially formed, the reinforcing fiber base material having such an inclined surface exists. It was difficult to accurately shape the part into a predetermined shape.

また、強化繊維基材の積層枚数(積層体成形品の厚み)を長手方向に対して増加する方法として圧縮賦形装置が知られている(特許文献2)。しかしながら、強化繊維基材の積層枚数の変化に対応してシート状のスキマ調整部材を金型間に挿入する方法では、段差ができ積層枚数が大きく変化する場合の局所変化に強化繊維基材が追従できず所定形状に賦形することが困難であった。   Moreover, a compression shaping apparatus is known as a method for increasing the number of laminated reinforcing fiber base materials (thickness of a laminate molded product) in the longitudinal direction (Patent Document 2). However, in the method of inserting a sheet-like clearance adjustment member between molds in response to changes in the number of laminated reinforcing fiber bases, the reinforcing fiber bases are subject to local changes when there is a step and the number of laminated layers changes greatly. It was difficult to follow and it was difficult to shape into a predetermined shape.

特開2001−191418号公報JP 2001-191418 A 特開2008−179130号公報JP 2008-179130 A

そこで本発明の課題は、前記した従来技術の問題点を解決するために、強化繊維基材の厚みが変化し強化繊維基材が傾斜面を有する場合にあっても、その傾斜面に対応させて容易に望ましい形状に賦形することが可能な圧縮賦形装置および方法、並びにその方法を用いた繊維強化複合材料とプリフォーム製造方法を提供することにある。 Therefore, in order to solve the above-described problems of the prior art, the object of the present invention is to cope with the inclined surface even when the thickness of the reinforcing fiber substrate changes and the reinforcing fiber substrate has an inclined surface. Another object of the present invention is to provide a compression molding apparatus and method that can be easily molded into a desired shape, and a method for producing a fiber-reinforced composite material and a preform using the method.

上記課題を解決するために、本発明に係る圧縮賦形装置は、強化繊維を含む強化繊維基材を金型間に挟んで加圧することにより金型賦形面の形状に沿う形状に賦形する少なくとも二つの金型と、少なくとも一つの金型に開閉動作をさせ、強化繊維基材を加圧、開放する金型駆動手段と、金型による開閉動作に合わせて強化繊維基材を金型に対し搬入、搬出する搬送手段とを備えた強化繊維基材の圧縮賦形装置であって、前記金型のうちの少なくとも一つの金型の金型賦形面が、強化繊維基材の搬送方向に対し平行な平行面と、該平行面に段差なく連接され前記搬送方向に対し傾斜した傾斜面とを併せ持ち、さらに、前記圧縮賦形装置が、前記搬送方向に搬送される強化繊維基材の長手方向における厚さ変化に伴う基材表面の傾斜部の位置を検出する基材傾斜部検出手段と、該基材傾斜部検出手段による検出情報に基づき強化繊維基材の搬送を制御する搬送制御手段を有することを特徴とするものからなる。 In order to solve the above-mentioned problems, the compression molding apparatus according to the present invention is shaped into a shape that follows the shape of the mold shaping surface by pressing a reinforcing fiber substrate containing reinforcing fibers between the molds. And at least two molds, mold driving means for opening and closing the at least one mold to pressurize and open the reinforcing fiber base, and the reinforcing fiber base to the mold in accordance with the opening and closing operation by the mold A reinforcing fiber base compression molding apparatus having a conveying means for carrying in and out of the mold, wherein the mold shaping surface of at least one of the molds conveys the reinforcing fiber base and parallel surface parallel to the direction, without any step being articulated lifting Chi combination of the inclined surface inclined with respect to the transport direction in the parallel plane, further, reinforcing fibers the compression shaping apparatus, which is transported in the transport direction The position of the inclined part on the surface of the substrate accompanying the change in thickness in the longitudinal direction of the substrate A base material inclined portion detecting means for, consisting of those characterized by having a conveyance control means for controlling the transport of the reinforcing fiber substrate based on the information detected by the base material inclined portion detection means.

このような圧縮賦形装置は、例えば、強化繊維基材が、強化繊維を含むシート材の積層体からなり、積層枚数が変化し、それに伴って強化繊維基材が傾斜面を有する場合に好適なものである。この強化繊維を含むシート材は、強化繊維材にマトリックス樹脂が含浸されたプリプレグからなる場合、マトリックス樹脂を含まないドライの強化繊維材からなる場合のいずれの場合も可能である。   Such a compression shaping apparatus is suitable, for example, when the reinforcing fiber base is composed of a laminate of sheet materials containing reinforcing fibers, the number of stacked layers is changed, and the reinforcing fiber base has an inclined surface accordingly. Is something. The sheet material containing the reinforcing fibers can be either a prepreg in which a reinforcing fiber material is impregnated with a matrix resin or a dry reinforcing fiber material that does not contain a matrix resin.

このような本発明に係る圧縮賦形装置においては、金型の開閉動作を行い、強化繊維基材を順次加圧賦形していく金型の金型賦形面が強化繊維基材の搬送方向に対し平行な平行面と搬送方向に対し傾斜した傾斜面とを併せ持っているので、基材表面を傾斜面に形成すべき強化繊維基材部位が金型による加圧部に搬送されてきたとき、該金型は、強化繊維基材の長手方向における、強化繊維基材の表面の目標賦形形状に関して、搬送方向に対し平行な平行面(基材厚さが一定の面)と搬送方向に対し傾斜した傾斜面(基材厚さが変化する面)との両方を同時に賦形できるようになる。すなわち、賦形すべき強化繊維基材の平行面と傾斜面を併せ持つ金型賦形面の金型を用いることにより、特別な操作を伴うことなく所定の金型で容易に、基材の平行面と傾斜面、およびそれらの境界部が、同時に目標とする形状に賦形されることになる。とくに、このとき、金型賦形面の平行面と傾斜面とは段差なく連接されているので、賦形される強化繊維基材の平行面と傾斜面も段差なく連なって賦形され、基材の平行面と傾斜面の境界部は望ましい目標形状に賦形される。   In such a compression shaping apparatus according to the present invention, the mold shaping surface of the mold that opens and closes the mold and sequentially press-molds the reinforcing fiber base is transported of the reinforcing fiber base. Since it has both a parallel plane parallel to the direction and an inclined plane inclined with respect to the conveying direction, the reinforcing fiber substrate portion whose substrate surface should be formed into an inclined plane has been conveyed to the pressurizing part by the mold In this case, the mold has a parallel surface (surface with a constant substrate thickness) parallel to the conveying direction and a conveying direction with respect to the target shaping shape of the surface of the reinforcing fiber substrate in the longitudinal direction of the reinforcing fiber substrate. It becomes possible to simultaneously shape both the inclined surface inclined with respect to the surface (the surface on which the substrate thickness changes). That is, by using a mold having a mold shaping surface that has both a parallel surface and an inclined surface of the reinforcing fiber substrate to be shaped, the substrate can be easily parallelized with a predetermined mold without any special operation. The surface, the inclined surface, and the boundary between them are shaped into a target shape at the same time. In particular, at this time, since the parallel surface and the inclined surface of the mold forming surface are connected without any step, the parallel surface and the inclined surface of the reinforcing fiber base to be formed are also formed without any step, and the base surface is formed. The boundary between the parallel surface and the inclined surface of the material is shaped into a desired target shape.

上記の基材の平行面と傾斜面の同時賦形においては、金型賦形面の平行面と傾斜面の境界部と、賦形すべき強化繊維基材の平行面と傾斜面の境界部とが、丁度一致していることが望ましく、それによって基材の目標形状への賦形が精度良く行われることになる。これを達成するために、本発明に係る圧縮賦形装置は、さらに、上記搬送方向に搬送される強化繊維基材の長手方向における厚さ変化に伴う基材表面の傾斜部の位置を検出する基材傾斜部検出手段と、該基材傾斜部検出手段による検出情報に基づき強化繊維基材の搬送を制御する搬送制御手段を有している。このような手段により、基材の搬送が精度良く制御され、賦形動作時に、賦形すべき強化繊維基材の平行面と傾斜面の境界部が、金型賦形面の平行面と傾斜面の境界部に精度良く合わせられる。 In the simultaneous shaping of the parallel surface and the inclined surface of the substrate, the boundary between the parallel surface and the inclined surface of the mold shaping surface, and the boundary between the parallel surface and the inclined surface of the reinforcing fiber substrate to be shaped Are preferably exactly the same, so that the substrate can be accurately shaped into the target shape. In order to achieve this, the compression shaping apparatus according to the present invention further detects the position of the inclined portion of the substrate surface accompanying the thickness change in the longitudinal direction of the reinforcing fiber substrate conveyed in the conveying direction. It has a base material inclination part detection means, and a conveyance control means for controlling the conveyance of the reinforcing fiber base material based on the information detected by the base material inclination part detection means . By such means, the conveyance of the substrate is accurately controlled, and the boundary portion between the parallel surface and the inclined surface of the reinforcing fiber substrate to be shaped is inclined with the parallel surface of the mold shaping surface during the shaping operation. It can be accurately aligned with the boundary of the surface.

また、上記金型駆動手段としては、一つの金型に対し一つの加圧機構を有する構成とすることもできるし、複数箇所の加圧機構を有する構成とすることもできる。後者の場合には、上記のような平行面と傾斜面を併せ持つ金型に加圧動作を行わせる際、平行面と傾斜面の両方を均等に、賦形すべき強化繊維基材の平行面と傾斜面に対し加圧させることが可能になり、より精度の良い所望形状への賦形が可能になる。   Further, the mold driving means may be configured to have one pressurizing mechanism for one mold, or may be configured to include a plurality of pressurizing mechanisms. In the latter case, when the pressing operation is performed on the mold having both the parallel surface and the inclined surface as described above, both the parallel surface and the inclined surface should be evenly shaped, and the parallel surface of the reinforcing fiber base should be shaped. It is possible to apply pressure to the inclined surface, and it is possible to form the desired shape with higher accuracy.

また、本発明に係る圧縮賦形装置は、強化繊維基材の目標賦形横断面形状が屈曲部を有する場合にも、適用できる。つまり、強化繊維基材の目標賦形横断面形状に屈曲部が含まれる場合には、金型のうちの少なくとも一つの金型がその屈曲部に対応する横断面形状を有していればよい。   Moreover, the compression shaping apparatus which concerns on this invention is applicable also when the target shaping cross-sectional shape of a reinforced fiber base material has a bending part. That is, when the target shaping cross-sectional shape of the reinforcing fiber base includes a bent portion, it is sufficient that at least one of the molds has a cross-sectional shape corresponding to the bent portion. .

本発明は、上記のような圧縮賦形装置を用いて製造された繊維強化複合材料やプリフォームについても提供する。本発明に係る繊維強化複合材料は、強化繊維基材がマトリックス樹脂が含浸されたプリプレグからなり、該強化繊維基材が、上記のような圧縮賦形装置を用いて賦形され、マトリックス樹脂が硬化されて製造されていることを特徴とするものからなる。   The present invention also provides a fiber reinforced composite material and a preform produced using the compression shaping apparatus as described above. The fiber reinforced composite material according to the present invention is composed of a prepreg in which a reinforcing fiber base is impregnated with a matrix resin, the reinforcing fiber base is shaped using the compression molding apparatus as described above, and the matrix resin is It consists of what is characterized by being hardened and manufactured.

また、本発明に係るプリフォームは、強化繊維基材がマトリックス樹脂を含まないドライの強化繊維材からなり、該強化繊維基材が、上記のような圧縮賦形装置を用いて賦形されていることを特徴とするものからなる。この場合、繊維強化複合材料は、上記のように賦形されたプリフォームにマトリックス樹脂が含浸され、含浸されたマトリックス樹脂が硬化されて製造される。   In the preform according to the present invention, the reinforcing fiber base is made of a dry reinforcing fiber material that does not contain a matrix resin, and the reinforcing fiber base is shaped using the compression shaping apparatus as described above. It consists of what is characterized by being. In this case, the fiber-reinforced composite material is manufactured by impregnating the preform shaped as described above with a matrix resin and curing the impregnated matrix resin.

本発明に係る圧縮賦形方法は、強化繊維を含む強化繊維基材を少なくとも二つの金型間に挟んで加圧することにより金型賦形面の形状に沿う形状に賦形するに際し、少なくとも一つの金型に開閉動作をさせて強化繊維基材を順次賦形していくとともに、金型による開閉動作に合わせて強化繊維基材を金型に対し搬入、搬出する強化繊維基材の圧縮賦形方法であって、前記金型のうちの少なくとも一つの金型の金型賦形面を、強化繊維基材の搬送方向に対し平行な平行面と、該平行面に段差なく連接され前記搬送方向に対し傾斜した傾斜面とを併せ持つ金型賦形面に形成し、長手方向において厚さ変化を伴い基材表面に傾斜部を有する強化繊維基材の該傾斜部が搬送されてきたときに、前記金型賦形面の平行面と傾斜面の両方を用いて強化繊維基材を加圧することを特徴とする方法からなる。   In the compression molding method according to the present invention, at least one reinforcing fiber base material containing reinforcing fibers is pressed between at least two molds to form a shape along the shape of the mold forming surface. Opening and closing the two molds to form the reinforcing fiber base sequentially, and compressing and reinforcing the reinforcing fiber base that is carried in and out of the mold in accordance with the opening and closing operation of the mold. A molding method, wherein a mold shaping surface of at least one of the molds is parallel to a parallel surface with respect to a conveyance direction of the reinforcing fiber base, and the conveyance is connected to the parallel surface without a step. When the inclined portion of the reinforcing fiber base material having a slope portion on the surface of the base material is formed with a thickness change in the longitudinal direction and formed on a mold shaping surface having an inclined surface inclined with respect to the direction. Reinforcing fibers using both parallel and inclined surfaces of the mold shaping surface Consists method characterized by pressurizing the timber.

この圧縮賦形方法は、例えば、強化繊維基材が、強化繊維を含むシート材の積層体からなり、積層枚数が変化し、それに伴って強化繊維基材が傾斜面を有する場合に好適なものである。この強化繊維を含むシート材は、強化繊維材にマトリックス樹脂が含浸されたプリプレグからなる場合、マトリックス樹脂を含まないドライの強化繊維材からなる場合のいずれの場合も可能である。   This compression shaping method is suitable, for example, when the reinforcing fiber base is composed of a laminate of sheet materials containing reinforcing fibers, the number of stacked layers changes, and the reinforcing fiber base has an inclined surface accordingly. It is. The sheet material containing the reinforcing fibers can be either a prepreg in which a reinforcing fiber material is impregnated with a matrix resin or a dry reinforcing fiber material that does not contain a matrix resin.

また、本発明に係る圧縮賦形方法においては、上記の基材の平行面と傾斜面の同時賦形における、金型賦形面の平行面と傾斜面の境界部と、賦形すべき強化繊維基材の平行面と傾斜面の境界部の位置を一致させるべく、搬送される強化繊維基材の上記基材傾斜部の位置を検出し、該検出情報に基づき強化繊維基材の搬送を制御することが好ましい。   Further, in the compression shaping method according to the present invention, in the simultaneous shaping of the parallel surface and the inclined surface of the base material, the boundary between the parallel surface of the mold shaping surface and the inclined surface, and the reinforcement to be shaped In order to match the position of the boundary portion between the parallel surface and the inclined surface of the fiber substrate, the position of the substrate inclined portion of the reinforcing fiber substrate to be conveyed is detected, and the reinforcing fiber substrate is conveyed based on the detection information. It is preferable to control.

また、一つの金型に対し複数箇所にて加圧動作を行わせることもできる。   Further, it is possible to perform a pressurizing operation at a plurality of locations on one mold.

また、本発明に係る圧縮賦形方法においては、強化繊維基材の目標賦形横断面形状に屈曲部が含まれる場合、該屈曲部に対応する横断面形状を有する少なくとも一つの金型を用いて強化繊維基材を賦形することが好ましい。   Further, in the compression shaping method according to the present invention, when the target shaping cross-sectional shape of the reinforcing fiber base includes a bent portion, at least one mold having a cross-sectional shape corresponding to the bent portion is used. It is preferable to shape the reinforcing fiber base.

本発明に係る繊維強化複合材料の製造方法は、強化繊維基材がマトリックス樹脂が含浸されたプリプレグからなり、該強化繊維基材を、上記のような圧縮賦形方法を用いて賦形し、マトリックス樹脂を硬化させることを特徴とする方法からなる。   The method for producing a fiber-reinforced composite material according to the present invention comprises a prepreg in which a reinforcing fiber substrate is impregnated with a matrix resin, and the reinforcing fiber substrate is shaped using the compression shaping method as described above, The method comprises curing a matrix resin.

本発明に係るプリフォームの製造方法は、強化繊維基材がマトリックス樹脂を含まないドライの強化繊維材からなり、該強化繊維基材を、上記のような圧縮賦形方法を用いて賦形することを特徴とする方法からなる。この場合、繊維強化複合材料は、上記のように賦形されたプリフォームにマトリックス樹脂を含浸し、含浸されたマトリックス樹脂を硬化させることにより製造することができる。   The method for producing a preform according to the present invention is such that the reinforcing fiber base is made of a dry reinforcing fiber material not containing a matrix resin, and the reinforcing fiber base is shaped using the compression shaping method as described above. It consists of the method characterized by this. In this case, the fiber-reinforced composite material can be produced by impregnating the preform shaped as described above with a matrix resin and curing the impregnated matrix resin.

本発明に係る圧縮賦形装置および方法によれば、強化繊維基材の長手方向における厚さの変化に伴い強化繊維基材が傾斜面を有する場合にあっても、平行面とそれに連接する傾斜面を併せ持つ金型賦形面により、強化繊維基材の平行面、傾斜面、両者の境界部を効率よく同時に賦形することができ、目標とする望ましい形状に極めて容易に賦形することができる。とくに強化繊維基材の傾斜面の位置を検出して基材の搬送を制御するようにすれば、一層精度の良い目標形状への賦形が可能になる。したがって、比較的長尺のものにあっても、容易にかつ効率良く所定形態に賦形することができる。   According to the compression shaping apparatus and method according to the present invention, even when the reinforcing fiber substrate has an inclined surface with a change in thickness in the longitudinal direction of the reinforcing fiber substrate, the parallel surface and the inclination connected to the parallel surface are provided. With the mold shaping surface that has both surfaces, the parallel surface of the reinforcing fiber base, the inclined surface, and the boundary between them can be shaped efficiently and simultaneously, and it can be shaped very easily into the desired desired shape. it can. In particular, if the position of the inclined surface of the reinforcing fiber base material is detected to control the conveyance of the base material, it is possible to shape the target shape with higher accuracy. Therefore, even if it is relatively long, it can be shaped into a predetermined form easily and efficiently.

本発明に係る繊維強化複合材料とプリフォーム製造方法によれば、上記のような目標とする形状に精度よくかつ効率よく賦形することが可能な圧縮賦形装置および方法を用いるので、比較的長尺のものにあっても、均一に成形され高い繊維体積含有率を有する繊維強化複合材料の製造が可能になるとともに、製造における歩留りを向上して高い生産性を達成することが可能になる。 According to the fiber-reinforced method of producing a composite material and the preform according to the present invention, since use of the compression shaping apparatus and method which can be shaped better accuracy and efficiency goals and shape as described above, comparative Even when the product is long, it is possible to produce a fiber-reinforced composite material that is uniformly molded and has a high fiber volume content, and it is possible to improve production yield and achieve high productivity. Become.

本発明の一実施態様に係る圧縮賦形装置の概略側面図であり、(A)〜(C)は基材に対する賦形動作順を示している。It is a schematic side view of the compression shaping apparatus which concerns on one embodiment of this invention, (A)-(C) has shown the shaping operation | movement order with respect to the base material. 本発明の別の実施態様に係る圧縮賦形装置を含む連続賦形装置全体の概略斜視図である。It is a schematic perspective view of the whole continuous shaping apparatus containing the compression shaping apparatus which concerns on another embodiment of this invention. 図2の装置を使用する場合の最終形状を示す繊維強化複合材料の斜視図である。It is a perspective view of the fiber reinforced composite material which shows the final shape in the case of using the apparatus of FIG. 図2の装置を使用する賦形用金型の一例を示す拡大斜視図である。It is an expansion perspective view which shows an example of the shaping die which uses the apparatus of FIG. 図2の装置における圧縮賦形装置部分を示しており、(A)は概略横断面図、(B)は概略側面図である。The compression shaping apparatus part in the apparatus of FIG. 2 is shown, (A) is a schematic cross-sectional view, (B) is a schematic side view. 本発明のさらに別の実施態様に係る圧縮賦形装置の概略側面図である。It is a schematic side view of the compression shaping apparatus which concerns on another embodiment of this invention. 本発明のさらに別の実施態様に係る圧縮賦形装置の概略側面図である。It is a schematic side view of the compression shaping apparatus which concerns on another embodiment of this invention. 本発明のさらに別の実施態様に係る圧縮賦形装置の概略側面図である。It is a schematic side view of the compression shaping apparatus which concerns on another embodiment of this invention.

以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
本発明に係る圧縮賦形装置および方法において賦形対象とするのは、強化繊維を含む強化繊維基材であり、代表的には、基材長手方向に、例えば積層枚数によって厚みが変化する傾斜面部を有する強化繊維を含むシート材の積層体である。本発明における「強化繊維」としては、炭素繊維やガラス繊維、アラミド繊維などが挙げられる。強化繊維はその形態としては、織物、編み物、組み物、不織布、一方向に引き揃えられた強化繊維シートなどが挙げられる。強化繊維を含むシート材としては、強化繊維材にマトリックス樹脂が含浸されたプリプレグの形態のもの、マトリックス樹脂を含まないドライの強化繊維材の形態のもののいずれも使用可能である。上記「積層体」は、このようなプリプレグの形態のシート材を複数枚積層したもの、あるいはドライの強化繊維材の形態のシート材を複数枚積層したものからなる。ドライの強化繊維材を用いる場合には、結着性物質を使用してもよく、この結着性物質は、強化繊維に付着し、強化繊維同士を結着することで、強化繊維をシート状の形態に安定して維持させるものであり、結着性物質としては、例えば、ポリオレフィン、スチレン系樹脂、ナイロン、ポリウレタンなどの熱可塑性樹脂、また、例えばエポキシ、フェノール、不飽和ポリエステルなどの熱硬化性樹脂などが挙げられる。また、結着性樹脂は、ドライの強化繊維材の積層体を所望の形状に賦形した際に、その形態を保持する役割を果たす。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
The object to be shaped in the compression shaping apparatus and method according to the present invention is a reinforcing fiber base material containing reinforcing fibers, and typically has a slope whose thickness changes in the longitudinal direction of the base material, for example, depending on the number of laminated layers. It is the laminated body of the sheet material containing the reinforcing fiber which has a surface part. Examples of the “reinforcing fiber” in the present invention include carbon fiber, glass fiber, and aramid fiber. The form of the reinforcing fiber includes a woven fabric, a knitted fabric, a braided fabric, a non-woven fabric, and a reinforcing fiber sheet aligned in one direction. As the sheet material containing the reinforcing fiber, either a prepreg in which the reinforcing fiber material is impregnated with a matrix resin or a dry reinforcing fiber material not containing the matrix resin can be used. The “laminate” is composed of a laminate of a plurality of sheet materials in the form of such a prepreg, or a laminate of a plurality of sheet materials in the form of a dry reinforcing fiber material. In the case of using dry reinforcing fiber material, a binding substance may be used. This binding substance adheres to the reinforcing fibers and binds the reinforcing fibers to form a reinforcing fiber in a sheet form. For example, polyolefin, styrene resin, nylon, polyurethane and other thermoplastic resins, and epoxy, phenol, unsaturated polyester, etc. For example, a functional resin. In addition, the binder resin plays a role of maintaining the form of the dry reinforcing fiber material laminate when it is shaped into a desired shape.

図1は、本発明の一実施態様に係る圧縮賦形装置およびそれを用いた圧縮賦形方法を示している。本実施態様においては、圧縮賦形装置10は、強化繊維を含む強化繊維基材1(例えば、強化繊維材シートの積層体やプリプレグシートの積層体)を上側の金型2aと下側の金型2b間に挟んで加圧することにより金型賦形面3a、3bの形状に沿う形状に賦形する少なくとも二つの金型2a、2bと、少なくとも一つの金型2aに矢印A方向に加圧動作、それとは反対方向に開放動作となる開閉動作をさせる金型駆動手段4と、金型2a、2b間での加圧による賦形動作に合わせて強化繊維基材1を金型2a、2b設置部位に対し矢印B方向に搬入、搬出する搬送手段5とを備えている。搬送手段5は、例えば、強化繊維基材1を矢印B方向に牽引する牽引手段に構成されている。ただし、この搬送手段5は、強化繊維基材1を把持して引き抜くように搬送する手段であってもよく、金型2a、2bの入口側から押し込むように強化繊維基材1を搬送する手段であってもよい。このような圧縮賦形装置10において、本実施態様では、金型2aの金型賦形面3aが、強化繊維基材1の搬送方向Bに対し平行な平行面6aと、該平行面6aに段差なく連接され搬送方向Bに対し傾斜した傾斜面6bとを併せ持つ面形状に形成されている。この金型賦形面3aの平行面6aは、強化繊維基材1の厚さが一定で賦形すべき基材の表面が搬送方向Bに対し平行な基材平行面7aの形状に対応しており、金型賦形面3aの傾斜面6bは、強化繊維基材1の厚さが変化し賦形すべき基材の表面が搬送方向Bに対し傾斜した基材傾斜面7bの形状に対応している。   FIG. 1 shows a compression shaping apparatus according to an embodiment of the present invention and a compression shaping method using the compression shaping apparatus. In this embodiment, the compression shaping apparatus 10 includes a reinforcing fiber substrate 1 containing reinforcing fibers (for example, a laminated body of reinforcing fiber material sheets or a laminated body of prepreg sheets) as an upper mold 2a and a lower mold. At least two molds 2a and 2b shaped into a shape along the shape of the mold shaping surfaces 3a and 3b by pressing between the molds 2b and at least one mold 2a is pressed in the direction of arrow A The reinforcing fiber substrate 1 is moved to the molds 2a and 2b in accordance with the mold driving means 4 for performing the opening and closing operation in the opposite direction to the operation and the shaping operation by pressurization between the molds 2a and 2b. Conveying means 5 for carrying in and out in the direction of arrow B with respect to the installation site is provided. The conveyance means 5 is comprised by the traction means which pulls the reinforcement fiber base material 1 in the arrow B direction, for example. However, the conveying means 5 may be a means for conveying the reinforcing fiber base 1 so as to grip and pull out, and means for conveying the reinforcing fiber base 1 so as to be pushed in from the inlet side of the molds 2a and 2b. It may be. In such a compression shaping apparatus 10, in this embodiment, the mold shaping surface 3 a of the mold 2 a is parallel to the parallel surface 6 a parallel to the conveyance direction B of the reinforcing fiber base 1 and the parallel surface 6 a. It is formed in a surface shape having an inclined surface 6b that is connected without a step and is inclined with respect to the transport direction B. The parallel surface 6a of the mold shaping surface 3a corresponds to the shape of the substrate parallel surface 7a in which the thickness of the reinforcing fiber substrate 1 is constant and the surface of the substrate to be shaped is parallel to the conveyance direction B. The inclined surface 6b of the mold shaping surface 3a has a shape of a substrate inclined surface 7b in which the thickness of the reinforcing fiber substrate 1 is changed and the surface of the substrate to be shaped is inclined with respect to the transport direction B. It corresponds.

なお、本実施態様では、下側の金型2bは固定型の金型とされているが、下側の金型2b側を上記の上側の金型2aのような可動型の金型に構成してもよく、両方とも可動型の金型に構成することも可能である。また、本実施態様では、金型2aの金型賦形面3aが、平行面6aと傾斜面6bとを併せ持つ形状に形成されているが、金型2b側の金型賦形面3bをこのような形状に形成することもでき、両金型2a、2bの金型賦形面3a、3bをこのような形状に形成することもできる。   In this embodiment, the lower mold 2b is a fixed mold, but the lower mold 2b is configured as a movable mold such as the upper mold 2a. Alternatively, both may be configured as a movable mold. In this embodiment, the mold shaping surface 3a of the mold 2a is formed in a shape having both the parallel surface 6a and the inclined surface 6b. It can also be formed in such a shape, and the mold shaping surfaces 3a and 3b of both molds 2a and 2b can be formed in such a shape.

このような圧縮賦形装置10において、強化繊維基材1の圧縮賦形が図1(A)、(B)、(C)に示すように行われる。搬送方向Bに搬送される強化繊維基材1に対し、図1(A)に示す動作は、強化繊維基材1の厚さが一定で賦形すべき基材の表面が搬送方向Bに対し平行な基材平行面7aの形状の基材部位での賦形状態を示しており、金型2aの金型賦形面3aの平行面6aだけが基材平行面7aに押圧されて、この部位の基材形状が所定の厚さ一定の形状へと圧縮賦形される。図1(B)は、強化繊維基材1の基材傾斜面7bが金型2a、2b間位置まで搬送され、金型賦形面3aの平行面6aと傾斜面6bの両方を使用して、強化繊維基材1の基材平行面7aと基材傾斜面7b、さらにはそれらの境界部が同時賦形される様子を示している。この圧縮賦形時には、前述の如く、強化繊維基材1の基材平行面7aと基材傾斜面7bの境界部が、金型賦形面3aの平行面6aと傾斜面6bの境界部と一致していることが好ましく、この一致は、例えば図1(A)に示すような、基材表面の傾斜部(基材傾斜面7b)の位置あるいは強化繊維基材1の基材平行面7aと基材傾斜面7bの境界部の位置を検出可能な基材傾斜部位置検出手段8(例えば、非接触式または接触式のセンサ)と、その検出情報に基づいて強化繊維基材1の搬送を制御可能な搬送制御手段9(例えば、搬送手段5の駆動制御手段)とによって達成可能である。金型賦形面3aの平行面6aと傾斜面6bによる強化繊維基材1の基材平行面7aと基材傾斜面7bの同時賦形により、極めて容易に効率よく、しかも精度良く、この部分における強化繊維基材1を目標とする形状に賦形することができる。図1(C)は、強化繊維基材1の基材傾斜面7bの賦形が終了し、強化繊維基材1がさらに搬送方向Bに搬送されて、再び基材平行面7a(上記図1(A)における部位よりは厚さのより厚い部位の基材平行面7a)の賦形が、金型賦形面3aの平行面6aだけを使用して行われている様子を示している。このように、所定量の間欠的な基材搬送と、金型2aの開閉動作の繰り返しにより、長尺の強化繊維基材1の各部位が次々と効率よく目標形状に賦形されていくことになる。   In such a compression shaping apparatus 10, compression shaping of the reinforcing fiber base 1 is performed as shown in FIGS. 1 (A), (B), and (C). With respect to the reinforcing fiber substrate 1 conveyed in the conveying direction B, the operation shown in FIG. 1A is that the surface of the substrate to be shaped with a constant thickness of the reinforcing fiber substrate 1 is in the conveying direction B. The shape of the parallel base material parallel surface 7a in the shape of the base material portion is shown, and only the parallel surface 6a of the mold shaping surface 3a of the mold 2a is pressed against the base material parallel surface 7a. The base material shape of the part is compression-shaped into a predetermined constant thickness. In FIG. 1B, the substrate inclined surface 7b of the reinforcing fiber substrate 1 is conveyed to the position between the molds 2a and 2b, and both the parallel surface 6a and the inclined surface 6b of the mold shaping surface 3a are used. The base material parallel surface 7a and the base material inclined surface 7b of the reinforcing fiber base material 1 and further their boundary portions are shown to be formed simultaneously. At the time of this compression molding, as described above, the boundary between the base parallel surface 7a and the base inclined surface 7b of the reinforcing fiber base 1 is the boundary between the parallel surface 6a and the inclined surface 6b of the mold forming surface 3a. The coincidence is preferably coincident, and this coincidence is, for example, as shown in FIG. 1A, the position of the inclined portion (substrate inclined surface 7b) of the substrate surface or the substrate parallel surface 7a of the reinforcing fiber substrate 1. And base material inclined part position detection means 8 (for example, a non-contact type or contact type sensor) capable of detecting the position of the boundary part between the base material and the base material inclined surface 7b, and conveyance of the reinforcing fiber base material 1 based on the detection information. This can be achieved by the conveyance control means 9 (for example, the drive control means of the conveyance means 5) that can control the above. The simultaneous shaping of the substrate parallel surface 7a and the substrate inclined surface 7b of the reinforcing fiber substrate 1 by the parallel surface 6a and the inclined surface 6b of the mold shaping surface 3a makes it extremely easy, efficient and accurate. The reinforcing fiber substrate 1 can be shaped into a target shape. In FIG. 1C, the shaping of the substrate inclined surface 7b of the reinforcing fiber substrate 1 is completed, the reinforcing fiber substrate 1 is further conveyed in the conveying direction B, and again the substrate parallel surface 7a (FIG. 1 above). (A) shows that the shaping of the base material parallel surface 7a) of the thicker portion than the portion in (A) is performed using only the parallel surface 6a of the mold shaping surface 3a. Thus, each part of the long reinforcing fiber base material 1 is shaped into a target shape one after another by repeating a predetermined amount of intermittent base material conveyance and opening / closing operation of the mold 2a. become.

図2に、本発明の別の実施態様に係る圧縮賦形装置を含む連続賦形装置全体、とくに横断面形状に屈曲部を有し、全体としてT字形の横断面形状に基材を賦形する圧縮賦形装置を含む連続賦形装置11を例示する。本実施態様においては、最終的に図3に示すような、横断面がT字形で(ただし、図3は天地を逆転して図示してある)、かつ、長手方向の途中に厚さ変化部32を有する、比較的長尺の繊維強化複合材料31を製造することができる(プリフォームへの賦形も、図3に示すような形状となる)。図2においては、長手方向の途中に厚さ変化部を有する強化繊維基材12、13がそれぞれ搬送され、一方の強化繊維基材12は、キャッププレス14で予備賦形された後、全体を所定のT字形の横断面形状に賦形する、本発明に係る圧縮賦形装置としてのT字形プレス15に搬送される。他方の強化繊維基材13には、繰り出されてきた離型シート16が離型シート貼付プレス17部で貼り付けられ、押し込み円板18でV字形に変形された後、ウェブプレス19、ドレープローラ20を用いて横断面T字形に整形され、T字形の脚が交差する付け根部に繰り出されてきたコーナーフィラー部材21の素材条体がフィラー型22を用いて配置された後、T字形プレス15に搬送される。T字形プレス15では、搬送されてきた予備賦形後の強化繊維基材12、13が、本発明に係る圧縮賦形方法を用いて、所定のT字形の横断面形状に賦形される。T字形プレス15への基材の搬入、T字形プレス15からの基材の搬出は、引き込み装置23により、賦形動作に併せて間欠的に行われる。   FIG. 2 shows the entire continuous shaping apparatus including a compression shaping apparatus according to another embodiment of the present invention, in particular, a bent portion in the cross-sectional shape, and the substrate is shaped in a T-shaped cross-sectional shape as a whole. The continuous shaping | molding apparatus 11 containing the compression shaping apparatus to perform is illustrated. In this embodiment, the cross section is finally T-shaped as shown in FIG. 3 (however, FIG. 3 is shown with the top and bottom reversed), and the thickness changing portion is in the middle of the longitudinal direction. A relatively long fiber-reinforced composite material 31 having 32 can be manufactured (the shape of the preform is also as shown in FIG. 3). In FIG. 2, the reinforcing fiber bases 12 and 13 having thickness changing portions in the longitudinal direction are respectively conveyed, and one reinforcing fiber base 12 is preliminarily shaped by the cap press 14, and then the whole It is conveyed to a T-shaped press 15 as a compression shaping apparatus according to the present invention, which is shaped into a predetermined T-shaped cross-sectional shape. On the other reinforcing fiber base 13, the fed release sheet 16 is affixed by 17 parts of a release sheet affixing press and is deformed into a V shape by a pressing disc 18, and then a web press 19, a drape roller After the material strip of the corner filler member 21 that has been shaped into a T-shaped cross section using 20 and fed out to the base where the T-shaped legs intersect is placed using the filler mold 22, the T-shaped press 15 To be transported. In the T-shaped press 15, the reinforced fiber base materials 12 and 13 that have been conveyed are preliminarily shaped into a predetermined T-shaped cross-sectional shape using the compression shaping method according to the present invention. The carrying-in of the base material to the T-shaped press 15 and the unloading of the base material from the T-shaped press 15 are intermittently performed by the drawing device 23 in conjunction with the shaping operation.

T字形への賦形は、T字形プレス15内のT字形の頂面側に配置される金型24と、T字形の両側に配置される金型25を用いて行われ、本発明に係る基材の厚さ変化部に対応した傾斜面の賦形は、主として金型25によって行われる。この賦形に使用される金型25は、例えば図4に示すように形成される。図4に示す金型25においては、金型賦形面26、27が形成されており、例えば、金型賦形面26がT字形の頂部下面を賦形する金型賦形面を、金型賦形面27がT字形の脚部側面を賦形する金型賦形面を、それぞれ構成している。図3に示したような厚さ変化部32の賦形に対応するために、金型賦形面26は平行面26aと傾斜面26bが段差なく連接された形状で、金型賦形面27は平行面27aと傾斜面27bが段差なく連接された形状をしている。   The shaping to the T-shape is performed using the mold 24 arranged on the top surface side of the T-shape in the T-shaped press 15 and the mold 25 arranged on both sides of the T-shape. The shaping of the inclined surface corresponding to the thickness changing portion of the base material is mainly performed by the mold 25. The mold 25 used for this shaping is formed, for example, as shown in FIG. In the mold 25 shown in FIG. 4, mold shaping surfaces 26 and 27 are formed. For example, the mold shaping surface 26 is a mold shaping surface for shaping the T-shaped top bottom surface. The mold shaping surface 27 constitutes a mold shaping surface for shaping the T-shaped leg side surface. In order to correspond to the shaping of the thickness changing portion 32 as shown in FIG. 3, the mold shaping surface 26 has a shape in which the parallel surface 26a and the inclined surface 26b are connected without a step, and the mold shaping surface 27 is formed. Has a shape in which the parallel surface 27a and the inclined surface 27b are connected without any step.

上記厚さ変化部32に対応した賦形は、例えば図5(A)、(B)に示すように行われる。図5(A)に示すように、上側の固定金型24と、下側でかつT字形の脚部両側面側に配置された可動金型25(25a、25b)との間で、強化繊維基材12、13からなるT字形に予備賦形された強化繊維基材41が、所定のT字形横断面形状に賦形される。図5(A)、(B)に示すように、可動金型25a、25bは、ガイド42に沿って金型駆動手段43a、43bにより強化繊維基材41のT字形脚部に向けて加圧されるとともに、ガイド44に沿って金型駆動手段45によって、ガイド42部分を含めた可動により、強化繊維基材41のT字形頂部下面に向けて加圧される。図5(B)に示すように、強化繊維基材41の厚さ変化部46が丁度金型25の傾斜面26bに対応する位置まで搬送されると、金型25による圧縮賦形が行われる。この場合、前述したように、金型25の平行面26aと傾斜面26bにより、強化繊維基材41の厚さ変化部46(傾斜面部)と平行面部の賦形が同時に行われることになる。強化繊維基材41の厚さ変化部46(傾斜面部)の位置合わせは、例えば強化繊維基材41の厚さ変化部46に対し予め所定の位置関係にある部位に、位置検出用のマーク47を付与しておき、そのマーク47の検出情報に基づき強化繊維基材41の搬送を制御することによって、高精度に位置決めを行うことが可能である。   The shaping corresponding to the thickness changing portion 32 is performed as shown in FIGS. 5 (A) and 5 (B), for example. As shown in FIG. 5 (A), the reinforcing fiber between the upper fixed mold 24 and the movable mold 25 (25a, 25b) disposed on the lower side and the both side surfaces of the T-shaped leg. A reinforcing fiber base material 41 preshaped into a T shape composed of the base materials 12 and 13 is shaped into a predetermined T-shaped cross-sectional shape. As shown in FIGS. 5A and 5B, the movable molds 25a and 25b are pressed toward the T-shaped legs of the reinforcing fiber base 41 by the mold driving means 43a and 43b along the guide 42. At the same time, the die driving means 45 is pressurized along the guide 44 to move to the lower surface of the T-shaped top portion of the reinforcing fiber substrate 41 by including the guide 42 portion. As shown in FIG. 5 (B), when the thickness changing portion 46 of the reinforcing fiber base 41 is just conveyed to the position corresponding to the inclined surface 26b of the mold 25, compression molding by the mold 25 is performed. . In this case, as described above, the thickness changing portion 46 (inclined surface portion) and the parallel surface portion of the reinforcing fiber base 41 are simultaneously shaped by the parallel surface 26a and the inclined surface 26b of the mold 25. The positioning of the thickness changing portion 46 (inclined surface portion) of the reinforcing fiber base 41 is performed, for example, at a position 47 with a predetermined positional relationship with the thickness changing portion 46 of the reinforcing fiber base 41 in advance. And controlling the conveyance of the reinforcing fiber base 41 based on the detection information of the mark 47, it is possible to perform positioning with high accuracy.

本発明においては、種々の変化形態を採り得る。例えば、図6に示すように、強化繊維基材41の搬送方向(矢印方向)に賦形用の金型として加熱型51と冷却型52を直列に配置することができる。このようにすれば、平行面と傾斜面を備えた加熱型51により所定の形状に賦形した強化繊維基材41を、その直後に冷却型52で冷却することができ、それによって賦形された強化繊維基材41の所定形状を固定することが可能となる。また、図7に示すように、強化繊維基材61を加熱型62により賦形に適した温度へと加熱し、その直後に、冷却型63により基材61を所定の形状に賦形すると同時に冷却して賦形形状を固めてしまうようにすることも可能である。また、図7に示すように、基材61の搬送方向に対する厚さ変化部の傾斜面の傾斜方向は、図6に示した方向とは逆向きにすることも可能であり、その傾斜面に対応した賦形用金型を準備すればよい。さらに、図8に示すように、強化繊維基材41賦形用の金型71(図示例では、加熱型)のうち本発明における平行面と傾斜面を併せ持つ金型71において、傾斜面72の両側(基材搬送方向両側)に平行面73a、73bが段差なく連接された形状の金型賦形面とすることもできる。   In the present invention, various variations can be adopted. For example, as shown in FIG. 6, a heating mold 51 and a cooling mold 52 can be arranged in series in the conveying direction (arrow direction) of the reinforcing fiber base 41 as a shaping mold. In this way, the reinforcing fiber base 41 shaped into a predetermined shape by the heating die 51 having a parallel surface and an inclined surface can be cooled by the cooling die 52 immediately after that, and thereby shaped. The predetermined shape of the reinforcing fiber base 41 can be fixed. Further, as shown in FIG. 7, the reinforcing fiber base 61 is heated to a temperature suitable for shaping by the heating die 62, and immediately thereafter, the base 61 is shaped into a predetermined shape by the cooling die 63. It is also possible to cool and harden the shaped shape. Further, as shown in FIG. 7, the inclination direction of the inclined surface of the thickness changing portion with respect to the conveying direction of the base material 61 can be opposite to the direction shown in FIG. A corresponding shaping mold may be prepared. Furthermore, as shown in FIG. 8, in the mold 71 having both the parallel surface and the inclined surface in the present invention among the molds 71 (heating mold in the illustrated example) for shaping the reinforcing fiber base 41, It can also be set as the metal mold shaping surface of the shape where the parallel surfaces 73a and 73b were connected on both sides (both sides of the substrate conveyance direction) without a step.

本発明に係る圧縮賦形装置および方法は、傾斜面と平行面を有するあらゆる強化繊維基材の賦形に適用でき、繊維強化複合材料やプリフォームの製造分野に広く適用できる。   The compression shaping apparatus and method according to the present invention can be applied to shaping any reinforcing fiber substrate having an inclined surface and a parallel surface, and can be widely applied to the field of manufacturing fiber reinforced composite materials and preforms.

1 強化繊維基材
2a、2b 金型
3a、3b 金型賦形面
4 金型駆動手段
5 搬送手段
6a 平行面
6b 傾斜面
7a 基材平行面
7b 基材傾斜面
8 基材傾斜部位置検出手段
9 搬送制御手段
10 圧縮賦形装置
11 連続賦形装置
12、13 強化繊維基材
14 キャッププレス
15 T字形プレス
16 離型シート
17 離型シート貼付プレス
18 押し込み円板
19 ウェブプレス
20 ドレープローラ
21 コーナーフィラー部材
22 フィラー型
23 引き込み装置
24、25、25a、25b 金型
26、27 金型賦形面
26a、27a 平行面
26b、27b 傾斜面
31 繊維強化複合材料
32 厚さ変化部
41 強化繊維基材
42 ガイド
43a、43b 金型駆動手段
44 ガイド
45 金型駆動手段
46 厚さ変化部
47 位置検出用のマーク
51 加熱型
52 冷却型
61 強化繊維基材
62 加熱型
63 冷却型
71 金型
72 傾斜面
73a、73b 平行面
DESCRIPTION OF SYMBOLS 1 Reinforcement fiber base material 2a, 2b Mold 3a, 3b Mold shaping surface 4 Mold drive means 5 Conveyance means 6a Parallel surface 6b Inclined surface 7a Base material parallel surface 7b Base material inclined surface 8 Base material inclined part position detection means 9 Conveying control means 10 Compression shaping device 11 Continuous shaping device 12, 13 Reinforcing fiber base material 14 Cap press 15 T-shaped press 16 Release sheet 17 Release sheet sticking press 18 Push disc 19 Web press 20 Drape roller 21 Corner Filler member 22 Filler mold 23 Pull-in device 24, 25, 25a, 25b Mold 26, 27 Mold shaping surface 26a, 27a Parallel surface 26b, 27b Inclined surface 31 Fiber reinforced composite material 32 Thickness changing portion 41 Reinforced fiber substrate 42 Guides 43a and 43b Mold driving means 44 Guide 45 Mold driving means 46 Thickness changing portion 47 Position detection mark 51 Heating mold 52却型 61 reinforcing fiber substrate 62 heated mold 63 cooled mold 71 the mold 72 the inclined surfaces 73a, 73b parallel surfaces

Claims (16)

強化繊維を含む強化繊維基材を金型間に挟んで加圧することにより金型賦形面の形状に沿う形状に賦形する少なくとも二つの金型と、少なくとも一つの金型に開閉動作をさせ、強化繊維基材を加圧、開放する金型駆動手段と、金型による開閉動作に合わせて強化繊維基材を金型に対し搬入、搬出する搬送手段とを備えた強化繊維基材の圧縮賦形装置であって、前記金型のうちの少なくとも一つの金型の金型賦形面が、強化繊維基材の搬送方向に対し平行な平行面と、該平行面に段差なく連接され前記搬送方向に対し傾斜した傾斜面とを併せ持ち、さらに、前記圧縮賦形装置が、前記搬送方向に搬送される強化繊維基材の長手方向における厚さ変化に伴う基材表面の傾斜部の位置を検出する基材傾斜部検出手段と、該基材傾斜部検出手段による検出情報に基づき強化繊維基材の搬送を制御する搬送制御手段を有することを特徴とする圧縮賦形装置。 At least two molds shaped into a shape along the shape of the mold shaping surface by pressing a reinforcing fiber substrate containing reinforcing fibers between the molds, and at least one mold is opened and closed. Compressing the reinforcing fiber base comprising a mold driving means for pressurizing and releasing the reinforcing fiber base and a transport means for carrying the reinforcing fiber base into and out of the mold in accordance with the opening / closing operation of the mold. A shaping apparatus, wherein a mold shaping surface of at least one of the molds is connected to a parallel surface parallel to the conveying direction of the reinforcing fiber base and connected to the parallel surface without a step. lifting Chi combination of the inclined surface inclined with respect to the transporting direction, further, the compression shaping device, the inclined portion of the thickness due to the change substrate surface in the longitudinal direction of the reinforcing fiber substrate to be transported to the transporting direction By the base material inclination part detection means for detecting the position and the base material inclination part detection means Compression shaping apparatus characterized in that it comprises a conveyance control means for controlling the conveyance of the output based on the information reinforcing fiber substrate. 前記強化繊維基材が、強化繊維を含むシート材の積層体からなる、請求項1に記載の圧縮賦形装置。   The compression shaping apparatus according to claim 1, wherein the reinforcing fiber base is composed of a laminate of sheet materials containing reinforcing fibers. 前記強化繊維を含むシート材が、強化繊維材にマトリックス樹脂が含浸されたプリプレグからなる、請求項2に記載の圧縮賦形装置。   The compression shaping apparatus according to claim 2, wherein the sheet material containing the reinforcing fibers is made of a prepreg in which a reinforcing fiber material is impregnated with a matrix resin. 前記強化繊維を含むシート材が、マトリックス樹脂を含まないドライの強化繊維材からなる、請求項2に記載の圧縮賦形装置。   The compression shaping apparatus according to claim 2, wherein the sheet material containing the reinforcing fibers is made of a dry reinforcing fiber material not containing a matrix resin. 前記金型駆動手段が、一つの金型に対し複数箇所の加圧機構を有する、請求項1〜のいずれかに記載の圧縮賦形装置。 The compression molding apparatus according to any one of claims 1 to 4 , wherein the mold driving means has a plurality of pressurizing mechanisms for one mold. 強化繊維基材の目標賦形横断面形状に屈曲部が含まれ、前記金型のうちの少なくとも一つの金型が前記屈曲部に対応する横断面形状を有する、請求項1〜のいずれかに記載の圧縮賦形装置。 Bent portion is included in the target shaping the cross-sectional shape of the reinforcing fiber substrate, at least one mold of said mold has a cross sectional shape corresponding to the bent portion, claim 1-5 The compression shaping apparatus described in 1. 強化繊維を含む強化繊維基材を少なくとも二つの金型間に挟んで加圧することにより金型賦形面の形状に沿う形状に賦形するに際し、少なくとも一つの金型に開閉動作をさせて強化繊維基材を順次賦形していくとともに、金型による開閉動作に合わせて強化繊維基材を金型に対し搬入、搬出する強化繊維基材の圧縮賦形方法であって、前記金型のうちの少なくとも一つの金型の金型賦形面を、強化繊維基材の搬送方向に対し平行な平行面と、該平行面に段差なく連接され前記搬送方向に対し傾斜した傾斜面とを併せ持つ金型賦形面に形成し、長手方向において厚さ変化を伴い基材表面に傾斜部を有する強化繊維基材の該傾斜部が搬送されてきたときに、前記金型賦形面の平行面と傾斜面の両方を用いて強化繊維基材を加圧することを特徴とする圧縮賦形方法。   Reinforcement by opening and closing at least one mold when forming a shape that follows the shape of the mold shaping surface by pressing a reinforcing fiber substrate containing reinforcing fibers between at least two molds and pressing. A method of compressing and shaping a reinforcing fiber base material that sequentially shapes the fiber base material and carries the reinforcing fiber base material into and out of the metal mold in accordance with the opening and closing operation of the mold. The mold shaping surface of at least one of the molds has both a parallel surface parallel to the conveying direction of the reinforcing fiber base and an inclined surface connected to the parallel surface without a step and inclined with respect to the conveying direction. A parallel surface of the mold shaping surface when the inclined portion of the reinforcing fiber base formed on the mold shaping surface and having a thickness change in the longitudinal direction and having an inclined portion on the substrate surface is conveyed. And pressurizing the reinforcing fiber substrate using both the inclined surface and the inclined surface Compression shaping method. 前記強化繊維基材が、強化繊維を含むシート材の積層体からなる、請求項に記載の圧縮賦形方法。 The compression shaping method according to claim 7 , wherein the reinforcing fiber base is composed of a laminate of sheet materials containing reinforcing fibers. 前記強化繊維を含むシート材が、強化繊維材にマトリックス樹脂が含浸されたプリプレグからなる、請求項に記載の圧縮賦形方法。 The compression molding method according to claim 8 , wherein the sheet material containing the reinforcing fibers is made of a prepreg in which a reinforcing fiber material is impregnated with a matrix resin. 前記強化繊維を含むシート材が、マトリックス樹脂を含まないドライの強化繊維材からなる、請求項に記載の圧縮賦形方法。 The compression molding method according to claim 8 , wherein the sheet material including the reinforcing fibers is formed of a dry reinforcing fiber material not including a matrix resin. 搬送される強化繊維基材の前記基材傾斜部の位置を検出し、該検出情報に基づき強化繊維基材の搬送を制御する、請求項7〜10のいずれかに記載の圧縮賦形方法。 The compression shaping method according to any one of claims 7 to 10 , wherein the position of the substrate inclined portion of the reinforcing fiber substrate to be conveyed is detected, and the conveyance of the reinforcing fiber substrate is controlled based on the detection information. 一つの金型に対し複数箇所にて加圧動作を行わせる、請求項7〜11のいずれかに記載の圧縮賦形方法。 The compression molding method according to any one of claims 7 to 11 , wherein a pressing operation is performed on a single mold at a plurality of locations. 強化繊維基材の目標賦形横断面形状に屈曲部が含まれ、該屈曲部に対応する横断面形状を有する少なくとも一つの金型を用いて強化繊維基材を賦形する、請求項7〜12のいずれかに記載の圧縮賦形方法。 It contains the bent portion to the target shaping the cross-sectional shape of the reinforcing fiber substrate, to shape the reinforcing fiber base material using at least one mold having a cross sectional shape corresponding to the bent portion, claim 7 The compression shaping method according to any one of 12 above. 強化繊維基材がマトリックス樹脂が含浸されたプリプレグからなり、該強化繊維基材を、請求項7〜13のいずれかに記載の圧縮賦形方法を用いて賦形し、マトリックス樹脂を硬化させることを特徴とする繊維強化複合材料の製造方法。 The reinforcing fiber base is made of a prepreg impregnated with a matrix resin, the reinforcing fiber base is shaped using the compression molding method according to any one of claims 7 to 13 , and the matrix resin is cured. A method for producing a fiber-reinforced composite material. 強化繊維基材がマトリックス樹脂を含まないドライの強化繊維材からなり、該強化繊維基材を、請求項7〜13のいずれかに記載の圧縮賦形方法を用いて賦形することを特徴とするプリフォームの製造方法。 The reinforcing fiber base is made of a dry reinforcing fiber material containing no matrix resin, and the reinforcing fiber base is shaped using the compression molding method according to any one of claims 7 to 13. A preform manufacturing method. 請求項15に記載の方法により製造されたプリフォームにマトリックス樹脂を含浸し、含浸されたマトリックス樹脂を硬化させることを特徴とする繊維強化複合材料の製造方法。 A method for producing a fiber-reinforced composite material, wherein the preform produced by the method according to claim 15 is impregnated with a matrix resin, and the impregnated matrix resin is cured.
JP2009017847A 2009-01-29 2009-01-29 Compression molding apparatus and method, and fiber reinforced composite material and preform manufacturing method Expired - Fee Related JP5408530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009017847A JP5408530B2 (en) 2009-01-29 2009-01-29 Compression molding apparatus and method, and fiber reinforced composite material and preform manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017847A JP5408530B2 (en) 2009-01-29 2009-01-29 Compression molding apparatus and method, and fiber reinforced composite material and preform manufacturing method

Publications (2)

Publication Number Publication Date
JP2010173166A JP2010173166A (en) 2010-08-12
JP5408530B2 true JP5408530B2 (en) 2014-02-05

Family

ID=42704586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017847A Expired - Fee Related JP5408530B2 (en) 2009-01-29 2009-01-29 Compression molding apparatus and method, and fiber reinforced composite material and preform manufacturing method

Country Status (1)

Country Link
JP (1) JP5408530B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7078219B2 (en) * 2017-12-08 2022-05-31 本田技研工業株式会社 Thermoplastic resin material manufacturing equipment
JP7358980B2 (en) * 2019-12-26 2023-10-11 三菱ケミカル株式会社 Resin molded body and its manufacturing method
EP4043175B1 (en) * 2020-01-07 2024-09-25 Mitsubishi Heavy Industries, Ltd. Shaping method and shaping device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242816A (en) * 1985-04-19 1986-10-29 Hitachi Chem Co Ltd Continuous molding method for frp
JPS62103115A (en) * 1985-10-30 1987-05-13 Hitachi Chem Co Ltd Continuous molding method for frp
JP4661152B2 (en) * 2003-09-30 2011-03-30 東レ株式会社 Method and apparatus for manufacturing molded product
EP1995040A1 (en) * 2006-03-08 2008-11-26 Toray Industries, Inc. Process, and apparatus, for producing reinforcing fiber molding
CN101588902B (en) * 2007-01-26 2013-09-25 东丽株式会社 Preform for molding fiber-reinforced resin beam, process for producing the same, apparatus for producing the same, and process for producing fiber-reinforced resin beam
JP2009234065A (en) * 2008-03-27 2009-10-15 Toray Ind Inc Manufacturing process of pressing type forming apparatus of reinforcing fiber substrate, and preform, and manufacturing process of fiber-reinforced composite material
JP5322594B2 (en) * 2008-11-12 2013-10-23 株式会社ジャムコ Continuous molding method for composite molds with different cross sections

Also Published As

Publication number Publication date
JP2010173166A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
CN102781649B (en) Continuous molding of thermoplastic laminates
JP5742223B2 (en) Beam material manufacturing method and manufacturing apparatus
JP2001315149A (en) Producing method for semi-cured article fitted with joggle consisting of fiber-reinforced composite material, and producing method for premolding structural body using the same
JP6239272B2 (en) Method and apparatus for molding fiber reinforced plastic member
WO2014069503A1 (en) Method for manufacturing preform and method for manufacturing fiber-reinforced resin molded article
JPWO2019049411A1 (en) Preform shaping device
JP5937894B2 (en) Composite stringer continuous preform equipment
EP2842711B1 (en) Apparatus and method for producing a composite material aircraft component
KR20140087010A (en) Process for producing plastic molded pieces
JP5408530B2 (en) Compression molding apparatus and method, and fiber reinforced composite material and preform manufacturing method
US20240343002A1 (en) Methods, Devices, and Systems for Forming a Composite Structure using an Expandable Pallet
US11045980B2 (en) Method for molding composite materials
US8273206B2 (en) Method for continuously forming composite material shape member having varied cross-sectional shape
JP2008179130A (en) Compression shaping apparatus of layered product, manufacturing process of preform and manufacturing process of prepreg molding
JP5435330B2 (en) Method for manufacturing reinforcing fiber composite beam
JP2010120320A (en) Compression-molding device, compression-molding method, and fiber-reinforced composite material manufactured by using the same
CN112996653A (en) FRP forming system and method
KR20220159937A (en) Method and apparatus for manufacturing composite material molded articles
JP2007008147A (en) Preform, frp molded article, and method for producing the same
KR20150127470A (en) Mould for forming fiber-reinforced composite material easying gas emissions
JP5081034B2 (en) Reinforcing fiber molded body manufacturing apparatus and manufacturing method
JP2009234065A (en) Manufacturing process of pressing type forming apparatus of reinforcing fiber substrate, and preform, and manufacturing process of fiber-reinforced composite material
JP5362596B2 (en) Paste composition method, pasting composite mold and pasting device
JP2009226835A (en) Compression shaping apparatus of laminate product, manufacturing process of preform of laminate product, and manufacturing process of fiber-reinforced composite material
JP2017148973A (en) Method for manufacturing fiber-reinforced composite material molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131024

LAPS Cancellation because of no payment of annual fees