JP5408503B2 - Spark plug electrode and spark plug manufacturing method - Google Patents

Spark plug electrode and spark plug manufacturing method Download PDF

Info

Publication number
JP5408503B2
JP5408503B2 JP2010227711A JP2010227711A JP5408503B2 JP 5408503 B2 JP5408503 B2 JP 5408503B2 JP 2010227711 A JP2010227711 A JP 2010227711A JP 2010227711 A JP2010227711 A JP 2010227711A JP 5408503 B2 JP5408503 B2 JP 5408503B2
Authority
JP
Japan
Prior art keywords
plating film
electrode
spark plug
diameter portion
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010227711A
Other languages
Japanese (ja)
Other versions
JP2012084272A (en
Inventor
悟 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2010227711A priority Critical patent/JP5408503B2/en
Publication of JP2012084272A publication Critical patent/JP2012084272A/en
Application granted granted Critical
Publication of JP5408503B2 publication Critical patent/JP5408503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Description

本発明は、スパークプラグの中心電極や接地電極の製造方法、並びに前記のスパークプラグ用電極の製造方法を含めたスパークプラグの製造方法に関する。   The present invention relates to a method for manufacturing a center electrode and a ground electrode of a spark plug, and a method for manufacturing a spark plug including the method for manufacturing a spark plug electrode.

内燃機関には、点火のためのスパークプラグが用いられている。一般的なスパークプラグは、軸孔内の先端側に中心電極を保持し、後端側に接続端子を保持した絶縁碍子と、その絶縁碍子の胴部の周囲を取り囲んで保持する主体金具と、この主体金具の先端に一端が溶接され、他端が中心電極の先端に対向し火花放電ギャップを形成する接地電極とから構成されている。   A spark plug for ignition is used in the internal combustion engine. A general spark plug has an insulator that holds the center electrode on the front end side in the shaft hole and holds the connection terminal on the rear end side, and a metal shell that surrounds and holds the periphery of the trunk of the insulator, One end is welded to the tip of the metal shell, and the other end is composed of a ground electrode that faces the tip of the center electrode and forms a spark discharge gap.

このようなスパークプラグの中心電極を製造するには、従来では電極材料を切削加工していたが、本出願人は先に、電極材料からなる柱状のワークを金型に収容し、パンチで押し出して所定の電極形状に加工する方法を提案している(例えば、特許文献1参照)。   In order to manufacture the center electrode of such a spark plug, the electrode material has been conventionally cut, but the applicant first puts a columnar workpiece made of the electrode material in a mold and extrudes it with a punch. Have proposed a method of processing into a predetermined electrode shape (see, for example, Patent Document 1).

特開平8−213150号公報JP-A-8-213150

しかしながら、スパークプラグの中心電極は、先端に向かうほど縮径しており、ワークはその下方部分、即ち底面に近い部分ほど細く、また長くなるように押出成形される。そのため、ワークは、押し出し時の抵抗を小さくするために、その側面及び底面に金属のメッキ膜を施すことも行われているが、成形後の中心電極の側面、特に先端に近い側面に、軸線に沿った線状の傷(縦傷)が発生する場合がある。   However, the diameter of the center electrode of the spark plug is reduced toward the tip, and the work is extruded so that the lower part thereof, that is, the part closer to the bottom face is thinner and longer. Therefore, in order to reduce the resistance when extruding the workpiece, a metal plating film is applied to the side surface and the bottom surface, but the axis line is formed on the side surface of the center electrode after molding, particularly on the side surface close to the tip. In some cases, linear scratches (longitudinal scratches) may occur.

また、接地電極も電極材料からなるワークを押出成形して製造することがあり、同様の縦傷が発生することがある。   In addition, the ground electrode may be manufactured by extruding a workpiece made of an electrode material, and the same vertical flaw may occur.

そこで本発明は、スパークプラグの中心電極や接地電極を、電極材料からなるワークを押出成形して製造する際に、縦傷の発生を抑えることを目的とする。   Accordingly, an object of the present invention is to suppress the occurrence of vertical flaws when the center electrode and the ground electrode of a spark plug are manufactured by extruding a workpiece made of an electrode material.

上位目的を達成するために本発明は、下記のスパークプラグ用電極及びスパークプラグの製造方法を提供する。
(1)太径部とその一端面に縮径部とを有する柱状のワークを準備する準備工程と、
前記ワークにメッキ膜を形成するメッキ工程と、
前記メッキ膜が形成されたワークを押出成形する押出工程と、
を備えるスパークプラグ用電極の製造方法であって、
前記メッキ工程において、前記縮径部に形成されるメッキ膜は、前記太径部に形成されるメッキ膜よりも厚く形成されることを特徴とするスパークプラグ用電極の製造方法。
(2)前記縮径部に形成されるメッキ膜において、前記縮径部とその端面との境界部に形成されるメッキ膜が、最も厚く形成されることを特徴とする上記(1)記載のスパークプラグ用電極の製造方法。
(3)前記太径部に形成されるメッキ膜の厚さが10μm以下であることを特徴とする上記(1)または(2)に記載のスパークプラグ用電極の製造方法。
(4)前記縮径部及び前記境界部に形成されるメッキ膜の厚さが、前記太径部に形成されるメッキ膜の厚さの1.5〜3倍であることを特徴とする上記(1)〜(3)の何れか1項に記載のスパークプラグ用電極の製造方法。
(5)前記ワークが、ニッケルを主成分とし、クロムを10質量%以上含有する金属であることを特徴とする上記(1)〜(4)の何れか1項に記載のスパークプラグ用電極の製造方法。
(6)前記ワークが、ニッケルを主成分とし、クロムを20質量%以上含有する金属であることを特徴とする上記(5)に記載のスパークプラグ用電極の製造方法。
(7)前記太径部に形成されるメッキ膜の厚さが5μm以下であることを特徴とする請求項6に記載のスパークプラグ用電極の製造方法。
(8)前記メッキ膜が、白金、金、銀、銅、錫または亜鉛のうち少なくとも一種を主成分とする金属であることを特徴とする上記(1)〜(7)の何れか1項に記載のスパークプラグ用電極の製造方法。
(9)前記太径部に形成されるメッキ膜の厚さが0.3μm以上であることを特徴とする上記(1)〜(8)の何れか1項に記載のスパークプラグ用電極の製造方法。
(10軸線方向に延びる軸孔を有する絶縁体と、
前記軸孔に保持される中心電極と、
前記絶縁体の外周に設けられた主体金具と、
基端部が前記主体金具に接合され、その先端部と前記中心電極の先端部との間に間隙を形成する接地電極とを備えたスパークプラグの製造方法であって、
前記中心電極及び前記接地電極の少なくとも一つを、上記(1)〜(9)の何れか1項に記載の方法で製造する工程を有することを特徴とするスパークプラグの製造方法。
In order to achieve the overall object, the present invention provides the following spark plug electrode and spark plug manufacturing method.
(1) a preparation step of preparing a columnar workpiece having a large diameter portion and a reduced diameter portion at one end surface thereof;
A plating step of forming a plating film on the workpiece;
An extrusion process for extruding the workpiece on which the plating film is formed;
A method for producing an electrode for a spark plug comprising:
In the plating process, the plating film formed on the reduced diameter portion is formed thicker than the plating film formed on the large diameter portion.
(2) In the plating film formed on the reduced diameter portion, the plating film formed on the boundary portion between the reduced diameter portion and the end surface thereof is formed to be the thickest. Manufacturing method of electrode for spark plug.
(3) The method for producing an electrode for a spark plug as described in (1) or (2) above, wherein the thickness of the plating film formed on the large diameter portion is 10 μm or less.
(4) The thickness of the plating film formed on the reduced diameter portion and the boundary portion is 1.5 to 3 times the thickness of the plating film formed on the large diameter portion. (1) The manufacturing method of the electrode for spark plugs of any one of (3).
(5) The spark plug electrode according to any one of (1) to (4), wherein the workpiece is a metal containing nickel as a main component and chromium in an amount of 10% by mass or more. Production method.
(6) The method for producing an electrode for a spark plug as described in (5) above, wherein the workpiece is a metal containing nickel as a main component and 20% by mass or more of chromium.
(7) The method for manufacturing an electrode for a spark plug according to (6), wherein the thickness of the plating film formed on the large diameter portion is 5 μm or less.
(8) In any one of the above (1) to (7), the plating film is a metal mainly composed of at least one of platinum, gold, silver, copper, tin, and zinc. The manufacturing method of the electrode for spark plugs of description.
(9) The spark plug electrode according to any one of (1) to (8) above, wherein the thickness of the plating film formed on the large-diameter portion is 0.3 μm or more. Method.
(10 ) an insulator having an axial hole extending in the axial direction;
A center electrode held in the shaft hole;
A metal shell provided on the outer periphery of the insulator;
A method for producing a spark plug comprising a base electrode joined to the metal shell, and a ground electrode that forms a gap between the tip and the tip of the center electrode,
A method for producing a spark plug, comprising the step of producing at least one of the center electrode and the ground electrode by the method according to any one of (1) to (9) above.

本発明によれば、押出成形によりワークから中心電極や接地電極を製造する際に、縦傷の発生を抑えることができる。   According to the present invention, when a center electrode and a ground electrode are manufactured from a workpiece by extrusion molding, occurrence of vertical flaws can be suppressed.

スパークプラグの一例を示す断面図である。It is sectional drawing which shows an example of a spark plug. 中心電極の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a center electrode. 第1製造工程を示す断面図である。It is sectional drawing which shows a 1st manufacturing process. 第2製造工程を示す断面図である。It is sectional drawing which shows a 2nd manufacturing process. 第3製造工程を示す断面図である。It is sectional drawing which shows a 3rd manufacturing process. 第5製造工程を示す断面図である。It is sectional drawing which shows a 5th manufacturing process. 第6製造工程を示す断面図である。It is sectional drawing which shows a 6th manufacturing process. 第8製造工程を示す断面図である。It is sectional drawing which shows an 8th manufacturing process. 第9製造工程を示す断面図である。It is sectional drawing which shows a 9th manufacturing process. 本発明で用いるワークの一例を示す側面図である。It is a side view which shows an example of the workpiece | work used by this invention.

以下、本発明に関して、中心電極の製造方法を例示して説明する。   Hereinafter, the manufacturing method of a center electrode is illustrated and demonstrated regarding this invention.

図1はスパークプラグの一例を示す断面図である。図示されるように、スパークプラグ100は、筒状の主体金具111と、この主体金具111の軸方向に沿って貫通孔116が内部に形成され、且つ両端部112a,112bが主体金具111から露出されるようにこの主体金具111の内部に嵌め込まれて保持された絶縁体112と、先端部113aが露出されるように貫通孔116の一端部(図中下方)116aに挿入固定された中心電極113と、後端部117aが露出されるように貫通孔116の他端部(図中上方)116bに挿入固定された端子金具117と、貫通孔116内において中心電極113と端子金具117との間に設けられ、且つ中心電極113及び端子金具117のそれぞれに対し軸方向で離間配置された抵抗体118と、貫通孔116内において抵抗体118と中心電極113との間に隙間なく設けられた第1の導電性ガラスシール層119と、貫通孔116内において抵抗体118と端子金具117との間に隙間なく設けられた第2の導電性ガラスシール層120と、主体金具111に一端部(基部)114aが抵抗溶接等により結合され、且つ中間部114cが曲げられて他端部114bが中心電極113の先端部113aに対向配置された略L字形の接地電極114と、を備えている。また、主体金具111の外周面には、エンジン等の内燃機関のシリンダヘッド(相手部材)に取り付けられるための取付け用の雄ねじ115が周方向にわたって形成されている。更に、中心電極113の先端には、貴金属チップ121がレーザ溶接等により固着されており、接地電極114にも貴金属チップ122が固着され、両基金毒チップの間には火花放電ギャップgが形成される。   FIG. 1 is a cross-sectional view showing an example of a spark plug. As shown in the figure, the spark plug 100 has a cylindrical metallic shell 111 and a through hole 116 formed along the axial direction of the metallic shell 111, and both ends 112 a and 112 b are exposed from the metallic shell 111. The insulator 112 fitted and held in the metal shell 111 and the center electrode inserted and fixed to one end (downward in the figure) 116a of the through-hole 116 so that the tip 113a is exposed. 113, a terminal fitting 117 inserted and fixed to the other end portion (upper side in the figure) 116b of the through hole 116 so that the rear end portion 117a is exposed, and the center electrode 113 and the terminal fitting 117 in the through hole 116. A resistor 118 provided between the center electrode 113 and the terminal fitting 117 and spaced apart in the axial direction; and the resistor 118 in the through-hole 116. A first conductive glass seal layer 119 provided with no gap between the core electrode 113 and a second conductive glass provided with no gap between the resistor 118 and the terminal fitting 117 in the through hole 116. One end portion (base portion) 114a is joined to the seal layer 120 and the metal shell 111 by resistance welding or the like, and the intermediate portion 114c is bent, and the other end portion 114b is disposed to face the front end portion 113a of the center electrode 113. And a letter-shaped ground electrode 114. Further, on the outer peripheral surface of the metal shell 111, a male screw 115 for attachment to be attached to a cylinder head (a mating member) of an internal combustion engine such as an engine is formed in the circumferential direction. Further, a noble metal tip 121 is fixed to the tip of the center electrode 113 by laser welding or the like, a noble metal tip 122 is also fixed to the ground electrode 114, and a spark discharge gap g is formed between both base poison tips. The

上記の中心電極113を製造するには、図2に示す一例の工程に従うことができる。尚、図2に示す各工程について、図3〜図9を基にその詳細を説明する。   In order to manufacture the center electrode 113 described above, an example process shown in FIG. 2 can be followed. Details of each step shown in FIG. 2 will be described with reference to FIGS.

(第1製造工程)
初めに、耐熱性および耐食性に優れたニッケルまたはニッケル合金等の第1金属材製の線材から円柱状の素材を切断する。そして、図3に示すように、この素材を金型1の丸穴1a内に挿入してパンチ2で平行打ちすることによって、断面形状が円柱形状のビレット3を形成する。このとき、ビレット3の先端部の外周には円弧状のコーナー4が成形され、ビレット3の後端面には平坦面5が成形される。ここで、2aは成形後のビレット3を金型1の丸穴1a内から突き出すためのキックアウトピンである。
(First manufacturing process)
First, a cylindrical material is cut from a wire made of a first metal material such as nickel or a nickel alloy having excellent heat resistance and corrosion resistance. Then, as shown in FIG. 3, this material is inserted into the round hole 1 a of the mold 1 and hit in parallel with the punch 2, thereby forming a billet 3 having a cylindrical cross section. At this time, an arcuate corner 4 is formed on the outer periphery of the tip of the billet 3, and a flat surface 5 is formed on the rear end surface of the billet 3. Here, 2a is a kick-out pin for projecting the billet 3 after molding from the round hole 1a of the mold 1.

(第2製造工程)
次に、図4に示すように、このビレット3を金型6の丸穴6a内に挿入してパンチ7で強く押して、断面形状が円柱形状のビレット8を形成する。このとき、ビレット8の後端面には略円形状の下孔9が成形される。ここで、7aは成形後のビレット8を金型6の丸穴6a内から突き出すためのキックアウトピンである。
(Second manufacturing process)
Next, as shown in FIG. 4, the billet 3 is inserted into the round hole 6 a of the mold 6 and pressed strongly by the punch 7 to form a billet 8 having a cylindrical cross-sectional shape. At this time, a substantially circular prepared hole 9 is formed on the rear end face of the billet 8. Here, 7a is a kick-out pin for projecting the billet 8 after molding from the round hole 6a of the mold 6.

(第3製造工程)
次に、図5に示すように、このビレット8を金型10の丸穴10a内に挿入して下孔9をパンチ11でさらに穿つことによって、図2(b)に示すように、断面形状が円筒形状のカップ12を形成する。このとき、カップ12の内部には、先端が閉塞され、後端が開口した軸方向穴(凹部)13が成形される。ここで、11aは成形後のカップ12を金型10の丸穴10a内から突き出すためのキックアウトピンである。
(Third manufacturing process)
Next, as shown in FIG. 5, the billet 8 is inserted into the round hole 10 a of the mold 10, and the lower hole 9 is further punched with the punch 11. Forms a cylindrical cup 12. At this time, an axial hole (concave portion) 13 having a front end closed and a rear end opened is formed inside the cup 12. Here, 11a is a kick-out pin for protruding the molded cup 12 from the round hole 10a of the mold 10.

(第4製造工程)
一方、熱伝導性に優れた銅または銅合金等の第2金属材に塑性加工を施すことにより、図2(a)に示すように、断面形状が円柱形状の軸芯14を形成する。この軸芯14には、先端側にカップ12の軸方向穴13の深さよりやや長い軸方向寸法で、且つ軸方向穴13の内径とほぼ同じ外径を持つ軸状の円柱部15、および後端側に円柱部15より外径が大きい円板部15aが成形される。
(4th manufacturing process)
On the other hand, by performing plastic working on the second metal material such as copper or copper alloy having excellent thermal conductivity, as shown in FIG. 2A, an axial core 14 having a cylindrical cross section is formed. The axial core 14 has an axial columnar portion 15 having an axial dimension slightly longer than the depth of the axial hole 13 of the cup 12 on the front end side and an outer diameter substantially the same as the inner diameter of the axial hole 13, and the rear A disc portion 15a having an outer diameter larger than that of the cylindrical portion 15 is formed on the end side.

(第5製造工程)
次に、図6に示したように、カップ12の軸方向穴13内に軸芯14の円柱部15を挿入してなる複合体を、金型17の丸穴17a内に挿入してパンチ16で平行打ちすることによって、図2(c)に示すように、ワーク18を形成する。このとき、軸芯14は、円板部15aが軸方向穴13の後端面より突出した状態でカップ12内に緊密的に保持される。ここで、16aは成形後の第1複合材18を金型17の丸穴17a内から突き出すためのキックアウトピンである。
(Fifth manufacturing process)
Next, as shown in FIG. 6, a composite formed by inserting the cylindrical portion 15 of the shaft core 14 into the axial hole 13 of the cup 12 is inserted into the round hole 17 a of the mold 17, and the punch 16. 2 to form a workpiece 18 as shown in FIG. 2 (c). At this time, the shaft core 14 is tightly held in the cup 12 with the disk portion 15a protruding from the rear end face of the axial hole 13. Here, 16 a is a kick-out pin for projecting the first composite material 18 after molding from the round hole 17 a of the mold 17.

(第6製造工程)
次に、図7に示すように、ワーク18を、その縮径部(図10におけるテーパ面12c)の側から金型19の丸穴19a内に挿入してパンチ20で押し込んで前方押出し成形することによって、ワーク18の先端側を細径化して、図2(d)に示すように、丸棒状の押出し成形体21を形成する。この押出し成形体21の先端側にはワーク18より外径が小さい丸軸状の軸状部(φd1:例えばφ2.6)22が成形され、後端側には前方押出し成形が施されない残部23が成形される。
(Sixth manufacturing process)
Next, as shown in FIG. 7, the workpiece 18 is inserted into the round hole 19 a of the mold 19 from the reduced diameter portion (tapered surface 12 c in FIG. 10) and pushed by the punch 20 to be forward extruded. As a result, the tip end side of the work 18 is reduced in diameter to form a round bar-like extruded product 21 as shown in FIG. A round shaft-shaped shaft portion (φd1: for example, φ2.6) 22 having an outer diameter smaller than that of the workpiece 18 is formed on the front end side of the extrusion-molded body 21, and a remaining portion 23 not subjected to forward extrusion molding is formed on the rear end side. Is formed.

(第7製造工程)
次に、押出し成形体21の後端側の残部23を含む部分24を切断することにより、図2(e)に示すように、ワーク18を細径化した第1の柱状部材25を形成する。
(Seventh manufacturing process)
Next, by cutting the portion 24 including the remaining portion 23 on the rear end side of the extruded molded body 21, as shown in FIG. 2E, the first columnar member 25 in which the workpiece 18 is reduced in diameter is formed. .

(第8製造工程)
次に、図8に示すように、第1の柱状部材25を金型26の丸穴26a内に挿入してパンチ27で押し込んで前方押出し成形することによって、第1の柱状部材25の先端側をさらに細径化して、図2(f)に示すように、段付の第2の柱状部材28を形成する。この第2の柱状部材28の軸状部22の先端側には、軸状部22よりも外径が小さい丸軸状の径小部(φd3:例えばφ2.0)29が成形される。
(Eighth manufacturing process)
Next, as shown in FIG. 8, the first columnar member 25 is inserted into the round hole 26 a of the mold 26, pushed in with the punch 27, and forward-extruded to form the front end side of the first columnar member 25. As shown in FIG. 2F, the stepped second columnar member 28 is formed. On the distal end side of the shaft-shaped portion 22 of the second columnar member 28, a round shaft-shaped small diameter portion (φd3: φ2.0) 29 having an outer diameter smaller than that of the shaft-shaped portion 22 is formed.

(第9製造工程)
次に、図9に示したように、第2の柱状部材28を丸穴形状の金型30の丸穴30a内に挿入してパンチ31で押し込んで押通し成形することによって、第2の柱状部材28の軸状部22の先端側をさらに細径化して、図2(g)に示すように、2段付の第3の柱状部材32を形成する。この第3の柱状部材32の軸状部22と径小部29との間には、軸状部22よりも外径が小さく、径小部29よりも外径が大きい段部としての丸軸状の径中部(φd2:例えばφ2.5)33が成形され、且つ第3の柱状部材32の後端側には鍔部34が成形される。第3の柱状部材32は中心電極41(図1参照)として使用される。ここで、31aは成形後の第4複合材32を金型30の待つ穴30aから突き出すためのキックアウトピンである。
(9th manufacturing process)
Next, as shown in FIG. 9, the second columnar member 28 is inserted into the round hole 30 a of the round hole-shaped mold 30, pushed in with the punch 31, and pressed to form the second columnar member. The tip end side of the shaft-like portion 22 of the member 28 is further reduced in diameter to form a second stepped third columnar member 32 as shown in FIG. A round shaft as a step portion between the shaft-like portion 22 and the small-diameter portion 29 of the third columnar member 32 having a smaller outer diameter than the shaft-like portion 22 and a larger outer diameter than the small-diameter portion 29. A diameter middle portion (φd2: φ2.5, for example) 33 is formed, and a collar portion 34 is formed on the rear end side of the third columnar member 32. The third columnar member 32 is used as the center electrode 41 (see FIG. 1). Here, 31a is a kickout pin for protruding the molded fourth composite material 32 from the hole 30a where the mold 30 waits.

本発明では、押し出し抵抗を下げるために、ワーク18(図2(c)参照)のカップ12の太径部(以下「側面」)12a、一方の端面(以下「底面」)12b、及び側面12aから底面12bに向かって漸次縮径する縮径部(以下「テーパ面」)12cにメッキ膜を形成するが、その際、テーパ面12c、並びにテーパ面12cと底面12bとの境界部Aのメッキ膜を、側面12aのメッキ膜よりも厚く形成する。好ましくは、境界部Aのメッキ膜を最も厚く形成する。   In the present invention, in order to lower the extrusion resistance, the large-diameter portion (hereinafter referred to as “side surface”) 12a of the cup 12 of the workpiece 18 (see FIG. 2C), one end surface (hereinafter referred to as “bottom surface”) 12b, and the side surface 12a. A plating film is formed on the reduced diameter portion (hereinafter referred to as “tapered surface”) 12c that gradually decreases in diameter from the bottom surface 12b to the bottom surface 12b. At this time, the tapered surface 12c and the plating on the boundary portion A between the tapered surface 12c and the bottom surface 12b are formed. The film is formed thicker than the plating film on the side surface 12a. Preferably, the plating film at the boundary portion A is formed to be the thickest.

上記した押出工程では、図7に示す第1段の押出成形によりワーク18を押出して第1の柱状部材25を成形した後、図8に示す第2段の押出成形により第1の柱状部材25の軸状部22を更に細径化して径小部29を形成する。その際、第1段の押出成形において、ワーク18の軸線方向の変形量は、側面12aよりもテーパ面12c及び境界部Aの方が大きく、更に第2段の押出成形においてはテーパ面12よりも境界部Aの方が大きい。そこで、ワーク18のテーパ面12c及び境界部Aのメッキ膜を側面12aのメッキ膜よりも厚く、更には境界部Aのメッキ膜を最も厚くすることにより、第1段及び第2段の押出工程において、ワーク18の主たる変形部分にメッキ膜が残存した状態で押出しが行われるようになる。その結果、縦傷の発生も抑えられる。   In the above-described extrusion process, the first columnar member 25 is formed by extruding the workpiece 18 by forming the first columnar member 25 by the first-stage extrusion molding shown in FIG. 7, and then the first columnar member 25 by the second-stage extrusion molding shown in FIG. The shaft portion 22 is further reduced in diameter to form a small diameter portion 29. At that time, in the first-stage extrusion, the amount of deformation of the workpiece 18 in the axial direction is larger in the tapered surface 12c and the boundary portion A than in the side surface 12a, and in the second-stage extrusion, more than the tapered surface 12. Is larger at the boundary A. Therefore, the taper surface 12c of the workpiece 18 and the plating film on the boundary portion A are thicker than the plating film on the side surface 12a, and further, the plating film on the boundary portion A is made thickest, so that the first step and the second step extrusion process. Then, extrusion is performed with the plating film remaining in the main deformed portion of the workpiece 18. As a result, the occurrence of vertical scratches can be suppressed.

従来でもワーク18のカップ12の側面12aやテーパ面12c、底面12bにメッキ膜を設けることが行われているが、メッキ膜の厚さは各部で一様であるため、多段の押出しを行うと、後段になるほどメッキ膜が無くなって縦傷が発生しやすくなる。しかし、本発明によれば、上記のようにメッキ膜が十分に残存するので縦傷を発生することなく押出しを行うことができる。   Conventionally, a plating film is provided on the side surface 12a, the tapered surface 12c, and the bottom surface 12b of the cup 12 of the work 18, but since the thickness of the plating film is uniform in each part, multi-stage extrusion is performed. In the later stage, the plating film disappears and vertical scratches are more likely to occur. However, according to the present invention, since the plating film remains sufficiently as described above, the extrusion can be performed without causing a vertical flaw.

成形時のメッキ膜の剥離を無くして縦傷を発生し難くする効果を確実にするためには、押し出しによる変形量に合わせて側面12aのメッキ膜と、テーパ面12bc及び境界部12bのメッキ膜との膜厚差を設定すればよいが、実用上は、テーパ面12c及び境界部Aのメッキ膜の厚さを、側面12aのメッキ膜の厚さの1.5〜3倍にすることが好ましい。テーパ面12c及び境界部Aのメッキ膜の厚さをこれより厚くしても更なる押し出し抵抗の低減は見込めず、むしろメッキ膜が剥離しやすくなる。また、この範囲において、境界部Aのメッキ膜を最も厚くする。   In order to eliminate the peeling of the plating film at the time of molding and to ensure the effect of preventing the occurrence of vertical flaws, the plating film on the side surface 12a and the plating film on the tapered surface 12bc and the boundary portion 12b according to the amount of deformation due to extrusion. However, in practice, the thickness of the plating film on the taper surface 12c and the boundary portion A may be 1.5 to 3 times the thickness of the plating film on the side surface 12a. preferable. Even if the thickness of the plating film on the taper surface 12c and the boundary portion A is made thicker than this, further reduction of the extrusion resistance cannot be expected, but rather the plating film is easily peeled off. In this range, the plating film at the boundary A is made thickest.

また、側面12aのメッキ膜の厚さは10μm以下にすることが好ましく、5μm以下にすることがより好ましい。尚、側面12aのメッキ膜の膜厚の下限は、押し出し抵抗を低減する効果を確実にし、更に成形時のメッキ膜の剥離を無くして縦傷を発生し難くするために、0.3μm以上とするのが好ましい。   Further, the thickness of the plating film on the side surface 12a is preferably 10 μm or less, and more preferably 5 μm or less. Note that the lower limit of the thickness of the plating film on the side surface 12a is 0.3 μm or more in order to ensure the effect of reducing the extrusion resistance and to prevent the occurrence of vertical scratches by eliminating the peeling of the plating film during molding. It is preferable to do this.

尚、本発明においてメッキ膜の厚さとは、側面12aやテーパ面12cについては、メッキ後のワークの軸線を通る軸線方向の断面を、日本電子株式会社製のSEM(型式:JSM−6460LA)を用いて倍率5000倍で観察し、複数箇所(例えば10点)でメッキ膜厚を測定し、平均した値である。境界部Aについては、テーパ面12cと側面12bとの境界は円周であるため、円周上を同様にSEM観察して複数箇所でメッキ膜厚を測定し、平均した値である。   In the present invention, the thickness of the plating film refers to the cross section in the axial direction passing through the axis of the workpiece after plating with respect to the side surface 12a and the tapered surface 12c, and SEM (model: JSM-6460LA) manufactured by JEOL Ltd. It is observed at a magnification of 5000 times, and the plating film thickness is measured at a plurality of locations (for example, 10 points) and averaged. Regarding the boundary portion A, since the boundary between the tapered surface 12c and the side surface 12b is the circumference, the SEM observation is similarly performed on the circumference, and the plating film thickness is measured at a plurality of locations and averaged.

このように側面12a、底面12b、テーパ面12c及び境界部Aに膜厚を変えてメッキ膜を形成するには、例えば、マスキングしてメッキする方法がある。カップ12の全面に一様にメッキ膜を形成した後、膜厚を増したい部分以外をマスキングし、再度メッキしてもよいし、膜厚を増したい部分以外をマスキングしてメッキした後、マスキングを剥がして全体を再度メッキしてもよい。具体的には、例えば、ワーク18のカップ12をメッキ液に浸漬して電解メッキして側面12a、テーパ面12c及び底面12bに同一の膜厚にてメッキ膜を形成した後、側面12a及び底面12bをマスキングして再度メッキ液に浸漬して電解メッキを行うことにより、テーパ面12c及び境界部Aのメッキ膜を側面12aのメッキ膜よりも厚くすることができる。尚、メッキ膜の膜厚は、メッキ時間を調整することにより調整できる。   In order to form a plating film by changing the film thickness on the side surface 12a, the bottom surface 12b, the tapered surface 12c and the boundary portion A in this way, for example, there is a method of plating by masking. After the plating film is uniformly formed on the entire surface of the cup 12, masking may be performed on portions other than the portion where the film thickness is desired to be increased, and plating may be performed again. May be removed and the whole may be plated again. Specifically, for example, after the cup 12 of the work 18 is immersed in a plating solution and electrolytically plated to form a plating film with the same film thickness on the side surface 12a, the tapered surface 12c, and the bottom surface 12b, the side surface 12a and the bottom surface are formed. By masking 12b and immersing it again in a plating solution and performing electrolytic plating, the plating film on the taper surface 12c and the boundary portion A can be made thicker than the plating film on the side surface 12a. The film thickness of the plating film can be adjusted by adjusting the plating time.

メッキ膜の材質は潤滑性を有する限り制限はないが、白金、金、銀、銅、錫及び亜鉛のうち少なくとも一種を主成分とする金属であることが好ましい(なお、「主成分」とあるのは、材料中において、最も含有量が多いことを意味する)。特に金は展性に優れることから、押出しによる変形に良好に追随でき、薄いメッキ膜でも十分な効果が得られる。また、銅や錫、亜鉛は安価である。   The material of the plating film is not limited as long as it has lubricity, but is preferably a metal containing at least one of platinum, gold, silver, copper, tin and zinc as a main component (note that “main component” is included). Means the highest content in the material). In particular, since gold is excellent in malleability, it can follow the deformation due to extrusion well, and a sufficient effect can be obtained even with a thin plating film. Copper, tin, and zinc are inexpensive.

また、中心電極41では近年、耐食性を向上させるために、クロム含有量を高めたニッケル合金が使用される傾向にある。クロム含有量が多いほど耐食性に優れ、クロム含有量が10質量%以上のニッケル合金が使用されてきており、中にはクロム含有量が20質量%以上のニッケル合金も使用されている。例えば、鉄を8重量%、クロムを16重量%、銅を0.2重量%含有し、残部ニッケルとするインコネル600(商標名)等が多用されている。しかし、クロム高含有ニッケル合金は変形し難く、このクロム高含有ニッケル合金製のカップ12を用いたワーク18を押出成形すると縦傷が発生しやすい。しかし、本発明によれば、テーパ面12c及び境界部Aのメッキ膜を厚くすることにより縦傷の発生を抑えることができるため、ニッケルを主成分とし、クロムを10質量%以上含有する合金製のカップ12を用いたワーク18を用いた場合に有用であり、クロムを20%以上含有するニッケル合金製のカップ12に用いた場合に特に有用である。   Further, in recent years, a nickel alloy having a high chromium content tends to be used for the center electrode 41 in order to improve the corrosion resistance. As the chromium content is higher, the corrosion resistance is more excellent, and nickel alloys having a chromium content of 10% by mass or more have been used. Among them, nickel alloys having a chromium content of 20% by mass or more are also used. For example, Inconel 600 (trade name) containing 8% by weight of iron, 16% by weight of chromium, 0.2% by weight of copper, and the balance being nickel is frequently used. However, the chromium-rich nickel alloy is not easily deformed, and if the workpiece 18 using the cup 12 made of the chromium-rich nickel alloy is extruded, vertical flaws are likely to occur. However, according to the present invention, since the occurrence of vertical scratches can be suppressed by increasing the thickness of the plating film on the tapered surface 12c and the boundary portion A, the alloy is made of nickel as a main component and containing 10 mass% or more of chromium. This is useful when the workpiece 18 using the cup 12 is used, and is particularly useful when used for the cup 12 made of nickel alloy containing 20% or more of chromium.

また、クロムを20%以上含有するニッケル合金製のカップ12に用いた場合は、側面12aのメッキ膜の膜厚を5μm以下にしても縦傷の発生を抑えることができる。   Further, when used in a nickel alloy cup 12 containing 20% or more of chromium, the occurrence of vertical scratches can be suppressed even if the thickness of the plating film on the side surface 12a is 5 μm or less.

クロム含有量が多くなると、メッキ膜が酸化して不動態が形成されやすくなり、メッキ膜の密着性が悪くなる。また、メッキ膜は、その膜厚が厚いほど剥離しやすいため、上記のようにクロム含有量が10質量%以上に多くなると、膜厚を薄くする必要がある。そこで、側面12aのメッキ膜の膜厚を10μm以下にしてメッキ膜の剥離を抑えるとともに、テーパ面12c及び境界部Aのメッキ膜を厚くすることにより、ワーク変形時にメッキ膜が残存するようにする。   When the chromium content is increased, the plating film is oxidized and a passive state is easily formed, and the adhesion of the plating film is deteriorated. Moreover, since the plating film is more easily peeled off as the film thickness increases, it is necessary to reduce the film thickness when the chromium content increases to 10% by mass or more as described above. Therefore, the plating film on the side surface 12a is set to 10 μm or less to suppress the peeling of the plating film, and the plating film on the taper surface 12c and the boundary portion A is made thick so that the plating film remains when the workpiece is deformed. .

尚、テーパ面12c及び境界部Aのメッキ膜の膜厚を、側面12aのメッキ膜の膜厚の1.5〜3倍にすることが好ましいとする規定によれば、側面12aのメッキ膜の膜厚を最大の10μmにした場合、テーパ面12c及び境界部Aのメッキ膜の膜厚は最大で30μmとなる。しかし、テーパ面12c及び境界部Aのメッキ膜の膜厚を最大で30μmにすることは、側面12aのメッキ膜の膜厚を10μm以下にすることとは矛盾しない。   According to the regulation that the thickness of the plating film on the tapered surface 12c and the boundary portion A is preferably 1.5 to 3 times the thickness of the plating film on the side surface 12a, the plating film on the side surface 12a When the film thickness is 10 μm at the maximum, the film thickness of the plating film on the tapered surface 12 c and the boundary portion A is 30 μm at the maximum. However, the maximum thickness of the plating film on the tapered surface 12c and the boundary A is 30 μm, which is consistent with the thickness of the plating film on the side surface 12a being 10 μm or less.

以上、中心電極113の製造を例にした実施態様を説明したが、接地電極114についても押出成形により作製する場合は、電極材料からなるワークを、上記と同様にメッキ膜の厚さを調整することにより、縦傷を発生することなく、円滑に押し出すことができるようになる。接地電極114を押出成形する場合、ワークを押し出して縮径し、全体が同一太さの、あるいは先端に向かうほど細くなる柱状体とした後、先端側端部が中心電極の先端と対向するように湾曲するが、ワークを押し出す際に縦傷が発生することが多い。そこで、上記のようにメッキ膜を調整することにより、押し出し時の縦傷の発生を抑えることができるようになる。   In the above, the embodiment in which the production of the center electrode 113 is taken as an example has been described. However, when the ground electrode 114 is produced by extrusion molding, the thickness of the plating film is adjusted in the same manner as above for the workpiece made of the electrode material As a result, it can be pushed out smoothly without causing vertical flaws. When the ground electrode 114 is extruded, the workpiece is extruded and reduced in diameter so that the entire body has the same thickness or becomes a columnar body that becomes narrower toward the tip, and the tip side end faces the tip of the center electrode. In many cases, vertical scratches occur when the workpiece is pushed out. Therefore, by adjusting the plating film as described above, it is possible to suppress the occurrence of vertical scratches during extrusion.

また、上記ではワーク18をカップ12と軸芯14との複合部材としたが、ニッケル合金の単一部材であってもよい。   Moreover, although the workpiece | work 18 was made into the composite member of the cup 12 and the axial core 14 in the above, the nickel alloy single member may be sufficient.

更に、本発明によれば、上記の如く押出成形により中心電極41や接地電極45を用い、例えば図1に示したようなスパークプラグ42を組み立てることができる。中心電極41や接地電極45以外の部材は従来と同様にして作製することができ、それらの組み立ても従来と同様で構わない。   Furthermore, according to the present invention, the spark plug 42 as shown in FIG. 1 can be assembled using the center electrode 41 and the ground electrode 45 by extrusion as described above. Members other than the center electrode 41 and the ground electrode 45 can be produced in the same manner as in the past, and their assembly may be the same as in the past.

尚、上記では接地電極114が単極のスパークプラグを例示したが、接地電極114を複数設けた多極接地電極のスパークプラグであってもよい。   In the above description, the ground electrode 114 is a unipolar spark plug, but a multipolar ground electrode spark plug having a plurality of ground electrodes 114 may be used.

以下に試験例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。   Hereinafter, the present invention will be further described with reference to test examples, but the present invention is not limited thereto.

(試験1:側面のメッキ厚の検証)
表1に示すように、クロム含有量の異なるニッケル合金でカップを作製し、銅合金からなる軸芯と複合化して図10に示すようなテーパ面を有するワークを作製した。そして、ワークを銅メッキ液に浸漬し、側面のメッキ膜の厚さが表1に示す厚さになるように銅メッキ膜を形成した。尚、メッキ膜の膜厚は、ワークの側面を、日本電子株式会社製のSEM(型式:JSM−6460LA)を用いて倍率5000倍で観察し、任意の10点でメッキ膜厚を測定し、平均した値である。
(Test 1: Verification of side plating thickness)
As shown in Table 1, cups were made of nickel alloys having different chromium contents, combined with an axial core made of a copper alloy, and a workpiece having a tapered surface as shown in FIG. 10 was produced. Then, the work was immersed in a copper plating solution, and a copper plating film was formed so that the thickness of the plating film on the side surface was as shown in Table 1. In addition, the film thickness of the plating film was observed at a magnification of 5000 using the SEM (model: JSM-6460LA) manufactured by JEOL Ltd., and the plating film thickness was measured at any 10 points. The average value.

そして、上記の如く銅メッキ膜が成膜されたワークを各100個用意して押出成形を行い、銅メッキ膜が剥離したワークの個数を求めた。結果を表1に併記する。   Then, 100 workpieces each having the copper plating film formed as described above were prepared and extruded to obtain the number of workpieces from which the copper plating film was peeled off. The results are also shown in Table 1.

Figure 0005408503
Figure 0005408503

ワークのクロムの含有量が増すほど、メッキ剥離が多くなる傾向になることがわかる。また、銅メッキ膜の膜厚が0.3〜10μmの範囲で、メッキ剥離を抑える効果が発現することがわかる。更に、クロムを20質量%含有するニッケル合金からなるワークでは、側面のメッキ膜の膜厚が5μm以下であれば、メッキ剥離を抑えることができる。   It can be seen that as the chromium content of the workpiece increases, the plating peeling tends to increase. Moreover, it turns out that the effect which suppresses plating peeling expresses in the range whose film thickness of a copper plating film is 0.3-10 micrometers. Furthermore, in a workpiece made of a nickel alloy containing 20% by mass of chromium, plating peeling can be suppressed if the thickness of the plating film on the side surface is 5 μm or less.

(試験2:側面と境界部とのメッキ厚差の検証)
クロム含有量が20質量%のニッケル合金でカップを作製し、銅合金からなる軸芯と複合化して図10に示すようなテーパ面を有するワークを作製した。そして、ワークの側面のメッキ膜(X)と境界部のメッキ膜(Y)がそれぞれ表2に示す厚さになるように銅メッキ膜を形成した。このような膜厚差とするには、ワーク全体に均一に銅メッキ膜を形成した後、境界部を露出させて側面と底面とをマスキングし、再度電解メッキを行った。尚、メッキ膜の膜厚は、ワークの側面及び境界部を、日本電子株式会社製のSEM(型式:JSM−6460LA)を用いて倍率5000倍で観察し、任意の10点でメッキ膜厚を測定し、平均した値である。
(Test 2: Verification of plating thickness difference between side and boundary)
A cup was made of a nickel alloy having a chromium content of 20% by mass and combined with an axial core made of a copper alloy to produce a workpiece having a tapered surface as shown in FIG. Then, a copper plating film was formed so that the plating film (X) on the side surface of the workpiece and the plating film (Y) at the boundary part had thicknesses shown in Table 2, respectively. In order to achieve such a film thickness difference, after a copper plating film was uniformly formed on the entire workpiece, the boundary portion was exposed to mask the side surface and the bottom surface, and electrolytic plating was performed again. In addition, the film thickness of the plating film was observed at a magnification of 5000 times using a SEM (model: JSM-6460LA) manufactured by JEOL Ltd., and the plating film thickness was measured at any 10 points. It is the value measured and averaged.

そして、上記の如く銅メッキ膜が成膜されたワークを各100個用意して押出成形を行い、縦傷が発生したワークの個数を求めた。結果を表2に併記する。   Then, 100 workpieces each having a copper plating film formed as described above were prepared and extruded, and the number of workpieces with vertical flaws was determined. The results are also shown in Table 2.

Figure 0005408503
Figure 0005408503

側面のメッキ膜と境界部とのメッキ膜の膜厚差(Y/X)が1.5倍未満になると、ワークの変形量が大きい境界部でメッキ量が不足して縦傷が発生しやすくなる。一方、膜厚差(Y/X)が3倍超になると、メッキ膜の膜厚差が大きすぎてワークの変形にメッキ膜が追随しにくくなり、メッキ膜が剥離する箇所が生じて縦傷がより多く発生するようになる。これに対し、膜厚差(Y/X)が1.5〜3倍の範囲では、ワークの伸張にメッキ膜が良好に追従してメッキ膜の剥離もなく、縦傷が発生しにくくなる。   If the film thickness difference (Y / X) between the plating film on the side surface and the boundary is less than 1.5 times, the amount of plating is insufficient at the boundary where the amount of deformation of the workpiece is large, and vertical scratches are likely to occur. Become. On the other hand, if the film thickness difference (Y / X) exceeds three times, the film thickness difference of the plating film is too large, making it difficult for the plating film to follow the deformation of the workpiece, resulting in a part where the plating film is peeled off and causing vertical scratches. Will occur more often. On the other hand, when the film thickness difference (Y / X) is in the range of 1.5 to 3 times, the plating film follows the work extension well, and there is no peeling of the plating film, and vertical scratches are less likely to occur.

12 カップ
12a 側面
12b 底面
12c テーパ面
14 軸芯
18 ワーク
22 軸状部
25 第1の柱状部材
28 第2の柱状部材
29 径小部
32 第3の柱状部材
33 径中部
34 鍔部
100 スパークプラグ
113 中心電極
114 接地電極
A 境界部
12 Cup 12a Side surface 12b Bottom surface 12c Tapered surface 14 Axle core 18 Work 22 Shaft-shaped portion 25 First columnar member 28 Second columnar member 29 Small diameter portion 32 Third columnar member 33 Diameter middle portion 34 Gutter portion 100 Spark plug 113 Center electrode 114 Ground electrode A Boundary part

Claims (10)

太径部とその一端面に縮径部とを有する柱状のワークを準備する準備工程と、
前記ワークにメッキ膜を形成するメッキ工程と、
前記メッキ膜が形成されたワークを押出成形する押出工程と、
を備えるスパークプラグ用電極の製造方法であって、
前記メッキ工程において、前記縮径部に形成されるメッキ膜は、前記太径部に形成されるメッキ膜よりも厚く形成されることを特徴とするスパークプラグ用電極の製造方法。
A preparation step of preparing a columnar workpiece having a large diameter portion and a reduced diameter portion at one end surface thereof;
A plating step of forming a plating film on the workpiece;
An extrusion process for extruding the workpiece on which the plating film is formed;
A method for producing an electrode for a spark plug comprising:
In the plating process, the plating film formed on the reduced diameter portion is formed thicker than the plating film formed on the large diameter portion.
前記縮径部に形成されるメッキ膜において、前記縮径部とその端面との境界部に形成されるメッキ膜が、最も厚く形成されることを特徴とする請求項1記載のスパークプラグ用電極の製造方法。   2. The spark plug electrode according to claim 1, wherein the plated film formed at a boundary portion between the reduced diameter portion and an end surface thereof is formed to be the thickest in the plated film formed at the reduced diameter portion. Manufacturing method. 前記太径部に形成されるメッキ膜の厚さが10μm以下であることを特徴とする請求項1または2に記載のスパークプラグ用電極の製造方法。   The method for manufacturing an electrode for a spark plug according to claim 1 or 2, wherein a thickness of the plating film formed on the large-diameter portion is 10 µm or less. 前記縮径部及び前記境界部に形成されるメッキ膜の厚さが、前記太径部に形成されるメッキ膜の厚さの1.5〜3倍であることを特徴とする請求項1〜3の何れか1項に記載のスパークプラグ用電極の製造方法。   The thickness of the plating film formed on the reduced diameter portion and the boundary portion is 1.5 to 3 times the thickness of the plating film formed on the large diameter portion. 4. The method for producing an electrode for a spark plug according to any one of 3 above. 前記ワークが、ニッケルを主成分とし、クロムを10質量%以上含有する金属であることを特徴とする請求項1〜4の何れか1項に記載のスパークプラグ用電極の製造方法。   The method for manufacturing an electrode for a spark plug according to any one of claims 1 to 4, wherein the workpiece is a metal containing nickel as a main component and containing 10 mass% or more of chromium. 前記ワークが、ニッケルを主成分とし、クロムを20質量%以上含有する金属であることを特徴とする請求項5に記載のスパークプラグ用電極の製造方法。   6. The method for manufacturing an electrode for a spark plug according to claim 5, wherein the workpiece is a metal containing nickel as a main component and containing chromium by 20% by mass or more. 前記太径部に形成されるメッキ膜の厚さが5μm以下であることを特徴とする請求項6に記載のスパークプラグ用電極の製造方法。   The method for manufacturing an electrode for a spark plug according to claim 6, wherein a thickness of the plating film formed on the large-diameter portion is 5 μm or less. 前記メッキ膜が、白金、金、銀、銅、錫または亜鉛のうち少なくとも一種を主成分とする金属であることを特徴とする請求項1〜7の何れか1項に記載のスパークプラグ用電極の製造方法。   The electrode for a spark plug according to any one of claims 1 to 7, wherein the plating film is a metal mainly composed of at least one of platinum, gold, silver, copper, tin, and zinc. Manufacturing method. 前記太径部に形成されるメッキ膜の厚さが0.3μm以上であることを特徴とする請求項1〜8の何れか1項に記載のスパークプラグ用電極の製造方法。   The method for producing an electrode for a spark plug according to any one of claims 1 to 8, wherein a thickness of the plating film formed on the large diameter portion is 0.3 µm or more. 軸線方向に延びる軸孔を有する絶縁体と、
前記軸孔に保持される中心電極と、
前記絶縁体の外周に設けられた主体金具と、
基端部が前記主体金具に接合され、その先端部と前記中心電極の先端部との間に間隙を形成する接地電極とを備えたスパークプラグの製造方法であって、
前記中心電極及び前記接地電極の少なくとも一つを、請求項1〜9の何れか1項に記載の方法で製造する工程を有することを特徴とするスパークプラグの製造方法。
An insulator having an axial hole extending in the axial direction;
A center electrode held in the shaft hole;
A metal shell provided on the outer periphery of the insulator;
A method for producing a spark plug comprising a base electrode joined to the metal shell, and a ground electrode that forms a gap between the tip and the tip of the center electrode,
A method for manufacturing a spark plug, comprising a step of manufacturing at least one of the center electrode and the ground electrode by the method according to any one of claims 1 to 9.
JP2010227711A 2010-10-07 2010-10-07 Spark plug electrode and spark plug manufacturing method Expired - Fee Related JP5408503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010227711A JP5408503B2 (en) 2010-10-07 2010-10-07 Spark plug electrode and spark plug manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010227711A JP5408503B2 (en) 2010-10-07 2010-10-07 Spark plug electrode and spark plug manufacturing method

Publications (2)

Publication Number Publication Date
JP2012084272A JP2012084272A (en) 2012-04-26
JP5408503B2 true JP5408503B2 (en) 2014-02-05

Family

ID=46242957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227711A Expired - Fee Related JP5408503B2 (en) 2010-10-07 2010-10-07 Spark plug electrode and spark plug manufacturing method

Country Status (1)

Country Link
JP (1) JP5408503B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675340B2 (en) * 2017-02-21 2020-04-01 日本特殊陶業株式会社 Bar member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146888U (en) * 1985-03-04 1986-09-10
JP3454596B2 (en) * 1995-02-08 2003-10-06 日本特殊陶業株式会社 Method of manufacturing composite electrode for spark plug
JP2006035298A (en) * 2004-07-30 2006-02-09 Daido Steel Co Ltd Titanium alloy bolt and its producing method

Also Published As

Publication number Publication date
JP2012084272A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP4700638B2 (en) Spark plug for internal combustion engine
US10153621B2 (en) Spark plug
CN101442188B (en) Spark plug for internal combustion engine and method of manufacturing spark plug
JP4912459B2 (en) Spark plug
JP5514280B2 (en) Spark plug for internal combustion engine
JP4676912B2 (en) Spark plug for internal combustion engine
JP5978250B2 (en) Electrode tip for spark plug and spark plug
JP5408503B2 (en) Spark plug electrode and spark plug manufacturing method
KR20110128872A (en) Spark plug for internal combustion engine
JP4954191B2 (en) Spark plug for internal combustion engine and method of manufacturing spark plug
WO2015075855A1 (en) Spark plug
US8710725B2 (en) Spark plug
JP2892119B2 (en) Method of manufacturing composite electrode for spark plug
CN113748577B (en) Spark plug electrode and method of manufacturing the same
JPH08213150A (en) Manufacture of composite electrode for spark plug
JP5337057B2 (en) Spark plug
JP5523362B2 (en) Spark plug gasket manufacturing method, spark plug manufacturing method
JP5642019B2 (en) Spark plug electrode member and spark plug manufacturing method
JP6345214B2 (en) Spark plug
JP5986265B1 (en) Spark plug
JP2008153135A (en) Anode current collector for dry cell
JP2012084389A (en) Method of manufacturing central electrode for spark plug, and method of manufacturing spark plug
JP5783950B2 (en) Manufacturing method of spark plug
GB2242703A (en) Spark plug electrodes
JP5339369B2 (en) Method for manufacturing spark plug center electrode and method for manufacturing spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Ref document number: 5408503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees