JP5407971B2 - Abnormality diagnosis device - Google Patents

Abnormality diagnosis device Download PDF

Info

Publication number
JP5407971B2
JP5407971B2 JP2010066414A JP2010066414A JP5407971B2 JP 5407971 B2 JP5407971 B2 JP 5407971B2 JP 2010066414 A JP2010066414 A JP 2010066414A JP 2010066414 A JP2010066414 A JP 2010066414A JP 5407971 B2 JP5407971 B2 JP 5407971B2
Authority
JP
Japan
Prior art keywords
catalyst
fuel ratio
air
oxygen
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010066414A
Other languages
Japanese (ja)
Other versions
JP2011196317A (en
Inventor
貴志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010066414A priority Critical patent/JP5407971B2/en
Publication of JP2011196317A publication Critical patent/JP2011196317A/en
Application granted granted Critical
Publication of JP5407971B2 publication Critical patent/JP5407971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関における触媒の異常診断、及び触媒下流センサの異常診断を行う異常診断装置に関する。   The present invention relates to an abnormality diagnosis apparatus that performs abnormality diagnosis of a catalyst in an internal combustion engine and abnormality diagnosis of a catalyst downstream sensor.

自動車等の車両に搭載される内燃機関においては、排気通路に排気浄化用の触媒が設けられており、同触媒によって排気通路を流れる排気中のNOx、HC、COを浄化するようにしている。また、こうした排気中の三成分を効果的に浄化するため、触媒に酸素ストレージ機能を持たせるとともに、内燃機関の燃焼室内における混合気の空燃比を理論空燃比に制御する理論空燃比制御が行われる。   In an internal combustion engine mounted on a vehicle such as an automobile, an exhaust purification catalyst is provided in the exhaust passage, and NOx, HC, and CO in the exhaust flowing through the exhaust passage are purified by the catalyst. In addition, in order to effectively purify these three components in the exhaust gas, the catalyst has an oxygen storage function, and the stoichiometric air-fuel ratio control is performed to control the air-fuel ratio of the air-fuel mixture in the combustion chamber of the internal combustion engine to the stoichiometric air-fuel ratio. Is called.

ここで、触媒の酸素ストレージ機能とは、同触媒を通過する排気中の酸素濃度に応じて、排気中の酸素を触媒に吸蔵したり、同触媒に吸蔵されている酸素を触媒から脱離させて排気中に放出したりする機能のことである。詳しくは、排気中の酸素濃度が燃焼室内の混合気の空燃比を理論空燃比とした状態で同混合気を燃焼させたときの値よりも濃い状態、すなわち燃焼室内の混合気を理論空燃比よりもリーンとなる空燃比で燃焼させた状態にあっては、上述した触媒の酸素ストレージ機能により、その触媒を通過する排気中の酸素が同触媒に吸蔵される。一方、排気中の酸素濃度が燃焼室内の混合気の空燃比を理論空燃比とした状態で同混合気を燃焼させたときの値よりも薄い状態、すなわち燃焼室内の混合気を理論空燃比よりもリッチな空燃比で燃焼させた状態にあっては、上述した触媒の酸素ストレージ機能により、その触媒に吸蔵されている酸素が同触媒から脱離して排気中に放出される。   Here, the oxygen storage function of the catalyst means that the oxygen in the exhaust is occluded in the catalyst or the oxygen occluded in the catalyst is desorbed from the catalyst according to the oxygen concentration in the exhaust passing through the catalyst. It is a function to release into the exhaust. Specifically, the oxygen concentration in the exhaust gas is richer than the value when the air-fuel ratio in the combustion chamber is set to the stoichiometric air-fuel ratio when the air-fuel ratio is burned, that is, the air-fuel mixture in the combustion chamber is the stoichiometric air-fuel ratio. In a state where combustion is performed at a leaner air-fuel ratio, oxygen in the exhaust gas passing through the catalyst is occluded in the catalyst by the oxygen storage function of the catalyst described above. On the other hand, the oxygen concentration in the exhaust gas is less than the value when the air-fuel ratio in the combustion chamber is set to the stoichiometric air-fuel ratio, ie, the air-fuel ratio in the combustion chamber is less than the stoichiometric air-fuel ratio. In the state where combustion is performed at a rich air-fuel ratio, oxygen stored in the catalyst is desorbed from the catalyst and released into the exhaust gas by the above-described oxygen storage function of the catalyst.

また、上記理論空燃比制御では、排気中の酸素濃度が燃焼室内の混合気の空燃比を理論空燃比とした状態で同混合気を燃焼させたときの値と一致するよう、排気中の酸素濃度に応じて内燃機関の燃料噴射量が調整される。こうした理論空燃比制御では、排気通路における触媒の上流に設けられて排気中の酸素濃度に基づく信号を出力する触媒上流センサと、同排気通路における触媒の下流に設けられて排気中の酸素濃度に基づく信号を出力する触媒下流センサとが用いられる。   Further, in the above stoichiometric air-fuel ratio control, the oxygen concentration in the exhaust gas is controlled so that the oxygen concentration in the exhaust gas matches the value when the air-fuel mixture in the combustion chamber is burned with the stoichiometric air-fuel ratio being the stoichiometric air-fuel ratio. The fuel injection amount of the internal combustion engine is adjusted according to the concentration. In such theoretical air-fuel ratio control, a catalyst upstream sensor that is provided upstream of the catalyst in the exhaust passage and outputs a signal based on the oxygen concentration in the exhaust, and a catalyst upstream sensor that is provided downstream of the catalyst in the exhaust passage and controls the oxygen concentration in the exhaust. And a catalyst downstream sensor that outputs a signal based thereon.

詳しくは、触媒上流の排気中の酸素濃度が燃焼室内の混合気の空燃比を理論空燃比とした状態で同混合気を燃焼させたときの値と一致するよう、触媒上流センサから出力される信号に応じて内燃機関の燃料噴射量が調整される。これにより、内燃機関の燃焼室内における混合気の空燃比がリッチとリーンとの間で変動しながらも理論空燃比に収束するように制御される。ただし、触媒上流センサから出力される信号に応じた燃料噴射量の調整だけでは、同センサの製品ばらつき等に起因して上述したように理論空燃比に収束するようリッチとリーンとの間で変動する内燃機関の空燃比の変動中心が理論空燃比からずれる可能性がある。こうしたずれを補正するため、上記触媒上流センサからの信号に応じた燃料噴射量の調整によってリッチとリーンとの間で変動する内燃機関の空燃比の変動中心が理論空燃比と一致するよう、触媒下流センサから出力される信号に応じた内燃機関の燃料噴射量の調整も行われる。   Specifically, it is output from the catalyst upstream sensor so that the oxygen concentration in the exhaust gas upstream of the catalyst matches the value when the air-fuel ratio in the combustion chamber is made the stoichiometric air-fuel ratio and the air-fuel ratio is combusted. The fuel injection amount of the internal combustion engine is adjusted according to the signal. As a result, the air-fuel ratio of the air-fuel mixture in the combustion chamber of the internal combustion engine is controlled to converge to the stoichiometric air-fuel ratio while fluctuating between rich and lean. However, only by adjusting the fuel injection amount in accordance with the signal output from the catalyst upstream sensor, due to the product variation of the sensor, as described above, it fluctuates between rich and lean so as to converge to the theoretical air-fuel ratio. There is a possibility that the center of fluctuation of the air-fuel ratio of the internal combustion engine that deviates from the stoichiometric air-fuel ratio. In order to correct such a deviation, the catalyst is adjusted so that the fluctuation center of the air-fuel ratio of the internal combustion engine that fluctuates between rich and lean by adjusting the fuel injection amount according to the signal from the catalyst upstream sensor matches the stoichiometric air-fuel ratio. Adjustment of the fuel injection amount of the internal combustion engine according to the signal output from the downstream sensor is also performed.

以上のように、触媒に酸素ストレージ機能を持たせるとともに理論空燃比制御を行うことにより、排気中におけるNOx、HC、COといった三成分を効果的に浄化することが可能になる。詳しくは、理論空燃比制御の実行中、燃焼室内の混合気の空燃比が変動してリーンになると、触媒を通過する排気中の酸素濃度が燃焼室内の混合気の空燃比を理論空燃比とした状態で同混合気を燃焼させたときの値よりも濃い値となるため、触媒を通過する排気中の酸素が触媒に吸蔵されて同排気中のNOxが還元される。一方、理論空燃比制御の実行中、燃焼室内の混合気の空燃比が変動してリッチになると、触媒を通過する排気中の酸素濃度が燃焼室内の混合気の空燃比を理論空燃比とした状態で同混合気を燃焼させたときの値よりも薄い値となるため、触媒に吸蔵されている酸素が同触媒から脱離して同排気中のHC、COが酸化される。従って、理論空燃比制御の実行中、燃焼室内の混合気の空燃比が理論空燃比に収束する過程でリッチとリーンとの間で変動する際、上述したように排気中のNOx、HC、COといった三成分が効果的に浄化される。   As described above, by providing the catalyst with an oxygen storage function and performing the theoretical air-fuel ratio control, it is possible to effectively purify three components such as NOx, HC, and CO in the exhaust gas. Specifically, during the execution of the stoichiometric air-fuel ratio control, when the air-fuel ratio of the air-fuel mixture in the combustion chamber fluctuates and becomes lean, the oxygen concentration in the exhaust gas passing through the catalyst changes the air-fuel ratio of the air-fuel mixture in the combustion chamber to the stoichiometric air-fuel ratio. In this state, the value becomes higher than the value when the air-fuel mixture is burned, so that oxygen in the exhaust gas passing through the catalyst is occluded by the catalyst and NOx in the exhaust gas is reduced. On the other hand, if the air-fuel ratio of the air-fuel mixture in the combustion chamber fluctuates and becomes rich during the execution of the stoichiometric air-fuel ratio control, the oxygen concentration in the exhaust gas passing through the catalyst becomes the stoichiometric air-fuel ratio. Since the value is smaller than the value when the air-fuel mixture is burned in the state, oxygen stored in the catalyst is desorbed from the catalyst and HC and CO in the exhaust gas are oxidized. Therefore, when the air-fuel ratio of the air-fuel mixture in the combustion chamber fluctuates between rich and lean during the execution of the stoichiometric air-fuel ratio control, as described above, NOx, HC, CO in the exhaust gas These three components are effectively purified.

ところで、内燃機関における排気の浄化を適正状態に維持するためには、触媒の劣化が生じたときや触媒下流センサの応答性に異常が生じたとき、それらへの対策を速やかに講じることが重要になる。こうした速やかな対策を実現するため、例えば以下のように、触媒の劣化の有無を判断したり、触媒下流センサの異常の有無を判断したりすることが行われる。   By the way, in order to maintain the exhaust gas purification in the internal combustion engine in an appropriate state, it is important to take prompt measures when the catalyst deteriorates or when the responsiveness of the downstream sensor of the catalyst is abnormal. become. In order to realize such a quick countermeasure, for example, as described below, it is determined whether or not the catalyst has deteriorated or whether or not the catalyst downstream sensor is abnormal.

触媒においては、その劣化に伴って酸素ストレージ機能が低下する。このことに対処するため、触媒に吸蔵される酸素の量の最大値(以下、酸素吸蔵量という)を求め、その酸素吸蔵量に基づき触媒の劣化の有無を判断することが行われる。   In a catalyst, an oxygen storage function falls with the deterioration. In order to cope with this, a maximum value of the amount of oxygen stored in the catalyst (hereinafter referred to as oxygen storage amount) is obtained, and the presence or absence of deterioration of the catalyst is determined based on the oxygen storage amount.

具体的には、内燃機関の空燃比を強制的にリッチとリーンとの間で変化させるアクティブ空燃比制御を実行し、同制御中に内燃機関の空燃比がリッチとリーンとの間で変化する際に上記酸素吸蔵量を求める。また、車両の運転状態に応じて内燃機関での燃料噴射を停止させる燃料カット制御において、同制御中の燃料噴射の停止時に同機関の空燃比がリッチ側からリーン側に変化する際に上記酸素吸蔵量を求めることも可能である。これらアクティブ空燃比制御中及び燃料カット制御中に上記酸素吸蔵量を求めることは、より詳しくは次のようにして行われる。すなわち、アクティブ空燃比制御中や燃料カット制御中に上述したように内燃機関の空燃比が変化するとき、触媒上流センサの信号に上記空燃比の変化に対応する変化が生じてから、触媒下流センサの信号に上記空燃比の変化に対応する変化が生じるまでの期間中に、触媒に吸蔵される酸素の量もしくは同触媒から脱離される酸素の量を算出する。そして、上記期間の終了時点で算出された酸素の量が上記酸素吸蔵量、すなわち触媒に吸蔵される酸素の量の最大値とされる。こうして求められた酸素吸蔵量に基づき、触媒の酸素ストレージ機能の低下が生じているか否か、言い換えれば触媒の劣化が生じているか否かが判断される。   Specifically, active air-fuel ratio control for forcibly changing the air-fuel ratio of the internal combustion engine between rich and lean is executed, and the air-fuel ratio of the internal combustion engine changes between rich and lean during the control. In this case, the oxygen storage amount is obtained. In the fuel cut control for stopping the fuel injection in the internal combustion engine according to the driving state of the vehicle, when the air-fuel ratio of the engine changes from the rich side to the lean side when the fuel injection during the control stops, the oxygen It is also possible to determine the amount of occlusion. Obtaining the oxygen storage amount during the active air-fuel ratio control and the fuel cut control is performed in more detail as follows. That is, when the air-fuel ratio of the internal combustion engine changes during active air-fuel ratio control or fuel cut control as described above, a signal corresponding to the change in the air-fuel ratio occurs in the signal of the catalyst upstream sensor before the catalyst downstream sensor. The amount of oxygen stored in the catalyst or the amount of oxygen desorbed from the catalyst is calculated during the period until the signal corresponding to the change in the air-fuel ratio occurs. The amount of oxygen calculated at the end of the period is the maximum value of the oxygen storage amount, that is, the amount of oxygen stored in the catalyst. Based on the oxygen storage amount thus obtained, it is determined whether or not the oxygen storage function of the catalyst has deteriorated, in other words, whether or not the catalyst has deteriorated.

一方、触媒下流センサにおいては、その異常に伴って排気中の酸素濃度の変化に対する出力信号の変化の応答性が低下する。このことに対処するため、触媒下流センサの応答性を求め、その応答性に基づき触媒下流センサの異常の有無を判断することが行われる。   On the other hand, in the catalyst downstream sensor, the responsiveness of the change in the output signal with respect to the change in the oxygen concentration in the exhaust is reduced due to the abnormality. In order to cope with this, the responsiveness of the catalyst downstream sensor is obtained, and it is determined based on the responsiveness whether the catalyst downstream sensor is abnormal.

具体的には、内燃機関の空燃比がリッチとリーンとの間で変化するとき、その変化に対応して触媒下流センサの出力信号が変化する際、その出力信号の変化の応答性を測定する。そして、測定した触媒下流センサの応答性に基づき、同センサで応答性に関係する異常が生じているか否かが判断される。ここで、内燃機関の空燃比がリッチ側とリーン側との間で変化する状況としては、上述したアクティブ空燃比制御中や燃料カット制御中といった状況があげられる。ちなみに、燃料カット制御中での上記空燃比の変化時に触媒下流センサの応答性を測定することは特許文献1に開示されており、アクティブ空燃比制御中での上記空燃比の変化時に触媒下流センサの応答性を測定することは特許文献2に開示されている。これらアクティブ空燃比制御中での触媒下流センサの応答性の測定と、燃料カット制御中での触媒下流センサの応答性の測定とでは、制御中に変化する上記空燃比の変化量に大きな差があるなど、触媒下流センサの応答性の測定条件が大きく異なっている。このため、アクティブ空燃比制御中と燃料カット制御中といった異なる測定条件のもとでそれぞれ触媒下流センサの応答性を測定し、それら測定された触媒下流センサの応答性に基づき同センサの異常の有無を判断することにより、その判断の結果をより一層正確なものとすることができる。   Specifically, when the air-fuel ratio of the internal combustion engine changes between rich and lean, when the output signal of the catalyst downstream sensor changes corresponding to the change, the response of the change in the output signal is measured. . Based on the measured responsiveness of the catalyst downstream sensor, it is determined whether or not an abnormality related to responsiveness has occurred in the sensor. Here, examples of the situation in which the air-fuel ratio of the internal combustion engine changes between the rich side and the lean side include situations such as the above-described active air-fuel ratio control and fuel cut control. Incidentally, measuring the responsiveness of the catalyst downstream sensor when the air-fuel ratio changes during fuel cut control is disclosed in Patent Document 1, and when the air-fuel ratio changes during active air-fuel ratio control, the catalyst downstream sensor is disclosed. It is disclosed in Patent Document 2 to measure the responsiveness. There is a large difference in the amount of change in the air-fuel ratio that changes during control between the measurement of the response of the catalyst downstream sensor during active air-fuel ratio control and the measurement of the response of the catalyst downstream sensor during fuel cut control. For example, the measurement conditions for the response of the catalyst downstream sensor are greatly different. Therefore, the responsiveness of the catalyst downstream sensor is measured under different measurement conditions, such as during active air-fuel ratio control and during fuel cut control, and whether there is an abnormality in the sensor based on the measured responsiveness of the catalyst downstream sensor. By determining the above, the result of the determination can be made more accurate.

特開2003−343339(段落[0040]〜[0043])JP 2003-343339 (paragraphs [0040] to [0043]) 特開2003−247451(段落[0025]〜[0030]、図3、図4)JP 2003-247451 (paragraphs [0025] to [0030], FIGS. 3 and 4)

上述したように、アクティブ空燃比制御中と燃料カット制御中といった異なる測定条件のもとでそれぞれ触媒下流センサの応答性を測定し、それら測定された触媒下流センサの応答性に基づき同センサの異常の有無を判断すれば、その判断の結果をより一層正確なものとすることができるようにはなる。   As described above, the responsiveness of the catalyst downstream sensor is measured under different measurement conditions such as during active air-fuel ratio control and during fuel cut control, and abnormalities of the sensor are determined based on the measured responsiveness of the catalyst downstream sensor. If the presence or absence is determined, the result of the determination can be made more accurate.

ただし、この場合には、触媒の劣化の有無の判断に用いられる酸素吸蔵量を求めることの他に、アクティブ空燃比制御中での触媒下流センサの応答性と燃料カット制御中での触媒下流センサの応答性とのそれぞれを測定しなければならない。言い換えれば、触媒の劣化の有無の判断及び触媒下流センサの異常の有無の判断を完了するために、触媒の酸素吸蔵量、アクティブ空燃比制御中での触媒下流センサの応答性、及び燃料カット制御中での触媒下流センサの応答性といった三つのパラメータを取得しなければならなくなる。   However, in this case, in addition to obtaining the oxygen storage amount used to determine whether the catalyst has deteriorated, the response of the catalyst downstream sensor during active air-fuel ratio control and the catalyst downstream sensor during fuel cut control Each of the responsiveness must be measured. In other words, in order to complete the determination of the presence or absence of catalyst degradation and the determination of the presence or absence of abnormality of the catalyst downstream sensor, the oxygen storage amount of the catalyst, the response of the catalyst downstream sensor during active air-fuel ratio control, and the fuel cut control It is necessary to acquire three parameters such as the response of the catalyst downstream sensor.

従って、触媒の劣化の有無の判断及び触媒下流センサの異常の有無の判断を行うに当たり、その触媒下流センサの異常の有無を正確に判断しようとすると、上記三つのパラメータを取得しなければならなくなるため、それらパラメータの取得に時間がかかるようになる。その結果、触媒の劣化の有無の判断及び触媒下流センサの異常の有無の判断を完了するためにも、多大な時間がかかるようになる。   Therefore, in determining whether the catalyst has deteriorated and whether the catalyst downstream sensor is abnormal, it is necessary to acquire the above three parameters in order to accurately determine whether the catalyst downstream sensor is abnormal. Therefore, it takes time to acquire these parameters. As a result, it takes much time to complete the determination of the presence or absence of catalyst deterioration and the determination of the presence or absence of abnormality of the catalyst downstream sensor.

本発明はこのような実情に鑑みてなされたものであって、その目的は、触媒の劣化の有無の判断及び触媒下流センサの異常の有無の判断を行うに当たり、その触媒下流センサの異常の有無を正確に判断しつつ、それらの判断を完了するために多大な時間がかかるようになることを抑制できる異常診断装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to determine whether or not there is an abnormality in the catalyst downstream sensor when determining whether or not the catalyst has deteriorated and whether or not there is an abnormality in the catalyst downstream sensor. It is an object of the present invention to provide an abnormality diagnosing apparatus capable of suppressing the time taken to complete the determination while accurately determining the above.

上記目的を達成するため、請求項1記載の発明によれば、内燃機関の排気通路に設けられた排気浄化用の触媒の酸素吸蔵量に基づき同触媒の劣化の有無が判断されるとともに、排気通路における前記触媒の下流に設けられて排気中の酸素濃度に基づく信号を出力する触媒下流センサの応答性に基づき同センサの異常の有無が判断される。   In order to achieve the above object, according to the first aspect of the present invention, the presence or absence of deterioration of the catalyst is determined based on the oxygen storage amount of the exhaust purification catalyst provided in the exhaust passage of the internal combustion engine, and the exhaust gas is exhausted. The presence / absence of abnormality of the sensor is determined based on the responsiveness of the catalyst downstream sensor provided downstream of the catalyst in the passage and outputting a signal based on the oxygen concentration in the exhaust gas.

触媒の劣化の有無の判断に用いられる上記酸素吸蔵量は、第1算出手段により以下のように求められる。すなわち、内燃機関の空燃比がリッチとリーンとの間で変化するとき、排気通路における触媒の上流に設けられた触媒上流センサの信号に上記空燃比の変化に対応する変化が生じてから、触媒下流センサの信号に上記空燃比の変化に対応する変化が生じるまでの期間中に、触媒に吸蔵される酸素の量もしくは同触媒から脱離される酸素の量が算出される。こうして算出された酸素の量が上記酸素吸蔵量とされる。なお、内燃機関の空燃比が上述したようにリッチとリーンとの間で変化する状況としては、例えば、内燃機関の空燃比を強制的にリッチとリーンとの間で変化させるアクティブ空燃比制御中や、内燃機関での燃料噴射を停止させる燃料カット制御における燃料噴射の停止時であって同機関の空燃比がリッチ側からリーン側に変化するとき等があげられる。   The oxygen storage amount used for determining whether or not the catalyst has deteriorated is obtained by the first calculation means as follows. That is, when the air-fuel ratio of the internal combustion engine changes between rich and lean, a signal corresponding to the change in the air-fuel ratio occurs in the signal of the catalyst upstream sensor provided upstream of the catalyst in the exhaust passage. During the period until the change corresponding to the change in the air-fuel ratio occurs in the signal of the downstream sensor, the amount of oxygen stored in the catalyst or the amount of oxygen desorbed from the catalyst is calculated. The amount of oxygen calculated in this way is used as the oxygen storage amount. Note that the situation in which the air-fuel ratio of the internal combustion engine changes between rich and lean as described above is, for example, during active air-fuel ratio control in which the air-fuel ratio of the internal combustion engine is forcibly changed between rich and lean. Another example is when the fuel injection is stopped in the fuel cut control for stopping the fuel injection in the internal combustion engine and the air-fuel ratio of the engine changes from the rich side to the lean side.

触媒下流センサの異常の有無に用いられる同センサの応答性は、第2算出手段により以下のように求められる。すなわち、アクティブ空燃比制御中に第1算出手段によって求められた酸素吸蔵量、燃料カット制御中に第1算出手段によって求められた酸素吸蔵量、及び、前記アクティブ空燃比制御中と前記燃料カット制御中とでの前記触媒下流センサの応答性の相関に基づき、アクティブ空燃比制御中と燃料カット制御中とのいずれかの状況下での触媒下流センサの応答性が求められる。ここで、アクティブ空燃比制御中に第1算出手段によって求められた酸素吸蔵量には、同アクティブ空燃比制御中における触媒下流センサの応答性が反映される。また、燃料カット制御中に第1算出手段によって求められた酸素吸蔵量には、同燃料カット制御中における触媒下流センサの応答性が反映される。これは、触媒下流センサの応答性が低下するほど、内燃機関の空燃比がリッチ側とリーン側との間で変化する際、その変化に対応した触媒下流センサの出力信号の変化が遅れて上記酸素吸蔵量を算出するための期間が長くなり、求められる酸素吸蔵量が増大傾向を示すためである。ただし、こうした増大傾向は、アクティブ空燃比制御中に求められる酸素吸蔵量と燃料カット制御中に求められる酸素吸蔵量とで異なるものとなる。これは、アクティブ空燃比制御時と燃料カット制御時とでの内燃機関の空燃比の変化幅が大きく異なること等に起因して、触媒下流センサの応答性がアクティブ空燃比制御時と燃料カット制御時とで大きく異なるためである。   The responsiveness of the sensor used for the presence or absence of abnormality of the catalyst downstream sensor is determined by the second calculation means as follows. That is, the oxygen storage amount obtained by the first calculation means during active air-fuel ratio control, the oxygen storage amount obtained by the first calculation means during fuel cut control, and the active air-fuel ratio control and the fuel cut control Based on the correlation of the responsiveness of the catalyst downstream sensor with respect to the inside, the responsiveness of the catalyst downstream sensor under either of the active air-fuel ratio control and the fuel cut control is obtained. Here, the oxygen storage amount obtained by the first calculating means during the active air-fuel ratio control reflects the responsiveness of the catalyst downstream sensor during the active air-fuel ratio control. Further, the oxygen storage amount obtained by the first calculation means during the fuel cut control reflects the response of the catalyst downstream sensor during the fuel cut control. This is because when the air-fuel ratio of the internal combustion engine changes between the rich side and the lean side as the response of the catalyst downstream sensor decreases, the change in the output signal of the catalyst downstream sensor corresponding to the change is delayed. This is because the period for calculating the oxygen storage amount becomes longer and the required oxygen storage amount tends to increase. However, such an increasing tendency differs between the oxygen storage amount required during active air-fuel ratio control and the oxygen storage amount required during fuel cut control. This is because the responsiveness of the catalyst downstream sensor is different from that at the time of active air-fuel ratio control and fuel cut control due to the large difference in the change range of the air-fuel ratio of the internal combustion engine between active air-fuel ratio control and fuel cut control This is because it differs greatly from time to time.

第2算出手段によって求められる触媒下流センサの応答性は、その求め方から分かるように、触媒下流センサのアクティブ空燃比制御中の応答性を反映した酸素吸蔵量と、同センサの燃料カット制御中の応答性を反映した酸素吸蔵量とが加味される。従って、第2算出手段によって求められた触媒下流センサの応答性に基づき同センサの異常の有無を判断手段により判断することで、その判断の結果がアクティブ空燃比制御中と燃料カット制御中といった二つの異なる状況のもとでの触媒下流センサの応答性に基づいた正確なものとなる。一方、判断手段による触媒の劣化の有無の判断は、第1算出手段によって求められた酸素吸蔵量のうちの少なくとも一つに基づいて行われる。以上から分かるように、触媒の劣化の有無の判断及び触媒下流センサの異常の有無の判断を行うに当たり、その触媒下流センサの異常の有無を正確に判断しようとする場合に、それらの判断のために取得すべきパラメータは、アクティブ空燃比制御中に求められる触媒の酸素吸蔵量と燃料カット中に求められる触媒の酸素吸蔵量との二つだけで済む。このため、それらパラメータの取得に時間がかかるようになることを抑制でき、ひいては触媒の劣化の有無の判断及び触媒下流センサの異常の有無の判断を完了するために多大な時間がかかることを抑制できるようになる。   As can be understood from the responsiveness of the catalyst downstream sensor obtained by the second calculating means, the oxygen storage amount reflecting the responsiveness of the catalyst downstream sensor during active air-fuel ratio control, and during the fuel cut control of the sensor. The oxygen storage amount reflecting the responsiveness is taken into account. Therefore, by determining whether the sensor is abnormal based on the responsiveness of the downstream sensor of the catalyst obtained by the second calculating means, the result of the determination is such as during active air-fuel ratio control and during fuel cut control. It is accurate based on the response of the catalyst downstream sensor under three different situations. On the other hand, the determination of the presence or absence of catalyst deterioration by the determination means is performed based on at least one of the oxygen storage amounts obtained by the first calculation means. As can be seen from the above, when judging whether or not the catalyst downstream sensor is abnormal and determining whether or not the catalyst downstream sensor is abnormal, it is necessary to determine whether or not the catalyst downstream sensor is abnormal. There are only two parameters to be acquired, that is, the oxygen storage amount of the catalyst required during the active air-fuel ratio control and the oxygen storage amount of the catalyst required during the fuel cut. For this reason, it can be suppressed that it takes time to acquire these parameters, and in turn, it can be prevented that it takes a long time to complete the determination of the presence or absence of catalyst deterioration and the determination of the presence or absence of abnormality of the catalyst downstream sensor. become able to.

請求項2記載の発明によれば、触媒下流センサの応答性として、アクティブ空燃比制御もしくは燃料カット制御により内燃機関の空燃比が変化する際における触媒下流センサから出力される信号の単位量当たりの変化に要する応答時間が第2算出手段により求められる。そして、このように求められた応答時間が閾値以上であるときには、判断手段により触媒下流センサが異常である旨判断される。また、上記応答時間が閾値未満であるときには、判断手段により触媒下流センサが正常である旨判断される。以上により、触媒下流センサの異常の有無を的確に判断することができる。   According to the second aspect of the present invention, as the response of the catalyst downstream sensor, the signal per unit amount of the signal output from the catalyst downstream sensor when the air-fuel ratio of the internal combustion engine changes by active air-fuel ratio control or fuel cut control. The response time required for the change is obtained by the second calculating means. And when the response time calculated | required in this way is more than a threshold value, it judges that a catalyst downstream sensor is abnormal by a judgment means. Further, when the response time is less than the threshold value, the determination unit determines that the catalyst downstream sensor is normal. As described above, it is possible to accurately determine whether or not the catalyst downstream sensor is abnormal.

請求項3記載の発明によれば、判断手段により触媒の劣化の有無を判断する際には、第1算出手段によって求められた各酸素吸蔵量のうち、第2算出手段により求められた触媒下流センサの応答性に対応した方の酸素吸蔵量に対し同応答性に基づく補正が加えられる。そして、補正後の酸素吸蔵量に基づき触媒の劣化の有無が判断される。ここで、第1算出手段により求められた触媒の酸素吸蔵量は、触媒下流センサの応答性の影響を受けることとなる。これは、触媒下流センサの応答性が低下するほど、内燃機関の空燃比がリッチ側とリーン側との間で変化する際、その変化に対応した触媒下流センサの出力信号の変化が遅れて上記酸素吸蔵量を算出するための期間が長くなり、求められる酸素吸蔵量が増大傾向を示すためである。従って、仮に上述したように触媒下流センサの応答性の影響を受けた酸素吸蔵量に基づき触媒の劣化の有無を判断したとすると、その判断の結果が不正確なものとなるおそれがある。この点、請求項3記載の発明では、触媒下流センサの応答性に応じて補正した後の酸素吸蔵量に基づき触媒の劣化の有無が判断されるため、その判断の結果が上述したように不正確なものとなることは抑制される。   According to the third aspect of the present invention, when determining whether the catalyst has deteriorated or not by the determining means, among the oxygen storage amounts determined by the first calculating means, the downstream of the catalyst determined by the second calculating means. Correction based on the responsiveness is added to the oxygen storage amount corresponding to the responsiveness of the sensor. Then, it is determined whether or not the catalyst has deteriorated based on the corrected oxygen storage amount. Here, the oxygen storage amount of the catalyst obtained by the first calculation means is affected by the response of the catalyst downstream sensor. This is because when the air-fuel ratio of the internal combustion engine changes between the rich side and the lean side as the response of the catalyst downstream sensor decreases, the change in the output signal of the catalyst downstream sensor corresponding to the change is delayed. This is because the period for calculating the oxygen storage amount becomes longer and the required oxygen storage amount tends to increase. Therefore, if it is determined whether or not the catalyst has deteriorated based on the oxygen storage amount affected by the response of the catalyst downstream sensor as described above, the determination result may be inaccurate. In this respect, in the invention according to claim 3, since the presence or absence of deterioration of the catalyst is determined based on the oxygen storage amount after correction according to the response of the catalyst downstream sensor, the result of the determination is not as described above. It is suppressed that it becomes exact.

本実施形態の触媒劣化検出装置が適用されるエンジン全体を示す略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the whole engine with which the catalyst deterioration detection apparatus of this embodiment is applied. 排気中の酸素濃度の変化に対する空燃比センサの出力信号の変化を示すグラフ。The graph which shows the change of the output signal of the air fuel ratio sensor with respect to the change of the oxygen concentration in exhaust gas. 排気中の酸素濃度の変化に対する酸素センサの出力信号の変化を示すグラフ。The graph which shows the change of the output signal of an oxygen sensor with respect to the change of the oxygen concentration in exhaust_gas | exhaustion. (a)〜(d)は、アクティブ空燃比制御におけるエンジンの空燃比の変化、空燃比センサの出力信号の変化、求められる酸素吸蔵量の変化、及び酸素センサの出力信号の変化を示すタイムチャート。(A) to (d) are time charts showing changes in the air-fuel ratio of the engine, changes in the output signal of the air-fuel ratio sensor, changes in the required oxygen storage amount, and changes in the output signal of the oxygen sensor in active air-fuel ratio control. . (a)〜(d)は、燃料カット制御におけるエンジンの空燃比の変化、空燃比センサの出力信号の変化、求められる酸素吸蔵量の変化、及び酸素センサの出力信号の変化を示すタイムチャート。(A)-(d) is a time chart which shows the change of the air fuel ratio of an engine in fuel cut control, the change of the output signal of an air fuel ratio sensor, the change of the calculated | required oxygen storage amount, and the change of the output signal of an oxygen sensor. 酸素センサの異常の有無の判断、及び三元触媒の劣化の有無の判断の実行手順を示すフローチャート。The flowchart which shows the execution procedure of judgment of the presence or absence of abnormality of an oxygen sensor, and the judgment of the presence or absence of deterioration of a three-way catalyst. 酸素センサの異常の有無の判断、及び三元触媒の劣化の有無の判断の実行手順を示すフローチャート。The flowchart which shows the execution procedure of judgment of the presence or absence of abnormality of an oxygen sensor, and the judgment of the presence or absence of deterioration of a three-way catalyst.

以下、本発明を自動車用エンジンに適用した一実施形態について、図1〜図7を参照して説明する。
図1に示されるエンジン1においては、その燃焼室2に繋がる吸気通路3にスロットルバルブ13が開閉可能に設けられており、吸気通路3を通じて燃焼室2に空気が吸入されるとともに、燃料噴射弁4から噴射された燃料が吸気通路3を介して燃焼室2に供給される。燃焼室2に供給された空気と燃料とからなる混合気は、点火プラグ5による点火が行われて燃焼する。そして、燃焼室2内で混合気が燃焼することにより、ピストン6が往復移動してエンジン1の出力軸であるクランクシャフト7が回転する。
Hereinafter, an embodiment in which the present invention is applied to an automobile engine will be described with reference to FIGS.
In the engine 1 shown in FIG. 1, a throttle valve 13 is provided in an intake passage 3 connected to the combustion chamber 2 so as to be openable and closable, and air is taken into the combustion chamber 2 through the intake passage 3 and a fuel injection valve. The fuel injected from 4 is supplied to the combustion chamber 2 through the intake passage 3. The mixture of air and fuel supplied to the combustion chamber 2 is ignited by the spark plug 5 and burned. Then, when the air-fuel mixture burns in the combustion chamber 2, the piston 6 reciprocates and the crankshaft 7 that is the output shaft of the engine 1 rotates.

一方、燃焼室2にて燃焼した後の混合気は、排気として燃焼室2から排気通路8に送り出される。排気通路8を通過する排気は、同排気通路8に設けられた触媒コンバータ16の三元触媒にて排気中のHC、CO、NOxといった有害成分を浄化した後に外部に放出される。この三元触媒は、排気中における上記三成分を効果的に除去するために酸素ストレージ機能を有している。この酸素ストレージ機能を三元触媒に持たせるとともに、触媒雰囲気の酸素濃度が理論空燃比での混合気の燃焼時の値に収束するよう同混合気の空燃比を理論空燃比に制御する理論空燃比制御を行うことにより、三元触媒にて排気中におけるNOx、HC、COといった三成分を効果的に浄化することができる。   On the other hand, the air-fuel mixture burned in the combustion chamber 2 is sent out from the combustion chamber 2 to the exhaust passage 8 as exhaust. Exhaust gas that passes through the exhaust passage 8 is discharged to the outside after purifying harmful components such as HC, CO, and NOx in the exhaust gas by the three-way catalyst of the catalytic converter 16 provided in the exhaust passage 8. This three-way catalyst has an oxygen storage function in order to effectively remove the above three components in the exhaust gas. The three-way catalyst has this oxygen storage function, and the stoichiometric air-fuel ratio is controlled to the stoichiometric air-fuel ratio so that the oxygen concentration in the catalyst atmosphere converges to the value at the time of combustion of the air-fuel mixture at the stoichiometric air-fuel ratio. By performing the fuel ratio control, it is possible to effectively purify the three components such as NOx, HC, and CO in the exhaust gas with the three-way catalyst.

また、排気通路8において、触媒コンバータ16の上流には排気中の酸素濃度に基づく信号を出力する触媒上流センサとして空燃比センサ17が設けられるとともに、触媒コンバータ16の下流には排気中の酸素濃度に基づく信号を出力する触媒下流センサとして酸素センサ18が設けられている。   Further, in the exhaust passage 8, an air-fuel ratio sensor 17 is provided upstream of the catalytic converter 16 as a catalyst upstream sensor that outputs a signal based on the oxygen concentration in the exhaust, and the oxygen concentration in the exhaust downstream of the catalytic converter 16. An oxygen sensor 18 is provided as a catalyst downstream sensor that outputs a signal based on the above.

上記空燃比センサ17は、図2に示されるように、触媒上流の排気中の酸素濃度に応じたリニアな信号を出力する。
すなわち、空燃比センサ17の出力信号VAFは、触媒上流の排気中の酸素濃度が薄くなるほど小さくなり、理論空燃比での混合気の燃焼が行われたときには、そのときの排気中の酸素濃度Xに対応して例えば「0A」となる。従って、理論空燃比よりもリッチな混合気の燃焼(リッチ燃焼)に起因して触媒上流の排気中の酸素濃度が薄くなるほど、空燃比センサ17の出力信号VAFが「0A」よりも小さい値になる。また、理論空燃比よりもリーンな混合気の燃焼(リーン燃焼)に起因して触媒上流の排気中の酸素濃度が濃くなるほど、空燃比センサ17の出力信号VAFが「0A」よりも大きい値になる。
As shown in FIG. 2, the air-fuel ratio sensor 17 outputs a linear signal corresponding to the oxygen concentration in the exhaust gas upstream of the catalyst.
That is, the output signal VAF of the air-fuel ratio sensor 17 decreases as the oxygen concentration in the exhaust upstream of the catalyst decreases, and when the air-fuel mixture is burned at the stoichiometric air-fuel ratio, the oxygen concentration X in the exhaust at that time For example, “0A” is set. Accordingly, the output signal VAF of the air-fuel ratio sensor 17 becomes smaller than “0A” as the oxygen concentration in the exhaust gas upstream of the catalyst becomes thinner due to the combustion of the air-fuel mixture richer than the stoichiometric air-fuel ratio (rich combustion). Become. Further, the output signal VAF of the air-fuel ratio sensor 17 becomes larger than “0A” as the oxygen concentration in the exhaust gas upstream of the catalyst becomes higher due to the combustion of the air-fuel mixture leaner than the stoichiometric air-fuel ratio (lean combustion). Become.

上記酸素センサ18は、図3に示されるように、触媒下流の排気中の酸素濃度に応じてリッチ信号又はリーン信号を出力する。
すなわち、酸素センサ18の出力信号VOは、触媒下流の排気中の酸素濃度が理論空燃比での混合気の燃焼が行われたときの値(酸素濃度X)であるときには例えば「0.5v」を出力する。そして、リーン燃焼が行われることに起因して触媒下流の排気中の酸素濃度が上述した酸素濃度Xよりも濃くなると、酸素センサ18からは「0.5v」よりも小さい値がリーン信号として出力される。このリーン信号に関しては、触媒下流の排気中の酸素濃度が上記酸素濃度Xに対し大きくなる際、その酸素濃度X付近では酸素濃度の増加に対し「0.5v」から減少側への急速な変化を示す一方、上記酸素濃度X付近から離れると酸素濃度の増加に対する減少側への変化が緩やかになる。
As shown in FIG. 3, the oxygen sensor 18 outputs a rich signal or a lean signal according to the oxygen concentration in the exhaust gas downstream of the catalyst.
That is, the output signal VO of the oxygen sensor 18 is, for example, “0.5 v” when the oxygen concentration in the exhaust gas downstream of the catalyst is a value (oxygen concentration X) when the air-fuel mixture is burned at the stoichiometric air-fuel ratio. Is output. When the oxygen concentration in the exhaust gas downstream of the catalyst becomes higher than the oxygen concentration X described above due to the lean combustion, a value smaller than “0.5 v” is output from the oxygen sensor 18 as a lean signal. Is done. Regarding the lean signal, when the oxygen concentration in the exhaust gas downstream of the catalyst becomes larger than the oxygen concentration X, a rapid change from “0.5 V” to a decrease side with respect to the increase in oxygen concentration near the oxygen concentration X occurs. On the other hand, when the distance from the vicinity of the oxygen concentration X is increased, the change toward the decrease side with respect to the increase in the oxygen concentration becomes moderate.

また、リッチ燃焼が行われることに起因して触媒下流の排気中の酸素濃度が上述した酸素濃度Xよりも薄くなると、酸素センサ18からは「0.5v」よりも大きい値がリッチ信号として出力される。このリッチ信号に関しては、触媒下流の排気中の酸素濃度が上記酸素濃度Xに対し小さくなる際、その酸素濃度X付近では酸素濃度の減少に対し「0.5v」から増大側への急速な変化を示す一方、上記酸素濃度X付近から離れると酸素濃度の減少に対する増大側への変化が緩やかになる。   Further, when the oxygen concentration in the exhaust gas downstream of the catalyst becomes lower than the above-described oxygen concentration X due to the rich combustion being performed, a value larger than “0.5 v” is output as a rich signal from the oxygen sensor 18. Is done. Regarding the rich signal, when the oxygen concentration in the exhaust gas downstream of the catalyst becomes smaller than the oxygen concentration X, a rapid change from “0.5 V” to an increase side with respect to the decrease in the oxygen concentration in the vicinity of the oxygen concentration X. On the other hand, when the distance from the vicinity of the oxygen concentration X is increased, the change toward the increasing side with respect to the decrease in the oxygen concentration becomes gradual.

次に、本実施形態における触媒劣化検出装置の電気的構成について、図1を参照して説明する。
この空燃比制御装置は、エンジン1に関する各種制御を実行する電子制御装置21を備えている。電子制御装置21は、上記制御に係る各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等を備えて構成されている。
Next, the electrical configuration of the catalyst deterioration detection apparatus in the present embodiment will be described with reference to FIG.
The air-fuel ratio control device includes an electronic control device 21 that executes various controls relating to the engine 1. The electronic control unit 21 is a CPU that executes various arithmetic processes related to the above control, a ROM that stores programs and data necessary for the control, a RAM that temporarily stores the arithmetic results of the CPU, etc. The input / output port for inputting / outputting is provided.

電子制御装置21の入力ポートには、上記空燃比センサ17及び上記酸素センサ18が接続される他、以下に示す各種センサ等が接続されている。
・自動車の運転者によって踏み込み操作されるアクセルペダル27の踏み込み量(アクセル踏込量)を検出するアクセルポジションセンサ28。
In addition to the air-fuel ratio sensor 17 and the oxygen sensor 18, the following various sensors are connected to the input port of the electronic control unit 21.
An accelerator position sensor 28 that detects the amount of depression (accelerator depression amount) of the accelerator pedal 27 that is depressed by the driver of the automobile.

・吸気通路3に設けられたスロットルバルブ13の開度(スロットル開度)を検出するスロットルポジションセンサ30。
・吸気通路3を通じて燃焼室2に吸入される空気の量を検出するエアフローメータ32。
A throttle position sensor 30 that detects the opening (throttle opening) of the throttle valve 13 provided in the intake passage 3.
An air flow meter 32 for detecting the amount of air taken into the combustion chamber 2 through the intake passage 3;

・吸気通路3内におけるスロットルバルブ13よりも下流側の圧力(吸気圧)を検出する吸気圧センサ33。
・クランクシャフト7の回転に対応する信号を出力し、エンジン回転速度の算出等に用いられるクランクポジションセンサ34。
An intake pressure sensor 33 that detects a pressure (intake pressure) downstream of the throttle valve 13 in the intake passage 3.
A crank position sensor 34 that outputs a signal corresponding to the rotation of the crankshaft 7 and is used for calculation of the engine rotation speed or the like.

電子制御装置21の出力ポートには、燃料噴射弁4、点火プラグ5、及びスロットルバルブ13の駆動回路等が接続されている。
そして、電子制御装置21は、上記各種センサから入力した検出信号に基づき、エンジン回転速度やエンジン負荷(エンジン1の1サイクル当たりに燃焼室2に吸入される空気の量)といったエンジン運転状態を把握する。なお、エンジン回転速度はクランクポジションセンサ34からの検出信号に基づき求められる。また、エンジン負荷は、アクセルポジションセンサ28、スロットルポジションセンサ30、及び、エアフローメータ32等の検出信号に基づき求められるエンジン1の吸入空気量と上記エンジン回転速度とから算出される。電子制御装置21は、エンジン負荷やエンジン回転速度といったエンジン運転状態に応じて、上記出力ポートに接続された各種駆動回路に指令信号を出力する。こうしてエンジン1における燃料噴射量制御、点火時期制御、及び吸入空気量制御等が電子制御装置21を通じて実施される。
The output port of the electronic control device 21 is connected to the fuel injection valve 4, the spark plug 5, the drive circuit for the throttle valve 13, and the like.
The electronic control unit 21 grasps the engine operating state such as the engine speed and the engine load (the amount of air taken into the combustion chamber 2 per cycle of the engine 1) based on the detection signals input from the various sensors. To do. The engine speed is obtained based on a detection signal from the crank position sensor 34. The engine load is calculated from the intake air amount of the engine 1 obtained based on detection signals from the accelerator position sensor 28, the throttle position sensor 30, the air flow meter 32, and the like, and the engine rotation speed. The electronic control unit 21 outputs command signals to various drive circuits connected to the output port according to the engine operating state such as the engine load and the engine speed. Thus, fuel injection amount control, ignition timing control, intake air amount control, and the like in the engine 1 are performed through the electronic control unit 21.

触媒コンバータ16の三元触媒でエンジン1の排気を効果的に浄化するための上記理論空燃比制御は、空燃比センサ17の出力信号VAF及び酸素センサ18からの出力信号VOに基づき燃料噴射量を調整することによって実現される。詳しくは、空燃比センサ17の出力信号VAFがエンジン1の燃焼室2内の混合気を理論空燃比で燃焼させたときの値(この例では「0A」)と一致するよう、同出力信号VAFに基づきエンジン1の燃料噴射量を増減させる。これにより、エンジン1の燃焼室2内における混合気の空燃比がリッチとリーンとの間で変動しながらも理論空燃比に収束するように制御される。ただし、空燃比センサ17の出力信号VAFに応じた燃料噴射量の調整だけでは、同空燃比センサ17の製品ばらつき等に起因して上述したように理論空燃比に収束するようリッチとリーンとの間で変動するエンジン1の空燃比の変動中心が理論空燃比からずれる可能性がある。こうしたずれを補正するため、上記空燃比センサ17の出力信号VAFに応じた燃料噴射量の調整によってリッチとリーンとの間で変動するエンジン1の空燃比の変動中心が理論空燃比と一致するよう、酸素センサ18から出力される信号に応じたエンジン1の燃料噴射量の調整も行われる。   The above theoretical air-fuel ratio control for effectively purifying the exhaust of the engine 1 with the three-way catalyst of the catalytic converter 16 is based on the output signal VAF of the air-fuel ratio sensor 17 and the output signal VO from the oxygen sensor 18. Realized by adjusting. Specifically, the output signal VAF so that the output signal VAF of the air-fuel ratio sensor 17 coincides with the value when the air-fuel mixture in the combustion chamber 2 of the engine 1 is burned at the stoichiometric air-fuel ratio (in this example, “0A”). The fuel injection amount of the engine 1 is increased or decreased based on the above. Thus, the air-fuel ratio of the air-fuel mixture in the combustion chamber 2 of the engine 1 is controlled so as to converge to the stoichiometric air-fuel ratio while fluctuating between rich and lean. However, only by adjusting the fuel injection amount in accordance with the output signal VAF of the air-fuel ratio sensor 17, the rich and lean levels are converged to the stoichiometric air-fuel ratio as described above due to product variations of the air-fuel ratio sensor 17. There is a possibility that the center of fluctuation of the air-fuel ratio of the engine 1 that fluctuates in time will deviate from the theoretical air-fuel ratio. In order to correct such a deviation, the fluctuation center of the air-fuel ratio of the engine 1 that fluctuates between rich and lean by adjusting the fuel injection amount in accordance with the output signal VAF of the air-fuel ratio sensor 17 matches the stoichiometric air-fuel ratio. The fuel injection amount of the engine 1 is also adjusted according to the signal output from the oxygen sensor 18.

ところで、エンジン1における排気の浄化を適正状態に維持するためには、触媒コンバータ16における三元触媒の劣化が生じたときや酸素センサ18の応答性に異常が生じたとき、それらへの対策を速やかに講じることが重要になる。こうした速やかな対策を実現するため、三元触媒の劣化の有無を判断したり、酸素センサ18の異常の有無を判断したりすることが行われる。   By the way, in order to maintain the exhaust purification in the engine 1 in an appropriate state, when the three-way catalyst in the catalytic converter 16 is deteriorated or when the responsiveness of the oxygen sensor 18 is abnormal, countermeasures are taken. It is important to take it promptly. In order to realize such prompt measures, it is determined whether or not the three-way catalyst is deteriorated or whether or not the oxygen sensor 18 is abnormal.

三元触媒の劣化の有無の判断は、同触媒に吸蔵される酸素の量の最大値(以下、酸素吸蔵量という)を求め、その求めた酸素吸蔵量と予め定められた閾値との比較に基づいて行われる。詳しくは、求めた酸素吸蔵量が上記閾値未満であれば、三元触媒の酸素ストレージ機能が低下していると見なせることから、同触媒の劣化ありの旨判断される。一方、求めた酸素吸蔵量が上記閾値以上であれば、三元触媒の酸素ストレージ機能の低下は生じていないと見なせることから、同触媒の劣化なし(正常)の旨判断される。   The determination of the presence or absence of deterioration of the three-way catalyst involves determining the maximum amount of oxygen stored in the catalyst (hereinafter referred to as oxygen storage amount) and comparing the calculated oxygen storage amount with a predetermined threshold value. Based on. Specifically, if the obtained oxygen storage amount is less than the above threshold value, it can be considered that the oxygen storage function of the three-way catalyst is deteriorated, so that it is determined that the catalyst is deteriorated. On the other hand, if the obtained oxygen storage amount is equal to or greater than the above threshold value, it can be considered that the oxygen storage function of the three-way catalyst has not deteriorated, and therefore it is determined that the catalyst is not deteriorated (normal).

三元触媒の劣化の有無の判断に用いられる上記酸素吸蔵量を求める際には、エンジン1の空燃比を所定タイミング毎に強制的にリッチとリーンとの間で変化させるアクティブ空燃比制御が実行される。そして、アクティブ空燃比制御中にエンジン1の空燃比がリッチとリーンとの間で変化する際、三元触媒の上記酸素吸蔵量が求められる。また、自動車の運転状態に応じてエンジン1での燃料噴射を停止させる燃料カット制御において、同制御中の燃料噴射の停止時にエンジン1の空燃比がリッチ側からリーン側に変化する際に酸素吸蔵量を求めることも可能である。アクティブ空燃比制御中及び燃料カット制御中に上記酸素吸蔵量を求めることは、より詳しくは次のようにして行われる。すなわち、アクティブ空燃比制御中や燃料カット制御中に上述したようにエンジン1の空燃比が変化するとき、空燃比センサ17の信号に上記空燃比の変化に対応する変化が生じてから、酸素センサ18の信号に上記空燃比の変化に対応する変化が生じるまでの期間中に、三元触媒に吸蔵される酸素の量もしくは同触媒から脱離される酸素の量が算出される。そして、上記期間の終了時点で算出された酸素の量が上記酸素吸蔵量、すなわち触媒に吸蔵される酸素の量の最大値とされる。   When obtaining the oxygen storage amount used for determining whether or not the three-way catalyst has deteriorated, active air-fuel ratio control is executed in which the air-fuel ratio of the engine 1 is forcibly changed between rich and lean at predetermined timings. Is done. When the air-fuel ratio of the engine 1 changes between rich and lean during active air-fuel ratio control, the oxygen storage amount of the three-way catalyst is obtained. Further, in the fuel cut control for stopping the fuel injection in the engine 1 according to the driving state of the automobile, the oxygen storage is performed when the air-fuel ratio of the engine 1 changes from the rich side to the lean side when the fuel injection during the control stops. It is also possible to determine the quantity. The determination of the oxygen storage amount during the active air-fuel ratio control and the fuel cut control is performed in more detail as follows. That is, when the air-fuel ratio of the engine 1 changes during the active air-fuel ratio control or the fuel cut control as described above, the oxygen sensor after the change corresponding to the change of the air-fuel ratio occurs in the signal of the air-fuel ratio sensor 17. The amount of oxygen stored in the three-way catalyst or the amount of oxygen desorbed from the catalyst is calculated during a period until a change corresponding to the change in the air-fuel ratio occurs in the 18 signal. The amount of oxygen calculated at the end of the period is the maximum value of the oxygen storage amount, that is, the amount of oxygen stored in the catalyst.

酸素センサ18の異常の有無の判断については、排気中の酸素濃度の変化に対する出力信号VOの変化の応答性を求め、その求めた応答性と予め定められた閾値との比較に基づいて行うことが考えられる。詳しくは、求めた応答性が上記閾値以上であれば、酸素センサ18の上記応答性が低下する異常が生じていると見なせることから、同酸素センサ18の異常ありの旨判断される。一方、求めた応答性が上記閾値未満であれば、酸素センサ18の上記応答性の低下は生じていないと見なせることから、同酸素センサ18の異常なし(正常)の旨判断される。   The determination of the presence or absence of abnormality of the oxygen sensor 18 is performed based on the responsiveness of the change in the output signal VO to the change in the oxygen concentration in the exhaust gas, and the comparison between the obtained responsiveness and a predetermined threshold value. Can be considered. Specifically, if the obtained responsiveness is equal to or greater than the threshold value, it can be considered that an abnormality that reduces the responsiveness of the oxygen sensor 18 has occurred, and therefore it is determined that the oxygen sensor 18 is abnormal. On the other hand, if the obtained responsiveness is less than the threshold value, it can be considered that the responsiveness of the oxygen sensor 18 has not deteriorated, so it is determined that the oxygen sensor 18 is not abnormal (normal).

酸素センサ18の異常の有無の判断に用いられる上記応答性に関しては、上述したアクティブ空燃比制御中や燃料カット制御中に、エンジン1の空燃比がリッチ側とリーン側との間で変化する際に測定することが考えられる。これらアクティブ空燃比制御中での上記応答性の測定と燃料カット制御中での上記応答性の測定とでは、制御中に変化する上記空燃比の変化量に大きな差があるなど、酸素センサ18の上記応答性の測定条件が大きく異なっている。このため、アクティブ空燃比制御中と燃料カット制御中といった異なる測定条件のもとでそれぞれ酸素センサ18の上記応答性を測定し、それら測定された応答性に基づき同センサ18の異常の有無を判断すれば、その判断の結果をより一層正確なものとすることができる。   Regarding the responsiveness used for determining whether or not the oxygen sensor 18 is abnormal, when the air-fuel ratio of the engine 1 changes between the rich side and the lean side during the above-described active air-fuel ratio control or fuel cut control. It is conceivable to make a measurement. The responsiveness measurement during the active air-fuel ratio control and the responsiveness measurement during the fuel cut control have a large difference in the amount of change in the air-fuel ratio that changes during the control. The response measurement conditions are greatly different. For this reason, the responsiveness of the oxygen sensor 18 is measured under different measurement conditions such as during active air-fuel ratio control and during fuel cut control, and the presence or absence of abnormality of the sensor 18 is determined based on the measured responsiveness. Then, the result of the determination can be made more accurate.

上述したように、アクティブ空燃比制御中と燃料カット制御中といった異なる測定条件のもとでそれぞれ酸素センサ18の上記応答性を測定し、それら測定された酸素センサ18の上記応答性に基づき同センサの異常の有無を判断すれば、その判断の結果をより一層正確なものとすることができるようにはなる。   As described above, the responsiveness of the oxygen sensor 18 is measured under different measurement conditions such as during active air-fuel ratio control and during fuel cut control, and based on the measured responsiveness of the oxygen sensor 18. If the presence or absence of the abnormality is determined, the result of the determination can be made more accurate.

ただし、この場合には、三元触媒の劣化の有無の判断に用いられる酸素吸蔵量を求めることの他に、アクティブ空燃比制御中での酸素センサ18の上記応答性と燃料カット制御中での酸素センサ18の上記応答性とのそれぞれを測定しなければならない。言い換えれば、三元触媒の劣化の有無の判断及び酸素センサ18の異常の有無の判断を完了するために、三元触媒の酸素吸蔵量、アクティブ空燃比制御中での酸素センサ18の上記応答性、及び燃料カット制御中での酸素センサ18の上記応答性といった三つのパラメータを取得しなければならなくなる。   However, in this case, in addition to obtaining the oxygen storage amount used to determine whether or not the three-way catalyst has deteriorated, the responsiveness of the oxygen sensor 18 during active air-fuel ratio control and the fuel cut control during Each of the responsiveness of the oxygen sensor 18 must be measured. In other words, in order to complete the determination of the presence or absence of deterioration of the three-way catalyst and the determination of whether or not the oxygen sensor 18 is abnormal, the oxygen storage amount of the three-way catalyst and the responsiveness of the oxygen sensor 18 during active air-fuel ratio control are described. And three parameters such as the responsiveness of the oxygen sensor 18 during fuel cut control must be acquired.

従って、三元触媒の劣化の有無の判断及び酸素センサ18の異常の有無の判断を行うに当たり、その酸素センサ18の異常の有無を正確に判断しようとすると、上記三つのパラメータを取得しなければならなくなるため、それらパラメータの取得に時間がかかるようになる。その結果、三元触媒の劣化の有無の判断及び酸素センサ18の異常の有無の判断を完了するためにも、多大な時間がかかるようになる。   Therefore, in determining whether or not the three-way catalyst has deteriorated and whether or not the oxygen sensor 18 is abnormal, it is necessary to acquire the above three parameters in order to accurately determine whether or not the oxygen sensor 18 is abnormal. Therefore, it takes time to acquire these parameters. As a result, it takes much time to complete the determination of whether the three-way catalyst has deteriorated and the determination of whether the oxygen sensor 18 has an abnormality.

こうしたことに対処するため、本実施形態では、酸素センサ18における異常の有無の判断に用いられる同センサ18の応答性が、次のようにして求められる。すなわち、アクティブ空燃比制御中に求められた酸素吸蔵量C1max、燃料カット制御中に求められた酸素吸蔵量C2max、及び、アクティブ空燃比制御中と燃料カット制御中とでの酸素センサ18の応答性の相関に基づき、アクティブ空燃比制御中と燃料カット制御中とのいずれかの状況下での酸素センサ18の応答性が求められる。   In order to cope with such a situation, in the present embodiment, the responsiveness of the sensor 18 used for determining whether there is an abnormality in the oxygen sensor 18 is obtained as follows. That is, the oxygen storage amount C1max obtained during the active air-fuel ratio control, the oxygen storage amount C2max obtained during the fuel cut control, and the responsiveness of the oxygen sensor 18 during the active air-fuel ratio control and during the fuel cut control. Based on this correlation, the responsiveness of the oxygen sensor 18 under either the active air-fuel ratio control or the fuel cut control is required.

ここで、アクティブ空燃比制御中に求められた酸素吸蔵量C1maxには、同アクティブ空燃比制御中における酸素センサ18の応答性が反映される。また、燃料カット制御中に求められた酸素吸蔵量C2maxには、同燃料カット制御中における酸素センサ18の応答性が反映される。これは、酸素センサ18の応答性が低下するほど、エンジン1の空燃比がリッチ側とリーン側との間で変化する際、その変化に対応した酸素センサ18の出力信号VOの変化が遅れて上記酸素吸蔵量C1max,C2maxを算出するための期間が長くなり、求められる酸素吸蔵量C1max,C2maxが増大傾向を示すためである。ただし、こうした増大傾向は、アクティブ空燃比制御中に求められる酸素吸蔵量C1maxと燃料カット制御中に求められる酸素吸蔵量C2maxとで異なるものとなる。これは、アクティブ空燃比制御時と燃料カット制御時とでのエンジン1の空燃比の変化幅が大きく異なること等に起因して、酸素センサ18の応答性がアクティブ空燃比制御時と燃料カット制御時とで大きく異なるためである。   Here, the oxygen storage amount C1max obtained during the active air-fuel ratio control reflects the responsiveness of the oxygen sensor 18 during the active air-fuel ratio control. Further, the oxygen storage amount C2max obtained during the fuel cut control reflects the responsiveness of the oxygen sensor 18 during the fuel cut control. This is because, as the responsiveness of the oxygen sensor 18 decreases, when the air-fuel ratio of the engine 1 changes between the rich side and the lean side, the change in the output signal VO of the oxygen sensor 18 corresponding to the change is delayed. This is because the period for calculating the oxygen storage amounts C1max and C2max becomes longer and the required oxygen storage amounts C1max and C2max tend to increase. However, such an increasing tendency is different between the oxygen storage amount C1max obtained during the active air-fuel ratio control and the oxygen storage amount C2max obtained during the fuel cut control. This is because, for example, the variation range of the air-fuel ratio of the engine 1 is greatly different between the active air-fuel ratio control and the fuel cut control, and the responsiveness of the oxygen sensor 18 is different from that during the active air-fuel ratio control and the fuel cut control. This is because it differs greatly from time to time.

上述したように求められる酸素センサ18の応答性は、その求め方から分かるように、酸素センサ18のアクティブ空燃比制御中の応答性を反映した酸素吸蔵量C1maxと、同センサ18の燃料カット制御中の応答性を反映した酸素吸蔵量C2maxとが加味される。従って、上記求められた酸素センサ18の応答性に基づき同センサ18の異常の有無を判断することで、その判断の結果がアクティブ空燃比制御中と燃料カット制御中といった二つの異なる状況のもとでの酸素センサ18の応答性に基づいた正確なものとなる。一方、三元触媒の劣化の有無の判断は、求められた酸素吸蔵量C1max,C2maxのうちの少なくとも一つに基づいて行われる。   As described above, the responsiveness of the oxygen sensor 18 obtained as described above can be understood from the method of obtaining the oxygen storage amount C1max reflecting the responsiveness of the oxygen sensor 18 during active air-fuel ratio control, and the fuel cut control of the sensor 18. The oxygen occlusion amount C2max reflecting the responsiveness inside is taken into account. Therefore, by determining the presence or absence of abnormality of the oxygen sensor 18 based on the responsiveness of the obtained oxygen sensor 18, the result of the determination is based on two different situations such as during active air-fuel ratio control and during fuel cut control. This is an accurate one based on the responsiveness of the oxygen sensor 18. On the other hand, whether or not the three-way catalyst has deteriorated is determined based on at least one of the obtained oxygen storage amounts C1max and C2max.

以上から分かるように、三元触媒の劣化の有無の判断及び酸素センサ18の異常の有無の判断を行うに当たり、その酸素センサ18の異常の有無を正確に判断しようとする場合に、それらの判断のためにアクティブ空燃比制御や燃料カット制御を行って取得すべきパラメータは、次の二つとなる。すなわち、こうしたパラメータが、アクティブ空燃比制御中に求められる三元触媒の酸素吸蔵量C1maxと、燃料カット中に求められる三元触媒の酸素吸蔵量C2maxとの二つに抑えられる。このため、それらパラメータの取得に時間がかかるようになることを抑制でき、ひいては三元触媒の劣化の有無の判断及び酸素センサ18の異常の有無の判断を完了するために多大な時間がかかることを抑制できるようになる。   As can be seen from the above, when determining whether or not the three-way catalyst has deteriorated and whether or not the oxygen sensor 18 is abnormal, the determination is made when it is desired to accurately determine whether or not the oxygen sensor 18 is abnormal. Therefore, the following two parameters should be obtained by performing active air-fuel ratio control and fuel cut control. That is, these parameters are suppressed to two, namely, the oxygen storage amount C1max of the three-way catalyst obtained during active air-fuel ratio control and the oxygen storage amount C2max of the three-way catalyst obtained during fuel cut. For this reason, it can suppress that it takes time to acquire these parameters, and therefore it takes a lot of time to complete the determination of the presence or absence of the deterioration of the three-way catalyst and the determination of the presence or absence of abnormality of the oxygen sensor 18. Can be suppressed.

ここで、アクティブ空燃比制御中での酸素吸蔵量C1maxの算出、及び燃料カット制御中での酸素吸蔵量C2maxの算出について、個別に詳しく説明する。
[酸素吸蔵量C1maxの算出]
上記アクティブ空燃比制御に関しては、エンジン1の始動開始後に一度も三元触媒の酸素吸蔵量C1maxの算出が完了していないこと、予め定められた酸素吸蔵量算出用のエンジン運転領域内にてエンジン1が定常運転中であること、三元触媒の温度が活性温度領域にあること、といった各種の実行条件すべての成立をもって開始される。また、アクティブ空燃比制御の実行中において、上述した各種の実行条件のいずれか一つでも不成立になった場合や、同制御の実行目的である各種の値の算出及び測定が完了した場合には、実行中の同制御が停止されることとなる。
Here, the calculation of the oxygen storage amount C1max during the active air-fuel ratio control and the calculation of the oxygen storage amount C2max during the fuel cut control will be individually described in detail.
[Calculation of oxygen storage amount C1max]
Regarding the active air-fuel ratio control, the calculation of the oxygen storage amount C1max of the three-way catalyst has not been completed once after the start of the engine 1, and the engine is operated within the predetermined engine operating range for calculating the oxygen storage amount. The process is started when all the various execution conditions such as 1 is in steady operation and the temperature of the three-way catalyst is in the activation temperature range are satisfied. In addition, when any one of the above-mentioned various execution conditions is not satisfied during execution of the active air-fuel ratio control, or when calculation and measurement of various values that are the purpose of execution of the control are completed The same control being executed is stopped.

アクティブ空燃比制御において、図4(a)のタイミングt1にてエンジン1の空燃比が強制的にリッチとリーンとの間で切り換えられると(この例ではリッチからリーンに切り換え)、その変化に対応して空燃比センサ17の出力信号VAFが図4(b)に示されるように変化する。なお、図4(b)のタイミングt2は、空燃比センサ17の出力信号VAFがエンジン1の燃焼室2内で混合気を理論空燃比で燃焼させたときの排気中の酸素濃度に対応した値となるタイミングである。図中のタイミングt2以降では、上記空燃比のリーン側への変化に対応して酸素濃度の濃い排気が三元触媒を通過するようになる。しかし、上記排気中の酸素が三元触媒に吸蔵されることから、その吸蔵が行われている間は、触媒下流の排気中の酸素濃度が薄いままとなるため、図4(d)に実線で示されるように酸素センサ18の出力信号VOに上記空燃比のリーン側への変化に対応する変化は生じない。そして、三元触媒に酸素を吸蔵しきれなくなって触媒下流に酸素濃度の濃い排気が流れるようになると、酸素センサ18の出力信号VOに上記空燃比のリーン側への変化に対応する変化が生じる。なお、酸素センサ18の出力信号VOに上記空燃比のリーン側への変化に対応する変化が生じた旨の判断については、その旨判断するためのリーン判定値HLに対し上記出力信号VOが到達したことに基づいて行うことが可能である。出力信号VOが上述したようにリーン判定値HLに到達すると(t3)、エンジン1の空燃比が強制的にリーンからリッチに切り換えられる。   In the active air-fuel ratio control, when the air-fuel ratio of the engine 1 is forcibly switched between rich and lean at timing t1 in FIG. 4A (in this example, switching from rich to lean), the change is handled. Then, the output signal VAF of the air-fuel ratio sensor 17 changes as shown in FIG. 4B, the output signal VAF of the air-fuel ratio sensor 17 is a value corresponding to the oxygen concentration in the exhaust when the air-fuel mixture is burned at the stoichiometric air-fuel ratio in the combustion chamber 2 of the engine 1. This is the timing. After timing t2 in the figure, the exhaust gas having a high oxygen concentration passes through the three-way catalyst in response to the change of the air-fuel ratio to the lean side. However, since the oxygen in the exhaust gas is stored in the three-way catalyst, the oxygen concentration in the exhaust gas downstream of the catalyst remains thin while the storage is being performed. Therefore, the solid line in FIG. As shown, the output signal VO of the oxygen sensor 18 does not change corresponding to the change of the air-fuel ratio to the lean side. Then, when oxygen cannot be stored in the three-way catalyst and exhaust gas having a high oxygen concentration flows downstream of the catalyst, a change corresponding to the change of the air-fuel ratio to the lean side occurs in the output signal VO of the oxygen sensor 18. . Regarding the determination that the change corresponding to the change of the air-fuel ratio to the lean side has occurred in the output signal VO of the oxygen sensor 18, the output signal VO reaches the lean determination value HL for determining that. It is possible to do based on what has been done. When the output signal VO reaches the lean determination value HL as described above (t3), the air-fuel ratio of the engine 1 is forcibly switched from lean to rich.

空燃比センサ17の出力信号VAFに上記空燃比のリッチからリーンへの変化が生じてから酸素センサ18の出力信号VOに上記空燃比の変化に対応する変化が生じるまでの期間中(t2〜t3)に、同触媒に吸蔵される酸素の量の合計値は、三元触媒に吸蔵される酸素の量の最大値(酸素吸蔵量)を表すものとなる。この酸素吸蔵量が上記期間中(t2〜t3)に次のようにして求められる。すなわち、上記期間中(図4(c)のt2〜t3)、微小時間毎に三元触媒に吸蔵される酸素の量として、酸素吸蔵量ΔOSCが次の式(1)に基づき算出される。   During a period from the time when the air-fuel ratio change from rich to lean occurs in the output signal VAF of the air-fuel ratio sensor 17 to the time when the output signal VO of the oxygen sensor 18 changes corresponding to the change in air-fuel ratio (t2 to t3) ), The total amount of oxygen stored in the catalyst represents the maximum value of oxygen stored in the three-way catalyst (oxygen storage amount). This oxygen storage amount is obtained as follows during the period (t2 to t3). That is, during the period (t2 to t3 in FIG. 4C), the oxygen storage amount ΔOSC is calculated based on the following equation (1) as the amount of oxygen stored in the three-way catalyst every minute time.

ΔOSC=(ΔA/F)・Q・K …(1)
ΔOSC:微小時間毎の酸素吸蔵量
ΔA/F:空燃比差
Q :燃料噴射量
K :酸素割合
式(1)の空燃比差ΔA/Fは、空燃比センサ17の出力信号VAFから求められる空燃比に対し理論空燃比を減算した値の絶対値を表している。また、式(1)の燃料噴射量Qは、空燃比センサ17の出力信号VAFに基づき求められる上記空燃比の原因となったエンジン1の燃料噴射量、すなわち燃料噴射弁4から噴射された燃料の量を表している。更に、式(1)の酸素割合Kは空気中に含まれる酸素の割合を表している。なお。ここでは酸素割合Kとして例えば「0.23」という固定値が用いられている。そして、上記式(1)に基づき算出される微小時間毎の酸素吸蔵量ΔOSCは上記期間(t2〜t3)に亘って積分され、同積分により得られる値が三元触媒に吸蔵された酸素の量として求められる。このため、上記期間(t2〜t3)の終了時点で上記積分により求められた値は、三元触媒に吸蔵可能な酸素の量の最大値(酸素吸蔵量C1max)となる。
ΔOSC = (ΔA / F) · Q · K (1)
ΔOSC: Oxygen storage capacity per minute
ΔA / F: Air-fuel ratio difference
Q: Fuel injection amount
K: Oxygen ratio The air-fuel ratio difference ΔA / F in the equation (1) represents the absolute value of the value obtained by subtracting the theoretical air-fuel ratio from the air-fuel ratio obtained from the output signal VAF of the air-fuel ratio sensor 17. Further, the fuel injection amount Q in the equation (1) is the fuel injection amount of the engine 1 that causes the air-fuel ratio obtained based on the output signal VAF of the air-fuel ratio sensor 17, that is, the fuel injected from the fuel injection valve 4. Represents the amount. Furthermore, the oxygen ratio K in the formula (1) represents the ratio of oxygen contained in the air. Note that. Here, for example, a fixed value of “0.23” is used as the oxygen ratio K. The oxygen storage amount ΔOSC calculated for each minute time based on the above formula (1) is integrated over the period (t2 to t3), and the value obtained by the integration is the oxygen stored in the three-way catalyst. As a quantity. For this reason, the value obtained by the integration at the end of the period (t2 to t3) is the maximum amount of oxygen that can be stored in the three-way catalyst (oxygen storage amount C1max).

以上のようにして求められた酸素吸蔵量C1maxは、アクティブ空燃比制御中での酸素センサ18の応答性を反映した値となる。こうした応答性を表すパラメータとして具体的には、アクティブ空燃比制御中におけるエンジン1の空燃比のリッチとリーンとの間での変化に基づき酸素センサ18の出力信号VOに変化が生じる際(例えば図4(d)のts〜t3)の同出力信号VOの単位量当たりの変化に要する時間(以下、応答時間Tactという)があげられる。そして、アクティブ空燃比制御中での酸素センサ18の応答性が低下して応答時間Tactが長くなるほど、酸素吸蔵量C1maxを求めるための上記期間(t2〜t3)が長くなるため、その酸素吸蔵量C1maxが適正値に対し増加側にずれた値となる。   The oxygen storage amount C1max obtained as described above is a value reflecting the response of the oxygen sensor 18 during active air-fuel ratio control. Specifically, as a parameter representing such responsiveness, when an output signal VO of the oxygen sensor 18 changes based on a change between rich and lean of the air / fuel ratio of the engine 1 during active air / fuel ratio control (for example, FIG. 4 (d) ts to t3) is a time required for a change per unit amount of the output signal VO (hereinafter referred to as response time Tact). Then, as the response time of the oxygen sensor 18 during the active air-fuel ratio control decreases and the response time Tact increases, the period (t2 to t3) for obtaining the oxygen storage amount C1max becomes longer. C1max becomes a value shifted to the increasing side with respect to the appropriate value.

なお、アクティブ空燃比制御中、酸素吸蔵量C1maxが適正に求められるまでの間は、エンジン1の空燃比が所定のタイミング毎に強制的にリッチとリーンとの間で切り換えられる。上述した例では、エンジン1の空燃比がリッチからリーンに切り換えられた後に酸素吸蔵量C1maxを求めるようにしたが、これを適正に行えなかった場合には図4のタイミングt3にてエンジン1の空燃比が強制的にリーンからリッチに切り換えられ、その切り換え後に酸素吸蔵量C1maxを求めることが行われる。   During the active air-fuel ratio control, the air-fuel ratio of the engine 1 is forcibly switched between rich and lean at every predetermined timing until the oxygen storage amount C1max is properly obtained. In the above-described example, the oxygen storage amount C1max is obtained after the air-fuel ratio of the engine 1 is switched from rich to lean. However, if this cannot be properly performed, the engine 1 is at timing t3 in FIG. The air-fuel ratio is forcibly switched from lean to rich, and the oxygen storage amount C1max is obtained after the switching.

すなわち、上記空燃比のリーンからリッチへの変化に対応して空燃比センサ17の出力信号VAFが変化すると、酸素濃度の薄い排気が三元触媒を通過するようになるものの、三元触媒に吸蔵されていた酸素が脱離して排気中に放出されることから、同触媒からの酸素の脱離が行われている間は、触媒下流の排気中の酸素濃度が濃いままとなる。そして、三元触媒に吸蔵されていた酸素が尽きて排気への酸素の放出ができなくなり、それによって触媒下流に酸素濃度の薄い排気が流れるようになると、酸素センサ18の出力信号VOに上記空燃比のリッチ側への変化に対応する変化が生じる。なお、酸素センサ18の出力信号VOに上記空燃比のリッチ側への変化に対応する変化が生じた旨の判断については、その旨判断するためのリッチ判定値HRに対し上記出力信号VOが到達したことに基づいて行うことが可能である。出力信号VOが上述したようにリッチ判定値HRに到達すると、エンジン1の空燃比が強制的にリッチからリーンに切り換えられる。   That is, when the output signal VAF of the air-fuel ratio sensor 17 changes in response to the change of the air-fuel ratio from lean to rich, the exhaust having a low oxygen concentration passes through the three-way catalyst, but is stored in the three-way catalyst. Since the released oxygen is released and released into the exhaust gas, the oxygen concentration in the exhaust gas downstream of the catalyst remains high while the oxygen is released from the catalyst. When the oxygen stored in the three-way catalyst is exhausted and oxygen cannot be released to the exhaust gas, and when the exhaust gas having a low oxygen concentration flows downstream of the catalyst, the empty signal is output to the output signal VO of the oxygen sensor 18. A change corresponding to a change to the rich side of the fuel ratio occurs. Regarding the determination that the change corresponding to the change of the air-fuel ratio to the rich side has occurred in the output signal VO of the oxygen sensor 18, the output signal VO reaches the rich determination value HR for determining that. It is possible to do based on what has been done. When the output signal VO reaches the rich determination value HR as described above, the air-fuel ratio of the engine 1 is forcibly switched from rich to lean.

空燃比センサ17の出力信号VAFに上記空燃比のリーンからリッチへの変化が生じてから酸素センサ18の出力信号VOに上記空燃比の変化に対応する変化が生じるまでの期間中に、同触媒から脱離される酸素の量の合計値は、三元触媒に吸蔵されている酸素の量の最大値(酸素吸蔵量C1max)を表すものとなる。この酸素吸蔵量C1maxは上記期間中に図4の「t2〜t3」の期間中と同様の手法を用いて求められる。   During the period from when the change in the air-fuel ratio from lean to rich occurs in the output signal VAF of the air-fuel ratio sensor 17 until the change corresponding to the change in air-fuel ratio occurs in the output signal VO of the oxygen sensor 18. The total value of the amount of oxygen desorbed from the catalyst represents the maximum amount of oxygen stored in the three-way catalyst (oxygen storage amount C1max). The oxygen storage amount C1max is obtained during the above period using the same method as during the period “t2 to t3” in FIG.

[酸素吸蔵量C2maxの算出]
上記燃料カット制御においては、アクセル踏込量が「0」であって車速が「0」よりも大きい所定値以上であることを条件にエンジン1における燃料噴射弁4の燃料噴射が停止され、それによってエンジン1の自立運転が停止されることとなる。一方、こうした燃料カット制御でのエンジン1の自立運転停止中、アクセル踏込量が「0」よりも大きくなったり、車速が上記所定値未満となったりすると、燃料噴射弁4の燃料噴射を通じて同エンジン1の自立運転が再開される。
[Calculation of oxygen storage amount C2max]
In the fuel cut control, the fuel injection of the fuel injection valve 4 in the engine 1 is stopped on condition that the accelerator depression amount is “0” and the vehicle speed is equal to or greater than a predetermined value greater than “0”. The autonomous operation of the engine 1 is stopped. On the other hand, when the accelerator depression amount becomes larger than “0” or the vehicle speed becomes less than the predetermined value while the engine 1 is stopped by the fuel cut control, the same engine is discharged through the fuel injection of the fuel injection valve 4. 1 autonomous operation is resumed.

燃料カット制御において、図5(a)のタイミングt5にてエンジン1での燃料噴射が停止されると、それによってエンジン1の空燃比がリッチ側からリーン側に変化する。詳しくは、エンジン1における燃焼室2内の混合気の空燃比が例えば理論空燃比の状態から、同燃焼室2内のガスがほぼ空気となるほどリーンな状態になるまで変化する。こうしたエンジン1の空燃比のリッチ側からリーン側への変化に対応して、空燃比センサ17の出力信号VAFが図5(b)に示されるように変化する。なお、図5(b)のタイミングt6は、空燃比センサ17の出力信号VAFがエンジン1の燃焼室2内で混合気を理論空燃比で燃焼させたときの排気中の酸素濃度に対応した値から高酸素濃度側(図中上側)に変化したときのタイミングである。図中のタイミングt6以降では、空気とほぼ等しい排気が三元触媒を通過するようになるものの、同排気中の酸素が三元触媒に吸蔵されている間は、触媒下流の排気中の酸素濃度が薄いままとなるため、図5(d)に実線で示されるように酸素センサ18の出力信号VOに上記空燃比のリーン側への変化に対応する変化は生じない。そして、三元触媒に酸素を吸蔵しきれなくなって触媒下流に酸素濃度の濃い排気が流れるようになると、酸素センサ18の出力信号VOに上記空燃比のリーン側への変化に対応する変化が生じる。なお、酸素センサ18の出力信号VOに上記空燃比のリーン側への変化に対応する変化が生じた旨の判断については、その旨判断するための燃料カット制御時に対応したリーン判定値HLfcに対し上記出力信号VOが到達したこと(t7)に基づいて行うことが可能である。   In the fuel cut control, when the fuel injection in the engine 1 is stopped at the timing t5 in FIG. 5A, the air-fuel ratio of the engine 1 changes from the rich side to the lean side. Specifically, the air-fuel ratio of the air-fuel mixture in the combustion chamber 2 in the engine 1 changes from a state where, for example, the stoichiometric air-fuel ratio becomes leaner as the gas in the combustion chamber 2 becomes substantially air. In response to such a change in the air-fuel ratio of the engine 1 from the rich side to the lean side, the output signal VAF of the air-fuel ratio sensor 17 changes as shown in FIG. 5B, the output signal VAF of the air-fuel ratio sensor 17 corresponds to the oxygen concentration in the exhaust when the air-fuel mixture is burned at the stoichiometric air-fuel ratio in the combustion chamber 2 of the engine 1. It is the timing when it changes from the high oxygen concentration side (upper side in the figure). After timing t6 in the figure, although the exhaust substantially equal to the air passes through the three-way catalyst, the oxygen concentration in the exhaust downstream of the catalyst is kept while oxygen in the exhaust is being stored in the three-way catalyst. Therefore, as shown by a solid line in FIG. 5D, the output signal VO of the oxygen sensor 18 does not change corresponding to the lean change of the air-fuel ratio. Then, when oxygen cannot be stored in the three-way catalyst and exhaust gas having a high oxygen concentration flows downstream of the catalyst, a change corresponding to the change of the air-fuel ratio to the lean side occurs in the output signal VO of the oxygen sensor 18. . Note that the determination that the change corresponding to the change of the air-fuel ratio to the lean side has occurred in the output signal VO of the oxygen sensor 18 is made with respect to the lean determination value HLfc corresponding to the fuel cut control for determining that. This can be done based on the arrival of the output signal VO (t7).

空燃比センサ17の出力信号VAFに上記空燃比のリッチ側からリーン側への変化が生じてから酸素センサ18の出力信号VOに上記空燃比の変化に対応する変化が生じるまでの期間中(t6〜t7)に、同触媒に吸蔵される酸素の量の合計値は、三元触媒に吸蔵される酸素の量の最大値(酸素吸蔵量C2max)を表すものとなる。この酸素吸蔵量C2maxに関しては、上記期間「t6〜t7」中に、アクティブ空燃比制御中における図4の「t2〜t3」の期間中と同様の手法を用いて求められる。   During a period from the time when the air-fuel ratio changes from the rich side to the lean side in the output signal VAF of the air-fuel ratio sensor 17 until the time when the output signal VO of the oxygen sensor 18 changes corresponding to the change in the air-fuel ratio (t6) ~ T7), the total value of the amount of oxygen stored in the catalyst represents the maximum value (oxygen storage amount C2max) of the amount of oxygen stored in the three-way catalyst. The oxygen storage amount C2max is obtained during the period “t6 to t7” by using the same method as in the period “t2 to t3” in FIG. 4 during the active air-fuel ratio control.

以上のようにして求められた酸素吸蔵量C2maxは、燃料カット制御中での酸素センサ18の応答性を反映した値となる。こうした応答性を表すパラメータとして具体的には、燃料カット制御中におけるエンジン1の空燃比のリッチ側からリーン側への変化に基づき酸素センサ18の出力信号VOに変化が生じる際(例えば図5(d)のts〜t7)の同出力信号VOの単位量当たりの変化に要する時間(以下、応答時間Tfcという)があげられる。そして、燃料カット制御中での酸素センサ18の応答性が低下して応答時間Tfcが長くなるほど、酸素吸蔵量C2maxを求めるための上記期間(t6〜t7)が長くなるため、その酸素吸蔵量C2maxが適正値に対し増加側にずれた値となる。   The oxygen storage amount C2max obtained as described above is a value reflecting the responsiveness of the oxygen sensor 18 during fuel cut control. Specifically, as a parameter representing such responsiveness, when the output signal VO of the oxygen sensor 18 changes based on the change from the rich side to the lean side of the air-fuel ratio of the engine 1 during the fuel cut control (for example, FIG. 5 ( The time required for the change per unit amount of the output signal VO from ts to t7) in d) (hereinafter referred to as response time Tfc) is given. Then, as the responsiveness of the oxygen sensor 18 during the fuel cut control decreases and the response time Tfc becomes longer, the period (t6 to t7) for obtaining the oxygen storage amount C2max becomes longer, so the oxygen storage amount C2max. Becomes a value shifted to the increasing side with respect to the appropriate value.

次に、アクティブ空燃比制御中での酸素吸蔵量C1max、及び燃料カット制御中での酸素吸蔵量C2maxを用いた酸素センサ18の応答性の求め方について説明する。
アクティブ空燃比制御中での酸素吸蔵量C1maxについては、三元触媒の酸素吸蔵量の真値A、及びアクティブ制御中にエンジン1の空燃比をリッチとリーンとの間で変化させたときの酸素センサ18の応答性を表すパラメータである上記応答時間Tactを用いて、次の式(2)で表すことができる。
Next, how to determine the responsiveness of the oxygen sensor 18 using the oxygen storage amount C1max during active air-fuel ratio control and the oxygen storage amount C2max during fuel cut control will be described.
Regarding the oxygen storage amount C1max during active air-fuel ratio control, the true value A of the oxygen storage amount of the three-way catalyst and the oxygen when the air-fuel ratio of the engine 1 is changed between rich and lean during active control. Using the response time Tact, which is a parameter indicating the response of the sensor 18, it can be expressed by the following equation (2).

C1max=A+K1・Tact …(2)
C1max:アクティブ空燃比制御中での酸素吸蔵量
A:酸素吸蔵量の真値
K1:吸気量係数
Tact:応答時間
式(2)から分かるように、アクティブ空燃比制御中に求められた酸素吸蔵量C1maxは、三元触媒の酸素吸蔵量の真値Aに対し、式(2)の「K1・Tact」という項の分だけずれた値となる。この真値Aに対する酸素吸蔵量C1maxの項「K1・Tact」分のずれは、アクティブ空燃比制御中における排気中の酸素濃度の変化に対する酸素センサ18の出力信号VOの変化の応答性に起因して生じる。なお、項「K1・Tact」における吸気量係数K1は、三元触媒の酸素吸蔵量の真値Aに対する酸素吸蔵量C1maxのずれがエンジン1の吸気量によって変わることに対応して上記項「K1・Tact」を可変とするための値であって、エンジン1の吸気量等に基づき算出される。
C1max = A + K1 · Tact (2)
C1max: oxygen storage amount during active air-fuel ratio control
A: True value of oxygen storage capacity
K1: Intake amount coefficient
Tact: Response time As can be seen from the equation (2), the oxygen storage amount C1max obtained during the active air-fuel ratio control is equal to “K1 · in equation (2) with respect to the true value A of the oxygen storage amount of the three-way catalyst. The value is shifted by the amount of the term “Tact”. The deviation of the oxygen storage amount C1max relative to the true value A by the term “K1 · Tact” is caused by the response of the change in the output signal VO of the oxygen sensor 18 to the change in the oxygen concentration in the exhaust during the active air-fuel ratio control. Arises. The intake air amount coefficient K1 in the term “K1 · Tact” corresponds to the fact that the deviation of the oxygen storage amount C1max with respect to the true value A of the oxygen storage amount of the three-way catalyst varies depending on the intake amount of the engine 1. A value for making “Tact” variable, and is calculated based on the intake amount of the engine 1 and the like.

一方、燃料カット制御中での酸素吸蔵量C2maxについては、三元触媒の酸素吸蔵量の真値A、及び燃料カット制御中にエンジン1の空燃比がリッチ側からリーン側に変化したときの酸素センサ18の応答性を表すパラメータである上記応答時間Tfcを用いて、次の式(3)で表すことができる。   On the other hand, regarding the oxygen storage amount C2max during fuel cut control, the true value A of the oxygen storage amount of the three-way catalyst and the oxygen when the air-fuel ratio of the engine 1 changes from the rich side to the lean side during fuel cut control. Using the response time Tfc, which is a parameter indicating the response of the sensor 18, it can be expressed by the following equation (3).

C2max=A+K2・Tfc …(3)
C2max:燃料カット制御中での酸素吸蔵量
A:酸素吸蔵量の真値
K2:吸気量係数
Tfc:応答時間
式(3)から分かるように、燃料カット制御中に求められた酸素吸蔵量C2maxは、三元触媒の酸素吸蔵量の真値Aに対し、式(3)の「K2・Tfc」という項の分だけずれた値となる。この真値Aに対する酸素吸蔵量C2maxの項「K2・Tfc」分のずれは、燃料カット制御中における排気中の酸素濃度の変化に対する酸素センサ18の出力信号VOの変化の応答性に起因して生じる。なお、項「K2・Tfc」における吸気量係数K2は、三元触媒の酸素吸蔵量の真値Aに対する酸素吸蔵量C2maxのずれがエンジン1の吸気量によって変わることに対応して上記項「K2・Tfc」を可変とするための値であって、エンジン1の吸気量等に基づき算出される。
C2max = A + K2 · Tfc (3)
C2max: Oxygen storage amount during fuel cut control
A: True value of oxygen storage capacity
K2: Intake amount coefficient
Tfc: Response time As can be seen from the equation (3), the oxygen storage amount C2max obtained during the fuel cut control is equal to “K2 · Tfc” in the equation (3) with respect to the true value A of the oxygen storage amount of the three-way catalyst. The value is shifted by the term "." The deviation of the oxygen storage amount C2max from the true value A by the term “K2 · Tfc” is attributed to the response of the change in the output signal VO of the oxygen sensor 18 to the change in the oxygen concentration in the exhaust during the fuel cut control. Arise. The intake air amount coefficient K2 in the term “K2 · Tfc” corresponds to the fact that the deviation of the oxygen storage amount C2max with respect to the true value A of the oxygen storage amount of the three-way catalyst changes depending on the intake amount of the engine 1. The value for making “Tfc” variable and calculated based on the intake air amount of the engine 1 and the like.

上記式(2)で用いられる応答時間Tactと、上記式(3)で用いられる応答時間Tfcとには、アクティブ空燃比制御中と燃料カット制御中とでのエンジン1の空燃比の変化幅が大きく異なること等に起因した次の式(4)で示される相関がある。なお、式(4)の「α」は、比例定数であって予め実験等により求めることの可能な固定値である。   The response time Tact used in the above equation (2) and the response time Tfc used in the above equation (3) indicate the change width of the air / fuel ratio of the engine 1 during the active air / fuel ratio control and during the fuel cut control. There is a correlation expressed by the following equation (4) due to a large difference. Note that “α” in the equation (4) is a proportional constant, which is a fixed value that can be obtained in advance through experiments or the like.

Tact=α・Tfc …(4)
Tact:応答時間
Tfc:応答時間
α:比例定数
ここで、酸素吸蔵量C1maxと酸素吸蔵量C2maxの差分「C1max−C2max」に関しては、式(2)及び式(3)を用いて、次の式「C1max−C2max=K1・Tact−K2・Tfc …(5)」のように表すことができる。そして、この式(5)の応答時間Tactに上記式(4)の右辺を代入して変形すると、応答時間Tfcを算出するための次の式「Tfc=(C1max−C2max)/(K1・α−K2) …(6)」が得られる。
Tact = α · Tfc (4)
Tact: Response time
Tfc: Response time
α: Proportional constant Here, regarding the difference “C1max−C2max” between the oxygen storage amount C1max and the oxygen storage amount C2max, the following expression “C1max−C2max = K1 · Tact” is used using Expression (2) and Expression (3). −K2 · Tfc (5) ”. When the right side of the above equation (4) is substituted into the response time Tact of the equation (5) and transformed, the following equation “Tfc = (C1max−C2max) / (K1 · α) for calculating the response time Tfc is obtained. -K2) (6) "is obtained.

本実施形態では、上記式(6)を用いて得られた応答時間Tfcに基づき、酸素センサ18の応答性に関する異常の有無が判断される。この応答時間Tfcは、式(6)から分かるように、酸素センサ18のアクティブ空燃比制御中の応答性を反映した酸素吸蔵量C1maxと、同センサ18の燃料カット制御中の応答性を反映した酸素吸蔵量C2maxとが加味される。従って、上記応答時間Tfcに基づき酸素センサ18の応答性に関する異常の有無を判断することで、その判断の結果がアクティブ空燃比制御中と燃料カット制御中といった二つの異なる状況のもとでの酸素センサ18の応答性に基づいた正確なものとなる。   In the present embodiment, the presence / absence of an abnormality related to the responsiveness of the oxygen sensor 18 is determined based on the response time Tfc obtained using the equation (6). As can be seen from the equation (6), the response time Tfc reflects the oxygen storage amount C1max reflecting the response of the oxygen sensor 18 during the active air-fuel ratio control and the response of the sensor 18 during the fuel cut control. The oxygen storage amount C2max is taken into account. Therefore, by determining whether or not there is an abnormality related to the responsiveness of the oxygen sensor 18 based on the response time Tfc, the result of the determination is oxygen under two different situations such as during active air-fuel ratio control and during fuel cut control. This is accurate based on the responsiveness of the sensor 18.

次に、三元触媒の劣化の有無の判断、及び酸素センサ18の異常の有無の判断の実行手順について、異常診断ルーチンを示す図6及び図7のフローチャートを参照して説明する。この異常診断ルーチンは、電子制御装置21を通じて、例えば所定時間毎の時間割り込みにて周期的に実行される。   Next, an execution procedure for determining whether or not the three-way catalyst has deteriorated and determining whether or not the oxygen sensor 18 has an abnormality will be described with reference to flowcharts of FIGS. 6 and 7 showing an abnormality diagnosis routine. This abnormality diagnosis routine is periodically executed through the electronic control device 21 by, for example, a time interruption every predetermined time.

同ルーチンにおいては、まずアクティブ空燃比制御中での酸素吸蔵量C1maxの算出が未完であるか否かが判断され(S101)、ここで肯定判定であれば酸素吸蔵量C1maxを算出するためのC1max算出処理(S102)が実行される。このC1max算出処理では、酸素吸蔵量C1maxの算出を目的として、アクティブ空燃比制御の実行条件が成立したときに同制御を実行する。そして、アクティブ空燃比制御において、エンジン1の空燃比が強制的にリッチとリーンとの間で切り換えられる際、上記酸素吸蔵量C1maxが算出されることとなる。   In this routine, it is first determined whether or not the calculation of the oxygen storage amount C1max during the active air-fuel ratio control is incomplete (S101). If the determination is affirmative, C1max for calculating the oxygen storage amount C1max is determined. A calculation process (S102) is executed. In the C1max calculation process, for the purpose of calculating the oxygen storage amount C1max, the same control is executed when the execution condition of the active air-fuel ratio control is satisfied. In the active air-fuel ratio control, when the air-fuel ratio of the engine 1 is forcibly switched between rich and lean, the oxygen storage amount C1max is calculated.

同ルーチンにおいては、燃料カット制御中での酸素吸蔵量C2maxの算出が未完であるか否かの判断も行われ(S103)、ここで肯定判定であれば酸素吸蔵量C2maxを算出するためのC2max算出処理(S104)が実行される。このC2max算出処理では、燃料カット制御においてエンジン1の燃料噴射が停止されて同エンジン1の空燃比がリッチ側からリーン側に変化する際、上記酸素吸蔵量C2maxが算出されることとなる。   In this routine, it is also determined whether or not the calculation of the oxygen storage amount C2max during the fuel cut control is incomplete (S103). If the determination is affirmative, C2max for calculating the oxygen storage amount C2max is determined. A calculation process (S104) is executed. In the C2max calculation process, when the fuel injection of the engine 1 is stopped and the air-fuel ratio of the engine 1 changes from the rich side to the lean side in the fuel cut control, the oxygen storage amount C2max is calculated.

そして、酸素吸蔵量C1maxと酸素吸蔵量C2maxとの両方の算出が完了すると(S105:YES)、式(6)を用いて燃料カット制御中の酸素センサ18の応答性を表すパラメータである応答時間Tfcが算出される(S106)。詳しくは、上記算出の完了した酸素吸蔵量C1max,C2maxと、それら酸素吸蔵量C1max,C2maxを算出する際のエンジン1の吸気量等に基づき求められた吸気量係数K1,K2とに基づき、式(6)を用いて上記応答時間Tfcが算出される。続いて、算出された応答時間Tfcが予め定められた閾値以上であるか否かが判断される(S107:図7)。ここで肯定判定であれば、酸素センサ18の応答性に関する異常ありの旨判断される(S108)。一方、否定判定であれば、酸素センサ18の応答性に関する異常なし(正常)の旨判断される(S109)。   When the calculation of both the oxygen storage amount C1max and the oxygen storage amount C2max is completed (S105: YES), the response time is a parameter representing the responsiveness of the oxygen sensor 18 during fuel cut control using the equation (6). Tfc is calculated (S106). Specifically, based on the calculated oxygen storage amounts C1max and C2max and the intake air amount coefficients K1 and K2 obtained based on the intake air amount of the engine 1 when calculating the oxygen storage amounts C1max and C2max, the equation The response time Tfc is calculated using (6). Subsequently, it is determined whether or not the calculated response time Tfc is equal to or greater than a predetermined threshold (S107: FIG. 7). If the determination is affirmative, it is determined that there is an abnormality related to the responsiveness of the oxygen sensor 18 (S108). On the other hand, if the determination is negative, it is determined that there is no abnormality (normal) regarding the responsiveness of the oxygen sensor 18 (S109).

その後、酸素吸蔵量C1maxと酸素吸蔵量C2maxとのうち、上記応答時間Tfcに対応した方の酸素吸蔵量C2maxに対し、同応答時間Tfcに基づく補正が加えられる(S110)。具体的には、応答時間Tfcに対し上記吸気量係数K2を乗算して得られる項「K2・Tfc」の分だけ酸素吸蔵量C2maxが減量補正される。なお、こうした補正後の酸素吸蔵量のことを以下では補正後酸素吸蔵量Aと称する。上記式(3)から分かるように、上記酸素吸蔵量C2maxから項「K2・Tfc」を減算した値は、三元触媒における酸素吸蔵量の真値Aということになる。従って、上記補正後酸素吸蔵量Aは式(3)の真値Aと等しくなる。言い換えれば、上記補正後酸素吸蔵量Aは、酸素吸蔵量C2maxから酸素センサ18の応答性による影響を除去した値となる。   Thereafter, a correction based on the response time Tfc is applied to the oxygen storage amount C2max corresponding to the response time Tfc of the oxygen storage amount C1max and the oxygen storage amount C2max (S110). Specifically, the oxygen storage amount C2max is corrected to decrease by the amount of the term “K2 · Tfc” obtained by multiplying the response time Tfc by the intake air amount coefficient K2. The corrected oxygen storage amount is hereinafter referred to as a corrected oxygen storage amount A. As can be seen from the above equation (3), the value obtained by subtracting the term “K2 · Tfc” from the oxygen storage amount C2max is the true value A of the oxygen storage amount in the three-way catalyst. Therefore, the corrected oxygen storage amount A is equal to the true value A of the equation (3). In other words, the corrected oxygen storage amount A is a value obtained by removing the influence of the responsiveness of the oxygen sensor 18 from the oxygen storage amount C2max.

そして、この補正後酸素吸蔵量Aを用いて、三元触媒の劣化の有無が判断されることとなる。詳しくは、補正後酸素吸蔵量Aが予め定められた閾値未満であるか否かが判断される(S111)。ここで肯定判定であれば、三元触媒の劣化あり(異常)の旨判断される(S112)。一方、否定判定であれば、三元触媒の劣化なし(正常)の旨判断される(S113)。   Then, using this corrected oxygen storage amount A, it is determined whether or not the three-way catalyst has deteriorated. Specifically, it is determined whether or not the corrected oxygen storage amount A is less than a predetermined threshold value (S111). If the determination is affirmative, it is determined that the three-way catalyst has deteriorated (abnormal) (S112). On the other hand, if the determination is negative, it is determined that the three-way catalyst has not deteriorated (normal) (S113).

以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)三元触媒の劣化の有無の判断及び酸素センサ18の異常の有無の判断を行うに当たり、その酸素センサ18の異常の有無を正確に判断しようとする場合に、それらの判断のためにアクティブ空燃比制御や燃料カット制御を行って取得すべきパラメータを、酸素吸蔵量C1maxと酸素吸蔵量C2maxとの二つに抑えることができる。このため、それらパラメータの取得に時間がかかるようになることを抑制でき、ひいては三元触媒の劣化の有無の判断及び酸素センサ18の異常の有無の判断を完了するために多大な時間がかかることを抑制できるようになる。
According to the embodiment described in detail above, the following effects can be obtained.
(1) When determining whether or not the three-way catalyst has deteriorated and determining whether or not the oxygen sensor 18 has an abnormality, in order to accurately determine whether or not the oxygen sensor 18 has an abnormality, The parameters to be acquired by performing active air-fuel ratio control and fuel cut control can be suppressed to two of the oxygen storage amount C1max and the oxygen storage amount C2max. For this reason, it can suppress that it takes time to acquire these parameters, and therefore it takes a lot of time to complete the determination of the presence or absence of the deterioration of the three-way catalyst and the determination of the presence or absence of abnormality of the oxygen sensor 18 Can be suppressed.

(2)酸素センサ18の応答性を表すパラメータとして、燃料カット制御によりエンジン1の空燃比がリッチ側からリーン側に変化する際における酸素センサ18からの出力信号VOの単位量当たりの変化に要する応答時間Tfcが求められる。そして、このように求められた応答時間Tfcが閾値以上であるときには、酸素センサ18が異常である旨判断される。また、上記応答時間Tfcが閾値未満であるときには、酸素センサ18が正常である旨判断される。以上により、酸素センサ18の応答性に関する異常の有無を的確に判断することができる。   (2) A parameter representing the responsiveness of the oxygen sensor 18 is required for a change per unit amount of the output signal VO from the oxygen sensor 18 when the air-fuel ratio of the engine 1 changes from the rich side to the lean side by fuel cut control. Response time Tfc is determined. When the response time Tfc thus obtained is equal to or greater than the threshold value, it is determined that the oxygen sensor 18 is abnormal. When the response time Tfc is less than the threshold value, it is determined that the oxygen sensor 18 is normal. From the above, it is possible to accurately determine whether there is an abnormality related to the responsiveness of the oxygen sensor 18.

(3)三元触媒の劣化の有無を判断する際には、求められた各酸素吸蔵量C1max,C2maxのうち、式(6)で求められた応答時間Tfcに対応した方の酸素吸蔵量C2maxに対し同応答性に基づく補正が加えられる。そして、この補正後の酸素吸蔵量(補正後酸素吸蔵量A)に基づき三元触媒の劣化の有無が判断される。ここで、酸素吸蔵量C2maxに関しては、酸素センサ18の応答性が低下するほど、エンジン1の空燃比がリッチ側からリーン側に変化する際、その変化に対応した酸素センサ18の出力信号VOの変化が遅れて上記酸素吸蔵量C2maxを算出するための期間が長くなるため、適正値(真値A)に対し増大傾向を示すようになる。従って、仮に上述したように酸素センサ18の応答性の影響を受けた酸素吸蔵量C2maxに基づき三元触媒の劣化の有無を判断したとすると、その判断の結果が不正確なものとなるおそれがある。しかし、三元触媒の劣化の有無の判断は、酸素センサ18の応答性(正確には応答時間Tfc)に応じて補正した後の酸素吸蔵量(補正後酸素吸蔵量A)に基づきなされるため、その判断の結果が上述したように不正確なものとなることは抑制される。   (3) When determining whether or not the three-way catalyst has deteriorated, of the obtained oxygen storage amounts C1max and C2max, the oxygen storage amount C2max that corresponds to the response time Tfc obtained by the equation (6) Is corrected based on the responsiveness. Based on the corrected oxygen storage amount (corrected oxygen storage amount A), it is determined whether or not the three-way catalyst has deteriorated. Here, regarding the oxygen storage amount C2max, when the air-fuel ratio of the engine 1 changes from the rich side to the lean side as the responsiveness of the oxygen sensor 18 decreases, the output signal VO of the oxygen sensor 18 corresponding to the change changes. The period for calculating the oxygen storage amount C2max is delayed with a delay in the change, and therefore shows an increasing tendency with respect to the appropriate value (true value A). Therefore, if it is determined whether or not the three-way catalyst has deteriorated based on the oxygen storage amount C2max affected by the responsiveness of the oxygen sensor 18 as described above, the determination result may be inaccurate. is there. However, the determination of whether or not the three-way catalyst has deteriorated is made based on the oxygen storage amount (corrected oxygen storage amount A) corrected according to the response of the oxygen sensor 18 (more precisely, the response time Tfc). , It is suppressed that the result of the determination becomes inaccurate as described above.

なお、上記実施形態は、例えば以下のように変更することもできる。
・応答時間Tfcに代えて応答時間Tactを酸素センサ18の応答性を表すパラメータとして求め、その求められた応答時間Tactに基づき酸素センサ18の応答性に関する異常の有無を判断するようにしてもよい。
In addition, the said embodiment can also be changed as follows, for example.
The response time Tact may be obtained as a parameter representing the responsiveness of the oxygen sensor 18 instead of the response time Tfc, and the presence / absence of an abnormality related to the responsiveness of the oxygen sensor 18 may be determined based on the obtained response time Tact. .

この場合、酸素吸蔵量C1max、酸素吸蔵量C2max、及び、アクティブ空燃比制御中と燃料カット制御中とでの酸素センサ18の応答性の相関に基づき上記応答時間Tactが求められる。具体的には、上記応答時間Tactが、次の式「Tact=(C1max−C2max)/(K1−(K2/α)) …(7)」を用いて算出される。この式(7)は、上記式(5)の応答時間Tfcに上記式(4)を変形した次の式「Tfc=(1/α)・Tact」の右辺を代入し、その後に上記式(7)のように変形することによって得られるものである。   In this case, the response time Tact is obtained based on the correlation between the oxygen storage amount C1max, the oxygen storage amount C2max, and the responsiveness of the oxygen sensor 18 during active air-fuel ratio control and fuel cut control. Specifically, the response time Tact is calculated using the following equation: “Tact = (C1max−C2max) / (K1− (K2 / α)) (7)”. In this equation (7), the right side of the following equation “Tfc = (1 / α) · Tact” obtained by modifying the equation (4) is substituted into the response time Tfc of the equation (5), and then the equation (7) It is obtained by deforming as in 7).

式(7)によって算出された応答時間Tactに基づく酸素センサ18の異常の有無の判断については、その応答時間Tactと予め定められた閾値との比較に基づいて行われることとなる。すなわち、算出された応答時間Tactが上記閾値以上であることに基づき酸素センサ18の異常ありの旨判断される一方、上記応答時間Tactが上記閾値未満であることに基づき酸素センサ18の異常なし(正常)の旨判断される。   The determination of the presence / absence of abnormality of the oxygen sensor 18 based on the response time Tact calculated by the equation (7) is performed based on a comparison between the response time Tact and a predetermined threshold value. That is, it is determined that there is an abnormality in the oxygen sensor 18 based on the calculated response time Tact being equal to or greater than the threshold value, while there is no abnormality in the oxygen sensor 18 based on the response time Tact being less than the threshold value ( Normal).

なお、ここで用いられる閾値は、上記実施形態の異常診断ルーチンのS107(図7)で用いられる閾値よりも大きい値とされる。これは、アクティブ空燃比制御中のエンジン1の空燃比の変化が燃料カット制御中でのエンジン1の空燃比の変化よりも小さく、その影響を受けて応答時間Tactが応答時間Tfcよりも大きくなる傾向があるためである。   Note that the threshold used here is larger than the threshold used in S107 (FIG. 7) of the abnormality diagnosis routine of the above embodiment. This is because the change in the air-fuel ratio of the engine 1 during the active air-fuel ratio control is smaller than the change in the air-fuel ratio of the engine 1 during the fuel cut control, and the response time Tact becomes longer than the response time Tfc under the influence. This is because there is a tendency.

・上述したように応答時間Tactを酸素センサ18の応答性を表すパラメータとして求める場合には、三元触媒の劣化の有無を判断するための酸素吸蔵量として上記応答時間Tactに対応した酸素吸蔵量C1maxを用いることが好ましい。具体的には、応答時間Tactに対し上記吸気量係数K1を乗算して得られる項「K1・Tact」の分だけ酸素吸蔵量C1maxを減量補正して補正後酸素吸蔵量A(=真値A)を算出し、その算出された補正後酸素吸蔵量Aに基づき触媒の劣化の有無を判断する。   As described above, when the response time Tact is obtained as a parameter representing the responsiveness of the oxygen sensor 18, the oxygen storage amount corresponding to the response time Tact is used as an oxygen storage amount for determining whether or not the three-way catalyst has deteriorated. It is preferable to use C1max. Specifically, the oxygen storage amount C1max is reduced and corrected by the amount of the term “K1 · Tact” obtained by multiplying the response time Tact by the intake air amount coefficient K1, and the corrected oxygen storage amount A (= true value A ) And the presence or absence of deterioration of the catalyst is determined based on the calculated corrected oxygen storage amount A.

・補正後酸素吸蔵量Aに基づき触媒の劣化の有無を判断する代わりに、酸素吸蔵量C1maxと酸素吸蔵量C2maxとの一方もしくは両方に基づき判断してもよい。
・触媒下流センサとして酸素センサ18の代わりに空燃比センサを設けてもよい。
Instead of determining whether the catalyst has deteriorated based on the corrected oxygen storage amount A, the determination may be based on one or both of the oxygen storage amount C1max and the oxygen storage amount C2max.
An air-fuel ratio sensor may be provided instead of the oxygen sensor 18 as a catalyst downstream sensor.

・触媒上流センサとして空燃比センサ17の代わりに酸素センサを設けてもよい。   An oxygen sensor may be provided as a catalyst upstream sensor instead of the air-fuel ratio sensor 17.

1…エンジン、2…燃焼室、3…吸気通路、4…燃料噴射弁、5…点火プラグ、6…ピストン、7…クランクシャフト、8…排気通路、13…スロットルバルブ、16…触媒コンバータ、17…空燃比センサ、18…酸素センサ、21…電子制御装置(第1算出手段、第2算出手段、判断手段)、27…アクセルペダル、28…アクセルポジションセンサ、30…スロットルポジションセンサ、32…エアフローメータ、33…吸気圧センサ、34…クランクポジションセンサ。   DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Combustion chamber, 3 ... Intake passage, 4 ... Fuel injection valve, 5 ... Spark plug, 6 ... Piston, 7 ... Crankshaft, 8 ... Exhaust passage, 13 ... Throttle valve, 16 ... Catalytic converter, 17 ... Air-fuel ratio sensor, 18 ... Oxygen sensor, 21 ... Electronic control device (first calculation means, second calculation means, judgment means), 27 ... Accelerator pedal, 28 ... Accelerator position sensor, 30 ... Throttle position sensor, 32 ... Air flow Meter, 33 ... intake pressure sensor, 34 ... crank position sensor.

Claims (3)

排気通路に設けられた排気浄化用の触媒と、その排気通路における触媒の上流に設けられて排気中の酸素濃度に基づく信号を出力する触媒上流センサと、前記排気通路における前記触媒の下流に設けられて排気中の酸素濃度に基づく信号を出力する触媒下流センサとを備える内燃機関に適用され、前記触媒の酸素吸蔵量に基づき同触媒の劣化の有無を判断するとともに、前記触媒下流センサの応答性に基づき同センサの異常の有無を判断する異常診断装置において、
内燃機関の空燃比がリッチとリーンとの間で変化するとき、前記触媒上流センサの信号に前記空燃比の変化に対応する変化が生じてから、前記触媒下流センサの信号に前記空燃比の変化に対応する変化が生じるまでの期間中に、前記触媒に吸蔵される酸素の量もしくは同触媒から脱離される酸素の量を算出し、その酸素の量を前記触媒の酸素吸蔵量とする第1算出手段と、
内燃機関の空燃比を強制的にリッチとリーンとの間で変化させるアクティブ空燃比制御中に前記第1算出手段によって求められた酸素吸蔵量、内燃機関での燃料噴射を停止させる燃料カット制御における燃料噴射の停止時であって同機関の空燃比がリーン側に変化するときに前記第1算出手段によって求められた酸素吸蔵量、及び、前記アクティブ空燃比制御中と前記燃料カット制御中とでの前記触媒下流センサの応答性の相関に基づき、前記アクティブ空燃比制御中と前記燃料カット制御中とのいずれかの状況下での前記触媒下流センサの応答性を求める第2算出手段と、
前記第1算出手段によって求められた酸素吸蔵量のうちの少なくとも一つに基づき前記触媒の劣化の有無を判断するとともに、前記第2算出手段によって求められた触媒下流センサの応答性に基づき同センサの異常の有無を判断する判断手段と、
を備えることを特徴とする異常診断装置。
An exhaust purification catalyst provided in the exhaust passage, a catalyst upstream sensor provided upstream of the catalyst in the exhaust passage and outputting a signal based on the oxygen concentration in the exhaust, and provided downstream of the catalyst in the exhaust passage Applied to an internal combustion engine including a catalyst downstream sensor that outputs a signal based on the oxygen concentration in the exhaust gas, and determines whether or not the catalyst has deteriorated based on the oxygen storage amount of the catalyst, and the response of the catalyst downstream sensor In the abnormality diagnosis device that determines the presence or absence of abnormality of the sensor based on
When the air-fuel ratio of the internal combustion engine changes between rich and lean, a change corresponding to the change in the air-fuel ratio occurs in the signal of the catalyst upstream sensor, and then the change in the air-fuel ratio in the signal of the catalyst downstream sensor The amount of oxygen occluded in the catalyst or the amount of oxygen desorbed from the catalyst is calculated during a period until the change corresponding to the first occurs, and the amount of oxygen is defined as the oxygen occlusion amount of the catalyst. A calculation means;
In the fuel cut control for stopping the fuel injection in the internal combustion engine, the oxygen storage amount obtained by the first calculation means during the active air fuel ratio control for forcibly changing the air fuel ratio of the internal combustion engine between rich and lean The oxygen storage amount obtained by the first calculation means when the fuel injection is stopped and the air-fuel ratio of the engine changes to the lean side, and during the active air-fuel ratio control and during the fuel cut control A second calculating means for determining the response of the catalyst downstream sensor under any of the active air-fuel ratio control and the fuel cut control based on the correlation of the response of the catalyst downstream sensor.
The presence / absence of deterioration of the catalyst is determined based on at least one of the oxygen storage amounts determined by the first calculating means, and the sensor is determined based on the responsiveness of the catalyst downstream sensor determined by the second calculating means. A determination means for determining whether or not there is an abnormality,
An abnormality diagnosis apparatus comprising:
前記触媒下流センサの応答性は、前記アクティブ空燃比制御もしくは前記燃料カット制御により内燃機関の空燃比が変化する際における前記触媒下流センサから出力される信号の単位量当たりの変化に要する応答時間によって表されるものであり、
前記判断手段は、前記第2算出手段によって求められた前記応答時間が定められた閾値以上であるときに前記触媒下流センサが異常である旨判断する一方、前記応答時間が前記閾値未満であるときに前記触媒下流センサが正常である旨判断する
請求項1記載の異常診断装置。
The response of the catalyst downstream sensor depends on the response time required for a change per unit amount of the signal output from the catalyst downstream sensor when the air-fuel ratio of the internal combustion engine changes by the active air-fuel ratio control or the fuel cut control. Is represented,
The determination unit determines that the catalyst downstream sensor is abnormal when the response time obtained by the second calculation unit is equal to or greater than a predetermined threshold value, and when the response time is less than the threshold value. The abnormality diagnosis device according to claim 1, wherein it is determined that the catalyst downstream sensor is normal.
前記判断手段は、前記第1算出手段によって求められた各酸素吸蔵量のうち、前記第2算出手段によって求められた触媒下流センサの応答性に対応した方の酸素吸蔵量に対し同応答性に基づく補正を加え、その補正後の酸素吸蔵量に基づき前記触媒の劣化の有無を判断する
請求項1記載の異常診断装置。
The determination means has the same responsiveness to the oxygen storage amount corresponding to the responsiveness of the catalyst downstream sensor determined by the second calculation means among the oxygen storage amounts determined by the first calculation means. The abnormality diagnosis apparatus according to claim 1, wherein a correction based on the correction is made, and the presence or absence of deterioration of the catalyst is determined based on the oxygen storage amount after the correction.
JP2010066414A 2010-03-23 2010-03-23 Abnormality diagnosis device Expired - Fee Related JP5407971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010066414A JP5407971B2 (en) 2010-03-23 2010-03-23 Abnormality diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066414A JP5407971B2 (en) 2010-03-23 2010-03-23 Abnormality diagnosis device

Publications (2)

Publication Number Publication Date
JP2011196317A JP2011196317A (en) 2011-10-06
JP5407971B2 true JP5407971B2 (en) 2014-02-05

Family

ID=44874838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066414A Expired - Fee Related JP5407971B2 (en) 2010-03-23 2010-03-23 Abnormality diagnosis device

Country Status (1)

Country Link
JP (1) JP5407971B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748180B2 (en) * 2012-02-10 2015-07-15 株式会社デンソー Catalyst deterioration diagnosis device
JP6237460B2 (en) 2013-09-26 2017-11-29 トヨタ自動車株式会社 Abnormality diagnosis device for internal combustion engine
JP2021116730A (en) * 2020-01-24 2021-08-10 トヨタ自動車株式会社 Abnormality diagnostic device for downstream side air-fuel ratio detection device
JP7299862B2 (en) 2020-07-13 2023-06-28 日立Astemo株式会社 Control device for internal combustion engine
CN114215632B (en) * 2021-12-16 2022-11-29 潍柴动力股份有限公司 Three-way catalytic converter cheating diagnosis method and related device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3195034B2 (en) * 1992-03-16 2001-08-06 マツダ株式会社 Engine exhaust sensor deterioration detection device
JP3189381B2 (en) * 1992-04-30 2001-07-16 スズキ株式会社 Air-fuel ratio control device for internal combustion engine
JPH08100635A (en) * 1994-09-30 1996-04-16 Mitsubishi Motors Corp Catalyst deterioration detection device for internal combustion engine
JP3988073B2 (en) * 2002-02-20 2007-10-10 株式会社デンソー Abnormality diagnosis device for exhaust gas sensor
JP2008031901A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Catalyst degradation detecting apparatus of internal-combustion engine
JP4403156B2 (en) * 2006-08-09 2010-01-20 株式会社日立製作所 Oxygen sensor diagnostic device for internal combustion engine

Also Published As

Publication number Publication date
JP2011196317A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5024405B2 (en) Catalyst degradation detector
JP5282844B2 (en) Catalyst degradation detector
JP5062307B2 (en) Catalyst degradation detector
JP4687681B2 (en) Catalyst deterioration determination device for internal combustion engine
US6539707B2 (en) Exhaust emission control system for internal combustion engine
JP2008267231A (en) Control device of internal combustion engine
JP5515967B2 (en) Diagnostic equipment
JP3887903B2 (en) Air-fuel ratio control device for internal combustion engine
WO2011128983A1 (en) Device for purifying exhaust gas of internal combustion engine
JP5407971B2 (en) Abnormality diagnosis device
JP4218601B2 (en) Air-fuel ratio sensor deterioration judgment system for compression ignition internal combustion engine
JP2010007561A (en) Air-fuel ratio control device and air-fuel ratio control method
US8240195B2 (en) Abnormality detection apparatus and abnormality detection method for air/fuel ratio sensor
JP5332708B2 (en) Diagnostic device for exhaust sensor for internal combustion engine
JP4353070B2 (en) Air-fuel ratio control device for internal combustion engine
US10458355B2 (en) Engine control device and engine control method
JP4190430B2 (en) Oxygen sensor abnormality diagnosis device
JP2006257904A (en) Catalyst deterioration judging device of internal combustion engine
JP4274062B2 (en) Oxygen sensor abnormality diagnosis device
JP4525196B2 (en) Air-fuel ratio sensor abnormality detection device
JP2010084671A (en) Air-fuel ratio control device of internal combustion engine
JP5195483B2 (en) Exhaust sensor diagnostic device
JP2004176612A (en) Exhaust emission control device for internal combustion engine
JP2013044229A (en) Method of determining deterioration of catalyst of internal combustion engine
JP2007198288A (en) Air-fuel ratio controller of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R151 Written notification of patent or utility model registration

Ref document number: 5407971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees