JP5407153B2 - Single-chamber vacuum heat treatment furnace - Google Patents

Single-chamber vacuum heat treatment furnace Download PDF

Info

Publication number
JP5407153B2
JP5407153B2 JP2008062557A JP2008062557A JP5407153B2 JP 5407153 B2 JP5407153 B2 JP 5407153B2 JP 2008062557 A JP2008062557 A JP 2008062557A JP 2008062557 A JP2008062557 A JP 2008062557A JP 5407153 B2 JP5407153 B2 JP 5407153B2
Authority
JP
Japan
Prior art keywords
refrigerant
furnace
cooling
heat treatment
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008062557A
Other languages
Japanese (ja)
Other versions
JP2009216344A (en
Inventor
和彦 勝俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008062557A priority Critical patent/JP5407153B2/en
Priority to CN200980108462.2A priority patent/CN101970696B/en
Priority to KR1020107021666A priority patent/KR101236451B1/en
Priority to PCT/JP2009/054782 priority patent/WO2009113621A1/en
Publication of JP2009216344A publication Critical patent/JP2009216344A/en
Application granted granted Critical
Publication of JP5407153B2 publication Critical patent/JP5407153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein

Description

この発明は、金属製品について例えば焼入れ等の熱処理を行う際に用いられる単室型真空熱処理炉及び単室型真空熱処理炉における被処理品の酸化防止方法に関するものである。   The present invention relates to a single-chamber vacuum heat treatment furnace used when performing heat treatment such as quenching on a metal product, and a method for preventing oxidation of an object to be processed in the single-chamber vacuum heat treatment furnace.

従来、この種の装置として、炉本体の開口部から該炉本体内に被処理品を装入設置し、前記開口部を閉塞したのち該炉本体内を真空引きすると共に、前記炉本体の炉壁に設けられた冷却ジャケット内に冷媒を供給して該炉壁を冷却し、前記被処理品を加熱してこれを加熱処理した後、前記炉本体内にガスを導入すると共に該冷却ガスを冷却して該被処理品を冷却し、その後前記開口部を開口させて前記被処理品を新たな被処理品に交換して順次被処理品の熱処理を行うものが知られている。   Conventionally, as an apparatus of this type, an article to be processed is inserted and installed in an opening of the furnace body from the opening of the furnace body, and after closing the opening, the inside of the furnace body is evacuated and the furnace of the furnace body A coolant is supplied into a cooling jacket provided on the wall to cool the furnace wall, the article to be processed is heated and heat-treated, and then gas is introduced into the furnace body and the cooling gas is supplied. It is known that the article to be treated is cooled to cool the article to be processed, and then the opening is opened to replace the article to be treated with a new article to be treated and sequentially heat-treat the article to be treated.

このような装置は、被処理品の加熱処理中に炉壁が高温となって作業環境が悪化すること及び炉壁が劣化することを防止するために、炉壁に冷却ジャケットを設けてこの炉壁を冷却するものである。   Such an apparatus is provided with a cooling jacket provided on the furnace wall in order to prevent the furnace wall from becoming high temperature during the heat treatment of the workpiece and the work environment from deteriorating and the furnace wall from deteriorating. The wall is cooled.

ところで、このような単室型真空熱処理では、真空熱処理後に炉扉を開いて被処理品を外部へ取り出す際に、冷却処理によって炉本体の内表面温度が外気温度より低いと、炉内に流入した外気中の水分が炉本体の内表面に結露する。そして、この状態で新たな被処理品を炉内に装入して加熱すると、真空熱処理中に結露した水滴が除々に気化して水蒸気となり、これが被処理品の表面を酸化して着色する。   By the way, in such a single chamber type vacuum heat treatment, when the furnace door is opened after the vacuum heat treatment and the article to be treated is taken out to the outside, if the inner surface temperature of the furnace body is lower than the outside air temperature due to the cooling treatment, it flows into the furnace. Moisture in the outside air has condensed on the inner surface of the furnace body. Then, when a new article to be treated is placed in the furnace and heated in this state, water droplets condensed during the vacuum heat treatment gradually vaporize to become water vapor, which oxidizes and colors the surface of the article to be treated.

下記特許文献1には、被処理品の真空熱処理の真空熱処理の前工程及び/又は後工程として、炉扉を閉じたままで炉内に冷却ガスを循環させると共にこの冷却ガスを炉内に設けられた加熱装置で加熱し、炉内全体を水分の蒸発温度よりも十分高く被処理品が酸化・着色しない温度まで加熱して、炉本体の内表面への結露を防ぐことにより、被処理品への酸化及び着色を防止する方法が開示されている。
特開2006−10097号公報
In Patent Document 1 below, as a pre-process and / or a post-process of vacuum heat treatment of the vacuum heat treatment of the article to be processed, the cooling gas is circulated in the furnace with the furnace door closed, and this cooling gas is provided in the furnace. To the product to be processed by preventing the condensation on the inner surface of the furnace body by heating the entire interior of the furnace to a temperature that is sufficiently higher than the evaporation temperature of moisture and preventing the product from being oxidized and colored. A method for preventing oxidation and coloration of the resin is disclosed.
JP 2006-10097 A

しかしながら、従来の技術では、炉本体の炉壁に設けられた冷却ジャケット内に冷媒が供給されているので、加熱した冷却ガスを循環させても炉本体の内表面の昇温に相当時間を要する。そのため、次の被処理品の処理を開始するまで待つ必要が生じ、結果として被処理品の処理効率が悪くなるという問題がある。   However, in the conventional technique, since the refrigerant is supplied into the cooling jacket provided on the furnace wall of the furnace body, it takes a considerable time to raise the temperature of the inner surface of the furnace body even if the heated cooling gas is circulated. . Therefore, it is necessary to wait until processing of the next processed product is started, and as a result, there is a problem that processing efficiency of the processed product is deteriorated.

この発明は、このような事情を考慮してなされたもので、その目的は、短時間で効果的に結露を防止し、作業効率を向上させて良好な被処理品を得ることができる単室型真空熱処理炉及び単室型真空熱処理炉における被処理品の酸化防止方法を提供することにある。   The present invention has been made in consideration of such circumstances, and its purpose is to effectively prevent condensation in a short time and improve work efficiency to obtain a good product to be processed. An object of the present invention is to provide a method for preventing oxidation of articles to be processed in a mold vacuum heat treatment furnace and a single chamber vacuum heat treatment furnace.

上記目的を達成するために、この発明は以下の手段を提案している。
すなわち、本発明は、単室型真空熱処理炉に係る第一の解決手段として、炉壁に冷却ジャケットが設けられ、該炉壁により内部に被処理品の処理空間が形成された炉本体と、前記炉本体内に設置された被処理品を加熱する加熱装置と、前記処理空間内に冷却ガスを供給する冷却ガス供給装置と、前記処理空間内に設置された熱交換器により前記冷却ガスを介して前記被処理品を冷却する第一の冷媒循環系と、前記処理空間内を減圧する減圧装置と、前記冷却ジャケットに冷媒を供給する第二の冷媒循環系とを備えた単室型真空熱処理炉において、前記第二の冷媒循環系は、前記冷媒を加熱する冷媒加熱部を備えている、という手段を採用する。
In order to achieve the above object, the present invention proposes the following means.
That is, the present invention provides a furnace body in which a cooling jacket is provided on a furnace wall, and a processing space for an object to be processed is formed inside the furnace wall, as a first solution for a single-chamber vacuum heat treatment furnace, The cooling gas is supplied by a heating device that heats an article to be processed installed in the furnace body, a cooling gas supply device that supplies cooling gas into the processing space, and a heat exchanger that is installed in the processing space. A single-chamber vacuum comprising: a first refrigerant circulation system that cools the article to be processed; a decompression device that depressurizes the processing space; and a second refrigerant circulation system that supplies refrigerant to the cooling jacket. In the heat treatment furnace, a means is adopted in which the second refrigerant circulation system includes a refrigerant heating unit that heats the refrigerant.

単室型真空熱処理炉に係る第二の解決手段として、上記単室型真空熱処理炉の第一の解決手段において、前記第二の冷媒循環系が、前記冷却ジャケットに供給する冷媒を冷却する冷媒冷却部と、前記冷媒加熱部とを備えて構成され、前記冷媒の温度を計測するセンサと、該センサの出力信号に基づいて前記冷媒加熱部及び前記冷媒冷却部を制御する制御装置と、を備えてなる、という手段を採用する。   As a second solving means related to the single-chamber vacuum heat treatment furnace, in the first solving means of the single-chamber vacuum heat treatment furnace, the second refrigerant circulation system cools the refrigerant supplied to the cooling jacket. A sensor configured to include a cooling unit and the refrigerant heating unit; and a sensor that measures the temperature of the refrigerant; and a control device that controls the refrigerant heating unit and the refrigerant cooling unit based on an output signal of the sensor; Use the means of providing.

単室型真空熱処理炉に係る第三の解決手段として、上記単室型真空熱処理炉の第二の解決手段において、前記炉本体が、その内部に前記被処理品を搬入・搬出する開口部を具備すると共に、該開口部を開閉する炉扉と、該炉扉による前記開口部の閉塞解除を行うロック機構とを備え、前記制御装置は、前記被処理品の冷却中に前記炉扉を閉塞すると共に冷却後に前記冷媒の温度を炉外周囲の気温以上、かつ、所定の時間で保持した場合に解除するロック機構制御部を備えている、という手段を採用する。   As a third means for solving the single-chamber vacuum heat treatment furnace, in the second solution means for the single-chamber vacuum heat treatment furnace, the furnace body has an opening for carrying in / out the article to be processed therein. A furnace door that opens and closes the opening, and a lock mechanism that releases the closure of the opening by the furnace door, and the control device closes the furnace door during cooling of the workpiece. In addition, a means is adopted in which a lock mechanism control unit is provided that is released when the temperature of the refrigerant is maintained at a temperature equal to or higher than the ambient temperature outside the furnace for a predetermined time after cooling.

単室型真空熱処理炉における被処理品の酸化防止方法の第一の解決手段として、炉本体の開口部から該炉本体内に被処理品を装入かつ設置し、前記開口部を閉塞したのち該炉本体内を真空引きすると共に、前記炉本体の炉壁に設けられた冷却ジャケット内に冷媒を供給して該炉壁を冷却し、前記被処理品を加熱してこれを加熱処理した後、前記炉本体内に冷却ガスを導入すると共に該冷却ガスを冷却して前記被処理品を冷却し、その後前記開口部を開口させて前記被処理品を新たな被処理品に交換して順次被処理品の熱処理を行う単室型真空熱処理炉における被処理品の酸化防止方法であって、前記被処理品の冷却後に前記冷媒を加熱して前記炉壁を昇温させることにより新たな被処理品の加熱処理時における水蒸気の発生を防止して該被処理品の酸化を防止する、という手段を採用する。   As a first solution of the method for preventing oxidation of the article to be processed in the single-chamber vacuum heat treatment furnace, the article to be treated is inserted and installed in the furnace body from the opening of the furnace body, and the opening is closed. After evacuating the inside of the furnace body, supplying a refrigerant into a cooling jacket provided on the furnace wall of the furnace body to cool the furnace wall, heating the article to be processed, and heating the article The cooling gas is introduced into the furnace body and the cooling gas is cooled to cool the article to be processed, and then the opening is opened to replace the article to be processed with a new article to be processed sequentially. A method for preventing oxidation of an object to be processed in a single-chamber vacuum heat treatment furnace for performing heat treatment of the object to be processed, wherein after the object to be processed is cooled, the refrigerant is heated to raise the temperature of the furnace wall to thereby increase the temperature of the object to be processed. Preventing generation of water vapor during heat treatment of the treated product To prevent oxidation of the goods, to adopt the means of.

単室型真空熱処理炉における被処理品の酸化防止方法の第二の解決手段として、上記単室型真空熱処理炉における被処理品の酸化防止方法の第一の解決手段において、前記冷媒の温度を炉外周囲の気温以上、かつ、所定の時間保持して、前記被処理品を装入及び/又は抽出する、という手段を採用する。
単室型真空熱処理炉における被処理品の酸化防止方法の第三の解決手段として、上記単室型真空熱処理炉における被処理品の酸化防止方法の第二の解決手段において、前記冷媒の温度が炉外周囲の気温以上、かつ、所定の時間保持されるまでは、前記炉本体の炉扉を閉じておく、という手段を採用する。
In the first solution of the method for preventing oxidation of the article to be processed in the single chamber vacuum heat treatment furnace, as the second means for solving the oxidation of the article to be processed in the single chamber vacuum heat treatment furnace, the temperature of the refrigerant is set. A means of charging and / or extracting the article to be processed while maintaining a temperature higher than the ambient temperature outside the furnace and for a predetermined time is employed.
As a third solution of the method for preventing oxidation of the article to be processed in the single-chamber vacuum heat treatment furnace, in the second solution of the method for preventing oxidation of the article to be treated in the single-chamber vacuum heat treatment furnace, the temperature of the refrigerant is A means is adopted in which the furnace door of the furnace main body is closed until the temperature is higher than the ambient temperature outside the furnace and is maintained for a predetermined time.

本発明によれば、炉壁に設けられた冷却ジャケットに供給される冷媒を加熱する冷媒加熱部を備えるので、炉本体の内表面が直接的に昇温される。これにより、炉本体の内表面の結露が短時間で効果的に防止されると共に作業効率を向上させて良好な被処理品を得ることが可能となる。   According to the present invention, since the refrigerant heating unit that heats the refrigerant supplied to the cooling jacket provided on the furnace wall is provided, the inner surface of the furnace body is directly heated. Thereby, dew condensation on the inner surface of the furnace body can be effectively prevented in a short time, and work efficiency can be improved to obtain a good product to be processed.

以下、図面を参照し、この発明の実施の形態について説明する。
図1は、この発明の実施形態に係る単室型真空熱処理炉Aの全体構成を示す図であり、図2は、図1におけるA−A線断面図である。なお、図1においては、加熱室Rを密閉した状態で図示しており、図2においては、加熱室Rを開放した状態で示している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing an overall configuration of a single-chamber vacuum heat treatment furnace A according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG. In FIG. 1, the heating chamber R is shown in a sealed state, and in FIG. 2, the heating chamber R is shown in an open state.

図1に示すように、単室型真空熱処理炉Aは、炉本体1と、加熱装置2と、冷却ガス供給装置3と、減圧装置4と、冷却装置5と、冷媒循環系6と、制御装置8とを備えている。   As shown in FIG. 1, a single chamber vacuum heat treatment furnace A includes a furnace body 1, a heating device 2, a cooling gas supply device 3, a decompression device 4, a cooling device 5, a refrigerant circulation system 6, and a control. Device 8.

炉本体1は、炉壁11により内部に被処理品Wの処理空間Sが形成されたものであって、略円筒形状に形成されたものである。この炉本体1は、中心軸(円筒の中心軸)が水平となるように、周面に形成された脚部17が下側に位置するように床Fに設置されている。   The furnace body 1 has a processing space S for the article W to be processed formed therein by a furnace wall 11 and is formed in a substantially cylindrical shape. The furnace body 1 is installed on the floor F so that the legs 17 formed on the peripheral surface are positioned on the lower side so that the central axis (the central axis of the cylinder) is horizontal.

炉本体1は、容器胴部12と炉扉13とロック機構14と冷却ジャケット15とを備えている。
容器胴部12は、炉壁11aによって構成されて、一方の端部が開口部12aとなった略円筒形状のものであり、加熱装置2等を容器胴部12の内部に収容すると共に開口部12aから被処理品Wが装入・抽出される。図2に示すように、この容器胴部12の内部下方には、開口部12aから他方の端部近傍まで、炉本体1の中心軸方向に沿って互いに平行に形成された二つの平行床部12bが形成されている。また、開口部12aの周囲を囲む炉壁11aには、フランジ部12cが形成されている。
The furnace body 1 includes a container body 12, a furnace door 13, a lock mechanism 14, and a cooling jacket 15.
The container body 12 is formed of a furnace wall 11a and has a substantially cylindrical shape with one end serving as an opening 12a. The heating device 2 and the like are accommodated inside the container body 12 and the opening. The workpiece W is charged and extracted from 12a. As shown in FIG. 2, two parallel floor portions formed in parallel to each other along the central axis direction of the furnace body 1 from the opening 12 a to the vicinity of the other end portion are formed below the inside of the container body 12. 12b is formed. A flange portion 12c is formed on the furnace wall 11a surrounding the periphery of the opening portion 12a.

炉扉13は、炉壁11bによって構成された略円盤形状のものであり、開口部12aを開口・閉塞するものである。この炉扉13の周縁には、開口部12aの閉塞時において、フランジ部12cと重なるように形成されたフランジ部13aが形成されている。   The furnace door 13 has a substantially disk shape formed by the furnace wall 11b, and opens and closes the opening 12a. A flange portion 13a is formed on the periphery of the furnace door 13 so as to overlap the flange portion 12c when the opening portion 12a is closed.

ロック機構14は、炉扉13による開口部12aの閉塞解除を行うものである。具体的には、フランジ部12cとフランジ部13aとに係合するクランプリング14aとクランプリング14aを締め付ける駆動機構14bとからなり、フランジ部12cとフランジ部13aとを密着させた状態で強固固定し、容器胴部12を密閉することが可能である。   The lock mechanism 14 releases the blockage of the opening 12 a by the furnace door 13. Specifically, it comprises a clamp ring 14a that engages the flange portion 12c and the flange portion 13a, and a drive mechanism 14b that tightens the clamp ring 14a, and is firmly fixed in a state where the flange portion 12c and the flange portion 13a are in close contact with each other. The container body 12 can be sealed.

冷却ジャケット15(15a、15b)は、処理空間Sを囲繞するように炉壁11(11a,11b)に設けられたものであり、それぞれ冷媒Cが供給される供給口15a1,15b1が備えられると共に冷媒Cを排出する排出口15a2,15b2が備えられている。なお、冷却ジャケット15a、15bは、直接的には連通しない独立のものである。   The cooling jacket 15 (15a, 15b) is provided in the furnace wall 11 (11a, 11b) so as to surround the processing space S, and includes supply ports 15a1, 15b1 to which the refrigerant C is supplied, respectively. Discharge ports 15a2 and 15b2 for discharging the refrigerant C are provided. The cooling jackets 15a and 15b are independent ones that do not communicate directly.

加熱装置2は、平行床部12bに支持されて、容器胴部12内に収容されている。この加熱装置2は、車輪21の設けられた箱状断熱材22と、ヒータ26と、炉床27とを備えている。
車輪21は、箱状断熱材22によって構成される加熱室Rが平行床部12b上を炉本体1の中心軸方向に移動することができるように取り付けられたものである。
The heating device 2 is supported by the parallel floor portion 12 b and is accommodated in the container trunk portion 12. The heating device 2 includes a box-shaped heat insulating material 22 provided with wheels 21, a heater 26, and a hearth 27.
The wheel 21 is attached so that the heating chamber R configured by the box-shaped heat insulating material 22 can move in the central axis direction of the furnace body 1 on the parallel floor portion 12b.

箱状断熱材22は、セラミックファイバ製のものであり、加熱室Rを構成するように設けられている。すなわち、加熱室Rは、車輪21が設けられる床板22aと、開口部12a側に設けられた正面壁22bと、この正面壁22bと対向するように設けられた背面壁22cと、炉本体1の中心軸に沿うと共に互いに平行となるように設けられた側面壁22d、22eと、天板22fとから構成され、被処理品Wを収容可能である。
なお、この箱状断熱材22には、加熱室Rの温度を計測するための熱電対(不図示)が備えられており、この計測信号が制御装置8に伝送されるようになっている。
The box-shaped heat insulating material 22 is made of ceramic fiber and is provided so as to constitute the heating chamber R. That is, the heating chamber R includes a floor plate 22a on which the wheels 21 are provided, a front wall 22b provided on the opening 12a side, a back wall 22c provided so as to face the front wall 22b, and the furnace body 1 It is composed of side walls 22d and 22e provided so as to be parallel to each other along the central axis, and the top plate 22f, and can accommodate the article to be processed W.
The box-shaped heat insulating material 22 is provided with a thermocouple (not shown) for measuring the temperature of the heating chamber R, and this measurement signal is transmitted to the control device 8.

また、正面壁22bには、被処理品Wの搬入搬出口23aが形成されると共にこれを開閉可能な加熱室扉23bが設けられている。さらに、床板22aには冷却ガス導入口24aが形成されると共にこれを開閉可能な床蓋24bが設けられており、天板22fには冷却ガス排出口25aが形成されると共にこれを開閉可能な天蓋25bが設けられている。   The front wall 22b is provided with a heating chamber door 23b in which a carry-in / out port 23a for the article W to be processed is formed and which can be opened and closed. Further, the floor plate 22a is provided with a cooling gas introduction port 24a and a floor lid 24b that can be opened and closed. The top plate 22f is formed with a cooling gas discharge port 25a and can be opened and closed. A canopy 25b is provided.

床蓋24bは、炉外の下部に設けられた空気圧シリンダ24cによって鉛直に駆動され、また、天蓋25bは、炉外の側部に設けられた空気圧シリンダ25cによって水平に駆動される。なお、加熱室扉23bは、不図示の開閉装置によって開閉が行われる。   The floor cover 24b is driven vertically by a pneumatic cylinder 24c provided at the lower part outside the furnace, and the canopy 25b is driven horizontally by a pneumatic cylinder 25c provided at the side part outside the furnace. The heating chamber door 23b is opened and closed by an opening / closing device (not shown).

このように、搬入搬出口23aを加熱室扉23bにより閉塞させた状態において、床蓋24b及び天蓋25bを閉じることにより加熱室Rが密閉されると共に、床蓋24b及び天蓋25bを開けることにより加熱室Rが外部と連通するようになっている。   Thus, in the state where the loading / unloading port 23a is closed by the heating chamber door 23b, the heating chamber R is sealed by closing the floor lid 24b and the canopy 25b, and heating is performed by opening the floor lid 24b and the canopy 25b. The room R communicates with the outside.

ヒータ26は、被処理品Wが加熱室Rに搬入された場合に被処理品Wを囲むように加熱室Rに設けられている。
炉床27は、炉本体1の中心軸に平行な複数の棒状部材から構成されており、床板22aに設けられている。
The heater 26 is provided in the heating chamber R so as to surround the workpiece W when the workpiece W is carried into the heating chamber R.
The hearth 27 is composed of a plurality of rod-like members parallel to the central axis of the furnace body 1 and is provided on the floor plate 22a.

冷却ガス供給装置3は、処理空間Sに冷却ガスGを供給するものであり、減圧装置4は、開口部12aから流入した外気を排気して処理空間Sを減圧するものである。   The cooling gas supply device 3 supplies the cooling gas G to the processing space S, and the decompression device 4 exhausts the outside air flowing in from the opening 12a to decompress the processing space S.

冷却装置5は、送風機51と熱交換器52とを備えている。
送風機51は、冷却ガスGを送風する冷却ファン51aと、この冷却ファン51aを回動させるファンモータ51bを備えており、冷却ファン51aが炉内に、また、ファンモータ51bが炉外に位置するように炉本体1の上部に設けられている。
熱交換器52は、内部に冷媒Cが流れる複数の伝熱管を備えており、この複数の伝熱管が冷却ファン51aを囲むようにして、炉本体1における炉内上部に設けられている。
The cooling device 5 includes a blower 51 and a heat exchanger 52.
The blower 51 includes a cooling fan 51a that blows the cooling gas G and a fan motor 51b that rotates the cooling fan 51a. The cooling fan 51a is located inside the furnace and the fan motor 51b is located outside the furnace. As shown in FIG.
The heat exchanger 52 includes a plurality of heat transfer tubes through which the refrigerant C flows, and the plurality of heat transfer tubes are provided in the upper part of the furnace body 1 so as to surround the cooling fan 51a.

冷媒循環系(第一の冷媒循環系、第二の冷媒循環系)6は、冷却ジャケット15と、熱交換器52と、冷媒槽61と、循環ポンプ62と、三方弁63と、並列的に配置される冷媒冷却部64及び冷媒加熱部65と、これらの間に順次配設される配管66(66a〜66m)とから概略構成されている。   The refrigerant circulation system (first refrigerant circulation system, second refrigerant circulation system) 6 includes a cooling jacket 15, a heat exchanger 52, a refrigerant tank 61, a circulation pump 62, and a three-way valve 63 in parallel. The refrigerant cooling unit 64 and the refrigerant heating unit 65 that are arranged, and a pipe 66 (66a to 66m) that are sequentially arranged between them, are roughly configured.

冷媒槽61は、冷媒Cの貯留槽として機能するものであり、常に一定の冷媒Cが貯留されているように構成されている。なお、本実施形態においては、冷媒Cとしてオイルを用いている。
この冷媒槽61には、冷媒槽61に貯留した冷媒Cの温度が計測されるように熱電対71が備えられており、制御装置8に出力信号を継続的に供給するようになっている。
The refrigerant tank 61 functions as a storage tank for the refrigerant C, and is configured such that a constant refrigerant C is always stored. In the present embodiment, oil is used as the refrigerant C.
The refrigerant tank 61 is provided with a thermocouple 71 so that the temperature of the refrigerant C stored in the refrigerant tank 61 is measured, and an output signal is continuously supplied to the control device 8.

循環ポンプ62は、配管66aにより冷媒槽61と連通しており、冷媒槽61に貯留された冷媒Cを配管66bに送出する。
三方弁63は、電動式のものであり、配管66bと、冷媒冷却部64に連通する配管66cと、冷媒加熱部65に連通する配管66dとが接続されている。すなわち、この三方弁63を動作させることにより、循環ポンプ62から送出された冷媒Cの系路を配管66c又は配管66dのいずれかに切り換えることができる。
The circulation pump 62 communicates with the refrigerant tank 61 through a pipe 66a, and sends out the refrigerant C stored in the refrigerant tank 61 to the pipe 66b.
The three-way valve 63 is an electric type, and is connected to a pipe 66b, a pipe 66c communicating with the refrigerant cooling unit 64, and a pipe 66d communicating with the refrigerant heating unit 65. That is, by operating this three-way valve 63, the system path of the refrigerant C sent from the circulation pump 62 can be switched to either the pipe 66c or the pipe 66d.

冷媒冷却部64は、配管66cから流入した冷媒Cと熱交換を行って冷媒Cを冷却するものであり、この冷却された冷媒Cが流出する配管66eと連通する。
冷媒加熱部65は、配管66dから流入した冷媒Cと熱交換を行って冷媒Cを加熱するものであり、この加熱された冷媒Cを流出する配管66fと連通する。
The refrigerant cooling unit 64 cools the refrigerant C by exchanging heat with the refrigerant C flowing in from the pipe 66c, and communicates with the pipe 66e from which the cooled refrigerant C flows out.
The refrigerant heating unit 65 heats the refrigerant C by exchanging heat with the refrigerant C flowing in from the pipe 66d, and communicates with the pipe 66f that flows out the heated refrigerant C.

配管66eと配管66fとは、連通して一つの配管を構成した後に、三つの配管に分岐する。すなわち、冷却ジャケット15aの供給口15a1に接続された配管66gと、冷却ジャケット15bの供給口15b1に接続された配管66hと、熱交換器52に接続される配管66iに分岐する。 The pipe 66e and the pipe 66f communicate with each other to form one pipe, and then branch into three pipes. That is, the pipe 66g connected to the supply port 15a1 of the cooling jacket 15a, the pipe 66h connected to the supply port 15b1 of the cooling jacket 15b, and the pipe 66i connected to the heat exchanger 52 are branched.

そして、配管66g,配管66hからそれぞれ冷却ジャケット15a,15bに流入した冷媒Cは、処理空間Sを囲繞する冷却ジャケット15内を流れた後に、排出口15a2,15b2からそれぞれ配管66j,66kに流入して、これら配管66j,66kと連通する冷媒槽61に貯留されるようになっている。同様に、熱交換器52の伝熱管を流れた冷媒Cは、配管66mを介して冷媒槽61に貯留されるようになっている。
このようにして冷媒循環系6が構成されている。
The refrigerant C flowing into the cooling jackets 15a and 15b from the pipes 66g and 66h flows through the cooling jacket 15 surrounding the processing space S, and then flows into the pipes 66j and 66k from the discharge ports 15a2 and 15b2, respectively. Thus, the refrigerant is stored in the refrigerant tank 61 communicating with the pipes 66j and 66k. Similarly, the refrigerant C that has flowed through the heat transfer tube of the heat exchanger 52 is stored in the refrigerant tank 61 via the pipe 66m.
In this way, the refrigerant circulation system 6 is configured.

制御装置8は、加熱装置2と、冷却ガス供給装置3と、減圧装置4と、冷却装置5と、冷媒循環系6の循環ポンプ62の動作を制御するものである。
例えば、制御装置8は、被処理品Wの加熱処理時において、ヒータ26に通電して所望の温度まで被処理品Wを加熱し、また、冷媒Cが冷却されるように循環系路を配管66cとすると共に冷媒冷却部64を作動させて冷媒Cを冷却する。同様に、冷却処理時において、炉内温度よりも設定温度が高い場合には、冷媒Cを冷却する。なお、加熱処理及び冷却処理の温度や時間は、被処理品Wの金属の種類及び熱処理の種類によって適宜変更される。
The control device 8 controls the operation of the heating device 2, the cooling gas supply device 3, the decompression device 4, the cooling device 5, and the circulation pump 62 of the refrigerant circulation system 6.
For example, during the heat treatment of the article to be processed W, the control device 8 energizes the heater 26 to heat the article to be processed W to a desired temperature, and pipes the circulation system so that the refrigerant C is cooled. 66c and the refrigerant cooling unit 64 is operated to cool the refrigerant C. Similarly, during the cooling process, if the set temperature is higher than the furnace temperature, the refrigerant C is cooled. Note that the temperature and time of the heat treatment and the cooling treatment are appropriately changed depending on the type of metal of the article to be processed W and the type of heat treatment.

この制御装置8は、被処理品Wの冷却処理後から新たな被処理品Wの装入を完了させるまでの間、冷媒Cの温度が設定温度tよりも低い場合に冷媒Cを昇温させる。具体的には、三方弁63を動作させて冷媒循環系を配管66dに切り換えると共に、冷媒加熱部65を作動させて冷媒を加熱する。なお、この冷媒Cの設定温度tは、一般に炉本体1の内表面の結露を有効に防止することができる温度(外気温を10℃程度上回る温度)に設定されている。また、外気温は炉外に設けられた温度センサ(不図示)から出力信号が制御装置8に供給されるようになっている。   The controller 8 raises the temperature of the refrigerant C when the temperature of the refrigerant C is lower than the set temperature t after the cooling of the article to be processed W until the charging of the new article to be processed W is completed. . Specifically, the three-way valve 63 is operated to switch the refrigerant circulation system to the pipe 66d, and the refrigerant heating unit 65 is operated to heat the refrigerant. The set temperature t of the refrigerant C is generally set to a temperature (a temperature that exceeds the outside air temperature by about 10 ° C.) that can effectively prevent condensation on the inner surface of the furnace body 1. Further, an output signal is supplied to the control device 8 from a temperature sensor (not shown) provided outside the furnace.

さらに、この制御装置8は、ロック機構制御部81を備えている。このロック機構制御部81は、被処理品Wの冷却中に炉扉13を閉塞すると共に冷却後に冷媒Cの温度を設定温度t以上、かつ、所定の時間Tで保持した場合に解除するものである。   Further, the control device 8 includes a lock mechanism control unit 81. The lock mechanism control unit 81 closes the furnace door 13 while the workpiece W is being cooled, and is released when the temperature of the refrigerant C is maintained at a set temperature t or more and for a predetermined time T after cooling. is there.

次に、上記構成からなる単室型真空熱処理炉Aの動作について説明する。図3は、この単室型真空熱処理炉Aの処理工程の一部を抜粋したものである。なお、以下の説明では、複数の被処理品Wの焼き入れを行う場合について説明し、この熱処理前の直近の熱処理からは十分に時間が経過して、炉内温度が外気温と同一となっている。また、冷媒Cは常に冷媒循環系6を循環しているものとする。   Next, the operation of the single-chamber vacuum heat treatment furnace A having the above configuration will be described. FIG. 3 shows a part of the processing steps of the single chamber vacuum heat treatment furnace A. In the following description, a case where a plurality of workpieces W are quenched will be described. A sufficient time has passed since the most recent heat treatment before the heat treatment, and the furnace temperature becomes the same as the outside air temperature. ing. In addition, it is assumed that the refrigerant C is always circulating in the refrigerant circulation system 6.

まず、炉扉13を開いて開口部12aを開口し、加熱室Rを外部に露出させて、加熱室扉23bを開き搬入搬出口23aを開口する。   First, the furnace door 13 is opened to open the opening 12a, the heating chamber R is exposed to the outside, the heating chamber door 23b is opened, and the carry-in / out port 23a is opened.

次に、被処理品Wが炉床27と略同一の高さに載置された装入抽出台を開口部12aに突き合わせる。そして、被処理品Wを加熱室Rの内部に装入した後、装入抽出台を開口部12aから離間させると共に加熱室扉23bを閉じて、搬入搬出口23aを閉じる。さらに、フランジ部13aをフランジ部12cに重ね合わせるように炉扉13を閉じ、駆動機構14bによりクランプリング14aを締め付け、容器胴部12を密閉する。   Next, the loading / extracting table on which the workpiece W is placed at substantially the same height as the hearth 27 is abutted against the opening 12a. Then, after the workpiece W is charged into the heating chamber R, the charging / extracting base is separated from the opening 12a, the heating chamber door 23b is closed, and the loading / unloading port 23a is closed. Further, the furnace door 13 is closed so that the flange portion 13a is superimposed on the flange portion 12c, the clamp ring 14a is tightened by the drive mechanism 14b, and the container body portion 12 is sealed.

次に、減圧装置4を作動させて処理空間Sを減圧する。この際、加熱室Rにおける床板22aの冷却ガス導入口24aと、天板22fの冷却ガス排出口25aとは、開口した状態である。そして、所定の真空度となった後に空気圧シリンダ24c,25cを作動させて、床蓋24b、天蓋25bを駆動し、冷却ガス導入口24a、冷却ガス排出口25aをそれぞれ閉塞する。   Next, the decompression device 4 is operated to decompress the processing space S. At this time, the cooling gas introduction port 24a of the floor plate 22a and the cooling gas discharge port 25a of the top plate 22f in the heating chamber R are open. Then, after the predetermined degree of vacuum is reached, the pneumatic cylinders 24c and 25c are operated to drive the floor lid 24b and the canopy 25b, thereby closing the cooling gas introduction port 24a and the cooling gas discharge port 25a, respectively.

次に、ヒータ26に通電することにより被処理品Wを所定の温度、かつ、所定の時間で加熱する。この際、炉壁11及び熱交換器52がヒータ26からのふく射によって加熱されることにより冷媒Cの温度が上昇するので、冷媒循環系6の系路を配管66cとした上で冷媒冷却部64を作動させて冷媒Cを冷却し、炉壁11を冷却する。   Next, the workpiece W is heated at a predetermined temperature for a predetermined time by energizing the heater 26. At this time, the temperature of the refrigerant C rises due to the furnace wall 11 and the heat exchanger 52 being heated by the radiation from the heater 26, so that the refrigerant cooling section 64 is made with the system path of the refrigerant circulation system 6 as the pipe 66 c. To cool the refrigerant C and cool the furnace wall 11.

加熱処理後、再び空気圧シリンダ24c,25cを作動させて、床蓋24b、天蓋25bを駆動し、冷却ガス導入口24a、冷却ガス排出口25aをそれぞれ開口させると共に冷却ガス供給装置3を作動させて冷却ガスGを供給する(図2参照)。   After the heat treatment, the pneumatic cylinders 24c and 25c are operated again, the floor lid 24b and the canopy 25b are driven, the cooling gas introduction port 24a and the cooling gas discharge port 25a are opened, and the cooling gas supply device 3 is operated. Cooling gas G is supplied (see FIG. 2).

同時に冷却装置5を駆動させて、冷却ガスGを処理空間Sに循環させる。この際、冷却ガスGは、熱交換器52の伝熱管内部に流れる冷媒Cと熱交換を行うことにより冷却され、冷媒Cが冷却ガスGから受け取った熱は、冷媒冷却部64により放熱される。なお、加熱室Rにおいては、冷却ガス導入口24aから炉床27を通過して冷却ガス排出口25aから排出されるように循環する。   At the same time, the cooling device 5 is driven to circulate the cooling gas G in the processing space S. At this time, the cooling gas G is cooled by exchanging heat with the refrigerant C flowing inside the heat transfer tube of the heat exchanger 52, and the heat received by the refrigerant C from the cooling gas G is radiated by the refrigerant cooling unit 64. . In addition, in the heating chamber R, it circulates so that it passes through the hearth 27 from the cooling gas inlet 24a and is discharged from the cooling gas outlet 25a.

冷却処理完了を検知(ステップS1)した制御装置8は、冷媒Cの温度を計測すると共に冷媒Cの温度が設定温度tよりも高いか否か判断する(ステップS2)。
ステップS2の判断が「No」の場合、すなわち、冷媒Cの温度が設定温度tを下回っている場合には、三方弁63による冷媒循環系6の系路が配管66cであるか判断する(ステップS3)。
The control device 8 that has detected the completion of the cooling process (step S1) measures the temperature of the refrigerant C and determines whether the temperature of the refrigerant C is higher than the set temperature t (step S2).
If the determination in step S2 is “No”, that is, if the temperature of the refrigerant C is lower than the set temperature t, it is determined whether the passage of the refrigerant circulation system 6 by the three-way valve 63 is the pipe 66c (step). S3).

ステップS3の判断が「Yes」の場合には、三方弁63を作動させて冷媒循環系6の系路を配管66dの方向に切り換える(ステップS4)。本実施形態では、上述したように炉壁11及び冷却ガスGを冷却するために冷媒循環系6の系路を配管66cとした上で冷媒冷却部64を作動させていたので、三方弁63を作動させて冷媒循環系6の系路を配管66dの方向に切り換える。   When the determination in step S3 is “Yes”, the three-way valve 63 is operated to switch the refrigerant circulation system 6 to the direction of the pipe 66d (step S4). In the present embodiment, as described above, the refrigerant cooling section 64 is operated with the piping of the refrigerant circulation system 6 used as the piping 66c in order to cool the furnace wall 11 and the cooling gas G. Actuate to switch the refrigerant circulation system 6 in the direction of the pipe 66d.

ステップS4の後またはステップS3の判断が「No」の場合には、冷媒Cを加熱して冷媒Cを所定の温度となるまで加熱する(ステップS5)。つまり、冷媒加熱部65で加熱した冷媒Cが冷却ジャケット15に供給されて、炉本体1の内表面及び熱交換器52が直接的に昇温される。なお、この際、冷却ガスGは、循環したままである。
その後、再びステップS2の判断を行う。
After step S4 or when the determination in step S3 is “No”, the refrigerant C is heated to heat the refrigerant C to a predetermined temperature (step S5). That is, the refrigerant C heated by the refrigerant heating unit 65 is supplied to the cooling jacket 15 and the inner surface of the furnace body 1 and the heat exchanger 52 are directly heated. At this time, the cooling gas G remains circulated.
Thereafter, the determination in step S2 is performed again.

ステップS2の判断が「Yes」の場合には、制御装置8のロック機構制御部81は、所定の時間、冷媒Cが設定温度t以上であるか否かを判断する(ステップS6)。なお、この所定の時間は、冷却ガスGが熱交換器52及び炉壁11に暖められて、この冷却ガスGにより炉内温度が外気温以上となる時間が設定されている。   When the determination in step S2 is “Yes”, the lock mechanism control unit 81 of the control device 8 determines whether or not the refrigerant C is equal to or higher than the set temperature t for a predetermined time (step S6). The predetermined time is set such that the cooling gas G is warmed by the heat exchanger 52 and the furnace wall 11 and the furnace temperature becomes equal to or higher than the outside air temperature by the cooling gas G.

ステップS6の判断が「No」の場合には、再びステップS2の判断をする。
ステップS6の判断が「Yes」の場合には、炉内が大気圧となっていることを前提に、ロック機構14の駆動機構14bを動作させてクランプリング14aの締め付けを解除する(ステップS7)。
If the determination in step S6 is “No”, the determination in step S2 is made again.
If the determination in step S6 is “Yes”, the drive mechanism 14b of the lock mechanism 14 is operated to release the tightening of the clamp ring 14a on the assumption that the furnace is at atmospheric pressure (step S7). .

ロック機構14が解除された後、炉扉13を開けると共に開口部12aを開放し、加熱室Rの加熱室扉23bを開いて搬入搬出口23aを開口させる(ステップS8)。この際、炉本体1の内表面や熱交換器52の他、加熱室Rやファン51aも設定温度となっている。   After the lock mechanism 14 is released, the furnace door 13 is opened and the opening 12a is opened, the heating chamber door 23b of the heating chamber R is opened, and the carry-in / out port 23a is opened (step S8). At this time, in addition to the inner surface of the furnace body 1 and the heat exchanger 52, the heating chamber R and the fan 51a are also set at a set temperature.

その後、装入抽出台を再度炉床27に突き合わして、焼き入れ処理した被処理品Wを抽出し、新たな被処理品Wを装入までの間、制御装置8は、継続的に冷媒Cの温度を設定温度t以上とするため、ステップS2〜S5と同様の判断を繰り返す(ステップS9〜12)。   Thereafter, the charging / extracting table is again brought into contact with the hearth 27 to extract the to-be-quenched workpiece W, and until the new workpiece W is charged, the control device 8 continuously refrigerates the refrigerant. In order to make the temperature of C equal to or higher than the set temperature t, the same determination as in steps S2 to S5 is repeated (steps S9 to S12).

つまり、開口部12aが開口している間は、炉本体1の内表面や熱交換器52は、設定温度t以上に保温されると共に、加熱室Rやファン51aも設定温度近傍の温度となっているので、炉内に外気が流入したとしても結露しない。   That is, while the opening 12a is open, the inner surface of the furnace body 1 and the heat exchanger 52 are kept at a temperature equal to or higher than the set temperature t, and the heating chamber R and the fan 51a are also in the vicinity of the set temperature. Therefore, no condensation occurs even if outside air flows into the furnace.

その後、新たな被処理品Wを加熱室Rに装入した後(ステップS13)、加熱室扉23bと炉扉13とを再度閉じて、上記と同様にして熱処理を開始する。この際、ヒータ26により被処理品Wを加熱しても、炉本体1の内表面や熱交換器52の他、加熱室Rやファン51aに結露が生じていないので、炉内に水蒸気が発生することはない。   Thereafter, after a new workpiece W is charged into the heating chamber R (step S13), the heating chamber door 23b and the furnace door 13 are closed again, and heat treatment is started in the same manner as described above. At this time, even if the article to be processed W is heated by the heater 26, no condensation occurs in the heating chamber R or the fan 51a in addition to the inner surface of the furnace body 1 or the heat exchanger 52, so that water vapor is generated in the furnace. Never do.

同時に、三方弁63による冷媒循環系6の系路が配管66cであるか判断し(ステップS14)、ステップS14の判断が「Yes」の場合には処理を終了し、ステップS14の判断が「No」の場合には加熱処理時に冷媒Cを冷却するために冷媒循環系6の系路を配管66cに切り換え(ステップS15)、処理を終了する。   At the same time, it is determined whether or not the path of the refrigerant circulation system 6 by the three-way valve 63 is the pipe 66c (step S14). If the determination in step S14 is “Yes”, the process ends, and the determination in step S14 is “No”. In the case of “,” the refrigerant circulation system 6 is switched to the pipe 66c in order to cool the refrigerant C during the heat treatment (step S15), and the process is terminated.

新たな被処理品Wは、炉内に水蒸気が発生していないので、その表面が酸化せず、また、これによる着色も生じることなく、熱処理が完了される。   Since the water vapor is not generated in the furnace of the new article to be processed W, the surface thereof is not oxidized and the heat treatment is completed without causing coloring.

以上説明した通り、本単室型真空熱処理炉Aによれば、冷媒循環系6に冷媒Cを加熱する冷媒加熱部65を備えるので、炉本体1の内表面が直接的に昇温される。これにより、炉本体1の内表面の結露が短時間で効果的に防止されると共に作業効率を向上させて良好な被処理品Wを得ることが可能となる。   As described above, according to the single-chamber vacuum heat treatment furnace A, the refrigerant circulation system 6 includes the refrigerant heating unit 65 that heats the refrigerant C, so that the inner surface of the furnace body 1 is directly heated. Thereby, dew condensation on the inner surface of the furnace body 1 can be effectively prevented in a short time, and the work efficiency can be improved to obtain a good workpiece W.

また、冷媒Cの温度を計測する熱電対71と、熱電対71の出力信号に基づいて冷媒加熱部65及び冷媒冷却部64を制御する制御装置とを備えるので、加熱処理時と冷却処理時と分けて、適宜冷媒Cの温度を変更することが可能になると共に、冷却処理終了後から新しい被処理品Wを装入するまでの間の冷媒Cの温度を変更することも可能となる。   Moreover, since the thermocouple 71 which measures the temperature of the refrigerant | coolant C and the control apparatus which controls the refrigerant | coolant heating part 65 and the refrigerant | coolant cooling part 64 based on the output signal of the thermocouple 71 are provided, at the time of heat processing and at the time of cooling processing In other words, the temperature of the refrigerant C can be changed as appropriate, and the temperature of the refrigerant C from the end of the cooling process to the insertion of a new workpiece W can be changed.

また、制御装置8が被処理品Wの冷却中に炉扉13を閉塞すると共に冷却後に冷媒Cの温度を設定温度t以上、かつ、所定の時間Tで保持した場合に解除するロック機構制御部81を備えるので、炉内温度を所望の温度に調整して炉本体1の内表面及び熱交換器52以外の結露を有効に防止することができる。さらに、冷却終了後に炉内温度が所望の温度以上になる前に、誤って炉扉13を開けることを完全に防止することができる。   In addition, the control device 8 closes the furnace door 13 while the workpiece W is being cooled, and is released when the temperature of the refrigerant C is held at the set temperature t or higher and for a predetermined time T after cooling. 81 is provided, it is possible to effectively prevent condensation other than the inner surface of the furnace body 1 and the heat exchanger 52 by adjusting the furnace temperature to a desired temperature. Furthermore, it is possible to completely prevent the furnace door 13 from being accidentally opened before the furnace temperature becomes equal to or higher than the desired temperature after the cooling is completed.

また、冷媒Cにオイルを用いているので、水を冷媒として用いた場合に発生するスケールの蓄積を防ぐことができる。   Further, since oil is used as the refrigerant C, it is possible to prevent the accumulation of scale that occurs when water is used as the refrigerant.

なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や材質、その組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、本実施形態では、冷却ジャケット15と熱交換器52とを冷媒循環系6として共通のものとして構成したが、これらを独立した構成としても構わない。
Note that the operation procedure shown in the above-described embodiment, or the shapes, materials, combinations, and the like of each component are examples, and can be variously changed based on design requirements and the like without departing from the gist of the present invention. is there.
For example, in the present embodiment, the cooling jacket 15 and the heat exchanger 52 are configured as the common refrigerant circulation system 6, but they may be configured independently.

また、本実施形態では、三方弁63を設けて冷媒冷却部64と冷媒加熱部65とを並列的に配置して構成したが、三方弁63を設けずに直列的な配置としてもよい。   In the present embodiment, the three-way valve 63 is provided and the refrigerant cooling unit 64 and the refrigerant heating unit 65 are arranged in parallel. However, the three-way valve 63 may not be provided and may be arranged in series.

また、本実施形態では、冷媒Cにオイルを用いたが、冷却水であってもよいのは勿論である。
また、本実施形態では、箱状断熱材22に車輪21を設けたが、これは加熱室Rのメンテナンス性を向上するために設けたものであり、必ずしも設ける必要はない。
In this embodiment, oil is used as the refrigerant C, but it is needless to say that it may be cooling water.
Moreover, in this embodiment, although the wheel 21 was provided in the box-shaped heat insulating material 22, this is provided in order to improve the maintainability of the heating chamber R, and does not necessarily need to provide.

また、本実施形態では、冷媒Cは絶えず冷媒循環系6を循環している構成としたが、例えば、被処理品Wの加熱処理中に熱交換器52への冷媒Cの供給を中断してもよいし、冷却処理中に冷却ジャケット15への冷媒Cの供給を中断する構成としてもよい。   In the present embodiment, the refrigerant C is continuously circulated in the refrigerant circulation system 6. However, for example, the supply of the refrigerant C to the heat exchanger 52 is interrupted during the heat treatment of the workpiece W. Alternatively, the supply of the refrigerant C to the cooling jacket 15 may be interrupted during the cooling process.

この発明の一実施形態における単室型真空熱処理炉Aの全体構成を示す図である。It is a figure which shows the whole structure of the single chamber type vacuum heat processing furnace A in one Embodiment of this invention. 図1におけるA−A線断面図である。It is the sectional view on the AA line in FIG. この発明の第一実施形態における単室型真空熱処理炉Aの処理工程の一部を抜粋したものである。A part of the processing steps of the single chamber type vacuum heat treatment furnace A in the first embodiment of the present invention is extracted.

符号の説明Explanation of symbols

1…炉本体
2…加熱装置
3…供給装置
4…減圧装置
5…冷却装置
6…冷媒循環系
8…制御装置
11(11a、11b)…炉壁
12a…開口部
13…炉扉
14…ロック機構
15(15a,15b)…冷却ジャケット
52…熱交換器
64…冷媒冷却部
65…冷媒加熱部
71…熱電対(センサ)
81…ロック機構制御部
A…単室型真空熱処理炉
C…冷媒
G…冷却ガス
S…処理空間
W…被処理品
DESCRIPTION OF SYMBOLS 1 ... Furnace main body 2 ... Heating apparatus 3 ... Supply apparatus 4 ... Depressurization apparatus 5 ... Cooling apparatus 6 ... Refrigerant circulation system 8 ... Control apparatus 11 (11a, 11b) ... Furnace wall 12a ... Opening part 13 ... Furnace door 14 ... Lock mechanism 15 (15a, 15b) ... Cooling jacket 52 ... Heat exchanger 64 ... Refrigerant cooling unit 65 ... Refrigerant heating unit 71 ... Thermocouple (sensor)
81 ... Lock mechanism control unit A ... Single-chamber vacuum heat treatment furnace C ... Refrigerant G ... Cooling gas S ... Processing space W ... Processed product

Claims (3)

炉壁に冷却ジャケットが設けられ、該炉壁により内部に被処理品の処理空間が形成された炉本体と、
前記炉本体内に設置された被処理品を加熱する加熱装置と、
前記処理空間内に冷却ガスを供給する冷却ガス供給装置と、
前記処理空間内に設置された熱交換器により前記冷却ガスを介して前記被処理品を冷却する第一の冷媒循環系と、
前記処理空間内を減圧する減圧装置と、
前記冷却ジャケットに冷媒を供給する第二の冷媒循環系とを備えた単室型真空熱処理炉において、
前記第二の冷媒循環系は、前記冷媒を加熱する冷媒加熱部と、前記冷媒を冷却する冷媒冷却部と、前記冷媒加熱部あるいは前記冷媒冷却部のいずれか一方に前記冷媒を供給する三方弁と、を備えていることを特徴とする単室型真空熱処理炉。
A furnace body in which a cooling jacket is provided on the furnace wall, and a processing space for a product to be processed is formed inside the furnace wall;
A heating device for heating an article to be processed installed in the furnace body;
A cooling gas supply device for supplying a cooling gas into the processing space;
A first refrigerant circulation system for cooling the article to be processed via the cooling gas by a heat exchanger installed in the processing space;
A decompression device for decompressing the inside of the processing space;
In a single-chamber vacuum heat treatment furnace comprising a second refrigerant circulation system for supplying a refrigerant to the cooling jacket,
The second refrigerant circulation system includes a refrigerant heating unit that heats the refrigerant, a refrigerant cooling unit that cools the refrigerant, and a three-way valve that supplies the refrigerant to either the refrigerant heating unit or the refrigerant cooling unit. And a single chamber type vacuum heat treatment furnace.
前記冷媒の温度を計測するセンサと、該センサの出力信号に基づいて前記冷媒加熱部及び前記冷媒冷却部を制御する制御装置と、を備えてなることを特徴とする請求項1に記載の単室型真空熱処理炉。   The sensor according to claim 1, further comprising: a sensor that measures the temperature of the refrigerant; and a control device that controls the refrigerant heating unit and the refrigerant cooling unit based on an output signal of the sensor. Chamber type vacuum heat treatment furnace. 前記炉本体は、その内部に前記被処理品を搬入・搬出する開口部を具備すると共に、該開口部を開閉する炉扉と、該炉扉による前記開口部の閉塞解除を行うロック機構とを備え、
前記制御装置は、前記被処理品の冷却中に前記炉扉を閉塞すると共に冷却後に前記冷媒の温度を炉外周囲の気温以上、かつ、所定の時間で保持した場合に解除するロック機構制御部を備えていることを特徴とする請求項2に記載の単室型真空熱処理炉。
The furnace body includes an opening for loading and unloading the article to be processed therein, a furnace door for opening and closing the opening, and a lock mechanism for releasing the closure of the opening by the furnace door. Prepared,
The control device closes the furnace door during the cooling of the article to be processed and releases the cooling mechanism when the temperature of the refrigerant is maintained at a temperature higher than the ambient temperature outside the furnace and after a predetermined time after cooling. The single-chamber vacuum heat treatment furnace according to claim 2, comprising:
JP2008062557A 2008-03-12 2008-03-12 Single-chamber vacuum heat treatment furnace Expired - Fee Related JP5407153B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008062557A JP5407153B2 (en) 2008-03-12 2008-03-12 Single-chamber vacuum heat treatment furnace
CN200980108462.2A CN101970696B (en) 2008-03-12 2009-03-12 Single chamber vacuum heat treating furnace
KR1020107021666A KR101236451B1 (en) 2008-03-12 2009-03-12 Single chamber vacuum heat treating furnace and method of preventing oxidation of article to be treated in single chamber vacuum heat treating furnace
PCT/JP2009/054782 WO2009113621A1 (en) 2008-03-12 2009-03-12 Single chamber vacuum heat treating furnace and method of preventing oxidation of article to be treated in single chamber vacuum heat treating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062557A JP5407153B2 (en) 2008-03-12 2008-03-12 Single-chamber vacuum heat treatment furnace

Publications (2)

Publication Number Publication Date
JP2009216344A JP2009216344A (en) 2009-09-24
JP5407153B2 true JP5407153B2 (en) 2014-02-05

Family

ID=41065281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062557A Expired - Fee Related JP5407153B2 (en) 2008-03-12 2008-03-12 Single-chamber vacuum heat treatment furnace

Country Status (4)

Country Link
JP (1) JP5407153B2 (en)
KR (1) KR101236451B1 (en)
CN (1) CN101970696B (en)
WO (1) WO2009113621A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297585B (en) * 2011-08-31 2013-04-17 太仓市华瑞真空炉业有限公司 Self-locking device for two chamber vacuum furnace
CN102401580B (en) * 2011-12-02 2013-07-31 郑州远东耐火材料有限公司 Equipment for utilizing waste heat and improving internal circulating water of electric furnace
CN102798294B (en) * 2012-06-19 2014-03-12 合肥瑞石测控工程技术有限公司 Real-time monitoring and safety warning device for temperature of furnace tube of tubular industrial furnace
CN103557710B (en) * 2013-10-28 2016-06-15 北京泰科诺科技有限公司 A kind of Rapid Circulation air-cooling vacuum furnace
CN103740907A (en) * 2013-12-25 2014-04-23 吴江亿泰真空设备科技有限公司 Monitoring operation vacuum furnace of corrosion-resistant vacuumizer
CN103725842B (en) * 2013-12-25 2016-09-21 苏州市万泰真空炉研究所有限公司 A kind of from opening and closing Anticorrosive pollution-discharge dry cleaning observation policer operation three-chamber vacuum furnace
CN103725848B (en) * 2013-12-25 2015-08-19 苏州市万泰真空炉研究所有限公司 A kind of corrosion proof type policer operation three Room vacuum oven
CN103898314A (en) * 2013-12-25 2014-07-02 吴江亿泰真空设备科技有限公司 Anticorrosive vacuumizer pollution-discharge dry-purification operation-observing/monitoring vacuum furnace
CN104142062A (en) * 2014-07-14 2014-11-12 洛阳市西格马炉业有限公司 Ultrahigh temperature vacuum hot pressing furnace
CN104613757B (en) * 2015-01-21 2016-11-23 临沂银凤电子科技股份有限公司 The magnetic material optimizing blood circulation burns till clock hood type furnace
WO2016189919A1 (en) * 2015-05-26 2016-12-01 株式会社Ihi Heat treatment apparatus
CN105865212B (en) * 2016-05-26 2018-05-22 源之翼智能装备制造(江苏)有限公司 Quick air-cooling vacuum furnace
KR101996938B1 (en) * 2018-05-29 2019-07-05 단국대학교 천안캠퍼스 산학협력단 A manufacturing apparatus having an oxygen-free atmosphere inside which heat treatment, dissolution and chemical reaction are possible
CN110132001B (en) * 2019-06-27 2020-03-17 永康雪纺自动化设备有限公司 Integrative stove of transparent ceramic degreasing sintering of moulding plastics of aluminium oxide
CN110578039A (en) * 2019-09-24 2019-12-17 上海百善实业发展有限公司 Vacuum induction heating and N2Cooling device
KR102355588B1 (en) * 2021-06-02 2022-02-08 주식회사 가온신소재 Copper heat treatment system and method for secondary battery lead tab

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522795Y2 (en) * 1988-02-25 1993-06-11
JP3163676B2 (en) * 1991-08-27 2001-05-08 大同特殊鋼株式会社 Vacuum heating method
JPH0867910A (en) * 1994-08-25 1996-03-12 Daido Steel Co Ltd Method for preventing dew condensation in water-cooling type vacuum heat treatment furnace
JP4476712B2 (en) * 2004-06-22 2010-06-09 株式会社Ihi Method for preventing oxidation and coloring in water-cooled vacuum heat treatment furnace

Also Published As

Publication number Publication date
JP2009216344A (en) 2009-09-24
CN101970696B (en) 2012-12-05
KR101236451B1 (en) 2013-02-22
WO2009113621A1 (en) 2009-09-17
CN101970696A (en) 2011-02-09
KR20100122943A (en) 2010-11-23

Similar Documents

Publication Publication Date Title
JP5407153B2 (en) Single-chamber vacuum heat treatment furnace
US9255736B2 (en) Vertical-type heat treatment apparatus
TW201342473A (en) Thermal treatment apparatus, temperature control system, thermal treatment method, temperature control method, and non-transitory computer readable medium embodied with program for executing the thermal treatment method or the temperature control method
JP5167640B2 (en) Heat treatment equipment
KR101399331B1 (en) Nitriding furnace
US8734147B2 (en) Seal structure for pressurized container, cooling treatment apparatus, multi-chamber heat treatment apparatus, pressure regulating method, and operating method
US3198503A (en) Furnace
JP2012209517A (en) Heat processing control system and heat processing control method
JP2011012294A (en) Heat treatment apparatus, heat treatment facility, and heat treatment method
US3168607A (en) Methods of heat treating articles
WO2016170846A1 (en) Heat treatment device
CN110066973A (en) Large-scale Nb3Sn coil is heat-treated multistage temperature equalization system and its temperature control method
KR100687799B1 (en) refrigerant-cycling and vertically-charged vacuum heat treatment furnace and method for vacuunm heat-treatment
CN111670113B (en) Method for processing articles and method for high-pressure treatment of articles
JP4476712B2 (en) Method for preventing oxidation and coloring in water-cooled vacuum heat treatment furnace
JP2510035Y2 (en) Heat treatment furnace
JP3486921B2 (en) Dew condensation prevention method in water-cooled vacuum heat treatment furnace
US3202553A (en) Methods of heat treating articles
JP2015507083A (en) Hood-type furnace with a heat radiator positioned inside a protective hood, in particular supplied by an energy source outside the furnace chamber, for releasing heat to the annealing gas
JP6427949B2 (en) Vacuum quenching method
JP2010182766A (en) Apparatus and method of heat treatment
JPH0867910A (en) Method for preventing dew condensation in water-cooling type vacuum heat treatment furnace
JP2010016285A (en) Heat treatment apparatus
JPH07814B2 (en) Coil heat treatment furnace
Bernard et al. Multiple Chamber Vacuum Furnaces vs. Single-Chamber Vacuum Furnaces—A Review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R151 Written notification of patent or utility model registration

Ref document number: 5407153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees