JP5406704B2 - Wireless communication system - Google Patents

Wireless communication system Download PDF

Info

Publication number
JP5406704B2
JP5406704B2 JP2009297349A JP2009297349A JP5406704B2 JP 5406704 B2 JP5406704 B2 JP 5406704B2 JP 2009297349 A JP2009297349 A JP 2009297349A JP 2009297349 A JP2009297349 A JP 2009297349A JP 5406704 B2 JP5406704 B2 JP 5406704B2
Authority
JP
Japan
Prior art keywords
fire
unit
timer
radio
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009297349A
Other languages
Japanese (ja)
Other versions
JP2010218540A (en
Inventor
昌典 栗田
晴弘 久保山
圭太郎 干場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009297349A priority Critical patent/JP5406704B2/en
Publication of JP2010218540A publication Critical patent/JP2010218540A/en
Application granted granted Critical
Publication of JP5406704B2 publication Critical patent/JP5406704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire Alarms (AREA)
  • Transceivers (AREA)
  • Alarm Systems (AREA)

Description

本発明は、複数の無線局からなる無線通信システムに関し、特に各無線局が電池を電源として動作する無線通信システムに関するものである。   The present invention relates to a radio communication system including a plurality of radio stations, and more particularly to a radio communication system in which each radio station operates using a battery as a power source.

我が国で使用する無線局については、占有周波数帯幅や隣接チャンネル漏洩電力などの使用電波の特性(RF特性)が電波法の規定を満たしていなくてはならない。また、電波法では使用目的ごとに異なる規格(通信規格)が規定されている。例えば、電波法第4条ただし書きにおいて免許を要しない無線局の一つとして規定される「小電力無線局」には、「コードレス電話の無線局」、「特定小電力無線局」、「小電力セキュリティシステム」、「小電力データ通信システムの無線局」などがあり、それぞれの無線局の無線設備について同法施行規則の設備規則によって規格が規定されている。   For radio stations used in Japan, the characteristics of radio waves used (RF characteristics) such as occupied frequency bandwidth and adjacent channel leakage power must satisfy the provisions of the Radio Law. In the Radio Law, different standards (communication standards) are defined for each purpose of use. For example, “low-power radio stations” defined as one of the radio stations that do not require a license in the proviso to Article 4 of the Radio Law include “wireless stations for cordless telephones”, “specified low-power radio stations”, “low-power radio stations” There are “security system”, “low-power data communication system radio station”, etc., and the standards for the radio equipment of each radio station are stipulated by the equipment regulations of the law.

従来、電池を電源として動作する複数の無線局からなる無線通信システムとして特許文献1に記載されているものがある。特許文献1に記載されている従来システムでは、各無線局が間欠的に受信回路を起動して所望の電波(他の無線局が送信した無線信号)を受信できるか否かをチェックし、当該電波が捉えられなければ直ちに受信回路を停止して待機状態に移行することで平均消費電力を大幅に低減している。   Conventionally, there is one described in Patent Document 1 as a wireless communication system including a plurality of wireless stations that operate using a battery as a power source. In the conventional system described in Patent Document 1, each radio station intermittently activates a reception circuit to check whether or not a desired radio wave (a radio signal transmitted by another radio station) can be received. If radio waves are not captured, the average power consumption is greatly reduced by immediately stopping the receiving circuit and shifting to a standby state.

しかしながら、上述のように間欠受信動作を行うと、本来受信しなければならない無線信号を受信するタイミングが受信回路の間欠受信間隔の分だけ遅延することになる。したがって、消費電力の低減を目的として単純に間欠受信間隔を伸ばすことはできない。   However, when the intermittent reception operation is performed as described above, the timing of receiving the radio signal that should be received is delayed by the intermittent reception interval of the reception circuit. Therefore, the intermittent reception interval cannot be simply extended for the purpose of reducing power consumption.

そこで本発明者は、数時間乃至数十時間の周期で送信される同期信号を受信した各無線局が当該同期信号に同期して間欠受信間隔をカウントすることにより、何れかの無線局が送信した無線信号を他の無線局が受信できるまでの遅延時間を短くするようにした無線通信システムを考案した。   Accordingly, the present inventor has determined that each wireless station that has received a synchronization signal transmitted in a period of several hours to several tens of hours counts the intermittent reception interval in synchronization with the synchronization signal, so that any wireless station transmits A wireless communication system has been devised that shortens the delay time until another wireless station can receive the wireless signal.

特開2008−176515号公報JP 2008-176515 A

ところで、各無線局が間欠受信間隔のカウントに使用する信号発生器(クロックジェネレータ)は、図11に示すように常温(25℃)との温度差が大きくなるにつれて周波数が低くなる特性(周波数温度特性)を有しているため、気候の変化や室内の空調などの影響で信号発生器の周波数がずれて同期外れが生じてしまう虞があった。   By the way, the signal generator (clock generator) used by each radio station for counting the intermittent reception interval has a characteristic that the frequency decreases as the temperature difference from room temperature (25 ° C.) increases as shown in FIG. Therefore, there is a possibility that the frequency of the signal generator is shifted due to the influence of climate change, indoor air conditioning, or the like, resulting in loss of synchronization.

本発明は上記事情に鑑みて為されたものであり、その目的は、間欠受信間隔をカウントするタイマ手段の周波数温度特性による時間ずれに起因した同期外れを防ぐことができる無線通信システムを提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a wireless communication system capable of preventing loss of synchronization due to a time lag due to frequency temperature characteristics of timer means for counting intermittent reception intervals. There is.

請求項1の発明は、上記目的を達成するために、複数の無線局からなり、これら複数の無線局間で電波を媒体とする無線信号を送受信する無線通信システムであって、各無線局は、無線信号を送信する送信手段と、無線信号を受信する受信手段と、所定のイベントが発生したときに送信手段を起動し、所定の送信期間に前記イベントに対応したメッセージを含む無線信号を送信させるとともに所定の休止期間に無線信号の送信を休止させる動作を交互に繰り返し且つ前記イベントが発生していないときには送信手段を停止させる送信制御手段と、一定の間欠受信間隔を繰り返しカウントするタイマ手段と、タイマ手段による間欠受信間隔のカウント中は受信手段を停止させ、タイマ手段による間欠受信間隔のカウントが完了する度に受信手段を起動する受信制御手段と、電池を電源として各手段の動作電源を供給する給電手段とを備え、受信制御手段は、受信手段で同期信号を受信した場合にタイマ手段による間欠受信間隔のカウントを中止させるとともに、当該同期信号の終了時点から一定の待機時間が経過した時点でタイマ手段による間欠受信間隔のカウントを再開させ、送信制御手段は、前記イベントが発生した場合、タイマ手段による間欠受信間隔のカウントが完了する時点と重なる前記送信期間に送信手段から無線信号を送信させる無線通信システムにおいて、各無線局は、周囲温度を検出する温度検出手段と、温度検出手段で検出する周囲温度とタイマ手段の周波数温度特性とに基づいてタイマ手段がカウントする間欠受信間隔の時間ずれを演算する時間ずれ演算手段と、時間ずれ演算手段で演算される時間ずれを縮小するようにタイマ手段のカウント動作を補正する第1の補正手段と、受信手段で同期信号を受信したときに当該同期信号の受信タイミングとタイマ手段がカウントする間欠受信間隔との時間ずれを検出する時間ずれ検出手段と、時間ずれ検出手段で検出される時間ずれを縮小するようにタイマ手段のカウント動作を補正する第2の補正手段とを備え、第1の補正手段は、第2の補正手段がタイマ手段のカウント動作を補正したときの周囲温度に対して温度検出手段で検出される周囲温度が所定値以上変化したときにタイマ手段のカウント動作を補正することを特徴とする。 In order to achieve the above object, the invention of claim 1 is a radio communication system comprising a plurality of radio stations, and transmitting and receiving radio signals using radio waves as a medium between the plurality of radio stations. Transmitting means for transmitting a radio signal; receiving means for receiving a radio signal; and starting a transmitting means when a predetermined event occurs, and transmitting a radio signal including a message corresponding to the event during a predetermined transmission period And an operation for alternately stopping the transmission of radio signals during a predetermined pause period, and a transmission control means for stopping the transmission means when the event has not occurred, and a timer means for repeatedly counting a fixed intermittent reception interval; When the intermittent reception interval is counted by the timer means, the reception means is stopped and the reception means is counted each time the intermittent reception interval is counted by the timer means. A reception control means for starting and a power supply means for supplying operation power of each means using a battery as a power source. When the reception means receives a synchronization signal, the reception control means stops counting the intermittent reception interval by the timer means. In addition, when a certain waiting time has elapsed from the end of the synchronization signal, the timer means restarts the counting of the intermittent reception interval, and when the event occurs, the transmission control means In the wireless communication system in which a wireless signal is transmitted from the transmission means during the transmission period overlapping with the time point when the count is completed, each wireless station has a temperature detection means for detecting an ambient temperature, an ambient temperature detected by the temperature detection means, and a timer means The time lag calculating means for calculating the time lag of the intermittent reception interval counted by the timer means based on the frequency temperature characteristics of , The first correction means and, receiving timing and the timer means of the synchronization signal when it receives the synchronization signal receiving means for correcting the counting operation of the timer means so as to reduce the time offset calculated by the time deviation calculation means Includes a time lag detecting means for detecting a time lag with respect to the intermittent reception interval counted, and a second correcting means for correcting the counting operation of the timer means so as to reduce the time lag detected by the time lag detecting means. The first correction means counts the timer means when the ambient temperature detected by the temperature detection means changes by a predetermined value or more with respect to the ambient temperature when the second correction means corrects the counting operation of the timer means. It is characterized by correcting the operation .

請求項1の発明によれば、温度検出手段が周囲温度を検出するとともに時間ずれ演算手段が周囲温度とタイマ手段の周波数温度特性とに基づいてタイマ手段がカウントする間欠受信間隔の時間ずれを演算し、第1の補正手段が当該時間ずれを縮小するようにタイマ手段のカウント動作を補正するので、間欠受信間隔をカウントするタイマ手段の周波数温度特性による時間ずれに起因した同期外れを防ぐことができる。また、請求項1の発明によれば、各無線局が備える時間ずれ検出手段によって同期信号の受信タイミングとタイマ手段がカウントする間欠受信間隔との時間ずれを検出し、第2の補正手段によって当該時間ずれを縮小するようにタイマ手段のカウント動作を補正するとともに、第1の補正手段により、第2の補正手段がタイマ手段のカウント動作を補正したときの周囲温度に対して温度検出手段で検出される周囲温度が所定値以上変化したときにタイマ手段のカウント動作を補正するので、タイマ手段の周波数温度特性による時間ずれだけでなくタイマ手段の周波数安定度による経時的な時間ずれに起因した同期外れも防ぐことができる。 According to the invention of claim 1, the temperature detecting means detects the ambient temperature, and the time lag calculating means calculates the time lag of the intermittent reception interval counted by the timer means based on the ambient temperature and the frequency temperature characteristic of the timer means. In addition, since the first correction unit corrects the counting operation of the timer unit so as to reduce the time shift, it is possible to prevent loss of synchronization due to the time shift due to the frequency temperature characteristic of the timer unit that counts the intermittent reception interval. it can. According to the first aspect of the present invention, the time lag between the reception timing of the synchronization signal and the intermittent reception interval counted by the timer means is detected by the time lag detection means provided in each radio station, and the second correction means The count operation of the timer means is corrected so as to reduce the time lag, and the first correction means detects the ambient temperature when the second correction means corrects the count operation of the timer means by the temperature detection means. Since the counting operation of the timer means is corrected when the ambient temperature changes by a predetermined value or more, not only the time lag due to the frequency temperature characteristic of the timer means but also the synchronization caused by the time lag due to the frequency stability of the timer means Detachment can also be prevented.

本発明によれば、間欠受信間隔をカウントするタイマ手段の周波数温度特性による時間ずれに起因した同期外れを防ぐことができる。   According to the present invention, loss of synchronization due to a time lag due to the frequency temperature characteristic of the timer means for counting the intermittent reception interval can be prevented.

本発明の実施形態における無線局(火災警報器)のブロック図である。It is a block diagram of the radio station (fire alarm) in the embodiment of the present invention. 同上における無線信号のフレームフォーマットである。It is a frame format of the radio signal in the same as above. 同上の待機状態から火災連動状態へ遷移する動作を説明するためのフローチャートである。It is a flowchart for demonstrating the operation | movement which changes to a fire interlocking state from a standby state same as the above. 同上の連動鳴動状態から連動停止状態へ遷移する動作を説明するためのタイムチャートである。It is a time chart for demonstrating the operation | movement which changes to the interlocking stop state from the interlocking ringing state same as the above. 同上の連動鳴動状態から連動停止状態へ遷移する動作を説明するためのタイムチャートである。It is a time chart for demonstrating the operation | movement which changes to the interlocking stop state from the interlocking ringing state same as the above. 同上の火災連動状態から待機状態へ遷移する動作を説明するためのタイムチャートである。It is a time chart for demonstrating the operation | movement which changes to a standby state from a fire interlocking state same as the above. 同上の火災連動状態における動作を説明するためのタイムチャートである。It is a time chart for demonstrating the operation | movement in a fire interlocking state same as the above. 同上における時間ずれ検出手段の動作説明図である。It is operation | movement explanatory drawing of the time shift detection means in the same as the above. 同上における時間ずれ検出手段の動作説明図である。It is operation | movement explanatory drawing of the time shift detection means in the same as the above. 同上における時間ずれ検出手段の動作説明図である。It is operation | movement explanatory drawing of the time shift detection means in the same as the above. 信号発生器の周波数温度特性を説明する説明図である。It is explanatory drawing explaining the frequency temperature characteristic of a signal generator.

以下、火災を感知して警報音を鳴動するとともに電波を媒体とし且つ火災感知メッセージを含む無線信号を送信する火災警報器を無線局とした無線通信システム(火災警報システム)に本発明の技術思想を適用した実施形態について説明する。   The technical idea of the present invention will be described below in a radio communication system (fire alarm system) in which a fire alarm device that emits a radio signal including a fire detection message using a radio wave as a medium while detecting a fire is used as a radio station. An embodiment to which is applied will be described.

図1は本実施形態のシステム構成図であり、複数台(図示は2台のみ)の火災警報器TRで火災警報システムが構成されている。なお、以下の説明では、火災警報器TRを個別に示す場合は火災警報器TR1,TR2,…,TRnと表記し、総括して示す場合は火災警報器TRと表記する。   FIG. 1 is a system configuration diagram of this embodiment, and a fire alarm system is configured by a plurality of (only two in the drawing) fire alarm devices TR. In the following description, when the fire alarm devices TR are individually shown, they are expressed as fire alarm devices TR1, TR2,..., TRn, and when collectively shown, they are expressed as fire alarm devices TR.

火災警報器TRは、アンテナ3から電波を媒体とした無線信号を送信するとともに他の火災警報器TRが送信した無線信号をアンテナ3で受信する無線送受信部2と、音(ブザー音や音声メッセージなど)による火災警報(以下、「警報音」と呼ぶ。)を報知(スピーカから鳴動)する警報部5と、マイコンや書換可能な不揮発性の半導体メモリなどからなるメモリ部1aを主構成要素とし火災感知部4で火災を感知したときに警報部5に警報音を鳴動させるとともに他の火災警報器TRに対して火災警報を報知させるための火災警報メッセージを含む無線信号を無線送受信部2より送信させる制御部1と、後述するように警報音の鳴動を停止するための操作入力などを受け付ける操作入力受付部6と、サーミスタなどの温度検出素子を用いて周囲温度を検出する温度検出部8と、乾電池等の電池を電源として各部に動作電源を供給する電池電源部7とを具備している。操作入力受付部6は1乃至複数のスイッチ(例えば、押釦スイッチ)を有しており、スイッチが操作されることで各スイッチに対応した操作入力を受け付けるとともに当該操作入力に対応した操作信号を制御部1に出力する。なお、各火災警報器TR1,TR2,…には固有の識別符号が割り当てられてメモリ部1aに格納されており、当該識別符号によって無線信号の宛先並びに送信元の火災警報器TR1,TR2,…が特定できる。   The fire alarm TR transmits a radio signal using radio waves as a medium from the antenna 3 and receives a radio signal transmitted from another fire alarm TR by the antenna 3, and a sound (buzzer sound or voice message). The main component is an alarm unit 5 for informing (sound from a speaker) a fire alarm (hereinafter referred to as “alarm sound”) and a memory unit 1a including a microcomputer and a rewritable nonvolatile semiconductor memory. When a fire is detected by the fire detection unit 4, a radio signal including a fire alarm message is transmitted from the radio transmission / reception unit 2 to cause the alarm unit 5 to sound an alarm sound and to notify other fire alarms TR of the fire alarm. Using a control unit 1 for transmission, an operation input receiving unit 6 for receiving an operation input for stopping ringing of an alarm sound, as will be described later, and a temperature detection element such as a thermistor. A temperature detection unit 8 for detecting the ambient temperature, and a battery power supply unit 7 supplies operation power to each unit of the battery such as dry battery as a power source. The operation input receiving unit 6 has one or more switches (for example, push button switches). When the switch is operated, an operation input corresponding to each switch is received and an operation signal corresponding to the operation input is controlled. Output to part 1. Each of the fire alarm devices TR1, TR2,... Is assigned a unique identification code and stored in the memory unit 1a. The destination of the radio signal and the fire alarm devices TR1, TR2,. Can be identified.

無線送受信部2は、電波法施行規則第6条第4項第3号に規定される「小電力セキュリティシステムの無線局」に準拠して電波を媒体とする無線信号を送受信するものである。また火災感知部4は、例えば、火災に伴って発生する煙や熱、炎などを検出することで火災を感知するものである。但し、無線送受信部2並びに火災感知部4の詳細な構成については、従来周知であるから詳細な説明は省略する。   The radio transmission / reception unit 2 transmits / receives a radio signal using radio waves as a medium in accordance with “radio station of low power security system” defined in Article 6, Paragraph 4, Item 3 of the Radio Law Enforcement Regulations. In addition, the fire detection unit 4 detects fire by detecting smoke, heat, flames, and the like generated with the fire, for example. However, detailed configurations of the wireless transmission / reception unit 2 and the fire detection unit 4 are well known in the art and will not be described in detail.

制御部1は、図示しないメモリ(ROMあるいはEEPROMなど)に格納されたプログラムをマイコンで実行することによって後述する各種の機能を実現している。火災感知部4で火災の発生が感知されると、制御部1は警報部5が備えるブザーを駆動して警報音を鳴動させたり、あるいは予めメモリ(あるいはメモリ部1a)に格納されている警報用の音声メッセージ(例えば、「火事です」など)をスピーカに鳴動させることで火災警報を報知するとともに、他の火災警報器TRにおいても火災警報を報知させるため、火災警報メッセージを含む無線信号を無線送受信部2より送信させる。また、他の火災警報器T
Rから送信された無線信号を無線送受信部2で受信することにより火災警報メッセージを受け取ったときも、制御部1が警報部5を制御して警報音を鳴動させる。つまり、制御部1では火災感知部4が火災を感知したときに警報部5から警報音を鳴動させて火災警報を報知するとともに火災警報メッセージを含む無線信号を無線送受信部2より送信させる機能を有している。
The control unit 1 realizes various functions to be described later by executing a program stored in a memory (ROM or EEPROM) (not shown) by a microcomputer. When the fire detection unit 4 detects the occurrence of a fire, the control unit 1 drives a buzzer included in the alarm unit 5 to sound an alarm sound, or an alarm stored in the memory (or the memory unit 1a) in advance. In order to notify a fire alarm by sounding a voice message (for example, “This is a fire”) on the speaker, and to notify the fire alarm also in other fire alarm devices TR, a radio signal including a fire alarm message is transmitted. The wireless transmission / reception unit 2 transmits the data. In addition, other fire alarm T
Even when the wireless transmission / reception unit 2 receives a wireless signal transmitted from R and receives a fire alarm message, the control unit 1 controls the alarm unit 5 to sound an alarm sound. That is, in the control unit 1, when the fire detection unit 4 detects a fire, the alarm unit 5 sounds an alarm sound to notify the fire alarm, and the wireless transmission / reception unit 2 transmits a radio signal including the fire alarm message. Have.

ここで、電波法施行規則の無線設備規則第49条の17「小電力セキュリティシステムの無線局の無線設備」では、無線信号を連続して送信してもよい期間(送信期間)が3秒以下、送信期間と送信期間の間に設けられた、無線信号を送信してはいけない期間(休止期間)が2秒以上とすることが規定されている(同条第5号参照)。このために本実施形態における制御部1では、上記無線設備規則に適合する送信期間に無線信号を送信させるとともに休止期間に送信を停止し且つ受信可能な状態としている。   Here, in the radio equipment regulation Article 49-17 “Radio equipment of radio stations of the low power security system” of the Radio Law Enforcement Regulation, the period during which radio signals may be continuously transmitted (transmission period) is 3 seconds or less. It is stipulated that the period (pause period) provided between the transmission period and the transmission period in which the radio signal should not be transmitted is 2 seconds or more (see No. 5 of the same article). For this reason, in the control unit 1 in the present embodiment, the wireless signal is transmitted during the transmission period that complies with the wireless facility rules, and the transmission is stopped and received during the suspension period.

また電池電源部7の電池寿命をできるだけ長くするため、制御部1ではタイマ(タイマ手段)で所定の間欠受信間隔(但し、間欠受信間隔は前記送信期間よりも長い時間とする)を繰り返しカウントするとともに間欠受信間隔のカウントが完了する毎に無線送受信部2を起動して所望の電波(他の火災警報器TRが送信した無線信号)が受信できるか否かをチェックし、当該電波が捉えられなければ直ちに無線送受信部2を停止して待機状態に移行させることで平均消費電力を大幅に低減している。なお、電波の受信チェックは、無線送受信部2から出力される、受信信号強度の大小に比例した直流電圧信号である受信信号強度表示信号(Receiving Signal Strength Indication:RSSI信号)に基づいて制御部1が行っており、詳細については従来周知であるから省略する。   In order to extend the battery life of the battery power supply unit 7 as much as possible, the control unit 1 repeatedly counts a predetermined intermittent reception interval (however, the intermittent reception interval is longer than the transmission period) by a timer (timer means). In addition, every time the intermittent reception interval is counted, the wireless transmission / reception unit 2 is activated to check whether a desired radio wave (radio signal transmitted by another fire alarm device TR) can be received, and the radio wave is captured. If not, the average power consumption is greatly reduced by immediately stopping the wireless transmission / reception unit 2 and shifting to the standby state. The radio wave reception check is performed based on the received signal strength indication signal (Receiving Signal Strength Indication: RSSI signal) output from the wireless transmission / reception unit 2 and is a DC voltage signal proportional to the magnitude of the received signal strength. The details are well known in the art and will be omitted.

さらに特定の火災警報器TR1(以下、親局と呼ぶ。)の制御部1では、定期的(例えば、24時間毎)に無線送受信部2を起動して他の火災警報器TR2,TR3,…(以下、子局と呼ぶ。)が正常に動作しているか否かの確認(定期監視)を行うために定期監視メッセージを含む無線信号を送信させる。子局TR2,…においては、制御部1が火災感知部4の故障の有無及び電池電源部7の電池切れの有無を一定周期で(例えば、1時間毎に)監視するとともに、その監視結果(故障の有無及び電池切れの有無)をメモリ部1aに記憶しており、親局TR1から定期監視メッセージを受け取ったときに、メモリ部1aに記憶している監視結果を通知するための通知メッセージを含む無線信号を親局TR1に返信する。親局TR1の制御部1は、通知メッセージを含む無線信号を送信した後、無線送受信部2を受信状態に切り換えて各子局TR2,…から送信される無線信号を受信し、定期監視メッセージを含む無線信号を送信してから所定時間内に通知メッセージを含む無線信号を送信してこない子局TR2,…があったり、あるいは、何れかの子局TR2,…が送信してきた通知メッセージが故障有り若しくは電池切れ有りの監視結果を通知するものである場合に、警報部5が備えるブザーを駆動して報知音を鳴動させるなどして子局TR2,…に異常(通信不可や故障有り、電池切れなど)が発生したことを知らせる機能も有している。尚、親局TR1及び子局TR2,…の制御部1は、故障若しくは電池切れが生じていると判断した場合、直ちに警報部5から異常(故障若しくは電池切れ)の発生を知らせるための警告音(ブザー音や音声メッセージなど)を警報部5のスピーカから鳴動させるようになっている。   Further, the control unit 1 of a specific fire alarm device TR1 (hereinafter referred to as a master station) activates the wireless transmission / reception unit 2 periodically (for example, every 24 hours) to establish other fire alarm devices TR2, TR3,. A radio signal including a periodic monitoring message is transmitted in order to confirm (periodic monitoring) whether or not (hereinafter referred to as a slave station) is operating normally. In the slave stations TR2,..., The control unit 1 monitors whether or not the fire detection unit 4 has failed and whether or not the battery power supply unit 7 has run out of battery at regular intervals (for example, every hour), and the monitoring result ( The presence or absence of a failure and the presence or absence of a battery are stored in the memory unit 1a, and when a periodic monitoring message is received from the master station TR1, a notification message for notifying the monitoring result stored in the memory unit 1a The included radio signal is returned to the master station TR1. After transmitting the radio signal including the notification message, the control unit 1 of the master station TR1 switches the radio transmission / reception unit 2 to the reception state, receives the radio signal transmitted from each of the slave stations TR2,. There is a slave station TR2,... That does not transmit a radio signal including a notification message within a predetermined time after transmission of the included radio signal, or a notification message transmitted from any of the slave stations TR2,. When notifying the result of monitoring that the battery has run out, the slave station TR2,. ) Has also been reported. When the control unit 1 of the master station TR1 and the slave stations TR2,... Determines that a failure or a battery has run out, a warning sound for immediately informing the occurrence of an abnormality (failure or battery runout) from the alarm unit 5. (Buzzer sound, voice message, etc.) are sounded from the speaker of the alarm unit 5.

また親局TR1の制御部1は、火災感知部4が火災を感知して警報部5から警報音を鳴動させるとともに各子局TR2,…に火災警報メッセージを送信した後、若しくは何れかの子局TR2,…から火災警報メッセージを受信した後においては、無線送信部2に一定周期で同期ビーコンを送信させる。この同期ビーコンは、複数の火災警報器TR同士でTDMA(時分割多元接続)方式の無線通信(以下、「同期通信」と呼ぶ。)を行うために必要なタイムスロットを規定する信号であって、その1周期(サイクル)が複数のタイムスロットに分割され、全ての子局TR2,…にそれぞれ互いに異なるタイムスロットが1
つずつ割り当てられる。そして、親局TR1から子局TR2,…へのメッセージは同期ビーコンに含めて送信され、子局TR2,…から親局TR1へのメッセージを含む無線信号は、各子局TR2,…に割り当てられているタイムスロットに格納されて送信される。故に、複数台の火災警報器TR(親局TR1並びに子局TR2,…)から送信される無線信号の衝突を確実に回避することができる。なお、各火災警報器TRに対するタイムスロットの割当は固定であってもよいが、親局TR1から送信する同期ビーコンによってタイムスロットの割当情報を各子局TR2,…に通知しても構わない。
Further, the control unit 1 of the master station TR1 detects the fire and causes the alarm unit 5 to sound an alarm sound and transmits a fire alarm message to each of the slave stations TR2,..., Or any of the slave stations TR2. After receiving the fire alarm message from,..., The wireless transmission unit 2 is caused to transmit a synchronous beacon at a constant cycle. This synchronous beacon is a signal that defines a time slot required for performing TDMA (time division multiple access) wireless communication (hereinafter referred to as “synchronous communication”) between a plurality of fire alarms TR. , One period (cycle) is divided into a plurality of time slots, and each slave station TR2,.
Assigned one by one. Then, a message from the master station TR1 to the slave station TR2,... Is transmitted in a synchronous beacon, and a radio signal including a message from the slave station TR2,... To the master station TR1 is assigned to each slave station TR2,. Stored in the current time slot and transmitted. Therefore, it is possible to reliably avoid collision of radio signals transmitted from a plurality of fire alarm devices TR (the master station TR1 and the slave stations TR2,...). Although the time slot assignment to each fire alarm device TR may be fixed, the time slot assignment information may be notified to each slave station TR2,... By a synchronous beacon transmitted from the master station TR1.

図2は火災警報器TRが送受信する無線信号のフレームフォーマットを示しており、同期ビット(プリアンブル:PA)、フレーム同期パターン(ユニークワード:UW)、宛先アドレスDA、送信元アドレスSA、メッセージM、CRC符号で1フレームが構成されている。ここで、宛先アドレスDAとして各火災警報器TRの識別符号を設定すれば当該識別符号の火災警報器TRのみが無線信号を受信してメッセージを取得することになるが、宛先アドレスDAとして何れの火災警報器TRにも割り当てられていない特殊なビット列(例えば、すべてのビットを1としたビット列)を設定することで無線信号を同報(マルチキャスト)して全ての火災警報器TRにメッセージを取得させることができる。例えば、火災警報メッセージを含む無線信号が親局TR1から全ての子局TR2,…に同報される。   FIG. 2 shows a frame format of a radio signal transmitted and received by the fire alarm device TR. A synchronization bit (preamble: PA), a frame synchronization pattern (unique word: UW), a destination address DA, a source address SA, a message M, One frame is composed of a CRC code. Here, if the identification code of each fire alarm device TR is set as the destination address DA, only the fire alarm device TR of the identification code receives a radio signal and acquires a message. By setting a special bit string that is not assigned to the fire alarm TR (for example, a bit string with all bits set to 1), a wireless signal is broadcast (multicast) to obtain a message for all the fire alarm TRs. Can be made. For example, a radio signal including a fire alarm message is broadcast from the master station TR1 to all the slave stations TR2,.

次に、図3のタイムチャートを参照して、火災感知の前後における本実施形態の送受信動作を説明する。   Next, the transmission / reception operation of this embodiment before and after the fire detection will be described with reference to the time chart of FIG.

ここで、各火災警報器TR(親局TR1並びに子局TR2,…)が動作を開始する(タイマが間欠受信間隔のカウントを開始する)タイミングは通常一致しないので、制御部1が無線送受信部2を起動して電波を受信するタイミング(図3における下向きの矢印参照)も不揃いとなる。これに対して本実施形態では、各火災警報器TR(親局TR1並びに子局TR2,…)の無線送受信部2で同期信号が受信されると、制御部1がタイマによる間欠受信間隔Txのカウントを中止させるとともに同期信号の終了時点(t=t0)から一定の待機時間Twが経過した時点でタイマによる間欠受信間隔Txのカウントを再開させる。したがって、同期信号を受信した後は、各火災警報器TR(親局TR1並びに子局TR2,…)においてタイマが間欠受信間隔Txのカウントを完了するタイミングが揃うことになる。尚、同期信号は専用の送信局(図示せず)から送信するようにしてもよいし、後述するように火災警報器TRから送信しても構わない。専用の送信局から同期信号を送信した場合、火災警報器TRから同期信号を送信する場合と比較して火災警報器TRにおける電池の消耗を低減できるという利点がある。   Here, since the timing at which each fire alarm device TR (the master station TR1 and the slave stations TR2,...) Starts operating (the timer starts counting the intermittent reception interval) usually does not match, the control unit 1 is the wireless transmission / reception unit. The timing of activating 2 and receiving radio waves (see the downward arrow in FIG. 3) is also uneven. On the other hand, in this embodiment, when the synchronization signal is received by the wireless transmission / reception unit 2 of each fire alarm device TR (the master station TR1 and the slave stations TR2,...), The control unit 1 sets the intermittent reception interval Tx by the timer. The count is stopped and the counting of the intermittent reception interval Tx by the timer is resumed when a certain waiting time Tw has elapsed from the end point of the synchronization signal (t = t0). Therefore, after receiving the synchronization signal, the timing at which the timer completes the counting of the intermittent reception interval Tx is set in each fire alarm device TR (the master station TR1 and the slave stations TR2,...). The synchronization signal may be transmitted from a dedicated transmission station (not shown), or may be transmitted from the fire alarm device TR as will be described later. When the synchronization signal is transmitted from the dedicated transmission station, there is an advantage that battery consumption in the fire alarm device TR can be reduced as compared with the case where the synchronization signal is transmitted from the fire alarm device TR.

例えば、子局TR2において火災感知部4が火災を感知すると、子局TR2の制御部1は警報部5より警報音を鳴動させるとともに、タイマによる間欠受信間隔Txのカウント完了前に無線送受信部2を起動し、当該カウント完了時点を含む送信期間内に火災警報メッセージを含む無線信号を他の全ての火災警報器TR(親局TR1及び他の子局TR3,…)に宛てて送信する。この際、送信元の子局TR2の制御部1は、送信期間内で送信可能なフレーム数だけ無線信号を連続して送信し、送信期間後の休止期間(受信期間)には無線送受信部2を受信状態に切り換える。尚、各火災警報器TRにおいて間欠受信間隔Txのカウントが完了するタイミングが揃っているので、1回の送信期間で火災警報メッセージを含む無線信号を受信することができる。   For example, when the fire detection unit 4 detects a fire in the slave station TR2, the control unit 1 of the slave station TR2 sounds an alarm sound from the alarm unit 5, and before the count of the intermittent reception interval Tx by the timer is completed, the radio transmission / reception unit 2 And a radio signal including a fire alarm message is transmitted to all other fire alarm devices TR (master station TR1 and other slave stations TR3,...) Within a transmission period including the count completion time. At this time, the control unit 1 of the transmission source slave station TR2 continuously transmits the radio signal by the number of frames that can be transmitted within the transmission period, and the radio transmission / reception unit 2 during the pause period (reception period) after the transmission period. To the receiving state. In addition, since the timing for completing the intermittent reception interval Tx is complete in each fire alarm device TR, a radio signal including a fire alarm message can be received in one transmission period.

ここで、小電力無線を利用すれば、無線通信距離としては通常の住宅ひとつのエリア内であれば十分カバーできるので、火災元の子局TR2が、他の火災警報器TR(親局TR1及び他の子局TR3,…)に対しメッセージを送信することは通常は十分可能である。しかしながら、上述したように親局TR1は各子局TR2〜TR4に対して定期監視を行
っており、親局TR1と各子局TR2〜TR4との間では通信パスの正常性が確認されているが、子局TR2〜TR4間の通信パスは確認されていないため、例えば障害物などの影響によって、ある子局にはメッセージが届いていない可能性もある。
Here, if the low-power radio is used, the wireless communication distance can be sufficiently covered as long as it is within an area of a normal house. Therefore, the fire source child station TR2 can connect other fire alarm devices TR (master station TR1 and master station TR1). It is usually possible to send a message to other slave stations TR3,. However, as described above, the master station TR1 periodically monitors the slave stations TR2 to TR4, and the normality of the communication path is confirmed between the master station TR1 and each of the slave stations TR2 to TR4. However, since the communication path between the slave stations TR2 to TR4 is not confirmed, there is a possibility that a message does not reach a certain slave station due to the influence of an obstacle, for example.

そこで、火災警報メッセージを受信した親局TR1の制御部1は、送信元の子局TR2を除く他の子局TR3,TR4に対して火災警報メッセージを含む無線信号を、タイマによる間欠受信間隔Txのカウント完了時点を含む送信期間に送信する。他の子局TR3,TR4の制御部1では、子局TR2又は親局TR1から送信された火災警報メッセージを受け取ると直ちに警報部5より警報音を鳴動させるとともに無線送受信部2より火災警報メッセージの受信を確認する応答メッセージ(ACK)を無線信号によって返信する。尚、このように少なくとも1台の火災警報器TRで火災が感知されることで全ての火災警報器TRが火災警報を報知(警報音を鳴動)することを、以下では「火災連動」と呼ぶ。   Therefore, the control unit 1 of the master station TR1 that has received the fire alarm message transmits a radio signal including the fire alarm message to the other slave stations TR3 and TR4 other than the slave station TR2 that is the transmission source, and an intermittent reception interval Tx by a timer. It is transmitted in the transmission period including the time point of completion of counting. When the control unit 1 of the other slave stations TR3 and TR4 receives the fire alarm message transmitted from the slave station TR2 or the master station TR1, it immediately sounds an alarm sound from the alarm unit 5 and sends a fire alarm message from the radio transceiver unit 2. A response message (ACK) for confirming reception is returned by a radio signal. In addition, when all of the fire alarms TR notify the fire alarm (sounds an alarm sound) when a fire is detected by at least one fire alarm TR in this manner, hereinafter, it is referred to as “fire interlocking”. .

親局TR1の制御部1は、他の全ての子局TR3,TR4からACKを受け取れば、タイムスロットを規定するための同期ビーコンを一定の周期で無線送受信部2から送信させる。尚、本実施形態では先頭のタイムスロットTS1を子局TR2に、2番目のタイムスロットTS2を子局TR3に、3番目のタイムスロットTS3を子局TR4にそれぞれ割り当てている。   When receiving the ACK from all the other slave stations TR3 and TR4, the control unit 1 of the master station TR1 causes the radio transmission / reception unit 2 to transmit a synchronization beacon for defining a time slot at a constant period. In the present embodiment, the first time slot TS1 is assigned to the child station TR2, the second time slot TS2 is assigned to the child station TR3, and the third time slot TS3 is assigned to the child station TR4.

ここで、親局TR1は各子局TR2〜TR4に対して定期監視を行っており、親局TR1と各子局TR2〜TR4との間では通信パスの正常性が確認されているが、子局TR2〜TR4間の通信パスは確認されていない。したがって、子局TR2,…が多数配置された場合、子局TR2,…間の通信パスの数は非常に多くなる為、子局TR2,…間の通信パスの正常性の確認を行うと電池消耗が激しくなるので、上述のように特定の火災警報器TR1を親局とし、その他の火災警報器TR2,…を子局として親局TR1から各子局TR2,…に火災警報メッセージやその他のメッセージ(後述する)を通知することで相互に通信パスが確立できない子局が存在する場合でも確実に火災連動させることができるものである。   Here, the master station TR1 periodically monitors each slave station TR2 to TR4, and the normality of the communication path is confirmed between the master station TR1 and each slave station TR2 to TR4. The communication path between the stations TR2 to TR4 has not been confirmed. Therefore, when a large number of slave stations TR2,... Are arranged, the number of communication paths between the slave stations TR2,. Since the exhaustion becomes intense, as described above, the specific fire alarm device TR1 is set as the master station, and the other fire alarm devices TR2,. By notifying a message (to be described later), even if there are slave stations that cannot establish a communication path with each other, it is possible to reliably link the fire.

また、全ての火災警報器TRが警報音を鳴動することにより連動が開始されると、上述のように親局TR1から一定周期で同期ビーコンが送信されてTDMA方式の同期通信に移行するのであるが、親局TR1の制御部1では、同期ビーコンに含めることで火災警報メッセージを一定周期で全ての子局TR2,…に繰り返し送信している。そして、各子局TR2,…の制御部1では、親局TR1から送信される火災警報メッセージを受け取る度に警報部5の状態を確認し、仮に警報部5が停止していたとしたら警報部5に再度警報音を鳴動させる。したがって、全ての火災警報器TRで火災警報が報知され始めてからは特定の火災警報器(親局)TR1が送信する同期ビーコンによって規定される複数のタイムスロットに他の全ての火災警報器(子局)TR2,…を割り当てて時分割多元接続(TDMA)による無線通信を行うことで衝突を回避することができ、さらに、特定の火災警報器(親局)TR1から他の全ての火災警報器(子局)TR2,…に対して火災警報メッセージを同期ビーコンに含めて周期的に送信することで確実に火災警報を報知することができる。その結果、無線信号の衝突を回避しつつ複数の火災警報器TRを効果的に連動させることができる。   Moreover, when all the fire alarms TR start the alarm by sounding an alarm sound, as described above, a synchronous beacon is transmitted from the master station TR1 at a constant cycle, and the operation shifts to TDMA synchronous communication. However, the control unit 1 of the master station TR1 repeatedly transmits a fire alarm message to all the slave stations TR2,. Then, the control unit 1 of each slave station TR2,... Checks the state of the alarm unit 5 every time it receives a fire alarm message transmitted from the master station TR1, and if the alarm unit 5 is stopped, the alarm unit 5 Sound the alarm again. Therefore, after the fire alarm is started to be notified by all the fire alarms TR, all the other fire alarms (children) are set in a plurality of time slots defined by the synchronous beacon transmitted by the specific fire alarm (master station) TR1. Stations) TR2,... Can be assigned to perform wireless communication by time division multiple access (TDMA) to avoid collisions. Furthermore, all other fire alarms from a specific fire alarm (master station) TR1 The fire alarm can be reliably notified to the slave stations TR2,. As a result, a plurality of fire alarms TR can be effectively interlocked while avoiding collision of radio signals.

上述のように本実施形態によれば、火災発生時には全ての火災警報器TRで火災警報が報知されるので、利用者が火災警報を知覚する(警報音を聞く)機会が増えるために安全性を向上することができる。   As described above, according to the present embodiment, since a fire alarm is notified by all the fire alarm devices TR in the event of a fire, the user has more opportunities to perceive the fire alarm (listen to the alarm sound), thereby increasing safety. Can be improved.

ところで、本実施形態の火災警報システムは、何れの火災警報器TRにおいても火災が検出されていない状態(待機状態)と、全ての火災警報器TRが警報音を鳴動している状
態(連動鳴動状態)と、後述するように火災を検出している(火元の)火災警報器TRのみが警報音を鳴動し、火元以外の火災警報器TRが警報音を停止している状態(連動停止状態)との間で動作状態を遷移させている。すなわち、待機状態において少なくとも何れか1台の火災警報器TR(例えば、子局TR2)で火災が検出されると、上述したように火元の子局TR2並びに親局TR1から他の全ての子局TR3,…に火災警報メッセージが送信されることで親局TR1と子局TR2,…を含む全ての火災警報器TRで警報音が鳴動されて連動鳴動状態に遷移する。
By the way, the fire alarm system of this embodiment is in a state where no fire is detected in any of the fire alarms TR (standby state), and in a state where all the fire alarms TR are sounding an alarm sound (linked sounding) State), as described later, only the fire alarm TR that detects the fire (fire source) sounds the alarm sound, and the fire alarm TR other than the fire source stops the alarm sound (interlocked) The operation state is transited between (stop state). That is, when a fire is detected by at least one of the fire alarm devices TR (for example, the slave station TR2) in the standby state, as described above, all the other slaves from the fire source slave station TR2 and the master station TR1. When the fire alarm message is transmitted to the stations TR3,..., An alarm sound is generated in all the fire alarm devices TR including the master station TR1 and the slave stations TR2,.

そして、連動鳴動状態において何れかの火災警報器TRの操作入力受付部6で警報音の鳴動を停止するための操作入力が受け付けられた場合、当該火災警報器TRが親局TR1であれば親局TR1から全ての子局TR2,…に対して警報音の停止を要求するメッセージ(警報停止メッセージ)を送信することにより、あるいは、当該火災警報器TRが子局TR2,…であれば当該子局TR2,…から警報停止メッセージを受け取った親局TR1が他の子局TR2,…に対して警報停止メッセージを送信することにより、火元以外の火災警報器TRで警報音が停止されて連動停止状態に遷移する。但し、火元の火災警報器TRの操作入力受付部6で警報音停止の操作入力が受け付けられた場合、当該火元の火災警報器TRにおいても警報音を停止する。ここで、親局TR1の制御部1はメモリ部1aに親局TR1並びに各子局TR2,…毎の火災検出状況を随時更新しながら保持しており、後述するように全ての火災警報器TRで火災が検出されなくなったときに火災連動状態から待機状態に遷移する。   When an operation input for stopping the alarm sound is received by the operation input receiving unit 6 of any fire alarm device TR in the interlocking sounding state, if the fire alarm device TR is the master station TR1, The station TR1 transmits a message (alarm stop message) requesting the stop of the alarm sound to all the slave stations TR2,... Or if the fire alarm device TR is the slave station TR2,. When the master station TR1 receives the alarm stop message from the stations TR2,... And transmits the alarm stop message to the other slave stations TR2,. Transition to the stop state. However, when an operation input for stopping the alarm sound is received by the operation input receiving unit 6 of the fire source fire alarm device TR, the alarm sound is also stopped in the fire alarm device TR of the fire source. Here, the control unit 1 of the master station TR1 holds the fire detection status for each master station TR1 and each slave station TR2,... When a fire is no longer detected in, transition from the fire-linked state to the standby state.

また、連動鳴動状態から連動停止状態に遷移した場合、親局TR1の制御部1では所定の警報音停止時間(例えば、5分間)の限時を開始する。そして、警報音停止時間が経過したのち、親局TR1の制御部1はメモリ部1aに保持している火災検出状況を参照し、全ての火災警報器TRで火災を検出していなければ、同期ビーコンによって復旧通知のメッセージを送信することで火災連動状態から待機状態に遷移し、仮に少なくとも1台の火災警報器TRで火災を検出していれば、同期ビーコンによって火災警報メッセージを送信することで連動停止状態から連動鳴動状態へ遷移させる。尚、連動停止状態において何れかの火災警報器TRが新たに火災を検出した場合にも親局TR1の制御部1が同期ビーコンによって火災警報メッセージを送信することで連動停止状態から連動鳴動状態へ遷移させる。   When the interlocking ringing state is changed to the interlocking stop state, the control unit 1 of the master station TR1 starts a time limit for a predetermined alarm sound stop time (for example, 5 minutes). Then, after the alarm sound stop time has elapsed, the control unit 1 of the master station TR1 refers to the fire detection status held in the memory unit 1a, and if all the fire alarms TR do not detect a fire, the control unit 1 By sending a recovery notification message using a beacon, it is possible to transition from a fire-linked state to a standby state. If a fire is detected by at least one fire alarm TR, a fire alarm message can be sent using a synchronous beacon. Transition from the linked stop state to the linked ringing state. Even when any fire alarm TR newly detects a fire in the interlock stop state, the control unit 1 of the master station TR1 transmits a fire alarm message by a synchronous beacon to change from the interlock stop state to the interlock ringing state. Transition.

例えば、図4のタイムチャートに示すように、親局TR1を火元とする火災連動状態(連動鳴動状態)において、火元でない子局TR4の操作入力受付部6で警報音停止の操作入力が受け付けられることで当該子局TR4から警報停止メッセージが送信されると、警報停止メッセージを受け取った親局TR1の制御部1は同期ビーコンによって警報停止メッセージM2を送信しつつ警報音停止時間の限時を行う。但し、火元である親局TR1では警報部5による警報音の鳴動は継続される。そして、警報音停止時間が経過したのち、親局TR1の制御部1は自らの火災感知部4による火災検出状況並びに子局TR2,…おける火災検出状況を確認し、少なくとも何れか1台の火災警報器TRが火災を検出しているときは再度火災警報メッセージを同期ビーコンにより各子局TR2,…に送信することで連動停止状態から連動鳴動状態へ遷移させる。   For example, as shown in the time chart of FIG. 4, in a fire-linked state (linked ringing state) in which the master station TR1 is a fire source, an operation input for stopping an alarm sound is received by the operation input reception unit 6 of the slave station TR4 that is not a fire source. When the alarm stop message is transmitted from the slave station TR4 by being accepted, the control unit 1 of the master station TR1 that has received the alarm stop message transmits the alarm stop message M2 by the synchronous beacon and sets the time limit of the alarm sound stop time. Do. However, in the master station TR1 that is the source of fire, the alarm unit 5 continues to sound an alarm sound. After the alarm sound stop time has elapsed, the control unit 1 of the master station TR1 confirms the fire detection status of its own fire detection unit 4 and the fire detection status of the slave stations TR2,..., And at least one of the fires is detected. When the alarm device TR detects a fire, a fire alarm message is transmitted again to each of the slave stations TR2,.

一方、図5のタイムチャートに示すように、警報音停止時間内に火災が鎮火して火災感知部4が火災を検出しなくなっていれば、親局TR1の制御部1は警報音停止時間が経過したのちに同期ビーコンによって各子局TR2,…に復旧通知メッセージを送信し、全ての子局TR2,…から返信されるACKを受け取った時点で連動停止状態から待機状態に遷移し、同期ビーコンの送信を停止することでTDMA方式による無線通信から間欠送信・間欠受信による無線通信に戻る。   On the other hand, as shown in the time chart of FIG. 5, if the fire is extinguished within the warning sound stop time and the fire detection unit 4 stops detecting the fire, the control unit 1 of the master station TR1 After the elapse of time, a recovery notification message is transmitted to each slave station TR2,... By a synchronous beacon, and when an ACK returned from all the slave stations TR2,. By stopping the transmission, the wireless communication by the TDMA method returns to the wireless communication by intermittent transmission / intermittent reception.

また、図6のタイムチャートに示すように、子局TR4を火元とする連動鳴動状態において、火元の火災が鎮火して子局TR4の火災感知部4が火災を検出しなくなれば、子局TR4から親局TR1に宛てて復旧通知メッセージが送信される。当該復旧通知メッセージを受け取った親局TR1の制御部1はメモリ部1aに保持している火災検出状況を参照し、全ての火災警報器TRで火災を検出していなければ同期ビーコンによって復旧通知メッセージM3を各子局TR2,…に送信する。そして、全ての子局TR2,…から返信されるACKを親局TR1の制御部1が受け取れば、連動停止状態から待機状態に遷移し、同期ビーコンの送信を停止することでTDMA方式による無線通信から間欠送信・間欠受信による無線通信に戻る。   Further, as shown in the time chart of FIG. 6, if the fire at the fire station extinguishes and the fire detection unit 4 of the slave station TR 4 does not detect the fire in the interlocking ringing state with the slave station TR 4 as the fire source, A recovery notification message is transmitted from the station TR4 to the parent station TR1. The control unit 1 of the master station TR1 that has received the recovery notification message refers to the fire detection status held in the memory unit 1a. If no fire is detected by all the fire alarms TR, the recovery notification message is transmitted by a synchronous beacon. M3 is transmitted to each of the slave stations TR2,. When the control unit 1 of the master station TR1 receives ACKs returned from all the slave stations TR2,..., Wireless communication using the TDMA method is made by transitioning from the interlocking stop state to the standby state and stopping the transmission of synchronous beacons. Return to wireless communication by intermittent transmission and reception.

一方、図7のタイムチャートに示すように、新たに別の火災警報器(例えば、子局TR3)で火災が検出された場合、初めの火元である子局TR4から復旧通知メッセージを受け取った親局TR1の制御部1は、メモリ部1aに保持している火災検出状況を参照し、子局TR3が火災検出中であることから復旧通知メッセージを送信せず、引き続き火災警報メッセージを送信することで火災連動状態を維持する。   On the other hand, as shown in the time chart of FIG. 7, when a fire is newly detected by another fire alarm device (for example, the slave station TR3), a recovery notification message is received from the slave station TR4 that is the first fire source. The control unit 1 of the master station TR1 refers to the fire detection status held in the memory unit 1a, and does not transmit a recovery notification message because the slave station TR3 is detecting a fire, and continues to transmit a fire alarm message. To maintain a fire-linked state.

而して本実施形態によれば、同期信号を受信することによって各無線局(火災警報器TR)の受信制御手段(制御部1)が受信手段(無線送受信部2)を起動するタイミングが揃い、しかも、イベント(火災感知)が発生した無線局の送信制御手段(制御部1)が受信手段の起動するタイミングに合わせて無線信号を送信するので、一の無線局から送信される無線信号を他の全ての無線局がほぼ同時に受信することができる。その結果、間欠受信を行うことで消費電力を低減して電池の寿命を延ばしつつ何れかの無線局が送信した無線信号を他の無線局が受信できるまでの遅延時間を短くすることができる。   Thus, according to this embodiment, the reception control unit (control unit 1) of each radio station (fire alarm device TR) receives the synchronization signal, and the timing for starting the reception unit (radio transmission / reception unit 2) is aligned. In addition, since the transmission control means (control unit 1) of the wireless station where the event (fire detection) has occurred transmits a wireless signal in accordance with the timing when the receiving means is activated, the wireless signal transmitted from one wireless station is All other radio stations can receive almost simultaneously. As a result, by performing intermittent reception, it is possible to shorten the delay time until another wireless station can receive a wireless signal transmitted from any wireless station while reducing the power consumption and extending the battery life.

また、複数の無線局(火災警報器TR)のうちの特定の無線局(親局TR1)の送信制御手段(制御部1)が、タイマ手段による間欠受信間隔のカウントが一定回数完了する毎に送信手段(無線送受信部2)から同期信号を送信すれば、同期信号を送信するための専用の送信機(送信局)などが不要でシステム構成が簡略化できるという利点がある。但し、親局TR1が同期信号を送信するとした場合、親局TR1の電池が子局TR2,…の電池よりも早く消耗してしまうことになるので、全ての無線局(親局TR1と子局TR2,…を含む全ての火災警報器TR)が一定期間(例えば、24時間)毎に順番に同期信号を送信することが望ましい。例えば、当番の無線局(火災警報器TR)から送信される最終回の同期信号に次順の無線局(火災警報器TR)の識別符号を含めておき、当該識別符号に該当する無線局(火災警報器TR)が次回の同期信号を送信するようにすればよい。   Further, every time the transmission control means (control unit 1) of a specific radio station (master station TR1) among a plurality of radio stations (fire alarm device TR) completes the count of the intermittent reception interval by the timer means a predetermined number of times. If the synchronization signal is transmitted from the transmission means (wireless transmission / reception unit 2), there is an advantage that a dedicated transmitter (transmission station) for transmitting the synchronization signal is not required and the system configuration can be simplified. However, if the master station TR1 transmits a synchronization signal, the battery of the master station TR1 will be consumed earlier than the batteries of the slave stations TR2,..., So all the radio stations (master station TR1 and slave station) It is desirable that all the fire alarms TR including TR2,... Transmit a synchronization signal in turn every certain period (for example, 24 hours). For example, the identification code of the next sequential radio station (fire alarm device TR) is included in the last synchronization signal transmitted from the assigned radio station (fire alarm device TR), and the radio station ( The fire alarm device TR) may transmit the next synchronization signal.

ところで、間欠受信間隔をカウントするタイマにはタイマクロックとして、音叉型水晶振動子を用いた発振器が使用されているが、周囲温度と常温(25℃)との温度差が大きくなるにつれて周波数偏差が大きくなり(図11参照)、常温との温度差が大きい時間が長くなれば間欠受信間隔の時間ずれが徐々に増加し、何れは同期信号との同期が取れなくなる虞がある。   By the way, an oscillator using a tuning fork crystal resonator is used as a timer clock for a timer that counts intermittent reception intervals. However, as the temperature difference between ambient temperature and room temperature (25 ° C.) increases, the frequency deviation increases. When the time when the temperature difference from room temperature is large becomes longer (see FIG. 11), the time difference between the intermittent reception intervals gradually increases, and there is a possibility that synchronization with the synchronization signal may eventually be lost.

そこで本実施形態では、予めメモリ部1aに記憶しているタイマ(信号発生器)の周波数温度特性と温度検出部8で検出する周囲温度とに基づいてタイマがカウントする間欠受信間隔の時間ずれを演算する時間ずれ演算手段と、時間ずれ演算手段で演算される時間ずれを縮小するようにタイマのカウント動作を補正する第1の補正手段とを備えている。但し、時間ずれ演算手段及び第1の補正手段は何れも制御部1のマイコンに専用のプログラムを実行させることで実現される。   Therefore, in this embodiment, the time lag of the intermittent reception interval counted by the timer based on the frequency temperature characteristics of the timer (signal generator) stored in the memory unit 1a in advance and the ambient temperature detected by the temperature detection unit 8 is obtained. A time lag calculating means for calculating, and a first correcting means for correcting the count operation of the timer so as to reduce the time lag calculated by the time lag calculating means. However, both the time shift calculation means and the first correction means are realized by causing the microcomputer of the control unit 1 to execute a dedicated program.

制御部1は、メモリ部1aに記憶している周波数温度特性を参照し、温度検出部8で検出する周囲温度と常温との温度差に対応する周波数偏差を求め、当該周波数偏差から時間
ずれΔTを演算する。但し、周囲温度の検出から時間ずれΔTを演算する処理は、一定の周期(例えば、数分から数十分)で行われる。
The control unit 1 refers to the frequency temperature characteristics stored in the memory unit 1a, obtains a frequency deviation corresponding to the temperature difference between the ambient temperature detected by the temperature detection unit 8 and the normal temperature, and calculates a time deviation ΔT from the frequency deviation. Is calculated. However, the process of calculating the time difference ΔT from the detection of the ambient temperature is performed at a constant cycle (for example, several minutes to several tens of minutes).

次に、第1の補正手段たる制御部1の補正処理について説明する。制御部1は、上述のようにして演算した時間ずれΔTを、ΔTの大きさに応じてタイマのカウント動作を微調整することで補正する。すなわち、間欠受信間隔Txをカウントするタイマのカウント値を正規の値よりも増減させることで、間欠受信間隔Txを変化させることができるので、制御部1がタイマのカウント値を増減させることにより時間ずれΔTを補正することができる。ここで、音叉型水晶発振子は通常、32.768kHzで発振しており、例えば、間欠受信間隔Txが5秒の場合、163840(=32.768kHz×5)のカウント毎に間欠受信を行うため、1カウント分だけ増減させたときの変化量はおよそ±6ppm(≒1÷163840)相当になり、これが補正可能な最小単位となる。したがって、演算された時間ずれΔTが前記最小値よりも小さい値であると補正ができないので、この場合、制御部1では、例えば、10分に1回の割合でカウント値の増減を実行することで時間ずれΔTを補正する。尚、同期信号の受信が可能な時間(同期信号の時間幅Tの半分よりも僅かに小さい値)を上限値として、累積された時間ずれが前記上限値を超える直前にカウント値の増減を行うようにしても構わない。   Next, correction processing of the control unit 1 serving as first correction means will be described. The control unit 1 corrects the time shift ΔT calculated as described above by finely adjusting the count operation of the timer according to the magnitude of ΔT. That is, since the intermittent reception interval Tx can be changed by increasing / decreasing the count value of the timer that counts the intermittent reception interval Tx from the normal value, the control unit 1 can increase the time by increasing / decreasing the timer count value. The shift ΔT can be corrected. Here, the tuning fork type crystal oscillator normally oscillates at 32.768 kHz. For example, when the intermittent reception interval Tx is 5 seconds, intermittent reception is performed every count of 163840 (= 32.768 kHz × 5). The amount of change when increasing or decreasing by the count is equivalent to approximately ± 6 ppm (≈1 ÷ 163840), which is the minimum unit that can be corrected. Therefore, since it cannot correct | amend that the calculated time shift | offset | difference (DELTA) T is a value smaller than the said minimum value, in this case, the control part 1 performs increase / decrease in a count value at a rate of once every 10 minutes, for example. To correct the time difference ΔT. The count value is increased / decreased immediately before the accumulated time lag exceeds the upper limit value, with the time during which the sync signal can be received (a value slightly smaller than half the time width T of the sync signal) as the upper limit value. It doesn't matter if you do.

ところで、音叉型水晶発振器の周波数安定度(周波数偏差)はおよそ±50〜100ppmであり、長期間の使用によって間欠受信間隔の時間ずれが徐々に増加し、何れは同期信号との同期が取れなくなる虞がある。そこで本実施形態では、無線送受信部2で同期信号を受信したときに当該同期信号の受信タイミングとタイマがカウントする間欠受信間隔との時間ずれを検出する時間ずれ検出手段と、時間ずれ検出手段で検出される時間ずれを縮小するようにタイマのカウント動作を補正する第2の補正手段とを備えている。但し、時間ずれ検出手段及び第2の補正手段は何れも制御部1のマイコンに専用のプログラムを実行させることで実現される。   By the way, the frequency stability (frequency deviation) of the tuning fork type crystal oscillator is about ± 50 to 100 ppm, and the time lag of the intermittent reception interval gradually increases with long-term use, and eventually it becomes impossible to synchronize with the synchronization signal. There is a fear. Therefore, in the present embodiment, when the wireless transmission / reception unit 2 receives a synchronization signal, a time shift detection unit that detects a time shift between the reception timing of the synchronization signal and the intermittent reception interval counted by the timer, and a time shift detection unit Second correction means for correcting the count operation of the timer so as to reduce the detected time lag. However, both the time shift detection means and the second correction means are realized by causing the microcomputer of the control unit 1 to execute a dedicated program.

図8に示すように、同期信号がプリアンブルとユニークワード(UW)からなるフレーム構成である場合、時間ずれ検出手段たる制御部1では、同期信号のプリアンブルを受信した時点t0からユニークワードの受信完了時点t1までの時間(検出時間)を計測する。例えば、同期信号の時間幅をT(秒)とし、同期信号の中間値(=T/2)を時間ずれ検出の基準点とすれば、時間ずれΔTはΔT=検出時間−T/2として計算することができる(図8参照)。   As shown in FIG. 8, when the synchronization signal has a frame configuration consisting of a preamble and a unique word (UW), the control unit 1 serving as a time lag detection means completes the reception of the unique word from the time t0 when the preamble of the synchronization signal is received. The time (detection time) until time t1 is measured. For example, assuming that the time width of the synchronization signal is T (seconds) and the intermediate value (= T / 2) of the synchronization signal is a reference point for time shift detection, the time shift ΔT is calculated as ΔT = detection time−T / 2. (See FIG. 8).

あるいは、同期信号のフレーム構成が、図9に示すようにビット同期用のプリアンブル並びにフレーム同期用のユニークワードからなるヘッダHDと、先頭から順に番号(連送番号)が割り当てられたデータフィールドとの対からなる複数の同期フレームが連送されるフレーム構成とした場合、時間ずれ検出手段たる制御部1では、間欠受信において最初に受信したデータフィールドの連送番号i(i=1,2,…,n)に基づいて時間ずれを検出する。例えば、データフィールドに割り当てられた連送番号iがn/2の同期フレームを基準としたとき、最初に受信した同期フレームの連送番号iがi=2であったとすると、時間ずれΔTはΔT=T×(n/2−2)として計算することができる。   Alternatively, as shown in FIG. 9, the frame structure of the synchronization signal includes a header HD consisting of a bit synchronization preamble and a frame synchronization unique word, and a data field to which numbers (continuous transmission numbers) are assigned in order from the top. In the case of a frame configuration in which a plurality of pairs of synchronous frames are continuously transmitted, the control unit 1 serving as a time lag detection means continuously transmits the serial number i (i = 1, 2,...) Of the data field received first in intermittent reception. , N) to detect a time lag. For example, assuming that the serial number i of the synchronization frame received first is i = 2 when the serial number i assigned to the data field is based on the synchronization frame of n / 2, the time shift ΔT is ΔT. = T * (n / 2-2).

あるいは、上述した連送番号iの代わりに、図10に示すように同期信号の中間値を基準点とする時間ずれの値(0ppm,±1ppm,…,±10ppm)をデータフィールドに格納すれば、時間ずれ検出手段たる制御部1では、間欠受信において最初に受信したデータフィールドのデータ(0ppm,±1ppm,…,±10ppm)から時間ずれΔTを検出することができる。   Alternatively, instead of the serial number i described above, a time lag value (0 ppm, ± 1 ppm,..., ± 10 ppm) with the intermediate value of the synchronization signal as a reference point is stored in the data field as shown in FIG. The control unit 1 serving as a time shift detection means can detect the time shift ΔT from the data (0 ppm, ± 1 ppm,..., ± 10 ppm) received first in the intermittent reception.

第2の補正手段たる制御部1の補正処理は、実質的に第1の補正手段による補正処理と共通である。すなわち、制御部1は、累積された時間ずれΔTの値が所定値を超えた時に間欠受信間隔Txをカウントするタイマのカウント値を正規の値よりも増減させることにより時間ずれΔTを補正する。   The correction process of the control unit 1 as the second correction unit is substantially the same as the correction process by the first correction unit. That is, the control unit 1 corrects the time shift ΔT by increasing or decreasing the count value of the timer that counts the intermittent reception interval Tx from the normal value when the accumulated time shift ΔT exceeds a predetermined value.

ここで、制御部1が同期信号から検出した時間ずれを補正している場合においては、当該時間ずれの補正処理を行ったときに温度検出部8で検出された周囲温度に対して、その後に温度検出部8で検出される周囲温度が所定値(例えば、数℃〜十数℃)以上変化したときに第1の補正手段たる制御部1が周波数温度特性に基づいて演算された時間ずれの補正を行うようにしても構わない。   Here, in the case where the control unit 1 corrects the time lag detected from the synchronization signal, with respect to the ambient temperature detected by the temperature detection unit 8 when the time lag correction process is performed, When the ambient temperature detected by the temperature detection unit 8 changes by a predetermined value (for example, several degrees C. to several tens of degrees C.) or more, the control unit 1 as the first correction unit calculates the time lag calculated based on the frequency temperature characteristics. Correction may be performed.

TR1,TR2 火災警報器(無線局)
1 制御部(送信制御手段,受信制御手段,タイマ手段,時間ずれ演算手段,第1の補正手段)
2 無線送受信部(送信手段,受信手段)
7 電池電源部(給電手段)
8 温度検出部(温度検出手段)
TR1, TR2 Fire alarm (radio station)
1 control unit (transmission control means, reception control means, timer means, time shift calculation means, first correction means)
2 Wireless transceiver (transmitting means, receiving means)
7 Battery power supply (power supply means)
8 Temperature detector (temperature detection means)

Claims (1)

複数の無線局からなり、これら複数の無線局間で電波を媒体とする無線信号を送受信する無線通信システムであって、
各無線局は、無線信号を送信する送信手段と、無線信号を受信する受信手段と、所定のイベントが発生したときに送信手段を起動し、所定の送信期間に前記イベントに対応したメッセージを含む無線信号を送信させるとともに所定の休止期間に無線信号の送信を休止させる動作を交互に繰り返し且つ前記イベントが発生していないときには送信手段を停止させる送信制御手段と、一定の間欠受信間隔を繰り返しカウントするタイマ手段と、タイマ手段による間欠受信間隔のカウント中は受信手段を停止させ、タイマ手段による間欠受信間隔のカウントが完了する度に受信手段を起動する受信制御手段と、電池を電源として各手段の動作電源を供給する給電手段とを備え、
受信制御手段は、受信手段で同期信号を受信した場合にタイマ手段による間欠受信間隔のカウントを中止させるとともに、当該同期信号の終了時点から一定の待機時間が経過した時点でタイマ手段による間欠受信間隔のカウントを再開させ、
送信制御手段は、前記イベントが発生した場合、タイマ手段による間欠受信間隔のカウントが完了する時点と重なる前記送信期間に送信手段から無線信号を送信させる無線通信システムにおいて、
各無線局は、周囲温度を検出する温度検出手段と、温度検出手段で検出する周囲温度とタイマ手段の周波数温度特性とに基づいてタイマ手段がカウントする間欠受信間隔の時間ずれを演算する時間ずれ演算手段と、時間ずれ演算手段で演算される時間ずれを縮小するようにタイマ手段のカウント動作を補正する第1の補正手段と、受信手段で同期信号を受信したときに当該同期信号の受信タイミングとタイマ手段がカウントする間欠受信間隔との時間ずれを検出する時間ずれ検出手段と、時間ずれ検出手段で検出される時間ずれを縮小するようにタイマ手段のカウント動作を補正する第2の補正手段とを備え
第1の補正手段は、第2の補正手段がタイマ手段のカウント動作を補正したときの周囲温度に対して温度検出手段で検出される周囲温度が所定値以上変化したときにタイマ手段のカウント動作を補正することを特徴とする無線通信システム
A wireless communication system comprising a plurality of wireless stations and transmitting and receiving wireless signals using radio waves as a medium between the plurality of wireless stations,
Each radio station includes a transmission unit that transmits a radio signal, a reception unit that receives a radio signal, and activates the transmission unit when a predetermined event occurs, and includes a message corresponding to the event during a predetermined transmission period Transmitting a wireless signal and repeatedly stopping the transmission of the wireless signal during a predetermined pause period, and repeatedly counting a certain intermittent reception interval, and a transmission control means for stopping the transmitting means when the event does not occur Timer means for receiving, a reception control means for stopping the reception means during counting of the intermittent reception interval by the timer means, and starting the reception means every time counting of the intermittent reception interval by the timer means is completed, and each means using a battery as a power source Power supply means for supplying the operating power of
The reception control means stops counting the intermittent reception interval by the timer means when the synchronization signal is received by the reception means, and the intermittent reception interval by the timer means when a certain waiting time has elapsed from the end of the synchronization signal. Resume counting,
In the wireless communication system in which when the event occurs, the transmission control unit causes the transmission unit to transmit a radio signal during the transmission period that overlaps with a time point at which the intermittent reception interval is counted by the timer unit.
Each radio station calculates the time lag of the intermittent reception interval counted by the timer means based on the temperature detection means for detecting the ambient temperature, and the ambient temperature detected by the temperature detection means and the frequency temperature characteristics of the timer means. The calculation means, a first correction means for correcting the counting operation of the timer means so as to reduce the time difference calculated by the time difference calculation means, and the reception timing of the synchronization signal when the reception means receives the synchronization signal And a second correction unit for correcting the counting operation of the timer unit so as to reduce the time shift detected by the time shift detection unit. It equipped with a door,
The first correction means counts the timer means when the ambient temperature detected by the temperature detection means changes by a predetermined value or more with respect to the ambient temperature when the second correction means corrects the count action of the timer means. The wireless communication system characterized by correcting .
JP2009297349A 2009-02-23 2009-12-28 Wireless communication system Active JP5406704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297349A JP5406704B2 (en) 2009-02-23 2009-12-28 Wireless communication system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009039121 2009-02-23
JP2009039121 2009-02-23
JP2009297349A JP5406704B2 (en) 2009-02-23 2009-12-28 Wireless communication system

Publications (2)

Publication Number Publication Date
JP2010218540A JP2010218540A (en) 2010-09-30
JP5406704B2 true JP5406704B2 (en) 2014-02-05

Family

ID=42977256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297349A Active JP5406704B2 (en) 2009-02-23 2009-12-28 Wireless communication system

Country Status (1)

Country Link
JP (1) JP5406704B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226941A (en) * 1985-07-27 1987-02-04 Nippon Telegr & Teleph Corp <Ntt> Intermittent reception system of mobile radio communication system
JPH09271083A (en) * 1996-04-03 1997-10-14 Matsushita Electric Ind Co Ltd Intermittent communication equipment
JP4601862B2 (en) * 2001-06-05 2010-12-22 株式会社東芝 Wireless communication terminal
JP4848963B2 (en) * 2007-01-17 2011-12-28 パナソニック電工株式会社 Wireless transmission system

Also Published As

Publication number Publication date
JP2010218540A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
WO2010071194A1 (en) Wireless communication system
JP5513737B2 (en) Fire alarm system
JP5222123B2 (en) Fire alarm system
JP5492021B2 (en) Wireless communication system
JP5134424B2 (en) Fire alarm system
JP5391056B2 (en) Wireless communication system
JP5302877B2 (en) Wireless communication system
JP2011150492A (en) Radio communication system
JP5308326B2 (en) Wireless communication system
JP5502611B2 (en) Wireless communication system
JP5015855B2 (en) Fire alarm system
JP5480691B2 (en) Wireless communication system
JP2009169552A (en) Fire alarm system
JP5507979B2 (en) Wireless communication system
JP5314589B2 (en) Wireless communication system
JP5406704B2 (en) Wireless communication system
JP5411767B2 (en) Wireless communication system
JP5541975B2 (en) Wireless communication system
JP5091747B2 (en) Fire alarm system
JP5462608B2 (en) Wireless communication system
JP5486324B2 (en) Wireless communication system
JP5600761B2 (en) Wireless communication system
JP5369060B2 (en) Fire alarm system
JP5492022B2 (en) Wireless communication system
JP2009251907A (en) Fire alarm system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100630

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

R150 Certificate of patent or registration of utility model

Ref document number: 5406704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150