JP5406236B2 - Method for producing ceramic backup material for gas shielded arc welding - Google Patents

Method for producing ceramic backup material for gas shielded arc welding Download PDF

Info

Publication number
JP5406236B2
JP5406236B2 JP2011056095A JP2011056095A JP5406236B2 JP 5406236 B2 JP5406236 B2 JP 5406236B2 JP 2011056095 A JP2011056095 A JP 2011056095A JP 2011056095 A JP2011056095 A JP 2011056095A JP 5406236 B2 JP5406236 B2 JP 5406236B2
Authority
JP
Japan
Prior art keywords
ceramic
welding
backup material
arc welding
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011056095A
Other languages
Japanese (ja)
Other versions
JP2011152587A (en
Inventor
小根 汪
詩祥 肖
明生 朱
洋三 ▲高▼須賀
康二 渡部
力 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUNOUCHI CORPORATION
Original Assignee
SUNOUCHI CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUNOUCHI CORPORATION filed Critical SUNOUCHI CORPORATION
Priority to JP2011056095A priority Critical patent/JP5406236B2/en
Publication of JP2011152587A publication Critical patent/JP2011152587A/en
Application granted granted Critical
Publication of JP5406236B2 publication Critical patent/JP5406236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、造船・橋梁・建築鉄骨および圧力タンク・建設機械等の鋼構造物の溶接接合において、図1に示すように母材継手の裏面に取り付けるガスシールドアーク溶接用セラミックバックアップ材(図2のA)の製造方法に関するものである。   The present invention relates to a ceramic backup material for gas shield arc welding (FIG. 2) that is attached to the back surface of a base metal joint as shown in FIG. 1 in welding joining of steel structures such as shipbuilding, bridges, building steel frames, pressure tanks, and construction machinery. A) of the production method.

上記造船や鋼構造物の溶接分野においては、従来から電極棒によるガウジングを伴う両面溶接法が用いられているが、一方では図2に示すセラミックバックアップ材を母材の裏面(図1の3)に取付けて上面から片側のみを溶接する片面溶接法の採用が主流となっている。上記の両面溶接法は図3に示すように上面から溶接した溶着金属(図3のb)の裏面(図3のcの点線部分)を電極棒により溶削した後に再度その部分(図3のd)を溶接するもので、溶接母材が反転できない場合には仰向けとなり上向き作業を強いられ、且つ適正な溶着金属の品質確保が困難であることが、この片面溶接法の普及理由である。   In the field of shipbuilding and steel structure welding, a double-sided welding method that involves gouging with an electrode rod has been conventionally used. On the other hand, the ceramic back-up material shown in FIG. Adopting a single-sided welding method, in which only one side is welded from the top surface, is mainly used. As shown in FIG. 3, the above double-sided welding method uses the electrode rod to scrape the back surface (dotted line portion in FIG. 3c) of the weld metal (b in FIG. 3) welded from the upper surface, and then repeat that portion (in FIG. 3). When d) is welded, when the weld base material cannot be reversed, it is turned upside down and the upward work is forced, and it is difficult to ensure the quality of the appropriate weld metal.

しかしながら、現在、この片面溶接法に用いられる図2に示めすセラミックバックアップ材は、一般的に耐火物系の材質が用いられおり、そのセラミックピース(図1および図2の1)の空隙率は20%を超える多孔質である。
このようなバックアップ材は、高温の溶融金属がセラミックピースの表面に接触すると、その表面が溶化し、かつセラミック自体が膨張して気孔の膨張をも一層増大させて閉口気孔も開口させる結果となる。
このセラミックピース(図1および図2の1)自体が膨張と収縮が引き起こされる原因により溶着金属の裏ビード表面に窪みや余分な高さを生じさせて裏ビードに高低不揃いが発生するという問題がある。
また、セラミックバックアップ材の開梱後の放置、湿度の高い天候時の野外作業、および雨に出会った時などには、内在する気孔や空隙に吸湿・吸水を引き起こす。
上記の原因で一旦吸湿吸水したセラミックピースは、表面が乾燥していても、内部の開口・閉口気孔まで完全に乾燥させるのは困難であり、内部吸湿に気付かないで溶接施工に用いてしまうことがある。
このような吸湿・吸水したセラミックバックアップ材を用いた溶接施工では、この水分が溶融池における冶金反応に悪影響を及ぼして溶接アークの不安定を招き、溶着金属内にブロホールの発生や大量なスパッタを発生させて溶着金属の品質を著しく低下させるという問題がある。
However, at present, the ceramic backup material shown in FIG. 2 used in this single-side welding method is generally made of a refractory material, and the porosity of the ceramic piece (1 in FIGS. 1 and 2) is It is more than 20% porous.
In such a backup material, when the hot molten metal contacts the surface of the ceramic piece, the surface is melted, and the ceramic itself expands, further increasing the expansion of the pores and opening the closed pores. .
This ceramic piece (1 in FIG. 1 and FIG. 2) itself causes expansion and contraction, which causes a problem that the back bead has depressions and excessive heights to cause unevenness in the back bead. is there.
In addition, when the ceramic back-up material is left unpacked, outdoor work in high-humidity weather, and when it encounters rain, it causes moisture and water absorption in the pores and voids.
Even if the surface of the ceramic piece that has absorbed and absorbed moisture due to the above causes is dry, it is difficult to completely dry up to the internal opening and closing pores. There is.
In welding work using such a hygroscopic / water-absorbing ceramic backup material, this moisture adversely affects the metallurgical reaction in the weld pool, causing instability of the welding arc, generating blowholes in the weld metal and large amounts of spatter. There is a problem that the quality of the deposited metal is remarkably lowered.

この多孔質の従来型セラミックバックアップ材は、正常な乾燥状態にあっても、溶接施工時に空隙(気孔)内に溜めた気体やセラミックピース(図2の1)をアルミシート(図2の2)に添付する有機性添着剤(図2の4)の分解・揮発によって発生したガス等がセラミックの空隙やセラミックピース間の隙間を通ってセラミック表面の溶化面に到達することになる。
この気体が溶着金属とセラミック表面の溶滓(スラグ)界面に押し出されて溶接裏ビード表面に無数の凹状の窪みが形成されて溶着金属に不良欠陥を発生させるという問題もある。
This porous conventional ceramic back-up material is an aluminum sheet (2 in FIG. 2) that contains the gas and ceramic pieces (1 in FIG. 2) accumulated in the voids (pores) during welding, even in a normal dry state. Gas generated by the decomposition and volatilization of the organic additive (4 in FIG. 2) attached to the glass reaches the solubilized surface of the ceramic surface through the gaps between the ceramics and the ceramic pieces.
There is also a problem that this gas is pushed out to the molten metal (slag) interface between the weld metal and the ceramic surface to form numerous indentations on the surface of the weld back bead, thereby causing defective defects in the weld metal.

本発明は、上記した従来型バックアップ材の化学組成と多孔質が原因で起こる諸々の欠陥発生を根本的に解決し、特に有機性防水剤や釉薬を用いること無く、空隙(気孔)率が極めて低く、高い防湿防水能力を有し、且つ品質の高い溶着金属が確保できる溶接用セラミックバックアップ材を製造することのできる溶接用セラミックバックアップ材の製造方法を提供することである。   The present invention fundamentally solves the various defects that occur due to the chemical composition and porosity of the conventional backup material described above, and has an extremely high porosity (porosity) without using an organic waterproofing agent or glaze. It is an object of the present invention to provide a method for producing a ceramic back-up material for welding, which can produce a ceramic back-up material for welding which has a low, high moisture-proof and waterproof ability and can secure a high quality weld metal.

上記の課題は、下記(1)〜(3)の構成の本発明の溶接用セラミックバックアップ材の製造方法によって達成される。
(1)
セラミックの粉末原料を調製、混練を施して造粒化した顆粒状原料の表面を、顆粒状原料100質量部に対して0.4〜5.0質量部の無機固結剤でコーティングし、これを用いて所定形状に成形して成形物を作製し、この成形物を焼成することにより、空隙率が15%以下であるガスシールドアーク溶接用セラミックバックアップ材を製造することを特徴とするガスシールドアーク溶接用セラミックバックアップ材の製造方法であって、
前記成形に用いる無機固結剤でコーティングされた顆粒状原料の粒径が4mmφを超えず、
製造されたセラミックバックアップ材の化学成分の質量含有率が、SiO :30〜55%、Al 2 O 3 :30〜50%、Fe 2 O 3 :0.1〜1.5%、MgOおよび/またはCaO:3〜17%、Na Oおよび/またはK 2 O:0.8〜5.0%、TiO 2 および/またはZrO 2 :0.5〜5.0%である
ことを特徴とするガスシールドアーク溶接用セラミックバックアップ材の製造方法。
(2)
前記固結剤が珪酸ナトリウムである前記(1)に記載のガスシールドアーク溶接用セラミックバックアップ材の製造方法。
(3)
製造されたセラミックバックアップ材の化学成分の質量含有率が、SiO:37〜53%、Al2O3:30〜45%、Fe2O3:0.1〜1.5%、MgOおよび/またはCaO:3〜17%、NaOおよび/またはK2O:0.8〜5.0%、TiO2および/またはZrO2:0.5〜5.0%であり、その空隙率が12%以下である前記(1)または(2)に記載のガスシールドアーク溶接用セラミックバックアップ材の製造方法。
Said subject is achieved by the manufacturing method of the ceramic backup material for welding of this invention of the structure of following (1)-(3).
(1)
The surface of the granular raw material prepared by kneading and kneading the ceramic powder raw material is coated with 0.4 to 5.0 parts by mass of an inorganic caking agent with respect to 100 parts by mass of the granular raw material. A gas shield characterized in that a ceramic backup material for gas shield arc welding having a porosity of 15% or less is manufactured by forming a molded product into a predetermined shape using a ceramic and firing the molded product. A method for producing a ceramic backup material for arc welding ,
The particle size of the granular raw material coated with the inorganic binder used for the molding does not exceed 4 mmφ,
Mass content of chemical components of the ceramic backup material produced is, SiO 2: 30~55%, Al 2 O 3: 30~50%, Fe 2 O 3: 0.1~1.5%, MgO and / Or CaO: 3 to 17%, Na 2 O and / or K 2 O: 0.8 to 5.0%, TiO 2 and / or ZrO 2 : 0.5 to 5.0% Manufacturing method of ceramic backup material for gas shielded arc welding.
(2)
The method for producing a ceramic backup material for gas shielded arc welding according to (1 ), wherein the caking agent is sodium silicate.
(3)
Mass content of chemical components of the ceramic backup material produced is, SiO 2: 37~53%, Al 2 O 3: 30~45%, Fe 2 O 3: 0.1~1.5%, MgO and / Or CaO: 3 to 17%, Na 2 O and / or K 2 O: 0.8 to 5.0%, TiO 2 and / or ZrO 2 : 0.5 to 5.0%, and the porosity is The method for producing a ceramic backup material for gas shielded arc welding according to (1) or (2), which is 12% or less.

本発明によれば、最適な高純度の原料選択とその原料調製・成形・焼成工程を通じて、空隙率の極めて低い、防湿防水性の高いセラミックピース1が得られ、且つ溶接施工に必須の脱滓性(スラグの剥離性)と冶金的性能を備えるものである。
本発明により製造されたセラミックバックアップ材は、ガスシールドアーク溶接の施工において従来のバックアップ材が持つ物性上の問題点を解決したもので、あらゆる溶接姿勢でも溶着金属の裏ビードは均一で滑らかに形成され、且つ健全な溶着金属を確保することが出来る。
その上、本発明により製造されたセラミックバックアップ材は空隙率が極めて低く、防湿防水性能も高いので湿気の高い環境や野外施工等に最適であり、その応用範囲の広さと利便性とで大いに期待されるものである。
According to the present invention, a ceramic piece 1 having a very low porosity and a high moisture-proof and waterproof property can be obtained through the selection of an optimal high-purity raw material and its raw material preparation / molding / firing process, and it is essential for welding. (Metal slag peelability) and metallurgical performance.
The ceramic backup material manufactured according to the present invention solves the problems of physical properties of conventional backup materials in the construction of gas shielded arc welding, and the back bead of the weld metal is formed uniformly and smoothly in any welding position. And a sound weld metal can be secured.
In addition, the ceramic backup material manufactured according to the present invention has a very low porosity and high moisture-proof and waterproof performance, making it ideal for humid environments and outdoor construction, and is highly expected for its wide range of applications and convenience. It is what is done.

本発明のバックアップ材を溶接母材に取り付けた位置関係を示した断面図である。It is sectional drawing which showed the positional relationship which attached the backup material of this invention to the welding base material. 本発明の総体図である。1 is a general view of the present invention. 両面溶接法の図解である。It is an illustration of the double-sided welding method.

まず、本発明の実施の形態による製造方法により製造されるガスシールドアーク溶接用セラミックバックアップ材は、その化学成分の質量含有率が、SiO:30〜55%、好ましくは37〜53%、Al2O3:30〜50%、好ましくは30〜45%、Fe2O3:0.1〜1.5%、MgOおよび/またはCaO:3〜17%、NaOおよび/またはK2O:0.8〜5.0%、TiO2および/またはZrO2:0.5〜5.0%であり、その空隙率が15%以下、好ましくは12%以下である。
このバックアップ材のセラミックピース(図1および図2の1)の製造に当たり、上記に記載した化学成分の質量含有値に基づき、高純度の酸化物粉末原料を配合混練・造粒化して、その顆粒状原料の表面をこの原料100質量部に対して0.4〜5.0質量部に相当する無機質の固結剤でコーティングした後、成形工程および焼結工程を経ることによって、空隙率を低下させることができる。
First, the ceramic backup material for gas shielded arc welding manufactured by the manufacturing method according to the embodiment of the present invention has a mass content of chemical components of SiO 2 : 30 to 55%, preferably 37 to 53%, Al. 2 O 3 : 30 to 50%, preferably 30 to 45%, Fe 2 O 3 : 0.1 to 1.5%, MgO and / or CaO: 3 to 17%, Na 2 O and / or K 2 O: 0 0.8 to 5.0%, TiO 2 and / or ZrO 2 : 0.5 to 5.0%, and the porosity is 15% or less, preferably 12% or less.
In the production of the ceramic piece of the backup material (1 in FIGS. 1 and 2), a high-purity oxide powder raw material is blended, kneaded and granulated based on the mass content value of the chemical component described above, and the granules After coating the surface of the raw material with an inorganic caking agent corresponding to 0.4 to 5.0 parts by mass with respect to 100 parts by mass of the raw material, the porosity can be lowered by going through a molding process and a sintering process. .

上記セラミックピースの融点、空隙率、冶金反応等の技術説明を下記に詳しく述べる。
(1)セラミックバックアップ材を用いた溶接施工では、その初層においてセラミックピースの表面が溶融金属熱で一部溶解されてセラミックの溶滓(スラグ)になり、その溶滓と溶融金属の両者間には冶金反応が起こる。
その良好な冶金反応を安定させ健全な溶接裏ビードの確保には、このセラミック溶滓が溶融金属内に浸潤しないようにするために良好な脱溶滓性(スラグの剥離)が要求される。
この脱溶滓性は、セラミックピースの融点に関わる化学組成が重要な鍵となる。
それは溶接施工において溶接アークが進行方向に移動して、溶融池底部が金属融点まで冷却した時に溶融金属は結晶し始める。この時、バックアップ材のセラミックピースの融点が金属の融点(1,535℃)より高い場合には、セラミックの溶滓は溶融金属より先に凝固して溶滓と金属の剥離(脱滓)が困難となり、溶着金属の裏ビード面に高低不揃いが生じ、更に溶着金属の機械的強度までも低下させることになる。
したがって、セラミックピースは化学的冶金性能を必要とし、その融点が金属の融点より高くなってはならないのである。
(2)セラミックバックアッブプ材を用いた溶接施工における溶融金属の凝固過程でセラミック表面の溶化によって生成される溶滓(スラグ)は、適切な粘度と表面張力を備わっていなければならない。その溶滓の粘度と表面張力が高過ぎる場合には溶融金属に溶滓の巻き込み(欠陥)が発生して、滑らかな溶接裏ビード面の確保が不可能なばかりか、適正な機械的強度のある溶着金属が得られない。
一方、逆に溶滓の粘度と表面張力が低く過ぎる場合にも溶滓が不安定となり、前記同様に健全な裏ビードと適正な溶着金属の確保は得られない。
(3)溶接用バックアップ材のセラミックピースの化学組成中、SiO(酸化珪素)とAl2O3(酸化アルミニュウム)の含有量が高い場合には、セラミックの融点と生成される溶滓の粘度は上昇する。
特に後者のAl2O3の含有率が高い場合には融点上昇が顕著となり前記理由によりバックアップ材の物性としては不向きである。
この生成される溶滓(スラグ)の粘度を低くし、且つ融点を抑制するには、その作用効果があるMgO(酸化マグネシュウム)とCaO(酸化カルシュウム)の含有量を増やすことにより解決できる。
したがって、従来からコージェライト(2MgO・2Al2O3・5SiOの三成分系から成る鉱物結晶)を基本的にセラミックバックアップ材に応用されているのは、上記した技術的理由によるものである。
本発明のセラミックピースではMgO と同じ作用を持つCaO を加えてMgOおよび/またはCaOの4成分系セラミックス組成として、融点上昇の抑制、溶滓(スラグ)の粘度および表面張力の適正化を図った。
また、NaOとK2Oは融点の抑制と溶滓(スラグ)の表面張力を少なくする作用効果を持つ点についても上記成分と同じであり、本発明を実施する上で固結剤に用いる珪酸ナトリウム(NaO・2SiO)の添加は最良の手段である。
また、Fe2O3の含有値が高い場合には溶滓(スラグ)の表面張力も高まり、著しく融点を低下させることになるので本発明では上限1.5%、下限を0.1%とした。
また、TiO2は触媒効果、ZrO2は焼結の促進効果があり、共に溶接アークの安定化と融点の低下を抑制するために上限を5.0%、下限を0.5%の含有率が最良の形態である。
上記により化学成分に関する最良の形態は、本発明である[0006]に記載した各化学成分の含有値(質量%)の範囲である。
(4)本発明のセラミックピースの空隙(気孔)率は、15%以下であるが、最良の形態は、表2および表3が示す溶接実験結果から判断すると表1に記載した実施例1〜8が示す12.0%以下0.1%の範囲が最も好ましい。上記したセラミックピースの空隙率(気孔)の確保は、前記化学成分値に基づいた原料調製工程において固結剤として珪酸ナトリウムを添加し、更に造粒工程を経た顆粒状原料の表面を原料100質量部に対して0.4〜5.0質量部の珪酸ナトリウムでコーティングする製造工程を加えることにより達成される。
このコーティング工程を加えた粒状坏土原料の粒径は、焼結工程で生成されるガラス固相で顆粒坏土のスケルトン間の間隙を封鎖し易くするために4mmφ以下が好ましい。
この珪酸ナトリウムの過剰な添加や粒径が4mmφを超えるものでも低い間隙率(気孔率)は得られるが、反面、ガラス固相の生成過多となり融点および耐熱衝撃性の著しい低下によってセラミックピース自体が溶接施工中に割れや破断が起こって溶接不具合が発生する。
したがって、コーティング剤の量と粒径は上記の範囲が最良の形態である。
The technical explanation of the melting point, porosity, metallurgical reaction, etc. of the ceramic piece will be described in detail below.
(1) In welding using a ceramic backup material, the surface of the ceramic piece in the first layer is partly melted by the molten metal heat to form a molten metal (slag) between the molten metal and the molten metal. There is a metallurgical reaction.
In order to stabilize the good metallurgical reaction and secure a sound weld back bead, good demetallization (slag peeling) is required in order to prevent the ceramic hot metal from infiltrating into the molten metal.
The chemical composition related to the melting point of the ceramic piece is an important key for this demolition property.
In the welding operation, the molten metal starts to crystallize when the welding arc moves in the traveling direction and the molten pool bottom cools to the metal melting point. At this time, if the melting point of the ceramic piece of the backup material is higher than the melting point of the metal (1,535 ° C), the hot metal of the ceramic solidifies before the molten metal, making it difficult to peel off (remove) the hot metal from the metal. As a result, unevenness occurs on the back bead surface of the weld metal, and the mechanical strength of the weld metal is also lowered.
Therefore, the ceramic piece requires chemical metallurgical performance and its melting point must not be higher than the melting point of the metal.
(2) The hot metal (slag) generated by the melting of the ceramic surface during the solidification process of the molten metal in the welding operation using the ceramic back-up material must have an appropriate viscosity and surface tension. If the hot metal viscosity and surface tension are too high, molten metal may be entrained (defects) in the molten metal, and it will not be possible to ensure a smooth weld back bead surface. Some weld metal cannot be obtained.
On the other hand, when the viscosity and surface tension of the hot metal are too low, the hot metal becomes unstable, and a sound back bead and an appropriate weld metal cannot be ensured as described above.
(3) When the content of SiO 2 (silicon oxide) and Al 2 O 3 (aluminum oxide) is high in the chemical composition of the ceramic piece of the backup material for welding, the melting point of the ceramic and the viscosity of the hot metal produced Rises.
In particular, when the content ratio of the latter Al 2 O 3 is high, the melting point rises remarkably, and is unsuitable for the physical properties of the backup material for the reasons described above.
In order to lower the viscosity of the generated hot metal (slag) and suppress the melting point, it can be solved by increasing the contents of MgO (magnesium oxide) and CaO (calcium oxide), which are effective.
Therefore, the reason why cordierite (a mineral crystal composed of a ternary system of 2MgO · 2Al 2 O 3 · 5SiO 2 ) has been basically applied to a ceramic backup material for the above technical reasons.
In the ceramic piece of the present invention, CaO, which has the same action as MgO, is added to achieve a quaternary ceramic composition of MgO and / or CaO to suppress the melting point rise and optimize the hot metal (slag) viscosity and surface tension. .
Na 2 O and K 2 O are the same as the above components in that they have the effect of suppressing the melting point and reducing the surface tension of the molten iron (slag). The addition of sodium silicate used (Na 2 O · 2SiO 2 ) is the best means.
Further, when the content of Fe 2 O 3 is high, the surface tension of the hot metal (slag) is also increased, and the melting point is remarkably lowered. Therefore, in the present invention, the upper limit is 1.5% and the lower limit is 0.1%.
In addition, TiO 2 has a catalytic effect, ZrO 2 has an effect of promoting sintering, and in order to stabilize the welding arc and suppress the melting point, the upper limit is 5.0% and the lower limit is 0.5%. It is.
As described above, the best mode regarding the chemical component is the range of the content ( mass %) of each chemical component described in [0006] of the present invention.
(4) Although the void ratio (porosity) of the ceramic piece of the present invention is 15% or less, the best mode is determined based on the results of welding experiments shown in Tables 2 and 3, and Examples 1 to 1 described in Table 1 8 is most preferably in the range of 12.0% or less and 0.1%. The above-mentioned porosity (porosity) of the ceramic piece is ensured by adding sodium silicate as a caking agent in the raw material preparation step based on the chemical component value, and further using the granulated raw material surface after the granulation step as a raw material of 100 mass. This is achieved by adding a manufacturing step of coating with 0.4 to 5.0 parts by mass of sodium silicate with respect to parts.
The particle size of the granular clay raw material to which this coating process is added is preferably 4 mmφ or less in order to easily seal the gap between the skeletons of the granular clay in the glass solid phase generated in the sintering process.
A low porosity (porosity) can be obtained even when the sodium silicate is excessively added or the particle diameter exceeds 4 mmφ, but on the other hand, the glass piece is excessively formed, and the ceramic piece itself is caused by a significant decrease in melting point and thermal shock resistance. Cracks and fractures occur during welding, resulting in welding failures.
Therefore, the above range is the best mode for the amount and particle size of the coating agent.

本発明の実施例は、下記の手法にて10種類のバックアップ材のセラミックピースを作製した。
この実施例の化学組成および空隙率に関する詳細な数値は、表1に示す通りである。
(1)実施例1から実施例10のセラミックピースの化学成分含有量
%)は、SiO:下限30.19%・上限51.90%、Al2O3:下限30.15%・上限48.00%、Fe2O3:下限0.31%・上限1.08%、MgOとCaOの合計:下限8.90%・上限16.45%、NaOとK2Oの合計:下限1.47%・上限2.52%、TiO2とZrO2の合計:下限1.60%・上限3.93%であり、これら酸化物の粉末100質量部に対して、珪酸ナトリウムを固結剤として3質量部を添加した。
(2)この粉末原料を混練・造粒化した顆粒状原料の表面を、顆粒状原料100質量部に対して0.4から5.0質量部(表1に示した)の固結剤としての珪酸ナトリウムでコーティングする工程を加えて、その粒径が4mmφを越えない坏土を作った。
(3)その顆粒状坏土を成形、および焼結工程を経て空隙率が下限0.8%上限15.0%のセラミックピースを作製し、図2に図示するようにアルミシートに添着してガスシールドアーク溶接用のセラミックバックアツブ材を完成した。
In the examples of the present invention, 10 types of ceramic pieces of backup material were produced by the following method.
Detailed numerical values regarding the chemical composition and porosity of this example are as shown in Table 1.
(1) Chemical component content% of ceramic pieces of Example 1 to Example 10) SiO 2 : lower limit 30.19%, upper limit 51.90%, Al 2 O 3 : lower limit 30.15%, upper limit 48 0.000%, Fe 2 O 3 : lower limit 0.31%, upper limit 1.08%, total of MgO and CaO: lower limit 8.90%, upper limit 16.45%, total of Na 2 O and K 2 O: lower limit 1.47%, upper limit 2.52%, total of TiO 2 and ZrO 2 : lower limit 1.60%, upper limit 3.93%, and 3 parts by weight of sodium silicate as a caking agent was added to 100 parts by weight of these oxide powders .
(2) The surface of the granular raw material obtained by kneading and granulating this powder raw material is 0.4 to 5.0 parts by mass (shown in Table 1) of sodium silicate as a caking agent with respect to 100 parts by mass of the granular raw material. A coating process was added to make a clay whose particle size does not exceed 4 mmφ.
(3) After forming and sintering the granular clay, a ceramic piece having a porosity of 0.8% lower limit and 15.0% upper limit is produced and attached to an aluminum sheet as shown in FIG. A ceramic back cover material was completed.

溶接実験
本件溶接試験は、下記に示す条件で行う。
試験体 : 溶接用圧延鋼板(JIS3106)板厚12mm、溶接長400mm
開先形状 : 突合せ継ぎ手、V形50°開先、ルート間隙6mm
溶接機 : 炭酸ガスシールドアーク半自動溶接機
溶接材料 : フラックス入りコアードワイヤ、1.2mmφ
溶接条件 : 下向き溶接(実験1) 200〜210A、27V
立向き上進溶接(実験2) 160〜180A、24V
Welding experiment The welding test is conducted under the following conditions.
Specimen: Rolled steel plate for welding (JIS3106) 12 mm thick, 400 mm weld length
Groove shape: Butt joint, V-shaped 50 ° groove, root gap 6mm
Welding machine: Carbon dioxide shielded arc semi-automatic welding machine Welding material: Cored wire with flux, 1.2mmφ
Welding conditions: Downward welding (Experiment 1) 200-210A, 27V
Vertical welding (Experiment 2) 160-180A, 24V

実験供試材
溶接実験に供試するセラミックピースの化学成分値・空隙率は表1に示す通りである。
(1)実施例1から実施例10は、表1に表示した実施例[0008]において製作したセラミックスピースである。
(2)比較例2種類のセラミックピースは、表1に表示した従来型の一般的に多用されている多孔質のセラミックバックアップ材である。比較例1は、三成分系から成るセラミックス組成で化学成分含有量(質量%)SiO2:54.30%、Al2O3:29.80%、MgO:13.80%を基本にしたもので、空隙率が24.3%である。
比較例2は、比較例1と同様に3成分系であるが、SiOの含有値が高く、強酸性型の多孔質のものである。
以上12種類を[0009]に記載した実験用試験体に装着して溶接実験をおこなった。
なお、この表1に記載した化学成分値の測定は定量分析による各々3個の平均値を採った。また、空隙率は日本工業規格(JIS
R2205)に基づいて各々6個の測定した平均値である。

Figure 0005406236
Experimental Specimen Table 1 shows the chemical composition values and porosity of the ceramic pieces used in the welding experiment.
(1) Examples 1 to 10 are ceramic pieces manufactured in Example [0008] shown in Table 1.
(2) Comparative Example Two types of ceramic pieces are conventional and commonly used porous ceramic backup materials shown in Table 1. Comparative Example 1 is a ceramic composition composed of three components and based on chemical component content ( mass %) SiO 2 : 54.30%, Al 2 O 3 : 29.80%, MgO: 13.80%. And the porosity is 24.3%.
Comparative Example 2 is a three-component system similar to Comparative Example 1, but has a high content of SiO 2 and is a strongly acidic porous material.
The above 12 types were mounted on the test specimens described in [0009] to conduct welding experiments.
In addition, the measurement of the chemical component value described in this Table 1 took the average value of three by quantitative analysis. The porosity is determined by Japanese Industrial Standards (JIS
R2205) is an average of 6 measured values each.
Figure 0005406236

溶接実験要領
本件の溶接実験は、表1に記載する12種類を[0009]に掲げる溶接条件で2種類の溶接姿勢で実験を実施した。その実験要領は下記の通りである。
(1)溶接実験1は、上記表1に示す実施例10種類と比較例2種類の合計12種類のセラミックピースをパレットに冷水を満たし、その中に15分間浸した後、布で表面の水滴を拭き取ってアルミシートに添着し、前記試験用母材の裏面に装着して下向き溶接姿勢で実施した。
(2)溶接実験2は、上記表1に示す実施例10種類と比較例2種類の合計12種類のセラミックピースの総てを乾燥した状態でアルミシートに添着したものを前記試験用母材の裏面に装着して立ち向き上進溶接をおこなった。
Welding Experiment Procedures The welding experiments in this case were carried out in two types of welding postures under the welding conditions listed in [0009] for 12 types listed in Table 1. The experimental procedure is as follows.
(1) Welding experiment 1 is a total of 12 types of ceramic pieces, 10 types shown in Table 1 and 2 types of comparative examples, filled with cold water in a pallet, dipped in it for 15 minutes, and then water droplets on the surface with a cloth Was wiped off, attached to an aluminum sheet, mounted on the back surface of the test base material, and then in a downward welding position.
(2) Welding Experiment 2 is a test sample in which all of the 12 types of ceramic pieces of Example 10 and Comparative Example 2 shown in Table 1 were attached to an aluminum sheet in a dry state. We put it on the back side and performed upward welding.

溶接実験の結果
溶接実験1の結果を評価して表2に、溶接実験2の結果を評価して表3に示す。
表1および表2の評価は、◎○△▲×式の5段階表示と短評を追記した。
なお、項目5は、主に裏ビードの均一性について外観検査を行い総合評価として表示した。
(1)溶接実験1の結果
(表2)

Figure 0005406236
(2)溶接実験2の結果
(表3)
Figure 0005406236
Results of Welding Experiment The results of Welding Experiment 1 are evaluated and shown in Table 2, and the results of Welding Experiment 2 are evaluated and shown in Table 3.
For the evaluations in Tables 1 and 2, a five-step display and a short comment were added to the ◎ ○ △ ▲ × formula.
Item 5 was displayed as a comprehensive evaluation, mainly by performing an appearance inspection on the uniformity of the back bead.
(1) Results of welding experiment 1 (Table 2)
Figure 0005406236
(2) Results of welding experiment 2 (Table 3)
Figure 0005406236

実験の評価
(1)溶接実験1の吸水試験直後の状態時の下向き溶接試験と溶接実験2の乾燥状態時の上向き上進溶接試験において、本発明の実施例1から実施例8の評価は、表2および表3が示す通り溶接金属の裏ビードの形成状況はすべて優秀なものであった。
亦、溶接実験過程においても溶接アークは安定しており、如何なる溶接欠陥も見られなかった。
しかしながら、溶接実験1において本発明の実施例9は、表1に示すようにアークの乱れと脱滓性に多少の不安があったが、問題がない程度であったので総合評価5で(○)良好とした。この実施例9の溶接実験2では総ての項目における評価は優秀であった。本発明の実施例10は、溶接実験1において表1の項目4で示すように極く少量のブロホール、スパッタの発生があったが、溶接欠陥としては問題がない程度であったので総合評価5で(○)良好とした。この実施例10の溶接実験2の上進溶接では、溶接実験1で多少の不安があったスパッタやブロホールの発生がなく、裏ビードの均一性にも問題が無く総合評価は優秀なものであった。
(2)比較例1および比較例2の溶接実験1における吸湿(水)試験直後の状態での下向き溶接の結果は、アークが不安定で、スパッタの大量発生と大きなブロホールも発生して正常な溶接施工は不可能であった。
(3)比較例1および比較例2の溶接実験2における乾燥状態での立ち向き上進溶接では、実施例および比較例の双方共に溶接アークも安定しブロホールの発生も少なく良好であった。しかしながら、比較例1および2においては、裏ビードの表面に微小な凸型の粒状の突起が無数に発生した。また、気圧による窪みも発生する結果となった。
この現象はセラミックピースが多孔質であることが原因で、発生したスパッタが少量であっても(*印)溶接アークの進行する先のセラミックピース表面にスパッタが潜り込むように付着したものであり、その後の溶接アークで溶解出来なったものである。
(4)上記の実験結果が示すように、本発明セラミックバックアップ材は、各化学成分値の範囲、および極めて低い空隙率の確保による高い防水防湿能力を備え、且つスパッタの付着までをも防止できるものであることを確認した。
以上、溶接実験1および溶接実験2の結果から確認できる通り、総合的に本発明のガスシールドアーク溶接用セラミックバックアップ材はあらゆる条件下でも良好な裏ビードと健全な溶着金属の確保ができる卓越した冶金的化学性能を備えたものである。
Evaluation of Experiment (1) In the downward welding test in the state immediately after the water absorption test of the welding experiment 1 and the upward upward welding test in the dry state of the welding experiment 2, the evaluation of Examples 1 to 8 of the present invention is as follows. As shown in Tables 2 and 3, the formation of the back bead of the weld metal was excellent.
In the welding experiment process, the welding arc was stable and no welding defects were observed.
However, in Example 9 of the present invention in welding experiment 1, as shown in Table 1, although there was some anxiety about the turbulence of the arc and the defatting property, there was no problem. ) Good. In the welding experiment 2 of Example 9, the evaluation in all items was excellent. In Example 10 of the present invention, a very small amount of blowholes and spatter were generated as indicated by item 4 in Table 1 in welding experiment 1, but since there was no problem as a welding defect, overall evaluation 5 (○) was good. In the upward welding of welding experiment 2 of this example 10, there was no spatter or blowhole that was somewhat uneasy in welding experiment 1, there was no problem in the uniformity of the back bead, and the overall evaluation was excellent. It was.
(2) The results of the downward welding immediately after the moisture absorption (water) test in welding experiment 1 of comparative example 1 and comparative example 2 are normal because the arc is unstable, a large amount of spatter and large blowholes are generated. Welding was impossible.
(3) In the standing upward welding in the dry state in the welding experiment 2 of the comparative example 1 and the comparative example 2, the welding arc was stable in both the example and the comparative example, and the occurrence of blowholes was good. However, in Comparative Examples 1 and 2, an infinite number of minute convex-shaped projections were generated on the surface of the back bead. In addition, a depression due to atmospheric pressure was also generated.
This phenomenon is because the ceramic piece is porous, and even if a small amount of spatter is generated (*), it adheres to the surface of the ceramic piece where the welding arc proceeds, It was not meltable by the subsequent welding arc.
(4) As shown in the above experimental results, the ceramic backup material of the present invention has a high waterproof / moisture-proof ability by ensuring each chemical component value range and a very low porosity, and can prevent even spatter adhesion. I confirmed that it was.
As described above, as can be confirmed from the results of welding experiment 1 and welding experiment 2, the ceramic backup material for gas shielded arc welding according to the present invention is excellent in that it can ensure a good back bead and sound weld metal under all conditions. It has metallurgical chemical performance.

A セラミックバックアップ材の総体図
1 バックアップ材のセラミックピース
2 アルミ箔部
3 被溶接母材
4 添着剤貼付部
5 添着剤保護紙
a 被溶接母材
b 上面の溶着金属
c 電極棒にて溶削する部分
d 裏面溶接部
A General view of ceramic backup material 1 Ceramic piece of backup material 2 Aluminum foil part 3 Base material to be welded 4 Adhesive sticking part 5 Adhesive protective paper a Weld base material b Weld metal on top surface c Weld with electrode rod Part d Back welded part

Claims (3)

セラミックの粉末原料を調製、混練を施して造粒化した顆粒状原料の表面を、顆粒状原料100質量部に対して0.4〜5.0質量部の無機固結剤でコーティングし、これを用いて所定形状に成形して成形物を作製し、この成形物を焼成することにより、空隙率が15%以下であるガスシールドアーク溶接用セラミックバックアップ材を製造することを特徴とするガスシールドアーク溶接用セラミックバックアップ材の製造方法であって、
前記成形に用いる無機固結剤でコーティングされた顆粒状原料の粒径が4mmφを超えず、
製造されたセラミックバックアップ材の化学成分の質量含有率が、SiO :30〜55%、Al 2 O 3 :30〜50%、Fe 2 O 3 :0.1〜1.5%、MgOおよび/またはCaO:3〜17%、Na Oおよび/またはK 2 O:0.8〜5.0%、TiO 2 および/またはZrO 2 :0.5〜5.0%である
ことを特徴とするガスシールドアーク溶接用セラミックバックアップ材の製造方法。
The surface of the granular raw material prepared by kneading and kneading the ceramic powder raw material is coated with 0.4 to 5.0 parts by mass of an inorganic caking agent with respect to 100 parts by mass of the granular raw material. A gas shield characterized in that a ceramic backup material for gas shield arc welding having a porosity of 15% or less is manufactured by forming a molded product into a predetermined shape using a ceramic and firing the molded product. A method for producing a ceramic backup material for arc welding ,
The particle size of the granular raw material coated with the inorganic binder used for the molding does not exceed 4 mmφ,
Mass content of chemical components of the ceramic backup material produced is, SiO 2: 30~55%, Al 2 O 3: 30~50%, Fe 2 O 3: 0.1~1.5%, MgO and / Or CaO: 3 to 17%, Na 2 O and / or K 2 O: 0.8 to 5.0%, TiO 2 and / or ZrO 2 : 0.5 to 5.0% Manufacturing method of ceramic backup material for gas shielded arc welding.
前記固結剤が珪酸ナトリウムである請求項1に記載のガスシールドアーク溶接用セラミックバックアップ材の製造方法。 The method for producing a ceramic backup material for gas shielded arc welding according to claim 1, wherein the caking agent is sodium silicate. 製造されたセラミックバックアップ材の化学成分の質量含有率が、SiO:37〜53%、Al2O3:30〜45%、Fe2O3:0.1〜1.5%、MgOおよび/またはCaO:3〜17%、NaOおよび/またはK2O:0.8〜5.0%、TiO2および/またはZrO2:0.5〜5.0%であり、その空隙率が12%以下である請求項1または2に記載のガスシールドアーク溶接用セラミックバックアップ材の製造方法。 Mass content of chemical components of the ceramic backup material produced is, SiO 2: 37~53%, Al 2 O 3: 30~45%, Fe 2 O 3: 0.1~1.5%, MgO and / Or CaO: 3 to 17%, Na 2 O and / or K 2 O: 0.8 to 5.0%, TiO 2 and / or ZrO 2 : 0.5 to 5.0%, and the porosity is The method for producing a ceramic backup material for gas shielded arc welding according to claim 1 or 2, wherein the content is 12% or less.
JP2011056095A 2011-03-15 2011-03-15 Method for producing ceramic backup material for gas shielded arc welding Active JP5406236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056095A JP5406236B2 (en) 2011-03-15 2011-03-15 Method for producing ceramic backup material for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056095A JP5406236B2 (en) 2011-03-15 2011-03-15 Method for producing ceramic backup material for gas shielded arc welding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005117962A Division JP4767580B2 (en) 2005-04-15 2005-04-15 Ceramic backup material for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2011152587A JP2011152587A (en) 2011-08-11
JP5406236B2 true JP5406236B2 (en) 2014-02-05

Family

ID=44538906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056095A Active JP5406236B2 (en) 2011-03-15 2011-03-15 Method for producing ceramic backup material for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP5406236B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101759682B1 (en) * 2015-12-18 2017-07-21 동일이엔지(주) Ceramic backing material for welding to prevent moisture absorption

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137193A (en) * 1983-01-27 1984-08-07 Nippon Steel Corp Backing material for welding
JPS61206590A (en) * 1985-03-08 1986-09-12 Kobe Steel Ltd Backing strip for one-side welding
JP4767580B2 (en) * 2005-04-15 2011-09-07 武漢天高溶接材料有限公司 Ceramic backup material for gas shielded arc welding

Also Published As

Publication number Publication date
JP2011152587A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP4767580B2 (en) Ceramic backup material for gas shielded arc welding
CN100493767C (en) Light-colored alcohol-base paint
MXPA04002737A (en) Flux binder system.
JP4644044B2 (en) Long nozzle for continuous casting
JP2011093740A (en) Method for identifying a glass defect source, melt-cast refractory and glass melting furnace using the same
CN106238670A (en) Foundry facing and preparation method and application
JP4888121B2 (en) Refractory brick for float bath bottom and method for producing the same
WO2018007364A1 (en) Multi-coated electrode for welding stainless steel
JP5406236B2 (en) Method for producing ceramic backup material for gas shielded arc welding
JP6386801B2 (en) Alumina fusion cast refractory and method for producing the same
IL178452A (en) Sintered flux for submerged arc welding
JP2002137088A (en) Ceramic backing material for one-side carbon dioxide gas arc welding
CN100424036C (en) Ceramic substrate material and welding support rack using said material
JP5592810B2 (en) Refractory material for gas shielded arc welding
CN1276896C (en) Arc fusion-welding ceramic lining materials and method for making same
CN111185652A (en) Austenitic stainless steel submerged arc welding flux
WO2023109101A1 (en) Highly-inert mold shell for casting, preparation method therefor, and method for improving precision of magnesium alloy casting
KR960005886B1 (en) Method for covering a metallugical vessel with a purifying lining and the composition thereof
TWI733332B (en) High alumina fusion casting refractory and manufacturing method thereof
KR101567419B1 (en) Method for manufacturing ceramic backing materials
JP2907794B2 (en) Ceramic backing material for carbon dioxide arc welding
CN102962420B (en) Environmental-friendly low-carbon-steel fluorine-free casting powder for round billet
JPS637877B2 (en)
JP3443755B2 (en) Backing material for single side welding
JP3256113B2 (en) Backing material for automatic rail welding and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

R150 Certificate of patent or registration of utility model

Ref document number: 5406236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250