JP5404244B2 - Tread for tire, tire and method for manufacturing tire - Google Patents

Tread for tire, tire and method for manufacturing tire Download PDF

Info

Publication number
JP5404244B2
JP5404244B2 JP2009191199A JP2009191199A JP5404244B2 JP 5404244 B2 JP5404244 B2 JP 5404244B2 JP 2009191199 A JP2009191199 A JP 2009191199A JP 2009191199 A JP2009191199 A JP 2009191199A JP 5404244 B2 JP5404244 B2 JP 5404244B2
Authority
JP
Japan
Prior art keywords
tire
tread
thermoplastic material
frame member
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009191199A
Other languages
Japanese (ja)
Other versions
JP2011042229A (en
Inventor
好秀 河野
誓志 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009191199A priority Critical patent/JP5404244B2/en
Publication of JP2011042229A publication Critical patent/JP2011042229A/en
Application granted granted Critical
Publication of JP5404244B2 publication Critical patent/JP5404244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Description

本発明は、少なくとも一部が熱可塑性材料で形成されたタイヤに適用されるタイヤ用トレッド、タイヤ、及びタイヤの製造方法に関する。   The present invention relates to a tire tread, a tire, and a tire manufacturing method applied to a tire at least partly formed of a thermoplastic material.

従来、乗用車等の車両には、ゴム、有機繊維材料、スチール部材等から構成された空気入りタイヤが用いられている。
しかしながら、使用後のゴムはリサイクルの用途に制限があり、焼却してサーマルリサイクルする、破砕して道路の舗装材料として用いる等して処分することが行われていた。
近年では、軽量化やリサイクルのし易さから、熱可塑性樹脂、熱可塑性エラストマー等をタイヤ材料として用いることが求められている。
例えば、特許文献1には、熱可塑性の高分子材料を用いて成形された空気入りタイヤが開示されている。
Conventionally, pneumatic tires made of rubber, organic fiber materials, steel members, and the like are used in vehicles such as passenger cars.
However, there is a limit to the use of recycled rubber after use, and it has been disposed of by incineration and thermal recycling, crushing it and using it as road pavement material.
In recent years, it is required to use a thermoplastic resin, a thermoplastic elastomer, or the like as a tire material because of weight reduction and ease of recycling.
For example, Patent Document 1 discloses a pneumatic tire formed using a thermoplastic polymer material.

特開03−143701号公報Japanese Patent Laid-Open No. 03-143701

熱可塑性の高分子材料を用いたタイヤは、ゴム製の従来タイヤ対比で製造が容易で、低コストである。
しかしながら、特許文献1では、ポリエステル系のエラストマーを金型に注入することにより製造したタイヤ骨格部材(ケース)とゴム製のトレッドとを一体化するにあたり、タイヤの組立て工程において、曲面となっているタイヤ骨格部材の外周上にクッションゴムや接着剤を配置し、その上にトレッドを配置し、さらに、タイヤ骨格部材とトレッドとを加硫によって接合する。このため、接合作業が煩雑になり、タイヤ骨格部材とトレッドとの接合部に均一で安定した接合面を確保することが困難である。この結果、接合強度を確保する点において改良が求められている。
A tire using a thermoplastic polymer material is easy to manufacture and low in cost as compared with a conventional rubber tire.
However, in Patent Document 1, when a tire frame member (case) manufactured by injecting a polyester-based elastomer into a mold and a rubber tread are integrated, a curved surface is formed in the tire assembly process. A cushion rubber or an adhesive is disposed on the outer periphery of the tire frame member, a tread is disposed thereon, and the tire frame member and the tread are joined by vulcanization. For this reason, joining work becomes complicated and it is difficult to secure a uniform and stable joining surface at the joining portion of the tire frame member and the tread. As a result, improvement is required in terms of securing the bonding strength.

本発明は、上記問題を解決すべく成されたもので、タイヤ骨格部材とトレッドとの接合部に均一で安定した接合面を確保することが目的である。   The present invention has been made to solve the above problems, and an object thereof is to secure a uniform and stable joint surface at the joint portion between the tire frame member and the tread.

請求項1に記載の発明のタイヤ用トレッドは、未加硫ゴムからなり、熱可塑性材料からなるタイヤ骨格部材の外周面側の位置に設けられるトレッド本体と、熱可塑性材料からなり、前記トレッド本体の内周面に形成され、前記タイヤ骨格部材の外周部と接合される接合層と、前記接合層と前記トレッド本体との間に挟んで配置され、加硫により前記接合層と前記トレッド本体とを接合する接着用未加硫ゴム、又は接着剤と前記接着用未加硫ゴムとからなる接着層と、を有する。 A tread for a tire according to claim 1 is made of unvulcanized rubber, a tread body provided at a position on the outer peripheral surface side of a tire frame member made of a thermoplastic material, and a thermoplastic material, wherein the tread body A bonding layer formed on the inner circumferential surface of the tire frame member and bonded to the outer peripheral portion of the tire frame member, and disposed between the bonding layer and the tread body, and the bonding layer and the tread body by vulcanization. An unvulcanized rubber for bonding, or an adhesive layer made of an adhesive and the unvulcanized rubber for bonding .

熱可塑性材料からなるタイヤ骨格部材と、未加硫ゴムからなるトレッド本体とを一体化するにあたり、タイヤ用トレッドが、トレッド本体の内周面に熱可塑性材料からなる接合層が形成されている。また、この接合層とトレッド本体との間に、接着用未加硫ゴムからなる接着層、又は接着剤と接着用未加硫ゴムとからなる接着層を挟んで配置し、加硫により接合層とトレッド本体とを接合したことで、未加硫ゴムからなるトレッド本体と、熱可塑性材料からなる接合層とを強固に接合することができる。また、タイヤ用トレッドとタイヤ骨格部材との接合部が熱可塑性材料同士の接合となる。この結果、タイヤ用トレッドの接合層の接合部とタイヤ骨格部材の接合部との少なくも一方を加熱することで、両者を容易に接合できる。このため、トレッド本体とタイヤ骨格部材との接合を加硫工程で行わなくても、曲面となっている接合部においても均一で安定した接合面を確保することが可能になる。 In integrating a tire frame member made of a thermoplastic material and a tread body made of unvulcanized rubber , a tire tread is formed with a bonding layer made of a thermoplastic material on the inner peripheral surface of the tread body . Further, an adhesive layer made of an unvulcanized rubber for bonding or an adhesive layer made of an adhesive and an unvulcanized rubber for bonding is sandwiched between the bonding layer and the tread body, and the bonding layer is vulcanized. By joining the tread body and the tread body, the tread body made of unvulcanized rubber and the joining layer made of the thermoplastic material can be firmly joined. In addition, the joining portion between the tire tread and the tire frame member is joining of the thermoplastic materials. As a result, by heating at least one of the joining portion of the joining layer of the tire tread and the joining portion of the tire frame member, both can be easily joined. For this reason, even if it does not perform joining of a tread body and a tire frame member in a vulcanization process, it becomes possible to secure a uniform and stable joining surface even at a joining portion having a curved surface.

請求項2に記載のタイヤは、熱可塑性材料からなるタイヤ骨格部材と、前記タイヤ骨格部材の外周面側の位置に設けられ、未加硫ゴムからなるトレッド本体と、熱可塑性材料からなり前記トレッド本体の内周面に形成され、前記タイヤ骨格部材の外周部と接合された接合層と、前記接合層と前記トレッド本体との間に挟んで配置され、加硫により前記接合層と前記トレッド本体とを接合する接着用未加硫ゴム、又は接着剤と接着用未加硫ゴムとからなる接着層と、を有する。 The tire according to claim 2 is a tire skeleton member made of a thermoplastic material, a tread body made of unvulcanized rubber provided at a position on an outer peripheral surface side of the tire skeleton member, and the tread made of a thermoplastic material. A bonding layer formed on an inner peripheral surface of the main body and bonded to an outer peripheral portion of the tire frame member; and disposed between the bonding layer and the tread main body, and vulcanized to form the bonding layer and the tread main body. And an adhesive layer made of an adhesive and an unvulcanized rubber for bonding .

熱可塑性材料からなるタイヤ骨格部材と、未加硫ゴムからなるトレッド本体とを一体化するにあたり、タイヤ用トレッドが、トレッド本体の内周面に熱可塑性材料からなる接合層が形成されている。また、この接合層とトレッド本体との間に、接着用未加硫ゴムからなる接着層、又は接着剤と接着用未加硫ゴムとからなる接着層を挟んで配置し、加硫により接合層とトレッド本体とを接合したことで、未加硫ゴムからなるトレッド本体と、熱可塑性材料からなる接合層とを強固に接合することができる。また、タイヤ用トレッドとタイヤ骨格部材との接合部が熱可塑性材料同士の接合となる。この結果、タイヤ用トレッドの接合層の接合部とタイヤ骨格部材の接合部との少なくも一方を加熱することで、両者を容易に接合できる。このため、トレッド本体とタイヤ骨格部材との接合を加硫工程で行わなくても、曲面となっている接合部においても均一で安定した接合面を確保することが可能になる。 In integrating a tire frame member made of a thermoplastic material and a tread body made of unvulcanized rubber , a tire tread is formed with a bonding layer made of a thermoplastic material on the inner peripheral surface of the tread body . Further, an adhesive layer made of an unvulcanized rubber for bonding or an adhesive layer made of an adhesive and an unvulcanized rubber for bonding is sandwiched between the bonding layer and the tread body, and the bonding layer is vulcanized. By joining the tread body and the tread body, the tread body made of unvulcanized rubber and the joining layer made of the thermoplastic material can be firmly joined. In addition, the joining portion between the tire tread and the tire frame member is joining of the thermoplastic materials. As a result, by heating at least one of the joining portion of the joining layer of the tire tread and the joining portion of the tire frame member, both can be easily joined. For this reason, even if it does not perform joining of a tread body and a tire frame member in a vulcanization process, it becomes possible to secure a uniform and stable joining surface even at a joining portion having a curved surface.

請求項3に記載の発明のタイヤの製造方法は、トレッド用金型内に熱可塑性材料と未加硫ゴムとを配置し、加硫することでトレッド本体の内周面に熱可塑性材料からなる接合層が形成されたタイヤ用トレッドを製造する工程と、前記タイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、前記タイヤ用トレッドを巻き付け、前記接合層を前記タイヤ骨格部材の外周部に接合する工程と、を含む。 According to a third aspect of the present invention, there is provided a tire manufacturing method in which a thermoplastic material and an unvulcanized rubber are arranged in a mold for a tread and vulcanized to form an inner peripheral surface of the tread body from the thermoplastic material. A step of manufacturing a tire tread having a bonding layer formed thereon , heating a lower surface of the tire tread bonding layer, and winding the tire tread while rotating a tire frame member made of a thermoplastic material, Bonding a bonding layer to the outer periphery of the tire frame member.

トレッド用金型内に熱可塑性材料と未加硫ゴムとを配置し、加硫することでトレッド本体の内周面に熱可塑性材料からなる接合層が形成されたタイヤ用トレッドを製造する。また、このタイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、タイヤ用トレッドを巻き付け、接合層をタイヤ骨格部材の外周部に接合する。従って、熱可塑性材料からなるタイヤ骨格部材とタイヤ用トレッドとを一体化するにあたり、トレッド本体の内周面に熱可塑性材料からなる接合層が接合されており、タイヤ用トレッドとタイヤ骨格部材との接合部が熱可塑性材料同士の接合となる。この結果、タイヤ用トレッドの接合層の下表面を加熱することで、両者を容易に接合できる。このため、曲面となっている接合部においても均一で安定した接合面を確保することが可能になる。 A tread for a tire in which a joining layer made of a thermoplastic material is formed on the inner peripheral surface of a tread body by placing a thermoplastic material and unvulcanized rubber in a mold for the tread and vulcanizing is manufactured. Further, the lower surface of the tire tread joining layer is heated, and the tire tread is wound while rotating the tire frame member made of a thermoplastic material, and the joining layer is joined to the outer periphery of the tire frame member. Therefore, when integrating the tire frame member made of the thermoplastic material and the tire tread, the bonding layer made of the thermoplastic material is bonded to the inner peripheral surface of the tread body, and the tire tread and the tire frame member are The joint is a joint between thermoplastic materials. As a result, both can be easily joined by heating the lower surface of the joining layer of the tire tread . For this reason, it is possible to ensure a uniform and stable joint surface even in a joint portion having a curved surface.

請求項4に記載の発明のタイヤの製造方法は、第1のトレッド用金型内に未加硫ゴムを配置し、加硫することでトレッド本体を製造する工程と、第2のトレッド用金型内に熱可塑性材料と前記トレッド本体とを配置し、加硫することで前記トレッド本体の内周面に前記熱可塑性材料からなる接合層が形成されたタイヤ用トレッドを製造する工程と、前記タイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、前記タイヤ用トレッドを巻き付け、前記接合層を前記タイヤ骨格部材の外周部に接合する工程と、を含む。 According to a fourth aspect of the present invention, there is provided a tire manufacturing method comprising: placing a non-vulcanized rubber in a first tread mold and vulcanizing the tread body; and a second tread mold. Placing the thermoplastic material and the tread body in a mold and vulcanizing to produce a tread for a tire in which a joining layer made of the thermoplastic material is formed on the inner peripheral surface of the tread body; and Heating the lower surface of the tire tread bonding layer, rotating the tire frame member made of a thermoplastic material, winding the tire tread, and bonding the bonding layer to the outer periphery of the tire frame member; including.

第1のトレッド用金型内に未加硫ゴムを配置し、加硫することでトレッド本体を形成し、形成したトレッド本体と熱可塑性材料とを第2のトレッド用金型内に配置し、加硫することでトレッド本体の内周面に熱可塑性材料からなる接合層が形成されたタイヤ用トレッドを製造する。また、このタイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、タイヤ用トレッドを巻き付け、接合層をタイヤ骨格部材の外周部に接合する。従って、熱可塑性材料からなるタイヤ骨格部材とタイヤ用トレッドとを一体化するにあたり、トレッド本体の内周面に熱可塑性材料からなる接合層が接合されており、タイヤ用トレッドとタイヤ骨格部材との接合部が熱可塑性材料同士の接合となる。この結果、タイヤ用トレッドの接合層の下表面を加熱することで、両者を容易に接合できる。このため、曲面となっている接合部においても均一で安定した接合面を確保することが可能になる。 An unvulcanized rubber is disposed in the first tread mold, and a tread body is formed by vulcanization. The formed tread body and the thermoplastic material are disposed in the second tread mold, By vulcanizing, a tread for a tire in which a joining layer made of a thermoplastic material is formed on the inner peripheral surface of the tread body is manufactured. Further, the lower surface of the tire tread joining layer is heated, and the tire tread is wound while rotating the tire frame member made of a thermoplastic material, and the joining layer is joined to the outer periphery of the tire frame member. Therefore, when integrating the tire frame member made of the thermoplastic material and the tire tread, the bonding layer made of the thermoplastic material is bonded to the inner peripheral surface of the tread body, and the tire tread and the tire frame member are The joint is a joint between thermoplastic materials. As a result, both can be easily joined by heating the lower surface of the joining layer of the tire tread . For this reason, it is possible to ensure a uniform and stable joint surface even in a joint portion having a curved surface.

請求項5に記載の発明のタイヤの製造方法は、第1のトレッド用金型内に熱可塑性材料を配置し、熱可塑性材料からなる接合層を製造する工程と、第2のトレッド用金型内にトレッド本体となる未加硫ゴムと前記接合層とを配置し、加硫することで前記トレッド本体の内周面に前記接合層が形成されたタイヤ用トレッドを製造する工程と、前記タイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、前記タイヤ用トレッドを巻き付け、前記接合層を前記タイヤ骨格部材の外周部に接合する工程と、を含む。 According to a fifth aspect of the present invention, there is provided a tire manufacturing method comprising: arranging a thermoplastic material in a first tread mold; and manufacturing a joining layer made of the thermoplastic material; and a second tread mold. A step of producing a tire tread in which the bonding layer is formed on an inner peripheral surface of the tread body by disposing an unvulcanized rubber serving as a tread body and the bonding layer inside and vulcanizing the tire; and the tire Heating the lower surface of the tread bonding layer of the tire and rotating the tire frame member made of a thermoplastic material while winding the tire tread and bonding the bonding layer to the outer periphery of the tire frame member. Including.

第1のトレッド用金型内に熱可塑性材料を配置し熱可塑性材料からなる接合層を形成し、形成した接合層とトレッド本体となる未加硫ゴムとを第2のトレッド用金型内に配置し、加硫することでトレッド本体の内周面に熱可塑性材料からなる接合層が形成されたタイヤ用トレッドを製造する。また、このタイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、タイヤ用トレッドを巻き付け、接合層をタイヤ骨格部材の外周部に接合する。従って、熱可塑性材料からなるタイヤ骨格部材とタイヤ用トレッドとを一体化するにあたり、トレッド本体の内周面に熱可塑性材料からなる接合層が接合されており、タイヤ用トレッドとタイヤ骨格部材との接合部が熱可塑性材料同士の接合となる。この結果、タイヤ用トレッドの接合層の下表面を加熱することで、両者を容易に接合できる。このため、曲面となっている接合部においても均一で安定した接合面を確保することが可能になる。 A thermoplastic material is disposed in the first tread mold to form a joining layer made of the thermoplastic material, and the formed joining layer and the unvulcanized rubber to be the tread body are placed in the second tread mold. By arranging and vulcanizing, a tread for a tire in which a bonding layer made of a thermoplastic material is formed on the inner peripheral surface of the tread body is manufactured. Further, the lower surface of the tire tread joining layer is heated, and the tire tread is wound while rotating the tire frame member made of a thermoplastic material, and the joining layer is joined to the outer periphery of the tire frame member. Therefore, when integrating the tire frame member made of the thermoplastic material and the tire tread, the bonding layer made of the thermoplastic material is bonded to the inner peripheral surface of the tread body, and the tire tread and the tire frame member are The joint is a joint between thermoplastic materials. As a result, both can be easily joined by heating the lower surface of the joining layer of the tire tread . For this reason, it is possible to ensure a uniform and stable joint surface even in a joint portion having a curved surface.

請求項6は請求項3〜5の何れか1項に記載のタイヤの製造方法において、前記熱可塑性材料と前記トレッド本体の間に接着剤を塗布した。   According to a sixth aspect of the present invention, in the tire manufacturing method according to any one of the third to fifth aspects, an adhesive is applied between the thermoplastic material and the tread body.

トレッド本体と熱可塑性材料との間に接着剤を塗布したため、接着剤によってタイヤ用トレッドとタイヤ骨格部材とが確実に接合される。   Since the adhesive is applied between the tread body and the thermoplastic material, the tire tread and the tire frame member are reliably joined by the adhesive.

請求項7は請求項3〜5の何れか1項に記載のタイヤの製造方法において、前記熱可塑性材料と前記トレッド本体の間に接着用未加硫ゴムを配置した。   According to a seventh aspect of the present invention, in the tire manufacturing method according to any one of the third to fifth aspects, an unvulcanized rubber for adhesion is disposed between the thermoplastic material and the tread body.

熱可塑性材料とトレッド本体の間に接着用未加硫ゴムを配置したため、接着用未加硫ゴムが加硫されることによってタイヤ用トレッドとタイヤ骨格部材とが確実に接合される。   Since the unvulcanized rubber for adhesion is arranged between the thermoplastic material and the tread body, the tire tread and the tire frame member are reliably joined by vulcanizing the unvulcanized rubber for adhesion.

請求項8に記載の発明のタイヤの製造方法は、第1のトレッド用金型内に未加硫ゴムを配置し、加硫することで内周面側に凹凸を有するトレッド本体を形成する工程と、第2のトレッド用金型内に熱可塑性材料と前記トレッド本体とを配置し、加硫することで前記トレッド本体の凹凸と前記熱可塑性材料とを接合させ前記トレッド本体の内周面に前記熱可塑性材料からなる接合層が形成されたタイヤ用トレッドを製造する工程と、前記タイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、前記タイヤ用トレッドを巻き付け、前記接合層を前記タイヤ骨格部材の外周部に接合する工程と、を含む。 The method for manufacturing a tire according to an eighth aspect of the invention includes the step of forming a tread body having irregularities on the inner peripheral surface side by disposing unvulcanized rubber in the first tread mold and vulcanizing. If, and the tread body and the thermoplastic material disposed in the second tread mold, the inner peripheral surface of the tread body is bonded to the said thermoplastic material and unevenness of the tread body by vulcanization a step of producing a tire tread bonding layer is formed consisting of the thermoplastic material, heating the bottom surface of the bonding layer of tread the tire, while rotating the tire frame member made of thermoplastic material, said tire Winding a tread and joining the joining layer to the outer periphery of the tire frame member.

第1のトレッド用金型内に未加硫ゴムを配置し、加硫することで内周面側に凹凸を有するトレッド本体を形成する。また、形成したトレッド本体と熱可塑性材料とを第2のトレッド用金型内に配置し、加硫することでトレッド本体の凹部と熱可塑性材料とを接合させトレッド本体の内周面に熱可塑性材料からなる接合層が形成されたタイヤ用トレッドを製造する。この際、熱可塑性材料は流動するので凹凸部に合うように形状が形成され、ゴム側の凹凸部と熱可塑性材料との機械的結合により結合強度がアップする。また、このタイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、タイヤ用トレッドを巻き付け、接合層をタイヤ骨格部材の外周部に接合する。従って、熱可塑性材料からなるタイヤ骨格部材とタイヤ用トレッドとを一体化するにあたり、トレッド本体の内周面に熱可塑性材料からなる接合層が接合されており、タイヤ用トレッドとタイヤ骨格部材との接合部が熱可塑性材料同士の接合となる。この結果、タイヤ用トレッドの接合層の下表面を加熱することで、両者を容易に接合できる。このため、曲面となっている接合部においても均一で安定した接合面を確保することが可能になる。なお、ゴム側の凹凸部は第1のトレッド用金型で容易に形成できる。 An unvulcanized rubber is arranged in the first mold for tread and vulcanized to form a tread body having irregularities on the inner peripheral surface side. The formed tread body and the thermoplastic material are placed in the second tread mold and vulcanized to join the tread body recess and the thermoplastic material to the inner surface of the tread body. A tire tread having a joining layer made of a material is manufactured. At this time, since the thermoplastic material flows, the shape is formed so as to match the uneven portion, and the bonding strength is increased by mechanical bonding between the rubber-side uneven portion and the thermoplastic material. Further, the lower surface of the tire tread joining layer is heated, and the tire tread is wound while rotating the tire frame member made of a thermoplastic material, and the joining layer is joined to the outer periphery of the tire frame member. Therefore, when integrating the tire frame member made of the thermoplastic material and the tire tread, the bonding layer made of the thermoplastic material is bonded to the inner peripheral surface of the tread body, and the tire tread and the tire frame member are The joint is a joint between thermoplastic materials. As a result, both can be easily joined by heating the lower surface of the joining layer of the tire tread . For this reason, it is possible to ensure a uniform and stable joint surface even in a joint portion having a curved surface. In addition, the uneven | corrugated | grooved part by the side of a rubber can be easily formed with the 1st metal mold | die for treads.

請求項9に記載の発明のタイヤの製造方法は、第1のトレッド用金型内に熱可塑性材料を配置し、外周面側に凹凸を有する接合層を形成する工程と、第2のトレッド用金型内にトレッド本体となる未加硫ゴムと前記接合層とを配置し、加硫することで前記接合層の凹凸と前記未加硫ゴムとを接合させ前記トレッド本体の内周面に前記熱可塑性材料からなる前記接合層が形成されたタイヤ用トレッドを製造する工程と、前記タイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、前記タイヤ用トレッドを巻き付け、前記接合層を前記タイヤ骨格部材の外周部に接合する工程と、を含む。 The method for manufacturing a tire according to claim 9 includes a step of disposing a thermoplastic material in the first tread mold and forming a bonding layer having irregularities on the outer peripheral surface side, and a second tread use method. the unvulcanized rubber which becomes the tread body in a mold and the bonding layer is disposed, the the inner circumferential surface of the tread body and irregularities of the bonding layer by vulcanization said is bonded to the unvulcanized rubber A step of manufacturing a tread for a tire in which the joining layer made of a thermoplastic material is formed; and a lower surface of the joining layer of the tread for the tire is heated to rotate the tire frame member made of the thermoplastic material. Winding a tread and joining the joining layer to the outer periphery of the tire frame member.

第1のトレッド用金型内に熱可塑性材料を配置し、外周面側に凹凸を有する接合層を形成する。また、形成した接合層とトレッド本体となる未加硫ゴムとを第2のトレッド用金型内に配置し、加硫することで接合層の凹部と未加硫ゴムとを接合させトレッド本体の内周面に熱可塑性材料からなる接合層が形成されたタイヤ用トレッドを製造する。この際、未加硫ゴムは流動するので凹凸部に合うように形状が形成され、熱可塑性材料からなる接合層の凹凸部とゴムとの機械的結合により結合強度がアップする。また、このタイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、タイヤ用トレッドを巻き付け、接合層をタイヤ骨格部材の外周部に接合する。従って、熱可塑性材料からなるタイヤ骨格部材とタイヤ用トレッドとを一体化するにあたり、トレッド本体の内周面に熱可塑性材料からなる接合層が接合されており、タイヤ用トレッドとタイヤ骨格部材との接合部が熱可塑性材料同士の接合となる。この結果、タイヤ用トレッドの接合層の下表面を加熱することで、両者を容易に接合できる。このため、曲面となっている接合部においても均一で安定した接合面を確保することが可能になる。 A thermoplastic material is disposed in the first tread mold, and a bonding layer having irregularities on the outer peripheral surface side is formed. Further, the formed joining layer and the unvulcanized rubber to be the tread body are placed in the second tread mold and vulcanized to join the concave portion of the joining layer and the unvulcanized rubber to form the tread body. A tire tread having an inner peripheral surface formed with a joining layer made of a thermoplastic material is manufactured. At this time, since the unvulcanized rubber flows, the shape is formed so as to match the uneven portion, and the bonding strength is increased by mechanical bonding between the uneven portion of the joining layer made of the thermoplastic material and the rubber. Further, the lower surface of the tire tread joining layer is heated, and the tire tread is wound while rotating the tire frame member made of a thermoplastic material, and the joining layer is joined to the outer periphery of the tire frame member. Therefore, when integrating the tire frame member made of the thermoplastic material and the tire tread, the bonding layer made of the thermoplastic material is bonded to the inner peripheral surface of the tread body, and the tire tread and the tire frame member are The joint is a joint between thermoplastic materials. As a result, both can be easily joined by heating the lower surface of the joining layer of the tire tread . For this reason, it is possible to ensure a uniform and stable joint surface even in a joint portion having a curved surface.

以上説明したように本発明のタイヤ用トレッドは上記の構成としたので、タイヤ骨格部材とトレッドとの接合部に均一で安定した接合面を確保することができる、という優れた効果を有する。   As described above, since the tire tread of the present invention has the above-described configuration, it has an excellent effect that a uniform and stable joint surface can be secured at the joint portion between the tire frame member and the tread.

また、本発明のタイヤは上記の構成としたので、タイヤ骨格部材とトレッドとの接合部に均一で安定した接合面を確保することができる、という優れた効果を有する。   Moreover, since the tire of the present invention has the above-described configuration, it has an excellent effect that a uniform and stable joint surface can be secured at the joint portion between the tire frame member and the tread.

また、本発明のタイヤの製造方法では、タイヤ骨格部材とトレッドとの接合部に均一で安定した接合面を確保することができる、という優れた効果を有する。   Further, the tire manufacturing method of the present invention has an excellent effect that a uniform and stable joint surface can be secured at the joint portion between the tire frame member and the tread.

本発明のタイヤを示す概略断面図である。It is a schematic sectional drawing which shows the tire of this invention. 本発明のタイヤのビード部の近傍をリムへの取付状態で示す一部を断面とした斜視図である。It is the perspective view which made the cross section the part which shows the vicinity of the bead part of the tire of this invention in the attachment state to the rim. 本発明の第1実施形態のタイヤ製造方法を示す斜視図である。It is a perspective view which shows the tire manufacturing method of 1st Embodiment of this invention. 本発明の第1実施形態のタイヤ製造方法に適用されるタイヤ製造用金型を示す断面図である。It is sectional drawing which shows the metal mold | die for tire manufacture applied to the tire manufacturing method of 1st Embodiment of this invention. 本発明の第1実施形態のタイヤ製造方法に適用される他のタイヤ製造用金型を示す断面図である。It is sectional drawing which shows the other metal mold | die for tire manufacture applied to the tire manufacturing method of 1st Embodiment of this invention. 本発明の第1実施形態のタイヤ製造方法に適用される他のタイヤ製造用金型を示す断面図である。It is sectional drawing which shows the other metal mold | die for tire manufacture applied to the tire manufacturing method of 1st Embodiment of this invention. 本発明の第1実施形態のタイヤ製造方法に適用される他のタイヤ製造用金型の一部を示す断面図である。It is sectional drawing which shows a part of other metal mold | die for tire manufacture applied to the tire manufacturing method of 1st Embodiment of this invention. 本発明の第1実施形態のタイヤ製造方法に適用される他のタイヤ製造用金型の一部を示す断面図である。It is sectional drawing which shows a part of other metal mold | die for tire manufacture applied to the tire manufacturing method of 1st Embodiment of this invention. 本発明の第1実施形態のタイヤ製造方法に適用される他のタイヤ製造用金型の一部を示す断面図である。It is sectional drawing which shows a part of other metal mold | die for tire manufacture applied to the tire manufacturing method of 1st Embodiment of this invention. 本発明のタイヤを示す断面図である。It is sectional drawing which shows the tire of this invention. 本発明のタイヤを示す断面図である。It is sectional drawing which shows the tire of this invention. 本発明の第2実施形態のタイヤ製造方法を示す斜視図である。It is a perspective view which shows the tire manufacturing method of 2nd Embodiment of this invention. 本発明の第2実施形態のタイヤ製造方法を示す斜視図である。It is a perspective view which shows the tire manufacturing method of 2nd Embodiment of this invention. 本発明の第2実施形態のタイヤ製造方法に適用されるタイヤ製造用金型を示す断面図である。It is sectional drawing which shows the metal mold | die for tire manufacture applied to the tire manufacturing method of 2nd Embodiment of this invention. 本発明の第2実施形態のタイヤ製造方法に適用されるタイヤ製造用金型を示す一部を断面とした斜視図である。It is the perspective view which made a part the cross section which shows the metal mold | die for tire manufacture applied to the tire manufacturing method of 2nd Embodiment of this invention. 本発明の第2実施形態のタイヤ用トレッドを示す斜視図である。It is a perspective view which shows the tread for tires of 2nd Embodiment of this invention. 本発明における図1とは異なる構造のタイヤを示す概略断面図である。It is a schematic sectional drawing which shows the tire of a structure different from FIG. 1 in this invention. 図17に示すタイヤを構成するチューブを示す概略断面図である。It is a schematic sectional drawing which shows the tube which comprises the tire shown in FIG. 本発明における図1及び図17とは異なる構造のタイヤを示す概略断面図である。It is a schematic sectional drawing which shows the tire of a structure different from FIG.1 and FIG.17 in this invention.

[第1の実施形態]
以下に、図面にしたがって本発明の第1実施形態を説明する。
図1に示すように、本実施形態のタイヤ12は、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。
タイヤ12は、図1及び図2に示すように、ビードコア20が埋設されてリム18に接触されるタイヤビード部22から、タイヤ径方向外側に延びるタイヤサイド部24を経て、タイヤサイド部24同士を連結するタイヤセンター(クラウン部26)を備え、これらが本体用熱可塑性材料で構成されたタイヤ骨格部材14を備えている。そして、このタイヤ骨格部材14のタイヤ外周面側の位置、すなわちクラウン部26の外側に、ゴム製のトレッド16が貼り付けられて、車両のリム18に装着されるタイヤ12となる。
[First Embodiment]
A first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the tire 12 of the present embodiment has a cross-sectional shape substantially similar to that of a conventional general rubber pneumatic tire.
As shown in FIGS. 1 and 2, the tire 12 is connected to the tire side portions 24 via a tire side portion 24 extending outward in the tire radial direction from a tire bead portion 22 in which the bead core 20 is embedded and is in contact with the rim 18. Are provided with a tire center member (crown portion 26), which includes a tire frame member 14 made of a thermoplastic material for the main body. Then, a rubber tread 16 is attached to a position on the tire outer peripheral surface side of the tire frame member 14, that is, outside the crown portion 26, so that the tire 12 to be mounted on the rim 18 of the vehicle is obtained.

ここで、本実施形態のタイヤ骨格部材14は、単一の熱可塑性材料で形成されているが、本発明はこの構成に限定されず、従来一般のゴム製の空気入りタイヤと同様に、タイヤ骨格部材14の各部位毎(タイヤサイド部24、クラウン部26、タイヤビード部22など)に異なる特徴を有する熱可塑性材料を用いてもよい。
また、本実施形態のタイヤ骨格部材14では、後述するように、タイヤ骨格部材14が2つの分割体14A、14Bを接合することで構成されており、接合面36が接合用熱可塑性材料38で接合されている。
Here, the tire frame member 14 of the present embodiment is formed of a single thermoplastic material, but the present invention is not limited to this configuration, and the tire is similar to a conventional rubber pneumatic tire. You may use the thermoplastic material which has a different characteristic for every site | part (the tire side part 24, the crown part 26, the tire bead part 22 etc.) of the frame member 14. FIG.
Further, in the tire frame member 14 of the present embodiment, the tire frame member 14 is configured by bonding two divided bodies 14A and 14B, and the bonding surface 36 is a bonding thermoplastic material 38 as described later. It is joined.

本体用熱可塑性材料及び接合用熱可塑性材料のいずれにおいても、熱可塑性樹脂、熱可塑性エラストマー(TPE)等を用いることができるが、走行時に必要とされる弾性と製造時の成形性等を考慮すると熱可塑性エラストマーを用いることが好ましい。
接合用熱可塑性材料38は、分割体14A、14Bを構成している熱可塑性材料と同種の熱可塑性材料であっても良いが、異種の熱可塑性材料であっても良い。同種の材料とすれば、タイヤ骨格部材14を全体として1つの熱可塑性材料で構成できるので、低コストとなる。また、異種材料とすれば、本体用熱可塑性材料と接合用熱可塑性材料との、それぞれ好ましい特性を有する材料とすることが可能である。
In both the thermoplastic material for the main body and the thermoplastic material for bonding, thermoplastic resin, thermoplastic elastomer (TPE), etc. can be used, but the elasticity required during running and the moldability during production are taken into consideration. Then, it is preferable to use a thermoplastic elastomer.
The joining thermoplastic material 38 may be the same kind of thermoplastic material as the thermoplastic material constituting the divided bodies 14A and 14B, or may be a different kind of thermoplastic material. If the same kind of material is used, the tire frame member 14 can be made of a single thermoplastic material as a whole, so that the cost is low. Further, if different materials are used, it is possible to obtain materials having preferable characteristics of the main body thermoplastic material and the joining thermoplastic material.

熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるアミド系熱可塑性エラストマー(TPA)、エステル系熱可塑性エラストマー(TPC)、オレフィン系熱可塑性エラストマー(TPO)、スチレン系熱可塑性エラストマー(TPS)、ウレタン系熱可塑性エラストマー(TPU)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられ、特に、一部ゴム系の樹脂が混錬されているTPVが好ましい。
また、熱可塑性樹脂としては、例えば、ウレタン樹脂、オレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。
Examples of the thermoplastic elastomer include amide-based thermoplastic elastomer (TPA), ester-based thermoplastic elastomer (TPC), olefin-based thermoplastic elastomer (TPO), styrene-based thermoplastic elastomer (TPS) specified in JIS K6418, Examples thereof include urethane-based thermoplastic elastomer (TPU), crosslinked thermoplastic rubber (TPV), and other thermoplastic elastomers (TPZ). Particularly, TPV partially kneaded with rubber-based resin is preferable.
Examples of the thermoplastic resin include urethane resin, olefin resin, vinyl chloride resin, polyamide resin, and the like.

これらの熱可塑性材料としては、たとえば、ISO75−2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)が78℃以上、JIS K7113に規定される引張降伏強さが10MPa以上、同じくJIS K7113に規定される引張降伏伸びが10%以上、同じくJIS K7113に規定される引張破壊伸び(JIS K7113)が50%以上、JIS K7206に規定されるビカット軟化温度(A法)が130℃以上であるものが用いられる。   As these thermoplastic materials, for example, the deflection temperature under load specified at ISO 75-2 or ASTM D648 (at the time of 0.45 MPa load) is 78 ° C. or higher, the tensile yield strength specified by JIS K7113 is 10 MPa or higher, Tensile yield elongation specified in JIS K7113 is 10% or more, Tensile breaking elongation (JIS K7113) specified in JIS K7113 is 50% or more, Vicat softening temperature (Method A) specified in JIS K7206 is 130 ° C or more Is used.

本実施形態のタイヤビード部22には、従来一般の空気入りタイヤと同様の、スチールコードからなる円環状のビードコア20が埋設されている。しかし、本発明はこの構成に限定されず、タイヤビード部22の剛性が確保され、リムとの嵌合に問題なければ、ビードコア20は省略してもよい。なお、ビードコア20は、スチールコード等の金属製のものに限定されず、有機繊維を単独で用いたものや、有機繊維が樹脂被覆されたもの(有機繊維コード)、あるいは、硬質樹脂で成形された樹脂コードであってもよいが、特に本実施形態では、金属(磁性体)を有する構成としている。   An annular bead core 20 made of steel cord is embedded in the tire bead portion 22 of the present embodiment, similar to a conventional general pneumatic tire. However, the present invention is not limited to this configuration, and the bead core 20 may be omitted if the rigidity of the tire bead portion 22 is ensured and there is no problem in fitting with the rim. The bead core 20 is not limited to a metal cord such as a steel cord. The bead core 20 is formed of an organic fiber alone, an organic fiber coated with a resin (organic fiber cord), or a hard resin. However, in the present embodiment, the metal cord (magnetic material) is used.

また、図2に示すように、本実施形態では、タイヤビード部22のリム18との接触部分、少なくともリム18のリムフランジ18Fと接触する部分に、タイヤ骨格部材14を形成する熱可塑性材料よりもシール性に優れた材料、例えば、ゴムあるいは樹脂からなる円環状のシール層28が形成されている。
シール層28を形成するゴムとしては、従来一般のゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。なお、熱可塑性材料のみでリム18との間のシール性が確保できれば、ゴムのシール層28を省略してもよく、また、タイヤ骨格部材14を形成する熱可塑性材料よりもシール性に優れる他の種類の熱可塑性材料を用いてもよい。
Further, as shown in FIG. 2, in the present embodiment, the thermoplastic material forming the tire frame member 14 is formed on the contact portion of the tire bead portion 22 with the rim 18 and at least the portion of the rim 18 that contacts the rim flange 18F. In addition, an annular sealing layer 28 made of a material excellent in sealing properties, for example, rubber or resin is formed.
As the rubber forming the sealing layer 28, it is preferable to use the same type of rubber as that used on the outer surface of the bead portion of a conventional general rubber pneumatic tire. If the sealing property between the rim 18 can be ensured only with the thermoplastic material, the rubber sealing layer 28 may be omitted, and the sealing property is superior to the thermoplastic material forming the tire frame member 14. Any type of thermoplastic material may be used.

図1に示すように、クラウン部26には、タイヤ骨格部材14を形成する熱可塑性材料よりも剛性が高い補強コード34が、タイヤ骨格部材14の軸方向に沿った断面視で、少なくとも一部が埋設された状態で螺旋状に巻回されて補強コード層32が形成されている。また、補強コード34は、埋設された部分が熱可塑性材料と密着した状態となっている。この補強コード34としては、金属繊維や有機繊維等のモノフィラメント(単線)、又はこれらの繊維を撚ったマルチフィラメント(撚り線)などを用いるとよい。なお、本実施形態では、補強コード34として、スチール繊維を撚ったスチールコードを用いている。なお、補強コード層32は、補強コード34を螺旋状に巻回して形成することが製造上容易であるが、タイヤ幅方向で補強コード34を不連続としても良い。   As shown in FIG. 1, the crown portion 26 has a reinforcing cord 34 having a rigidity higher than that of the thermoplastic material forming the tire frame member 14, at least partially in a sectional view along the axial direction of the tire frame member 14. The reinforcing cord layer 32 is formed by being spirally wound in a state where the wire is embedded. Further, the reinforcing cord 34 is in a state where the embedded portion is in close contact with the thermoplastic material. As the reinforcing cord 34, a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (stranded wire) obtained by twisting these fibers may be used. In this embodiment, a steel cord twisted with steel fibers is used as the reinforcing cord 34. The reinforcing cord layer 32 can be easily formed by spirally winding the reinforcing cord 34, but the reinforcing cord 34 may be discontinuous in the tire width direction.

タイヤ骨格部材14は、図1から分かるように、タイヤ赤道面またはその近傍面において2つに分割された分割体14A、14Bで構成されている。すなわち、分割体14A、14Bの突合せ部分が接合面36とされ、この接合面36が接合用熱可塑性材料38によって接合されて、全体として所定形状のタイヤ骨格部材14となる。
クラウン部26のタイヤ径方向外周側にはトレッド16が配置されており、本実施形態では、トレッド16が、トレッド16の外周部を構成するトレッド本体50と、トレッド本体50の内周面に形成された熱可塑性材料からなる接合層52と、を備えている。
As can be seen from FIG. 1, the tire frame member 14 is composed of divided bodies 14 </ b> A and 14 </ b> B that are divided into two on the tire equatorial plane or its vicinity. That is, the abutting portions of the divided bodies 14A and 14B serve as the joining surface 36, and the joining surface 36 is joined by the joining thermoplastic material 38 to form the tire frame member 14 having a predetermined shape as a whole.
The tread 16 is disposed on the outer circumferential side of the crown portion 26 in the tire radial direction. In the present embodiment, the tread 16 is formed on the tread body 50 constituting the outer periphery of the tread 16 and the inner circumferential surface of the tread body 50. And a bonding layer 52 made of a thermoplastic material.

なお、トレッド本体50はタイヤ骨格部材14を形成している熱可塑性材料よりも耐摩耗性に優れた材料、本実施形態ではゴムからなり、このゴムは、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。また、トレッド本体50の外周部には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターンが形成されている。   The tread body 50 is made of a material superior in wear resistance to the thermoplastic material forming the tire frame member 14, which is rubber in this embodiment, and this rubber is used in a conventional rubber pneumatic tire. It is preferable to use the same type of rubber as that used. In addition, a tread pattern including a plurality of grooves is formed on the ground contact surface with the road surface, similar to a conventional rubber pneumatic tire, on the outer periphery of the tread body 50.

以下に、図面にしたがって本実施形態に係るタイヤの製造方法を説明する。
図3に示すように、本実施形態では、トレッド本体50と接合層52とを備えた、帯状のタイヤ用トレッドとしてのPCT(Pre−Cured Tread)48を製造し、タイヤ骨格部材14の外周部に接合し、図1に示すトレッド16とする工程を有する製造方法である。
Below, the manufacturing method of the tire concerning this embodiment is explained according to a drawing.
As shown in FIG. 3, in this embodiment, a PCT (Pre-Cured Tread) 48 as a belt-shaped tire tread having a tread body 50 and a bonding layer 52 is manufactured, and the outer peripheral portion of the tire frame member 14 is manufactured. It is a manufacturing method which has the process of joining to and making the tread 16 shown in FIG.

・帯状PCTの製造方法
図4に示すように、PCT製造用金型60は上金型60Uと下金型60Sとで構成されており、これら上金型60Uと下金型60Sとは図4の紙面垂直方向に沿った長尺形状となっている。
従って、PCT製造用金型60内の下金型60S側となる位置に接合層52となる熱可塑性材料62のシートを配置し(敷いておき)、上金型60U側となる位置にトレッド本体50となる未加硫ゴム64を配置し(敷いて)、PCT製造用金型60内で加硫することで最終形状のPCT48を製造する。なお、接合層52となる熱可塑性材料62のシートの配置と未加硫ゴム64の配置の順番は逆でもよい。
この際、PCT48のトレッド本体50に、上金型60Uによって所定のトレッドパターンが形成される。
Method for Manufacturing Strip PCT As shown in FIG. 4, the PCT manufacturing mold 60 is composed of an upper mold 60U and a lower mold 60S. The upper mold 60U and the lower mold 60S are shown in FIG. It has a long shape along the vertical direction of the paper.
Therefore, a sheet of the thermoplastic material 62 to be the bonding layer 52 is disposed (laid) at a position on the lower mold 60S side in the PCT manufacturing mold 60, and the tread body is disposed at a position on the upper mold 60U side. The unvulcanized rubber 64 to be 50 is placed (laid) and vulcanized in the PCT manufacturing mold 60 to produce the final PCT 48. It should be noted that the order of the arrangement of the sheet of the thermoplastic material 62 to be the bonding layer 52 and the arrangement of the unvulcanized rubber 64 may be reversed.
At this time, a predetermined tread pattern is formed on the tread body 50 of the PCT 48 by the upper mold 60U.

なお、熱可塑性材料62のシートに代えて、PCT製造用金型内に熱可塑性材料62を押出し機によって流し込むことで、熱可塑性材料62の薄い層を形成してもよい。
また、熱可塑性材料62と未加硫ゴム64との間に接着剤からなる接着層66を挟んで(接着剤を1層或いは2層塗布して)、PCT製造用金型60内で加硫することで最終形状のPCT48を製造してもよい。なお、接着剤としては、塩化ゴム系接着剤、フェノール系樹脂接着剤、イソシアネート系接着剤、ハロゲン化ゴム系接着剤、トリアジンチオール系接着剤など、を用いることができる。
また、熱可塑性材料62と未加硫ゴム64との間にクッションゴム(接着用未加硫ゴム)からなる接着層66、又は接着剤とクッションゴム(接着用未加硫ゴム)とからなる接着層66を挟んで配置し、PCT製造用金型60内で加硫することで最終形状のPCT48を製造してもよい。
なお、未加硫ゴム64については、予め必要な幅と厚さに成形されたシート状の未加硫ゴム64をPCT製造用金型60内の下金型60S側となる位置に配置することができる。
Instead of the sheet of the thermoplastic material 62, a thin layer of the thermoplastic material 62 may be formed by pouring the thermoplastic material 62 into a PCT manufacturing mold using an extruder.
Further, an adhesive layer 66 made of an adhesive is sandwiched between the thermoplastic material 62 and the unvulcanized rubber 64 (one or two layers of adhesive are applied), and vulcanized in the mold 60 for PCT production. By doing so, the final shape of the PCT 48 may be manufactured. As the adhesive, a chlorinated rubber adhesive, a phenol resin adhesive, an isocyanate adhesive, a halogenated rubber adhesive, a triazine thiol adhesive, and the like can be used.
Further, an adhesive layer 66 made of cushion rubber (adhesive unvulcanized rubber) or an adhesive made of an adhesive and cushion rubber (adhesive unvulcanized rubber) is interposed between the thermoplastic material 62 and the unvulcanized rubber 64. The final shape of the PCT 48 may be manufactured by placing the layers 66 and vulcanizing the mold in the PCT manufacturing mold 60.
As for the unvulcanized rubber 64, a sheet-like unvulcanized rubber 64 molded in advance to a required width and thickness is disposed at a position on the lower mold 60S side in the mold 60 for PCT production. Can do.

・帯状PCT48の他の製造方法
帯状PCT48の他の製造方法としては、図5(A)及び図6に示すように、トレッド本体50を成形する第1のトレッド用金型としてのPCT製造用金型70と、最終形状のPCT48を成形する第2のトレッド用金型としてのPCT製造用金型72とを使用してもよい。
即ち、トレッド本体50を成形するPCT製造用金型70は上金型70Uと下金型70Sとで構成されており、これら上金型70Uと下金型70Sとは図5(A)の紙面垂直方向に沿った長尺形状となっている。
-Another manufacturing method of the strip-shaped PCT 48 As another manufacturing method of the strip-shaped PCT 48, as shown in FIGS. 5A and 6, a PCT manufacturing mold as a first tread mold for molding the tread body 50. You may use the type | mold 70 and the metal mold | die 72 for PCT manufacture as a 2nd metal mold | die for a tread which shape | molds PCT48 of the last shape.
That is, the PCT manufacturing mold 70 for forming the tread body 50 is composed of an upper mold 70U and a lower mold 70S. The upper mold 70U and the lower mold 70S are formed on the paper surface of FIG. It has a long shape along the vertical direction.

また、最終形状のPCT48を成形するPCT製造用金型72は上金型72Uと下金型72Sとで構成されており、これら上金型72Uと下金型72Sとは図6の紙面垂直方向に沿った長尺形状となっている。
従って、PCT製造用金型70内の下金型70S側と上金型70Uとの間にトレッド本体50となる未加硫ゴム74を配置し、又は流し込み、PCT製造用金型70内で加硫することでトレッド本体50を製造する。この際、トレッド本体50の上部には、上金型70Uによって所定のトレッドパターンが形成される。
The PCT manufacturing mold 72 for molding the final shape PCT 48 is composed of an upper mold 72U and a lower mold 72S. The upper mold 72U and the lower mold 72S are perpendicular to the paper surface of FIG. It has a long shape along.
Accordingly, the unvulcanized rubber 74 that becomes the tread body 50 is disposed or poured between the lower mold 70S side of the PCT manufacturing mold 70 and the upper mold 70U, and is added in the PCT manufacturing mold 70. The tread body 50 is manufactured by sulfurating. At this time, a predetermined tread pattern is formed on the upper portion of the tread body 50 by the upper mold 70U.

また、下金型70Sにおける未加硫ゴム74との接合部となる上面には、図7に示すような下金型70Sの長手方向に沿った複数の凸部78と凹部80とが交互に形成されており、凸部78の長手方向から見た断面形状は、根元部78Aの幅W1が頂部78Bの幅W2に比べて狭くなった(W1<W2)逆台形となっていることが好ましい。
従って、トレッド本体50の下面側には、下金型70Sの凸部78と凹部80に対応した凹凸が形成される。
Further, a plurality of convex portions 78 and concave portions 80 along the longitudinal direction of the lower mold 70S as shown in FIG. 7 are alternately formed on the upper surface of the lower mold 70S, which is a joint portion with the unvulcanized rubber 74. The cross-sectional shape as viewed from the longitudinal direction of the convex portion 78 is preferably an inverted trapezoid in which the width W1 of the root portion 78A is narrower than the width W2 of the top portion 78B (W1 <W2). .
Accordingly, irregularities corresponding to the convex portions 78 and the concave portions 80 of the lower mold 70 </ b> S are formed on the lower surface side of the tread body 50.

次に、トレッド本体50をPCT製造用金型70内から取し、図6に示すように、PCT製造用金型72内の上金型72U側に配置し、PCT製造用金型72内の下金型72Sとトレッド本体50との間に熱可塑性材料76を流し込み、加硫して、トレッド本体50の内周面に接合層52が形成されたPCT48を製造する。なお、この場合には、第1のトレッド用金型70の上金型70Uをそのまま利用し、下金型70Sを下金型72Sに交換することで最終形状のPCT48を製造することが可能になる。   Next, the tread body 50 is removed from the PCT manufacturing mold 70 and placed on the upper mold 72U side in the PCT manufacturing mold 72 as shown in FIG. A thermoplastic material 76 is poured between the lower mold 72S and the tread body 50 and vulcanized to produce a PCT 48 in which the bonding layer 52 is formed on the inner peripheral surface of the tread body 50. In this case, the final shape PCT 48 can be manufactured by using the upper mold 70U of the first tread mold 70 as it is and replacing the lower mold 70S with the lower mold 72S. Become.

この際、トレッド本体50の下面側には、下金型70Sの凸部78と凹部80に対応した凹凸が形成されているため、熱可塑性材料76が流動しトレッド本体50の下面側の凹部に結合し(噛み込まれ)、所謂、アンカー効果によってトレッド本体50と接合層52とが接合(結合)される。
なお、図8に示すように、下金型70Sに形成する凸部78の長手方向から見た断面形状は、根元部78Aの幅W1が頂部78Bの幅W2と同じ(W1=W2)矩形状としてもよい。
At this time, since the concave and convex portions corresponding to the convex portions 78 and the concave portions 80 of the lower mold 70 </ b> S are formed on the lower surface side of the tread body 50, the thermoplastic material 76 flows to the concave portions on the lower surface side of the tread main body 50. The tread body 50 and the bonding layer 52 are bonded (bonded) by the so-called anchor effect.
In addition, as shown in FIG. 8, the cross-sectional shape seen from the longitudinal direction of the convex part 78 formed in the lower mold 70S is a rectangular shape in which the width W1 of the root part 78A is the same as the width W2 of the top part 78B (W1 = W2). It is good.

また、図9に示すように、下金型70Sに形成する凹部80の長手方向から見た断面形状が半円形状で、凸部78の頂部78Bの幅W2が根元部78Aの幅W1に比べて狭くなった(W1<W2)形状としてもよい。
また、下金型70Sにおける未加硫ゴム74との接合部となる上面に凹凸を設けず平面としてもよい。
Further, as shown in FIG. 9, the cross-sectional shape of the concave portion 80 formed in the lower mold 70S as viewed from the longitudinal direction is a semicircular shape, and the width W2 of the top portion 78B of the convex portion 78 is larger than the width W1 of the root portion 78A. The shape may be narrower (W1 <W2).
Further, the upper surface of the lower mold 70 </ b> S that becomes the joint portion with the unvulcanized rubber 74 may be a flat surface without providing irregularities.

なお、この場合には、図6において、PCT製造用金型72内の下金型72S側に接合層52となる熱可塑性材料76のシートを配置し、熱可塑性材料76の上にPCT製造用金型70内から取した接合部に凹凸がないトレッド本体50を配置して、PCT製造用金型72内の下金型72Sと上金型72Uとの間で加硫する。この際、熱可塑性材料76と未加硫ゴム74との間に接着層66を挟んで加硫してもよい。 In this case, in FIG. 6, a sheet of the thermoplastic material 76 to be the bonding layer 52 is disposed on the lower mold 72 </ b> S side in the PCT manufacturing mold 72, and the PCT manufacturing mold is placed on the thermoplastic material 76. by arranging the tread body 50 is not uneven joints externally taken from inside the mold 70, is vulcanized in between the lower mold 72S and the upper mold 72U of PCT manufacturing mold 72. At this time, the adhesive layer 66 may be sandwiched between the thermoplastic material 76 and the unvulcanized rubber 74 for vulcanization .

なお、帯状PCTの他の製造方法としては、先に接合層52を製造し、その後、最終形状のPCT48を製造してもよい。
即ち、図5(B)に示す接合層52を成形する第1のトレッド用金型71(下金型71Sと上金型71U)と、図6に示す最終形状のPCT48を成形する第2のトレッド用金型72とを使用する。この場合には、第1のトレッド用金型71内に熱可塑性材料76を配置し接合層52を成形し、第1のトレッド用金型71から取り出した接合層52と、トレッド本体50となる未加硫ゴム74とを第2のトレッド用金型72内に配置し、加硫することで最終形状のPCT48を製造することが可能になる。なお、この場合には、第1のトレッド用金型71の下金型71Sをそのまま利用し、上金型71Uを上金型72Uに交換することで最終形状のPCT48を製造することが可能になる。
As another manufacturing method of the strip-shaped PCT, the bonding layer 52 may be manufactured first, and then the final shape PCT 48 may be manufactured.
That is, the first tread mold 71 (lower mold 71S and upper mold 71U) for molding the bonding layer 52 shown in FIG. 5B and the second PCT 48 having the final shape shown in FIG. A tread mold 72 is used. In this case, the thermoplastic material 76 is disposed in the first tread mold 71 to form the bonding layer 52, and the bonding layer 52 taken out from the first tread mold 71 and the tread body 50 are formed. By placing the unvulcanized rubber 74 in the second tread mold 72 and vulcanizing it, it becomes possible to manufacture the PCT 48 of the final shape. In this case, the final shape PCT 48 can be manufactured by using the lower mold 71S of the first tread mold 71 as it is and replacing the upper mold 71U with the upper mold 72U. Become.

・帯状PCTとタイヤ骨格部材との接合方法
図3に示すように、本実施形態における帯状PCT48とタイヤ骨格部材14との接合方法は、帯状PCT48の下面(タイヤ骨格部材14の外周部に対向する側)に向けてヒーターとファンからなる加熱装置84で生成した熱風(図3の矢印W)を当て、PCT48の接合層52の下表面を溶融し、タイヤ骨格部材14を矢印A方向に回転させながら、PCT48を巻き付けることでPCT48の接合層52がタイヤ骨格部材14の外周面に接合される。
-Joining method of belt-shaped PCT and tire frame member As shown in FIG. 3, the bonding method of band-shaped PCT 48 and tire frame member 14 in this embodiment is the bottom surface of band-shaped PCT 48 (facing the outer periphery of tire frame member 14). The lower surface of the bonding layer 52 of the PCT 48 is melted and the tire frame member 14 is rotated in the direction of arrow A by applying hot air (arrow W in FIG. 3) generated by the heating device 84 including a heater and a fan toward the side). However, the bonding layer 52 of the PCT 48 is bonded to the outer peripheral surface of the tire frame member 14 by winding the PCT 48.

なお、シリンダ等の移動手段(図示省略)で外周側から内周側(図3の矢印B方法)へ付勢されたローラ84でPCT48をタイヤ骨格部材14の外周部に向けて押し付けることで、PCT48の接合層52をタイヤ骨格部材14に確実に溶着させることができる。
また、熱風で加熱する代わりに、赤外線を照射して加熱しても良い。また、熱可塑性材料が軟化して互いに接合できれば、熱可塑性材料は必ずしも溶融させなくても良い。
また、PCT48の接合層52の下面と、タイヤ骨格部材14の外周部におけるPCT48の接合層52の溶着予定部位とに熱風を当て、各々の表面のみを溶融してからPCT48の接合層52をタイヤ骨格部材14に溶着しても良い。
また、再生タイヤで用いられるPCTの台タイヤへの接合に用いられる加硫缶による加熱によってPCT48の接合層52とタイヤ骨格部材14を溶着しても良い。
また、PCT48の長手方向両端部48Aの接合方法は、図10に示すように、タイヤ骨格部材14の半径方向に沿って平行配置された垂直端面同士の間に未加硫ゴム86を充填した状態で加硫する方法で接合する。
In addition, by pressing the PCT 48 toward the outer peripheral portion of the tire frame member 14 with the roller 84 urged from the outer peripheral side to the inner peripheral side (arrow B method in FIG. 3) by a moving means (not shown) such as a cylinder, The joining layer 52 of the PCT 48 can be reliably welded to the tire frame member 14.
Further, instead of heating with hot air, heating may be performed by irradiating infrared rays. Further, if the thermoplastic material is softened and can be joined to each other, the thermoplastic material does not necessarily have to be melted.
Further, hot air is applied to the lower surface of the bonding layer 52 of the PCT 48 and the planned welding portion of the bonding layer 52 of the PCT 48 in the outer peripheral portion of the tire frame member 14, and only the respective surfaces are melted before the bonding layer 52 of the PCT 48 is tired. It may be welded to the skeleton member 14.
Further, the joining layer 52 of the PCT 48 and the tire frame member 14 may be welded by heating with a vulcanizing can used for joining the PCT used in the recycled tire to the base tire.
Further, as shown in FIG. 10, the joining method of the longitudinal end portions 48A of the PCT 48 is a state in which the unvulcanized rubber 86 is filled between the vertical end faces arranged in parallel along the radial direction of the tire frame member 14. Join by vulcanizing method.

なお、図11に示すように、PCT48の長手方向両端部48Aをタイヤ骨格部材14の半径方向に対して傾斜させることで接合面を広げ、平行配置された傾斜面同士の間に未加硫ゴム86を充填した状態で加硫する方法で接合してもよい。   In addition, as shown in FIG. 11, the longitudinal direction both ends 48A of PCT48 are made to incline with respect to the radial direction of the tire frame member 14, a joint surface is expanded, and unvulcanized rubber is provided between the inclined surfaces arranged in parallel. You may join by the method of vulcanizing in the state filled with 86.

(作用及び効果)
上記説明から分かるように、本実施形態のタイヤ12ではその製造過程において、熱可塑性材料からなる(で形成された)タイヤ骨格部材14にPCT48を一体化するにあたり、PCT48を構成するトレッド本体50の内周面に熱可塑性材料からなる接合層52が接合されている。このため、トレッド本体50の内周面に設けた接合層52と、熱可塑性材料からなるタイヤ骨格部材14との接合部が熱可塑性材料同士の接合となる。この結果、曲面となっているPCT48とタイヤ骨格部材14の接合部においても均一で安定した接合面を確保することが可能になり、タイヤ骨格部材14とトレッド16との接合強度を十分確保できる。
即ち、材質の違いによって互いに接合し難いPCT48のトレッド本体50と接合層52とは、PCT製造用金型60又はPCT製造用金型70、72を使用し平面状態で接合することで、均一で安定した接合面を確保することができると共に、曲面となっているタイヤ骨格部材14とPCT48との接合部においては、熱可塑性材料同士の接合とすることで、均一で安定した接合面を確保することができる。
(Function and effect)
As can be seen from the above description, in integrating the PCT 48 with the tire skeleton member 14 made of (made of) a thermoplastic material in the manufacturing process of the tire 12 of the present embodiment, the tread body 50 constituting the PCT 48 is integrated. A bonding layer 52 made of a thermoplastic material is bonded to the inner peripheral surface. For this reason, the joining part of the joining layer 52 provided on the inner peripheral surface of the tread body 50 and the tire frame member 14 made of the thermoplastic material is joined between the thermoplastic materials. As a result, a uniform and stable joint surface can be secured even at the joint portion between the curved PCT 48 and the tire skeleton member 14, and the joint strength between the tire skeleton member 14 and the tread 16 can be sufficiently secured.
That is, the tread body 50 and the bonding layer 52 of the PCT 48 which are difficult to be bonded to each other due to the difference in material are uniform by bonding in a planar state using the PCT manufacturing mold 60 or the PCT manufacturing molds 70 and 72. A stable joint surface can be secured, and a uniform and stable joint surface can be secured by joining the thermoplastic materials at the joint between the curved tire frame member 14 and the PCT 48. be able to.

また、本実施形態のタイヤ骨格部材14は、上記したように、熱可塑性材料で構成されているため、所定以上の熱供給によって熱収縮や溶融により変形するおそれがある。しかし、本実施形態では、トレッド本体50と接合層52との加熱温度を上げることで、トレッド本体50と接合層52との安定した接合を確保することができる。また、タイヤ骨格部材14とPCT48とを接合する際には、前記所定以上の熱供給を行わずタイヤ骨格部材14とトレッド16との接合強度を十分確保できる。この結果、タイヤ骨格部材14への熱供給に起因する変形を抑制できる。
また、本実施形態では、タイヤ骨格部材14とPCT48とを接合する際に、従来必要とされていたタイヤ12の全体を加硫するための大型で高価な加硫装置が必要ない。また、サイズに応じて金型を用意する必要がない。
Moreover, since the tire frame member 14 of the present embodiment is made of a thermoplastic material as described above, there is a possibility that the tire frame member 14 may be deformed by heat shrinkage or melting due to heat supply of a predetermined level or more. However, in this embodiment, stable heating between the tread body 50 and the bonding layer 52 can be ensured by increasing the heating temperature of the tread body 50 and the bonding layer 52. Further, when the tire frame member 14 and the PCT 48 are bonded to each other, the bonding strength between the tire frame member 14 and the tread 16 can be sufficiently ensured without supplying heat more than the predetermined amount. As a result, deformation due to heat supply to the tire frame member 14 can be suppressed.
Moreover, in this embodiment, when joining the tire frame member 14 and the PCT 48, there is no need for a large and expensive vulcanizing apparatus for vulcanizing the entire tire 12 that has been conventionally required. Moreover, it is not necessary to prepare a mold according to the size.

[第2の実施形態]
以下に、図面にしたがって本発明の第2の実施形態を説明する。
図12及び図13に示すように、本実施形態は、図1に示すタイヤ12を製造する際に、環状(円環状)のタイヤ用トレッドとしてのPCT90をタイヤ骨格部材14の外周部に接合する工程を有するものである。
なお、第1実施形態と同一部材に付いては、同一符号を付してその説明を省略する。
[Second Embodiment]
Below, the 2nd Embodiment of this invention is described according to drawing.
As shown in FIGS. 12 and 13, in this embodiment, when manufacturing the tire 12 shown in FIG. 1, a PCT 90 as an annular (annular) tire tread is joined to the outer peripheral portion of the tire frame member 14. It has a process.
In addition, about the same member as 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

・環状PCTの製造方法
図14に示すように、本実施形態のPCT製造用金型92は、複数(本実施形態では合計で2つ)の外金型部材92Sと、複数(本実施形態では合計で8つ)の内金型部材92Uとで構成されている。
図14及び図15に示すように、PCT90はトレッド本体91と接合層93とを有している。また、PCT製造用金型92の外金型部材92Sはタイヤ外周側から、PCT90のトレッド本体部91を隙間無く覆うことができる。
Method for Producing Ring PCT As shown in FIG. 14, the PCT production mold 92 of the present embodiment includes a plurality (two in total in the present embodiment) of outer mold members 92 </ b> S and a plurality of (in the present embodiment, the present embodiment). The inner mold member 92U is composed of a total of eight).
As shown in FIGS. 14 and 15, the PCT 90 has a tread body 91 and a bonding layer 93. Further, the outer mold member 92S of the PCT manufacturing mold 92 can cover the tread body 91 of the PCT 90 from the tire outer peripheral side without a gap.

図14に示すように、それぞれの外金型部材92Sは、押圧機構(図示省略)によって互いに当接する方向(図14の矢印A方向)と離間する方向(図14の矢印B方向)へ移動される。このため、PCT90を成形する際にはそれぞれの外金型部材92Sが当接状態となり、それぞれの外金型部材92Sを離間状態とすることで、PCT90から外金型部材92Sを外すことができる。   As shown in FIG. 14, each outer mold member 92 </ b> S is moved by a pressing mechanism (not shown) in a direction of contact with each other (in the direction of arrow A in FIG. 14) and a direction in which it is separated (in the direction of arrow B in FIG. 14). The For this reason, when molding the PCT 90, the respective outer mold members 92S come into contact with each other, and the outer mold members 92S can be removed from the PCT 90 by bringing the respective outer mold members 92S into a separated state. .

図15に示すように、外金型部材92Sのそれぞれは、未加硫状態のPCT90のトレッド本体91を、タイヤ幅方向で全体に渡って接触し覆うことが可能な幅を有する形状とされている。
なお、図示を省略したが、外金型部材92Sのそれぞれにおける、PCT90のトレッド本体91との接触面には、所定のトレッドパターンを形成するための凹凸が形成されている。
As shown in FIG. 15, each of the outer mold members 92 </ b> S has a shape having a width capable of covering and covering the tread body 91 of the unvulcanized PCT 90 in the tire width direction. Yes.
Although not shown in the drawings, unevenness for forming a predetermined tread pattern is formed on the contact surface of each of the outer mold members 92S with the tread body 91 of the PCT 90.

これに対し、内金型部材92Uは、図14から分かるように、PCT90の接合層93よりもタイヤ内周側で、周方向に交互に配置された複数ずつ(本実施形態では4つずつ)の内金型部材94、96を有している。これらのうち、4つの内金型部材94は、タイヤ内周側からタイヤ外周側に向かって先細り形状となる略台形状に形成されており、側面94Aがテーパー状とされている。そして、これら内金型部材94の間にもう一方の内金型部材96が配置されており、内金型部材96の側面96Aが内金型部材94の側面94Aに面接触している。   On the other hand, as can be seen from FIG. 14, the inner mold members 92 </ b> U are arranged alternately in the circumferential direction on the tire inner circumferential side of the bonding layer 93 of the PCT 90 (four in this embodiment). The inner mold members 94 and 96 are provided. Of these, the four inner mold members 94 are formed in a substantially trapezoidal shape that tapers from the tire inner peripheral side toward the tire outer peripheral side, and the side surface 94A is tapered. The other inner mold member 96 is disposed between the inner mold members 94, and the side surface 96 </ b> A of the inner mold member 96 is in surface contact with the side surface 94 </ b> A of the inner mold member 94.

内金型部材94は、さらにタイヤ内周側から押圧機構(図示省略)によって、タイヤ外周方向(図14の矢印C方向)とタイヤ内周方向(図14の矢印D方向)へ移動される。また、内金型部材94のタイヤ外周方向移動時には、内金型部材94の側面94Aが内金型部材96の側面96Aを押すので、内金型部材94、96が環状に配置される。
従って、図14に示すように、PCT製造用金型92の外金型部材92Sの内周部に、PCT90のトレッド本体91を形成する予め円環状につないだ未加硫ゴムを配置すると共に、この未加硫ゴムの内周面に接合層93を形成する熱可塑性材料を配置(例えば、溶融した熱可塑性材料をコーティング)し、外金型部材92Sと内金型部材92Uとで挟んで加硫し、環状のPCT90を製造する。なお、熱可塑性材料と未加硫ゴムとの間に接着剤と接着用未加硫ゴムとの少なくとも一方からなる接着層を挟んでもよい。
また、第1のトレッド用金型で環状のトレッド本体91のみを形成し、その後、第2のトレッド用金型でトレッド本体91と接合層93とを有する環状のPCT90を形成してもよい。この場合、外金型部材92Sはそのままで内金型部材94、96のみを交換してもよい。この際、第1のトレッド用金型で環状のトレッド本体91の内周部に複数の凹凸を形成し、第2のトレッド用金型内ではこれらの凹部に熱可塑性材料が結合し(噛み込まれ)、所謂、アンカー効果によってトレッド本体91と接合層93とが流動後接合(結合)されるようにしてもよい。
また、第1のトレッド用金型で環状の接合層93のみを形成し、その後、第2のトレッド用金型でトレッド本体91と接合層93とを有する環状のPCT90を形成してもよい。この場合、外金型部材92Sのみを交換してもよい。この際、第1のトレッド用金型で熱可塑性材料76からなる環状の接合層93の外周部に複数の凹凸を形成し、第2のトレッド用金型内ではこれらの凹部にトレッド本体91となるゴムが流動後結合し(噛み込まれ)、所謂、アンカー効果によってトレッド本体91と接合層93とが接合(結合)されるようにしてもよい。
なお、PCT90の外周部には、外金型部材92Sによって所定のトレッドパターンが形成される。
The inner mold member 94 is further moved from the tire inner peripheral side in the tire outer peripheral direction (arrow C direction in FIG. 14) and the tire inner peripheral direction (arrow D direction in FIG. 14) by a pressing mechanism (not shown). Further, when the inner mold member 94 moves in the tire outer circumferential direction, the side surface 94A of the inner mold member 94 pushes the side surface 96A of the inner mold member 96, so that the inner mold members 94, 96 are arranged in an annular shape.
Accordingly, as shown in FIG. 14, an unvulcanized rubber previously connected in an annular shape to form the tread body 91 of the PCT 90 is disposed on the inner peripheral portion of the outer mold member 92S of the mold 92 for PCT manufacture, A thermoplastic material that forms the bonding layer 93 is disposed on the inner peripheral surface of the unvulcanized rubber (for example, coated with a molten thermoplastic material), and is sandwiched between the outer mold member 92S and the inner mold member 92U and added. Sulfur is produced to produce an annular PCT90. An adhesive layer made of at least one of an adhesive and an adhesive unvulcanized rubber may be sandwiched between the thermoplastic material and the unvulcanized rubber.
Alternatively, only the annular tread body 91 may be formed with the first tread mold, and then the annular PCT 90 having the tread body 91 and the bonding layer 93 may be formed with the second tread mold. In this case, only the inner mold members 94 and 96 may be replaced with the outer mold member 92S as it is. At this time, a plurality of irregularities are formed on the inner peripheral portion of the annular tread body 91 with the first tread mold, and a thermoplastic material is bonded to these recesses in the second tread mold. Rarely), the tread body 91 and the joining layer 93 may be joined (bonded) after flowing by the so-called anchor effect.
Alternatively, only the annular bonding layer 93 may be formed by the first tread mold, and then the annular PCT 90 having the tread body 91 and the bonding layer 93 may be formed by the second tread mold. In this case, only the outer mold member 92S may be replaced. At this time, a plurality of irregularities are formed on the outer periphery of the annular bonding layer 93 made of the thermoplastic material 76 in the first tread mold, and in the second tread mold, the tread body 91 and The resulting rubber is bonded (bited) after flowing, and the tread body 91 and the bonding layer 93 may be bonded (bonded) by a so-called anchor effect.
A predetermined tread pattern is formed on the outer peripheral portion of the PCT 90 by the outer mold member 92S.

一方、内金型部材94のタイヤ内周方向移動時には、内金型部材96に対するタイヤ外周側への押圧が解除され、内金型部材94、96を環状PCT90から外すことができ、図16に示すような、トレッド本体91の内周面に熱可塑性材料からなる接合層93が形成された環状PCT90が得られる。   On the other hand, when the inner mold member 94 moves in the tire inner circumferential direction, the inner mold member 96 is released from the pressure on the tire outer peripheral side, and the inner mold members 94 and 96 can be removed from the annular PCT 90. FIG. As shown, an annular PCT 90 in which a bonding layer 93 made of a thermoplastic material is formed on the inner peripheral surface of the tread body 91 is obtained.

・環状PCTとタイヤ骨格部材との接合方法
本実施形態における環状PCT90とタイヤ骨格部材14との接合方法では、図12及び図13に示すように、環状PCT90治具100によって拡径し、拡径したPCT90の内周側に、タイヤ骨格部材14を配置する。
具体的に説明すると、治具100は円盤状の台座101の上面に、複数(本実施形態では合計で8つ)の移動ブロック102を備えている。これらの移動ブロック102は、シリンダ等の移動手段(図示省略)で台座101の内周方向(図12の矢印E方向)と外周方向(図12の矢印F方向)へ移動される。また、各移動ブロック102には、それぞれ複数(本実施形態では合計で2本)のピン104が立設されている。
-Joining method of annular PCT and tire frame member In the joining method of annular PCT 90 and tire frame member 14 in this embodiment, as shown in Figs. The tire frame member 14 is disposed on the inner peripheral side of the PCT 90 that has been used.
More specifically, the jig 100 includes a plurality of (in total, eight in this embodiment) moving blocks 102 on the upper surface of a disk-shaped pedestal 101. These moving blocks 102 are moved in the inner peripheral direction (in the direction of arrow E in FIG. 12) and the outer peripheral direction (in the direction of arrow F in FIG. 12) of the base 101 by moving means (not shown) such as a cylinder. Each moving block 102 is provided with a plurality of pins 104 (two in total in this embodiment).

なお、全てのピン104は円形に沿った位置に配置されており、各移動ブロック102の移動によって、全てのピン104が台座101の内周方向(図12の矢印E方向)と外周方向(図12の矢印F方向)へ移動される。
従って、環状PCT90を全てのピン104の外周側に配置し、各移動ブロックを外周方向(図12の矢印F方向)へ移動することでPCT90を拡径する。その後、環状PCT90の内周面(タイヤ骨格部材14の外周部に対向する側)に加熱装置(図示省略)で生成した熱風を当て、PCT90の接合層93の内周面を溶融すると共に、タイヤ骨格部材14を拡径されたPCT90の内周側に配置する。
なお、タイヤ骨格部材14は、各移動ブロック102に設けたピン104と、台座101の内周部における円形に沿った位置に立設された複数のピン106との間に配置する。
Note that all the pins 104 are arranged at positions along a circle, and by the movement of each moving block 102, all the pins 104 are moved in the inner peripheral direction (in the direction of arrow E in FIG. 12) and the outer peripheral direction (see FIG. 12). 12 in the direction of arrow F).
Accordingly, the annular PCT 90 is disposed on the outer peripheral side of all the pins 104, and the diameter of the PCT 90 is increased by moving each moving block in the outer peripheral direction (the direction of arrow F in FIG. 12). Thereafter, hot air generated by a heating device (not shown) is applied to the inner peripheral surface of the annular PCT 90 (the side facing the outer peripheral portion of the tire frame member 14) to melt the inner peripheral surface of the bonding layer 93 of the PCT 90, and the tire The skeletal member 14 is disposed on the inner peripheral side of the PCT 90 having an enlarged diameter.
The tire frame member 14 is disposed between the pins 104 provided on each moving block 102 and a plurality of pins 106 erected at positions along a circle in the inner peripheral portion of the base 101.

その後、各移動ブロックを内周方向(図12の矢印E方向)へ移動することでPCT90を縮径すると共に、全てのピン104、106をPCT90とタイヤ骨格部材14との間から引き抜くことで、PCT90の接合層93がタイヤ骨格部材14の外周面に接合される。
なお、環状PCT90の内周面を熱風で加熱する代わりに、赤外線を照射して加熱しても良い。なお、熱可塑性材料が軟化して互いに接合できれば、熱可塑性材料は必ずしも溶融させなくても良い。
また、PCT90の接合層93の内周面と、タイヤ骨格部材14の外周部におけるPCT90の接合層93の溶着予定部位とに熱風を当て、各々の表面のみを溶融してからPCT90の接合層93をタイヤ骨格部材14に溶着しても良い。また、再生タイヤで用いられるPCTの台タイヤへの接合に用いられる加硫缶による加熱によってPCT90の接合層93とタイヤ骨格部材14を溶着しても良い。
Thereafter, the PCT 90 is reduced in diameter by moving each moving block in the inner circumferential direction (the direction of arrow E in FIG. 12), and all the pins 104 and 106 are pulled out from between the PCT 90 and the tire frame member 14. The bonding layer 93 of the PCT 90 is bonded to the outer peripheral surface of the tire frame member 14.
Instead of heating the inner peripheral surface of the annular PCT 90 with hot air, it may be heated by irradiating infrared rays. Note that the thermoplastic material does not necessarily have to be melted if the thermoplastic material can be softened and bonded together.
Further, hot air is applied to the inner peripheral surface of the bonding layer 93 of the PCT 90 and the planned welding portion of the bonding layer 93 of the PCT 90 at the outer peripheral portion of the tire frame member 14 to melt only the respective surfaces, and then the bonding layer 93 of the PCT 90. May be welded to the tire frame member 14. Further, the joining layer 93 of the PCT 90 and the tire frame member 14 may be welded by heating with a vulcanizing can used for joining the PCT used in the recycled tire to the base tire.

(作用及び効果)
上記説明から分かるように、本実施形態のタイヤ12ではその製造過程において、熱可塑性材料からなるタイヤ骨格部材14にPCT90を一体化するにあたり、PCT90を構成するトレッド本体91の内周面に熱可塑性材料からなる接合層93が接合されている。このため、PCT90に設けた接合層93と、熱可塑性材料からなるタイヤ骨格部材14との接合部が熱可塑性材料同士の接合となる。この結果、曲面となっているタイヤ骨格部材14の接合部においても均一で安定した接合面を確保することが可能になり、タイヤ骨格部材14とトレッド16との接合強度を十分確保できる。
(Function and effect)
As can be seen from the above description, in the tire 12 of the present embodiment, when the PCT 90 is integrated with the tire frame member 14 made of a thermoplastic material in the manufacturing process, the inner peripheral surface of the tread body 91 constituting the PCT 90 is thermoplastic. A bonding layer 93 made of a material is bonded. For this reason, the joining part of the joining layer 93 provided in the PCT 90 and the tire frame member 14 made of the thermoplastic material becomes the joining of the thermoplastic materials. As a result, a uniform and stable joint surface can be secured even at the joint portion of the tire skeleton member 14 having a curved surface, and the joint strength between the tire skeleton member 14 and the tread 16 can be sufficiently secured.

即ち、本実施形態のタイヤ骨格部材14は、上記したように、熱可塑性材料で構成されているため、所定以上の熱供給によって熱収縮や溶融により変形するおそれがある。しかし、本実施形態では、トレッド本体91と接合層93との加硫温度を上げることで、トレッド本体91と接合層93との安定した接合を確保することができる。また、タイヤ骨格部材14とPCT90とを接合する際には、前記所定以上の熱供給を行わずタイヤ骨格部材14とトレッド16との接合強度を十分確保できる。この結果、タイヤ骨格部材14への熱供給に起因する変形を抑制できる。
また、本実施形態では、タイヤ骨格部材14とPCT90とを接合する際に、従来必要とされていたタイヤ12の全体を加硫するための大型で高価な加硫装置が必要ない。また、サイズに応じて金型を用意する必要がない。
That is, since the tire frame member 14 of the present embodiment is made of a thermoplastic material as described above, there is a possibility that the tire frame member 14 may be deformed by heat shrinkage or melting due to heat supply of a predetermined level or more. However, in this embodiment, by increasing the vulcanization temperature between the tread body 91 and the bonding layer 93, stable bonding between the tread body 91 and the bonding layer 93 can be ensured. Further, when the tire frame member 14 and the PCT 90 are bonded together, it is possible to sufficiently secure the bonding strength between the tire frame member 14 and the tread 16 without supplying heat more than the predetermined amount. As a result, deformation due to heat supply to the tire frame member 14 can be suppressed.
Moreover, in this embodiment, when joining the tire frame member 14 and the PCT 90, there is no need for a large and expensive vulcanizing device for vulcanizing the entire tire 12 that has been conventionally required. Moreover, it is not necessary to prepare a mold according to the size.

[その他の実施形態]
上記実施形態のタイヤ12は、チューブレスタイプのタイヤであったが、図17に示すように、本実施形態のタイヤ112は、熱可塑性材料からなる円環状とされた中空のチューブ120をタイヤ幅方向に複数本(本実施形態では3本)配置し、それらの外周部分に、トレッド16の外周部を構成するベルト122を埋設したトレッド本体50と、トレッド本体50の内周面に形成された熱可塑性材料からなる接合層52と、を備えたトレッド16が接合された構成であり、チューブ120に係合する凹部を備えたリム124に装着されるものである。なお、このタイヤ112にはビードコアは設けられていない。
[Other Embodiments]
Although the tire 12 of the above embodiment is a tubeless type tire, as illustrated in FIG. 17, the tire 112 of the present embodiment includes a hollow tube 120 formed of a thermoplastic material in a tire width direction. A plurality of (three in this embodiment) are arranged in the tread body 50 in which the belt 122 constituting the outer periphery of the tread 16 is embedded in the outer peripheral portion thereof, and the heat formed on the inner peripheral surface of the tread main body 50. The tread 16 having a bonding layer 52 made of a plastic material is bonded to the rim 124 having a recess that engages with the tube 120. The tire 112 is not provided with a bead core.

なお、チューブ120は、図18に示すように、断面半円形状のチューブ半体120Aを互いに向き合わせて溶接用熱可塑性材料126で溶接したり、図示はしないが溶着シートで接合することもできる。
また、タイヤ132は、図19に示すように、1本のチューブ130(2つのチューブ半体130Aからなる)を用い、そのチューブ130の外周部分に、トレッド16の外周部を構成するベルト122を埋設したトレッド本体50と、トレッド本体50の内周面に形成された熱可塑性材料からなる接合層52と、を備えたトレッド16が接合された構成とすることもできる。
As shown in FIG. 18, the tube 120 can be welded with a welding thermoplastic material 126 with the semicircular tube halves 120A facing each other, or can be joined with a welding sheet (not shown). .
Further, as shown in FIG. 19, the tire 132 uses one tube 130 (consisting of two tube halves 130 </ b> A), and a belt 122 constituting the outer peripheral portion of the tread 16 is provided on the outer peripheral portion of the tube 130. The tread 16 including the embedded tread body 50 and the joining layer 52 made of a thermoplastic material formed on the inner peripheral surface of the tread body 50 may be joined.

いずれの構造のタイヤ112、132においても、図3又は図12、図13に示す方法で、帯状PCT48又は環状PCT90を製造し、タイヤ骨格部材114の外周部に接合することができる。
また、上記各実施形態では、加硫済み(トレッドパターンも形成されている)のPCT48、90をタイヤ骨格部材に接合する場合のタイヤ製造方法を挙げているが、半加硫状態のトレッドをタイヤ骨格部材に接着する接着してもよい。
なお、ゴム製のトレッド16の代わりに、タイヤ骨格部材を形成する熱可塑性材料よりも耐摩耗性に優れる他の種類の熱可塑性材料で形成したトレッドを用いてもよい。
また、タイヤ骨格部材(例えば、タイヤビード部22、タイヤサイド部24、クラウン部26等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、補強材でタイヤ骨格部材を補強してもよい。
また、上記実施形態で説明した製造工程の順番は一例であり、各工程の順番を適宜変更してもよい。
In any structure of the tires 112 and 132, the strip-shaped PCT 48 or the annular PCT 90 can be manufactured by the method shown in FIG. 3, FIG. 12, or FIG. 13 and bonded to the outer peripheral portion of the tire frame member 114.
Further, in each of the above embodiments, a tire manufacturing method in the case where vulcanized PCTs 48 and 90 (which also have a tread pattern formed) are joined to a tire skeleton member is described, but a semi-vulcanized tread is used as a tire. You may adhere | attach on a frame | skeleton member.
Instead of the rubber tread 16, a tread formed of another type of thermoplastic material that is more excellent in wear resistance than the thermoplastic material forming the tire frame member may be used.
Further, a reinforcing material (polymer material, metal fiber, cord, nonwoven fabric, woven fabric, etc.) is embedded in the tire frame member (for example, tire bead portion 22, tire side portion 24, crown portion 26, etc.) The tire frame member may be reinforced with a reinforcing material.
Moreover, the order of the manufacturing process demonstrated by the said embodiment is an example, and you may change the order of each process suitably.

12 タイヤ
14 タイヤ骨格部材
16 トレッド
18 リム
20 ビードコア
22 タイヤビード部
24 タイヤサイド部
26 クラウン部
32 補強コード層
34 補強コード
36 接合面
38 接合用熱可塑性材料
48 帯状PCT(タイヤ用トレッド)
50 トレッド本体
52 接合層
60 PCT製造用金型
62 熱可塑性材料
64 未加硫ゴム
66 接着層
70 PCT製造用金型(第1のトレッド用金型)
72 PCT製造用金型(第2のトレッド用金型)
74 トレッド本体
76 熱可塑性材料
78 凸部
80 凹部
84 加熱装置
86 未加硫ゴム
90 環状のPCT(タイヤ用トレッド)
91 トレッド本体
93 接合層
92 PCT製造用金型
94 内金型部材
96 内金型部材
100 治具
112 タイヤ
114 タイヤ骨格部材
120 チューブ
130 チューブ
DESCRIPTION OF SYMBOLS 12 Tire 14 Tire frame member 16 Tread 18 Rim 20 Bead core 22 Tire bead part 24 Tire side part 26 Crown part 32 Reinforcement cord layer 34 Reinforcement cord 36 Joining surface 38 Joining thermoplastic material 48 Band-shaped PCT (tire tread)
50 Tread Body 52 Bonding Layer 60 PCT Manufacturing Mold 62 Thermoplastic Material 64 Unvulcanized Rubber 66 Adhesive Layer 70 PCT Manufacturing Mold (First Tread Mold)
72 Mold for PCT production (second tread mold)
74 Tread body 76 Thermoplastic material 78 Convex part 80 Concave part 84 Heating device 86 Unvulcanized rubber 90 Annular PCT (tread for tire)
91 Tread body 93 Bonding layer 92 Mold for PCT 94 Inner mold member 96 Inner mold member 100 Jig 112 Tire 114 Tire frame member 120 Tube 130 Tube

Claims (9)

未加硫ゴムからなり、熱可塑性材料からなるタイヤ骨格部材の外周面側の位置に設けられるトレッド本体と、
熱可塑性材料からなり、前記トレッド本体の内周面に形成され、前記タイヤ骨格部材の外周部と接合される接合層と、
前記接合層と前記トレッド本体との間に挟んで配置され、加硫により前記接合層と前記トレッド本体とを接合する接着用未加硫ゴム、又は接着剤と前記接着用未加硫ゴムとからなる接着層と、
を有するタイヤ用トレッド。
A tread body provided at a position on the outer peripheral surface side of a tire frame member made of unvulcanized rubber and made of a thermoplastic material,
A bonding layer made of a thermoplastic material, formed on the inner peripheral surface of the tread body, and bonded to the outer peripheral portion of the tire frame member;
An unvulcanized rubber for bonding, which is disposed between the bonding layer and the tread body, and bonds the bonding layer and the tread body by vulcanization, or an adhesive and the unvulcanized rubber for bonding. An adhesive layer,
Tire tread having
熱可塑性材料からなるタイヤ骨格部材と、
前記タイヤ骨格部材の外周面側の位置に設けられ、未加硫ゴムからなるトレッド本体と、
熱可塑性材料からなり前記トレッド本体の内周面に形成され、前記タイヤ骨格部材の外周部と接合された接合層と、
前記接合層と前記トレッド本体との間に挟んで配置され、加硫により前記接合層と前記トレッド本体とを接合する接着用未加硫ゴム、又は接着剤と前記接着用未加硫ゴムとからなる接着層と、
を有するタイヤ。
A tire frame member made of a thermoplastic material;
A tread body provided at a position on the outer peripheral surface side of the tire frame member, and made of unvulcanized rubber ;
Formed of a thermoplastic material on the inner peripheral surface of the tread body, and a bonding layer bonded to the outer peripheral portion of the tire frame member;
An unvulcanized rubber for bonding, which is disposed between the bonding layer and the tread body, and bonds the bonding layer and the tread body by vulcanization, or an adhesive and the unvulcanized rubber for bonding. An adhesive layer,
Tire with.
トレッド用金型内に熱可塑性材料と未加硫ゴムとを配置し、加硫することでトレッド本体の内周面に熱可塑性材料からなる接合層が形成されたタイヤ用トレッドを製造する工程と、
前記タイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、前記タイヤ用トレッドを巻き付け、前記接合層を前記タイヤ骨格部材の外周部に接合する工程と、
を含むタイヤの製造方法。
A step of producing a tread for a tire in which a thermoplastic material and an unvulcanized rubber are disposed in a mold for a tread and a joining layer made of the thermoplastic material is formed on an inner peripheral surface of the tread body by vulcanization; and ,
Heating the lower surface of the tire tread bonding layer, rotating the tire frame member made of a thermoplastic material, winding the tire tread, and bonding the bonding layer to the outer periphery of the tire frame member; ,
The manufacturing method of the tire containing this.
第1のトレッド用金型内に未加硫ゴムを配置し、加硫することでトレッド本体を製造する工程と、
第2のトレッド用金型内に熱可塑性材料と前記トレッド本体とを配置し、加硫することで前記トレッド本体の内周面に前記熱可塑性材料からなる接合層が形成されたタイヤ用トレッドを製造する工程と、
前記タイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、前記タイヤ用トレッドを巻き付け、前記接合層を前記タイヤ骨格部材の外周部に接合する工程と、
を含むタイヤの製造方法。
Placing the unvulcanized rubber in the first tread mold and vulcanizing to produce a tread body;
A tire tread in which a thermoplastic material and the tread body are placed in a second tread mold and vulcanized to form a joining layer made of the thermoplastic material on the inner peripheral surface of the tread body. Manufacturing process;
Heating the lower surface of the tire tread bonding layer, rotating the tire frame member made of a thermoplastic material, winding the tire tread, and bonding the bonding layer to the outer periphery of the tire frame member; ,
The manufacturing method of the tire containing this.
第1のトレッド用金型内に熱可塑性材料を配置し、熱可塑性材料からなる接合層を製造する工程と、
第2のトレッド用金型内にトレッド本体となる未加硫ゴムと前記接合層とを配置し、加硫することで前記トレッド本体の内周面に前記接合層が形成されたタイヤ用トレッドを製造する工程と、
前記タイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、前記タイヤ用トレッドを巻き付け、前記接合層を前記タイヤ骨格部材の外周部に接合する工程と、
を含むタイヤの製造方法。
Disposing a thermoplastic material in the first tread mold and producing a bonding layer made of the thermoplastic material;
A tire tread having the bonding layer formed on the inner peripheral surface of the tread body by placing an unvulcanized rubber serving as a tread body and the bonding layer in a second tread mold and vulcanizing the tire tread. Manufacturing process;
Heating the lower surface of the tire tread bonding layer, rotating the tire frame member made of a thermoplastic material, winding the tire tread, and bonding the bonding layer to the outer periphery of the tire frame member; ,
The manufacturing method of the tire containing this.
前記熱可塑性材料と前記トレッド本体の間に接着剤を塗布した請求項3〜5の何れか1項に記載のタイヤの製造方法。   The method for manufacturing a tire according to any one of claims 3 to 5, wherein an adhesive is applied between the thermoplastic material and the tread body. 前記熱可塑性材料と前記トレッド本体の間に接着用未加硫ゴムを配置した請求項3〜5の何れか1項に記載のタイヤ用の製造方法。   The method for manufacturing a tire according to any one of claims 3 to 5, wherein an unvulcanized rubber for bonding is disposed between the thermoplastic material and the tread body. 第1のトレッド用金型内に未加硫ゴムを配置し、加硫することで内周面側に凹凸を有するトレッド本体を形成する工程と、
第2のトレッド用金型内に熱可塑性材料と前記トレッド本体とを配置し、加硫することで前記トレッド本体の凹凸と前記熱可塑性材料とを接合させ前記トレッド本体の内周面に前記熱可塑性材料からなる接合層が形成されたタイヤ用トレッドを製造する工程と、
前記タイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、前記タイヤ用トレッドを巻き付け、前記接合層を前記タイヤ骨格部材の外周部に接合する工程と、
を含むタイヤの製造方法。
A step of disposing unvulcanized rubber in the first tread mold and forming a tread body having irregularities on the inner peripheral surface side by vulcanization;
And said tread body with the thermoplastic material disposed in the second tread mold, is bonded to the said thermoplastic material and unevenness of the tread body by vulcanization the heat on the inner circumferential surface of the tread body Producing a tread for a tire on which a joining layer made of a plastic material is formed;
Heating the lower surface of the tire tread bonding layer, rotating the tire frame member made of a thermoplastic material, winding the tire tread, and bonding the bonding layer to the outer periphery of the tire frame member; ,
The manufacturing method of the tire containing this.
第1のトレッド用金型内に熱可塑性材料を配置し、外周面側に凹凸を有する接合層を形成する工程と、
第2のトレッド用金型内にトレッド本体となる未加硫ゴムと前記接合層とを配置し、加硫することで前記接合層の凹凸と前記未加硫ゴムとを接合させ前記トレッド本体の内周面に前記熱可塑性材料からなる前記接合層が形成されたタイヤ用トレッドを製造する工程と、
前記タイヤ用トレッドの接合層の下表面を加熱し、熱可塑性材料からなるタイヤ骨格部材を回転させながら、前記タイヤ用トレッドを巻き付け、前記接合層を前記タイヤ骨格部材の外周部に接合する工程と、
を含むタイヤの製造方法。
Disposing a thermoplastic material in the first tread mold and forming a bonding layer having irregularities on the outer peripheral surface side;
The unvulcanized rubber and the bonding layer comprising a tread body in the second tread mold arranged, wherein the unevenness of the bonding layer by vulcanization is bonded to the unvulcanized rubber of the tread body a step of producing a tread for a tire, wherein the bonding layer to the inner peripheral surface made of the thermoplastic material is formed,
Heating the lower surface of the tire tread bonding layer, rotating the tire frame member made of a thermoplastic material, winding the tire tread, and bonding the bonding layer to the outer periphery of the tire frame member; ,
The manufacturing method of the tire containing this.
JP2009191199A 2009-08-20 2009-08-20 Tread for tire, tire and method for manufacturing tire Active JP5404244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191199A JP5404244B2 (en) 2009-08-20 2009-08-20 Tread for tire, tire and method for manufacturing tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191199A JP5404244B2 (en) 2009-08-20 2009-08-20 Tread for tire, tire and method for manufacturing tire

Publications (2)

Publication Number Publication Date
JP2011042229A JP2011042229A (en) 2011-03-03
JP5404244B2 true JP5404244B2 (en) 2014-01-29

Family

ID=43830008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191199A Active JP5404244B2 (en) 2009-08-20 2009-08-20 Tread for tire, tire and method for manufacturing tire

Country Status (1)

Country Link
JP (1) JP5404244B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3015350B1 (en) * 2013-12-23 2016-08-05 Michelin & Cie METHOD FOR RETRIEVING A PNEUMATIC ENVELOPE USING A ROLL
FR3015348B1 (en) 2013-12-23 2016-08-05 Michelin & Cie METHOD FOR RECHAPING A PNEUMATIC TIRE BY JULY EFFECT
FR3015352B1 (en) 2013-12-23 2016-08-05 Michelin & Cie METHOD FOR RECHAMING A PNEUMATIC ENVELOPE
FR3022487B1 (en) 2014-06-20 2017-02-24 Michelin & Cie PNEUMATIC CARCASS COMPRISING AN EXTERNAL LAYER OF THERMOPLASTIC ELASTOMER
FR3022488B1 (en) * 2014-06-20 2017-02-24 Michelin & Cie PROCESS FOR MOLDING ELASTOMERIC THERMOPLASTIC COMPOSITE FOR PNEUMATIC
FR3022492B1 (en) 2014-06-20 2017-05-26 Michelin & Cie PNEUMATIC IN TWO PARTS SUITABLE FOR RECHAPING
FR3022486B1 (en) * 2014-06-20 2017-02-24 Michelin & Cie TIRE TREAD WITH EXTERNAL LAYER OF THERMOPLASTIC ELASTOMER
FR3024394B1 (en) 2014-07-29 2017-07-21 Michelin & Cie PNEUMATIC COMPRISING A SIDE SHOULDER AND A THERMOPLASTIC ELASTOMER LAYER
FR3024678B1 (en) 2014-08-06 2017-11-24 Michelin & Cie PNEUMATIC COMPRISING A THERMOPLASTIC ELASTOMER LAYER WITH LATERAL REBORD

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA791203B (en) * 1978-06-12 1980-08-27 Firestone Tire & Rubber Co Pneumatic tire
JPS5911901A (en) * 1982-07-12 1984-01-21 Sumitomo Rubber Ind Ltd Cast molding tire
JPS63212104A (en) * 1987-02-25 1988-09-05 Sumitomo Rubber Ind Ltd Pneumatic tyre
JPH0616008A (en) * 1992-06-30 1994-01-25 Sumitomo Rubber Ind Ltd Pneumatic tire and manufacture of pneumatic tire
JP4501326B2 (en) * 2001-09-28 2010-07-14 横浜ゴム株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2011042229A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5404244B2 (en) Tread for tire, tire and method for manufacturing tire
JP5893658B2 (en) Tire and tire manufacturing method
JP5689789B2 (en) Tire manufacturing method
WO2011021702A1 (en) Tire and tire manufacturing method
US9333719B2 (en) Tire manufacturing method and tire
JP5604215B2 (en) Tire manufacturing method and tire
JP5512195B2 (en) Tire manufacturing method and tire
JP5847890B2 (en) Tire and tire manufacturing method
JP5419591B2 (en) Tire and tire manufacturing method.
JP5743464B2 (en) Pneumatic tire
JP5538978B2 (en) Tire manufacturing method and tire
CN110785299A (en) Bead member, pneumatic tire, and assembly
US9623706B2 (en) Tire with welded thermoplastic constituent members
JP5441792B2 (en) Tire manufacturing method and tire
JP5577163B2 (en) Tire manufacturing method and tire
JP5666201B2 (en) Tire repair method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250