JP5403682B2 - Filtration method - Google Patents

Filtration method Download PDF

Info

Publication number
JP5403682B2
JP5403682B2 JP2009526355A JP2009526355A JP5403682B2 JP 5403682 B2 JP5403682 B2 JP 5403682B2 JP 2009526355 A JP2009526355 A JP 2009526355A JP 2009526355 A JP2009526355 A JP 2009526355A JP 5403682 B2 JP5403682 B2 JP 5403682B2
Authority
JP
Japan
Prior art keywords
filtration
suspension
filter
liquid
inner rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009526355A
Other languages
Japanese (ja)
Other versions
JPWO2009019905A1 (en
Inventor
淳一郎 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Industrial Science Research Institute
Original Assignee
Nagoya Industrial Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Industrial Science Research Institute filed Critical Nagoya Industrial Science Research Institute
Priority to JP2009526355A priority Critical patent/JP5403682B2/en
Publication of JPWO2009019905A1 publication Critical patent/JPWO2009019905A1/en
Application granted granted Critical
Publication of JP5403682B2 publication Critical patent/JP5403682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/15Supported filter elements arranged for inward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/90Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for feeding
    • B01D29/906Special treatment of the feed stream before contacting the filtering element, e.g. cutting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Description

本発明は濾過方法に関する。   The present invention relates to a filtration method.

【0002】
大量の濾過対象液(懸濁液)を連続的に濾過・濃縮する固液分離技術が従来より開発されている。
本発明者は、懸濁液へ凝集剤ではなく、分散剤を添加することにより濾過が効率的に行えることを見出し、提案している(特許文献1)。
本願に関係する技術を開示する特許文献2及び特許文献3を参照されたい。
【特許文献1】 特開2005−66384号公報
【特許文献2】 特開昭63−51905号公報
【特許文献3】 特開2000−79304号公報
【発明の開示】
【発明が解決しようとする課題】
[0002]
  Conventionally, a solid-liquid separation technique for continuously filtering and concentrating a large amount of liquid to be filtered (suspension) has been developed.
  The inventor has found and proposed that filtration can be efficiently performed by adding a dispersing agent instead of a flocculant to a suspension (Patent Document 1).
  Patent Document 2 disclosing a technique related to the present applicationAnd Patent Document 3Please refer to.
[Patent Document 1] Japanese Patent Application Laid-Open No. 2005-66384
[Patent Document 2] Japanese Patent Laid-Open No. 63-51905
[Patent Document 3] JP 2000-79304 A
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]

特許文献2には、筒状のフィルタへインナーロッドを挿入し、スパイラル状の流路を形成する技術が開示されている。
かかる濾過装置を用いて酸化鉄水洗液の濾過実験を行った。実験条件は次の通りである。
試料:酸化鉄水洗液
初期濃度:34mass%
供給圧力:0.4MPa
濾過装置10:図1参照
(1)フィルタ15:(孔径1.5μm、外径/内径:12/9mm、濾過長:300mm、)
(2)インナーロッド21:外径寸法が6mmのアクリルロッド(芯棒23)へ1.5mm太さのリード線をピッチ:10mmで巻回して、凸条部25を構成してなる
酸化鉄水洗液とは次のものを指す。
製鉄所で製造される鋼板は最終工程で、塩酸で表面を洗浄される。洗浄後の廃液から噴霧焙焼により塩酸が回収されるが、その時に酸化鉄が得られ、それを水洗いしたものが試料としての酸化鉄水洗液である。
Patent Document 2 discloses a technique for forming a spiral flow path by inserting an inner rod into a cylindrical filter.
The filtration experiment of the iron oxide water washing liquid was conducted using this filtration apparatus. The experimental conditions are as follows.
Sample: Iron oxide washing solution initial concentration: 34 mass%
Supply pressure: 0.4 MPa
Filtration device 10: see FIG. 1 (1) Filter 15: (pore diameter 1.5 μm, outer diameter / inner diameter: 12/9 mm, filtration length: 300 mm)
(2) Inner rod 21: A ridge portion 25 is formed by winding a lead wire having a thickness of 1.5 mm around an acrylic rod (core rod 23) having an outer diameter of 6 mm at a pitch of 10 mm.
The iron oxide washing solution refers to the following.
In the final step, the steel sheet produced at the steelworks is cleaned with hydrochloric acid. Hydrochloric acid is recovered from the waste liquid after washing by spray roasting . At that time, iron oxide is obtained and washed with water to obtain an iron oxide washing liquid as a sample .

【0004】
実験装置:図2参照
図2において、濾過対象液はタンク1に貯蔵されており、ポンプ3により濾過装置10とタンク1との間で循環される。即ち、濾過装置10を通過した濾過対象液は濾過装置10で濃縮されてタンク1へ戻される。濾過装置10を透過した単位時間当たりの水(濾液)の量を計測することにより、濾過速度を求めることができる。符号7は調圧弁である。
濾過実験を行った結果、流路に酸化鉄のスラリーが凝集して(図3参照)、図4に示す通り、10分弱で濾過ができなくなった(水洗液を濾過装置10へ流通させられなくなった)。
【課題を解決するための手段】
[0004]
Experimental apparatus: see FIG. 2 In FIG. 2, the liquid to be filtered is stored in the tank 1 and circulated between the filtering apparatus 10 and the tank 1 by the pump 3. That is, the liquid to be filtered that has passed through the filtration device 10 is concentrated by the filtration device 10 and returned to the tank 1. By measuring the amount of water (filtrate) per unit time permeated through the filtration device 10, the filtration rate can be determined. Reference numeral 7 denotes a pressure regulating valve.
As a result of the filtration experiment, the iron oxide slurry aggregated in the flow path (see FIG. 3), and as shown in FIG. 4 , filtration could not be performed in less than 10 minutes (the washing liquid was allowed to flow through the filtration device 10). lost).
[Means for Solving the Problems]

そこで本発明者は、酸化鉄洗浄液へ分散剤を添加し、同一の濾過装置を用いて同一の条件で濾過実験を行ってみた。
その結果、驚くべきことに、濾過を長時間行うことができ、その結果、図5に示すように、濾過対象液の酸化鉄の濃度が20vol%、更には30vol%を超えるまでに濃縮することができた。
即ち、この発明の第1の局面は次のように規定される。
筒状のフィルタと、該筒状のフィルタへ挿入されるインナーロッドと、を備え、該インナーロッドとフィルタとの間にスパイラル状の流路が形成されている濾過装置へ濾過対象となる懸濁液を流通させる濾過方法であって、
前記懸濁液には分散剤が添加されている、ことを特徴とする懸濁液の濾過方法。
Therefore, the present inventor added a dispersant to the iron oxide cleaning liquid and tried filtration experiments under the same conditions using the same filtration apparatus.
As a result, surprisingly, filtration can be performed for a long time, and as a result, as shown in FIG. 5, the concentration of the iron oxide in the liquid to be filtered is 20 vol%, and further, it is concentrated until it exceeds 30 vol%. I was able to.
That is, the first aspect of the present invention is defined as follows.
Suspension to be filtered in a filtration device having a cylindrical filter and an inner rod inserted into the cylindrical filter, and having a spiral flow path formed between the inner rod and the filter A filtration method for circulating a liquid,
A suspension filtration method, wherein a dispersant is added to the suspension.

本発明者は、懸濁液に対する分散剤の添加量について検討した。
図6は分散剤(水ガラス)の添加量と懸濁液の状態との関係を示す。図6に示す写真は次のようにして撮影された。デスカップに酸化鉄洗浄液(約32mass%)を入れて、水ガラスを添加して手攪拌する。その後、図6に示す沈降管へ入れて24時間放置する。
図6より、水ガラスの添加量が1.2mg・g−1酸化鉄のとき、酸化鉄の粒子は水溶媒中で最も分散した状態となる(完全分散状態)。上澄み液において多数の酸化鉄の粒子が浮遊しているからである。
なお、分散剤には上記の水ガラスの他、ポリカルボン酸塩、各種界面活性剤を用いることができる。
The inventor examined the amount of the dispersant added to the suspension.
FIG. 6 shows the relationship between the amount of dispersant (water glass) added and the state of the suspension. The photograph shown in FIG. 6 was taken as follows. Put an iron oxide cleaning solution (about 32 mass%) in the death cup, add water glass, and stir manually. Thereafter, it is placed in a settling tube shown in FIG. 6 and left for 24 hours.
From FIG. 6, when the addition amount of water glass is 1.2 mg · g −1 iron oxide, the iron oxide particles are most dispersed in the aqueous solvent (completely dispersed state). This is because a large number of iron oxide particles are suspended in the supernatant.
In addition to the above water glass, polycarboxylates and various surfactants can be used as the dispersant.

1.2mg・g−1酸化鉄を超える水ガラスを添加すると、分散剤は過剰添加状態となる。
この明細書において、完全分散状態とは懸濁液の静止状態においてその上澄み液に多数の粒子が浮遊する状態をいい、そのときに添加される分散剤の量を当量という。過剰分散剤添加状態は、当該当量を超えた量の分散剤が懸濁液に添加された状態を指す。
図5の結果からわかる通り、懸濁液を分散剤の過剰添加状態とすると、懸濁液をより高濃度まで濃縮することができる。
これは、分散剤を過剰に添加することにより粒子が団子状により密に凝集し、その団子状凝集体が密に充填するためと考えられる。
When water glass exceeding 1.2 mg · g −1 iron oxide is added, the dispersant is in an excessively added state.
In this specification, the completely dispersed state means a state in which a large number of particles are suspended in the supernatant liquid in a stationary state of the suspension, and the amount of the dispersant added at that time is called an equivalent. The excessive dispersant added state refers to a state where an amount of the dispersant exceeding the equivalent is added to the suspension.
As can be seen from the results of FIG. 5, when the suspension is in an excessively added state of the dispersant, the suspension can be concentrated to a higher concentration.
This is presumably because the particles are aggregated more densely in the form of dumplings due to the excessive addition of the dispersing agent, and the aggregates of the dumplings are densely packed.

濾過装置において、インナーロッドの芯棒の周面にスパイラル状の凸条部を設け、この凸条部の頂部を筒状フィルタの内周面へ当接させることによりスパイラル状の流路を形成することができる。即ち、このスパイラル流路は、フィルタの内周面、インナーロッドの凸条部周面、及びインナーロッドの芯棒の周面で規定される。
かかる構成を採用した場合、その製造が容易となり、安価な濾過装置を提供することができる。
流路の大きさは、フィルタの内径寸法、インナーロッドの芯棒の太さ、及び凸条部の高さ及びその幅で規定される。
凸条部はインナーロッドの全周へ連続的に形成されることが好ましいが、そのピッチや幅を適宜変更することも可能である。例えば、上流側のピッチを大きくし、下流側のピッチを小さくすることができる。これにより、フィルタの全域で濾過対象液の流速を一定に保つことができる。
この実施例では、凸条部を一条としているが、2条以上の凸条部を設けることも可能である。
凸条部の高さは、全域で均一にすることが好ましい。これにより、インナーロッドとフィルタとの芯合わせをすることができる。
In the filtering device, a spiral-shaped flow path is formed by providing a spiral-shaped protruding portion on the peripheral surface of the core rod of the inner rod and bringing the top of the protruding portion into contact with the inner peripheral surface of the cylindrical filter. be able to. That is, this spiral flow path is defined by the inner peripheral surface of the filter, the peripheral surface of the convex portion of the inner rod, and the peripheral surface of the core rod of the inner rod.
When such a configuration is adopted, its manufacture becomes easy and an inexpensive filtration device can be provided.
The size of the flow path is defined by the inner diameter dimension of the filter, the thickness of the core rod of the inner rod, and the height and width of the ridge.
The ridges are preferably formed continuously over the entire circumference of the inner rod, but the pitch and width thereof can be appropriately changed. For example, the upstream pitch can be increased and the downstream pitch can be decreased. Thereby, the flow velocity of the liquid to be filtered can be kept constant throughout the filter.
In this embodiment, the ridges are one, but two or more ridges can be provided.
It is preferable that the height of the ridge is uniform throughout the entire area. Thereby, the inner rod and the filter can be aligned.

フィルタに対して凸条部を有するインナーロッドを着脱自在とすると、既存の筒状フィルタへ当該インナーロッドを適用することが可能になる。これにより、濾過装置の汎用性が向上する。
着脱自在を現実化する一つの態様として、インナーロッドの形成材料の線膨張係数をフィルタのそれより大きくする。その結果、インナーロッドの凸条部の頂部の径(外径寸法)をフィルタの内周面の径(内径寸法)と同一か若しくはそれより多少大きく形成しておいて、インナーロッドを冷却し(フィルタを同時に冷却してもよい)、外径寸法の小さくなったインナーロッドをフィルタへ挿入する。その後、常温に戻せば、インナーロッドとフィルタとはしまり嵌めの状態になり、機械的に安定する。
一般的にフィルタはセラミック材料で形成されるので、セラミック材料より線膨張率の高い樹脂材料や金属材料でインナーロッドを形成することができる。
またインナーロッドを可撓性のある材料(アクリル樹脂等の合成樹脂材料)で形成することにより、フィルタへの作業が容易になる。
If the inner rod having the ridges is detachable from the filter, the inner rod can be applied to an existing cylindrical filter. Thereby, the versatility of a filtration apparatus improves.
As one aspect of realizing detachability, the linear expansion coefficient of the inner rod forming material is made larger than that of the filter. As a result, the diameter (outer diameter dimension) of the top of the protruding portion of the inner rod is formed to be equal to or slightly larger than the inner diameter (inner diameter dimension) of the inner peripheral surface of the filter, and the inner rod is cooled ( The filter may be cooled at the same time), and the inner rod with a reduced outer diameter is inserted into the filter. After that, when the temperature is returned to room temperature, the inner rod and the filter are in an intimately fitted state and mechanically stable.
In general, since the filter is formed of a ceramic material, the inner rod can be formed of a resin material or a metal material having a higher linear expansion coefficient than the ceramic material.
In addition, by forming the inner rod from a flexible material (synthetic resin material such as acrylic resin), the work on the filter is facilitated.

濾過装置の構成を示す断面図である。It is sectional drawing which shows the structure of a filtration apparatus. 濾過装置を評価する実験装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the experimental apparatus which evaluates a filtration apparatus. 分散剤の添加の無い懸濁液(酸化鉄洗浄水)を濾過装置で濾過した後のインナーロッドの状態を示す図面代用写真である。It is a drawing substitute photograph which shows the state of the inner rod after filtering the suspension liquid (iron oxide washing water) which does not add a dispersing agent with a filtration apparatus. 分散剤の添加の無い懸濁液(酸化鉄洗浄水)を濾過装置で濾過したときの経過時間と濾過速度の関係を示すグラフである。It is a graph which shows the relationship between elapsed time and filtration rate when filtering the suspension (iron oxide washing water) without the addition of a dispersing agent with a filtration device. 分散剤を添加した懸濁液(酸化鉄洗浄水)を濾過装置で濾過したときの濾過速度と懸濁液濃度の関係を示すグラフである。It is a graph which shows the relationship between the filtration rate and suspension density | concentration when filtering the suspension liquid (iron oxide washing water) which added the dispersing agent with a filtration apparatus. 分散剤の添加量と懸濁液(酸化鉄洗浄水)の懸濁状態との関係を示す図面代用写真である。It is a drawing substitute photograph which shows the relationship between the addition amount of a dispersing agent, and the suspension state of suspension (iron oxide washing water). 実施例の濾過装置に使用状態を示す斜視図である。It is a perspective view which shows a use condition for the filtration apparatus of an Example. 濾過時間の長さを示すグラフである。It is a graph which shows the length of filtration time. 分散剤を添加した懸濁液(セリサイト懸濁液)の濾過時間の長さを示すグラフである。It is a graph which shows the length of the filtration time of the suspension liquid which added the dispersing agent (sericite suspension liquid). 分散剤を添加した懸濁液(セリサイト懸濁液)の濾過速度と懸濁液濃度との関係を示すグラフである。It is a graph which shows the relationship between the filtration rate and suspension density | concentration of the suspension liquid (sericite suspension liquid) which added the dispersing agent. 分散剤を添加した懸濁液(セリサイト懸濁液)を濾過装置で濾過した後のインナーロッドの状態を示す図面代用写真である。It is a drawing substitute photograph which shows the state of the inner rod after filtering the suspension liquid (sericite suspension liquid) which added the dispersing agent with a filtration apparatus. 分散剤を過剰に添加した懸濁液(セリサイト懸濁液)の濾過速度と懸濁液濃度との関係を示すグラフである。It is a graph which shows the relationship between the filtration rate and suspension density | concentration of suspension (sericite suspension) which added the dispersing agent excessively. 分散剤を過剰に添加した懸濁液(セリサイト懸濁液)を濾過装置で濾過した後のインナーロッドの状態を示す図面代用写真である。It is a drawing substitute photograph which shows the state of the inner rod after filtering the suspension (sericite suspension) which added the dispersing agent excessively with a filtration apparatus. 分散剤を添加した懸濁液(セリサイト懸濁液、30vol%)の目詰まりによる濾過速度低下と養生液流通による濾過速度の回復を示すグラフである。It is a graph which shows the recovery of the filtration rate by the filtration rate fall by the clogging of the suspension liquid which added the dispersing agent (sericite suspension liquid, 30 vol%), and curing liquid distribution. 分散剤を添加した懸濁液(セリサイト懸濁液、20vol%)の目詰まりによる濾過速度低下と養生液流通による濾過速度の回復を示すグラフである。It is a graph which shows the recovery of the filtration rate by the filtration rate fall by the clogging of the suspension liquid (sericite suspension, 20 vol%) which added the dispersing agent, and curing solution distribution. 濾過と養生を短時間で繰り返したときの濾過速度の変化を示すグラフである。It is a graph which shows the change of the filtration rate when filtration and curing are repeated in a short time. 濾過速度と濃縮液流量との関係を示すグラフである。It is a graph which shows the relationship between a filtration rate and a concentrate flow rate. アオコ水を濾過したときの濾過時間の長さを示すグラフである。It is a graph which shows the length of the filtration time when blue water is filtered. アオコ水を濾過した後のインナーロッドの状態を示す図面代用写真である。It is a drawing substitute photograph which shows the state of the inner rod after filtering blue water. 2種類の濃度のアオコ水を濾過したときの濾過時間の長さを示すグラフである。It is a graph which shows the length of the filtration time when filtering the blue water of 2 types of density | concentrations. 目つまりのないフィルタでの濾過速度の時間変化を示すグラフである。It is a graph which shows the time change of the filtration rate in a filter without eyes clogging. 超音波洗浄による目詰まり解消の効果を示すグラフである。It is a graph which shows the effect of clogging elimination by ultrasonic cleaning.

符号の説明Explanation of symbols

【0011】
10 濾過装置、15 フィルタ、21 インナーロッド、23 芯棒、25 凸条部、31 アウタケース
【発明を実施するための最良の形態】
[0011]
DESCRIPTION OF SYMBOLS 10 Filtration apparatus, 15 Filter, 21 Inner rod, 23 Core rod, 25 Convex section, 31 Outer case BEST MODE FOR CARRYING OUT THE INVENTION

図7は実施例の濾過システムを示し、図1に示した構成の濾過装置10が円筒状のアウタケース31へ挿着されている。
フィルタ15には孔径1.5μm、外径/内径:12/9mm、濾過長:300mm、を用いた。
このフィルタ15はセラミックス製であるので、その線膨張係数は約5〜10×10−6(1/℃)である。
フィルタ15の径、長さ、平均孔径は濾過対象液の特性、濾過作業の要求に応じて任意に選択することができる。屈曲したフィルタを用いることもできる。この場合、インナーロッドは可撓性のある材料で形成することが好ましい。
フィルタ15は図2に示した装置の配管35へ取付けられる(図7参照)。図中の参照番号31はアウタケースであり、フィルタ15を通して濾過された濾液を収集し、排出口33から外部へ排出させる。
フィルタ15の本数も濾過対象液の特性や濾過作業の要請に応じて任意に選択される。
FIG. 7 shows a filtration system of the embodiment, and the filtration device 10 having the configuration shown in FIG. 1 is inserted into a cylindrical outer case 31.
The filter 15 used had a pore diameter of 1.5 μm, outer diameter / inner diameter: 12/9 mm, and filtration length: 300 mm.
Since this filter 15 is made of ceramics, its linear expansion coefficient is about 5 to 10 × 10 −6 (1 / ° C.).
The diameter, length, and average pore diameter of the filter 15 can be arbitrarily selected according to the characteristics of the liquid to be filtered and the requirements of the filtering work. A bent filter can also be used. In this case, the inner rod is preferably formed of a flexible material.
The filter 15 is attached to the pipe 35 of the apparatus shown in FIG. 2 (see FIG. 7). Reference numeral 31 in the figure is an outer case, and the filtrate filtered through the filter 15 is collected and discharged from the outlet 33 to the outside.
The number of the filters 15 is also arbitrarily selected according to the characteristics of the liquid to be filtered and the request for the filtering work.

インナーロッド21は、図1に示すように、樹脂製(アクリル樹脂:線膨張係数;7〜8×10−5(1/℃))の芯棒23(外径寸法6mm)へ1.5mm太さのリード線(線膨張係数;1〜2×10−5(1/℃))を巻回してなる。このリード線が凸条部25を構成する。リード線の頂部の外径寸法(9mm)とフィルタ15の内径寸法(9mm)とが等しく、リード線の頂部がフィルタ15の内周面へ当接する。リード線のピッチは10mmとした。
この実施例ではインナーロッドにおいて芯棒と凸条部とを別部材としたが、インナーロッドを射出成形することにより、両者を一体的に形成することができる。
As shown in FIG. 1, the inner rod 21 is 1.5 mm thick to a core rod 23 (outer diameter 6 mm) made of resin (acrylic resin: linear expansion coefficient; 7 to 8 × 10 −5 (1 / ° C.)). A lead wire ( coefficient of linear expansion; 1-2 × 10 −5 (1 / ° C.)) is wound. This lead wire constitutes the ridge portion 25 . Outer diameter of the top portion of the lead wire (9 mm) and inner diameter of the filter 15 (9 mm) are equal, the top portion of the lead wire abuts the inner peripheral surface of the filter 15. The lead wire pitch was 10 mm.
In this embodiment, in the inner rod, the core rod and the ridges are formed as separate members. However, the inner rod can be integrally formed by injection molding .

上記の実施例では、インナーロッド21の外径寸法とフィルタ15の内径寸法とが等しいので、そのままの状態ではフィルタ15へインナーロッド21を挿入することができない。この実施例では、インナーロッド21とフィルタ15ともに冷蔵庫(約−5℃)へ12時間放置し、その後両者を嵌め併せた。このとき、インナーロッド21の形成材料の線膨張係数はフィルタ15の形成材料の線膨張係数より大きいので、当該冷却によりフィルタ15に比べて大きく収縮する。その結果、フィルタ15へインナーロッド21を容易に挿入することができる。
実験終了後においては、濾過装置10を再度冷却し、インナーロッド21を収縮させてフィルタ15より抜き取る。
このように、インナーロッドとフィルタ15とを着脱自在とすることにより、濾過装置10の内部の洗浄が容易になる。
ここに、フィルタ15は上市されているフィルタである。従って、インナーロッドを準備すれば、既存の設備のフィルタ15へ本発明を適用できることがわかる。
In the above embodiment, since the outer diameter dimension of the inner rod 21 and the inner diameter dimension of the filter 15 are equal, the inner rod 21 cannot be inserted into the filter 15 as it is. In this example, both the inner rod 21 and the filter 15 were left in a refrigerator (about −5 ° C.) for 12 hours, and then both were fitted together. At this time, the linear expansion coefficient of the forming material of the inner rod 21 is larger than the linear expansion coefficient of the forming material of the filter 15, so that the material contracts more than the filter 15 by the cooling. As a result, the inner rod 21 can be easily inserted into the filter 15.
After the experiment is completed, the filtration device 10 is cooled again, the inner rod 21 is contracted, and the filter 15 is extracted from the filter 15.
Thus, by making the inner rod and the filter 15 detachable, the inside of the filtration device 10 can be easily cleaned.
Here, the filter 15 is a marketed filter. Therefore, it can be seen that if the inner rod is prepared, the present invention can be applied to the filter 15 of the existing equipment.

このように構成された濾過装置10によれば、インナーロッド21を挿入することにより、濾過対象液の流通する流路の径が小さくなる。その結果、流路を流通する濾過対象液に流速の勾配は生じず、流路壁面においても充分な流速が確保され、フィルタ15の内周面にスラリーが堆積することがない。
また、流路をスパイラル状としたので、その長さはフィルタ15の長さよりも長くなる。よって、フィルタ15において濾過対象液に接する面積が大きくなり(即ち、濾過面積が増大し)、濾過効率も向上する。
特に流路をスパイラルとすることにより、当該流路を流通する濾過対象液が常に攪拌状態(流れ方向以外の方向に力が掛っている状態)となるので、流路壁面(即ち、フィルタの内周面)へのスラリーの堆積をより確実に防止できる。
According to the filtration device 10 configured in this manner, the diameter of the flow path through which the liquid to be filtered flows is reduced by inserting the inner rod 21. As a result, there is no gradient in the flow rate of the liquid to be filtered flowing through the flow path, a sufficient flow speed is secured even on the flow path wall surface, and no slurry is deposited on the inner peripheral surface of the filter 15.
In addition, since the flow path is spiral, the length is longer than the length of the filter 15. Therefore, the area in contact with the liquid to be filtered in the filter 15 is increased (that is, the filtration area is increased), and the filtration efficiency is improved.
In particular, when the flow path is spiral, the liquid to be filtered flowing through the flow path is always in a stirred state (a state in which a force is applied in a direction other than the flow direction). It is possible to more reliably prevent the slurry from being deposited on the peripheral surface.

実施例の濾過装置10の濾過能力は図5に示すとおりである。
懸濁液に対して分散剤を当量以上添加したとき、好ましくは当量を超えて分散剤を添加したとき、20vol%、更には30vol%を越える高い濃度まで濾過(即ち濾過対象液の濃縮)を実行できる。
換言すれば、懸濁液(酸化鉄洗浄液)を過剰分散剤添加状態とすると、極めて長時間にわたり濾過を行うことが可能となる(図8参照)。なお、図8の例は、濃度32mass%の酸化鉄洗浄液を、濃度一定にして、濾過作業を行ったときの濾過速度と濾過時間との関係を示している。
The filtration capacity of the filtration device 10 of the example is as shown in FIG.
When the dispersant is added in an amount equal to or greater than that of the suspension, preferably when the dispersant is added in excess of the equivalent, filtration is performed to a high concentration exceeding 20 vol%, further 30 vol% (that is, concentration of the liquid to be filtered). Can be executed.
In other words, when the suspension (iron oxide cleaning liquid) is in the state of adding the excess dispersant, it becomes possible to perform filtration for an extremely long time (see FIG. 8). The example of FIG. 8 shows the relationship between the filtration rate and the filtration time when the iron oxide cleaning liquid having a concentration of 32 mass% is subjected to a filtration operation with a constant concentration.

濾過対象液の他の例としてセリサイトの水分散液についても上記と同様の検討を行った。他の濾過装置構成及び濾過条件は前の例と同一である。
濾過対象液(完全分散状態)
試料:セリサイト(平均粒子径 4μm)
初期濃度:1vol%
媒液:水道水
分散剤:水ガラス 0.3mg(g−セリサイト)−1
濾過圧力:0.2MPa
流量: 1500g・min−1
As another example of the liquid to be filtered, an aqueous dispersion of sericite was examined in the same manner as described above. Other filter device configurations and filtration conditions are the same as in the previous example.
Liquid to be filtered (completely dispersed state)
Sample: Sericite (average particle size 4 μm)
Initial concentration: 1 vol%
Medium: tap water Dispersant: water glass 0.3 mg (g-sericite) -1
Filtration pressure: 0.2 MPa
Flow rate: 1500 g · min −1

かかる濾過対象液の濾過結果を図9及び図10に示す。図11は濾過終了後のインナーロッドの状態を示す。図9は濾過速度と濾過時間との関係を示す。図9の結果から、長時間にわたり濾過を実行できることがわかる。濾過を長時間実行することにより、濾過対象液の濃度は濃縮され、図10に示すように、20vol%を超える濃度を達成できる。   The filtration results of the filtration target liquid are shown in FIGS. FIG. 11 shows the state of the inner rod after completion of filtration. FIG. 9 shows the relationship between the filtration rate and the filtration time. From the results of FIG. 9, it can be seen that filtration can be performed for a long time. By performing the filtration for a long time, the concentration of the liquid to be filtered is concentrated, and as shown in FIG. 10, a concentration exceeding 20 vol% can be achieved.

濾過対象液を過剰分散剤添加状態とするため、上記の濾過対象液において水ガラスの添加量を次の通りとした。

分散剤:水ガラス 0.8mg(g−セリサイト)−1

かかる濾過対象液の濾過結果を図12に示す。図12の結果から、濾過対象液を過剰分散剤添加状態とすると、より高い濃度まで濾過を実行できることが確認できた。
図13は濾過終了後のインナーロッドの状態を示す。図13に示すように、濾過対象液を過剰分散剤添加状態とするとインナーロッドにケークが付着しないことがわかる。
In order to bring the filtration target liquid into an excessive dispersant addition state, the amount of water glass added in the above filtration target liquid was as follows.

Dispersant: Water glass 0.8 mg (g-sericite) -1

FIG. 12 shows the filtration result of the filtration target liquid. From the results of FIG. 12, it was confirmed that when the liquid to be filtered was in an excessive dispersant addition state, filtration could be performed to a higher concentration.
FIG. 13 shows the state of the inner rod after completion of filtration. As shown in FIG. 13, it can be seen that the cake does not adhere to the inner rod when the liquid to be filtered is in an excessive dispersant addition state.

本発明者の検討によれば、インナーロッドにケークが付着しなくても、フィルタ自体の目詰まりにより、濾過能力が低下することがわかった。フィルタの目詰まりは、懸濁液の濃度に依存せず、図14、図15に示すように、濾過運転時間に依存している。
図14では、初期濃度20vol%のセリサイト懸濁液(完全分散状態)を30vol%まで濃縮し、約240分連続運転する。その後、濾過対象液を初期濃度1vol%の懸濁液に代えると、濾過速度が徐々に回復している。
他方図15では、完全分散状態の濾過対象液を20vol%に制御して約240分連続運転する。その後、濾過対象液を初期濃度1vol%の懸濁液(完全分散状態)に代えると、上記と同様に濾過速度が徐々に回復している。換言すれば、濾過対象液の濃度にかかわらず、長時間濾過すると、フィルタに目詰まりが生じていることがわかる。
図14の例において、濾過装置の構成は既述のセリサイトの例と同一である。なお、高濃度(30vol%)の濾過対象液を濾過するときの供給圧力は0.4MPaとした。
図15の例においても、濾過装置の構成は既述のセリサイトの例と同一である。なお、高濃度(20vol%)の濾過対象液(完全分散状態)を濾過するときの供給圧力は0.4MPaとした。
According to the study of the present inventor, it has been found that even if the cake does not adhere to the inner rod, the filtering ability is reduced due to clogging of the filter itself. The clogging of the filter does not depend on the concentration of the suspension, but depends on the filtration operation time as shown in FIGS.
In FIG. 14, a sericite suspension (completely dispersed state) having an initial concentration of 20 vol% is concentrated to 30 vol% and continuously operated for about 240 minutes. Thereafter, when the target liquid for filtration is replaced with a suspension having an initial concentration of 1 vol%, the filtration rate gradually recovers.
On the other hand, in FIG. 15, the liquid to be filtered in a completely dispersed state is controlled to 20 vol% and continuously operated for about 240 minutes. Thereafter, when the liquid to be filtered is replaced with a suspension (completely dispersed state) having an initial concentration of 1 vol%, the filtration rate gradually recovers as described above. In other words, regardless of the concentration of the liquid to be filtered, it can be seen that the filter is clogged when filtered for a long time.
In the example of FIG. 14, the configuration of the filtration device is the same as that of the above-described sericite example. In addition, the supply pressure when filtering the high concentration (30 vol%) filtration object liquid was 0.4 Mpa.
Also in the example of FIG. 15, the configuration of the filtration device is the same as that of the above-described sericite example. In addition, the supply pressure when filtering the high concentration (20 vol%) filtration object liquid (completely dispersed state) was 0.4 MPa.

他方、濾過対象液の1/10以下の濃度(濃度0も含む)懸濁液若しくは粒子を含まない溶媒(以下、これらを「養生液」と呼ぶ)を濾過装置へ流通させて養生すると、その濾過能力が回復し、再生されていくことがわかる。なお、懸濁液は完全分散状態若しくは過剰分散剤添加状態とする。
本発明者の検討によれば、高濃度の濾過対象液を濾過する場合は、10〜30分程度の比較的短いインターバルで、濾過と養生とを繰り返すことにより、濾過速度の低下を防ぐことができ、結果として高いスループットの濾過作業を実行できる。
図16の例では、20vol%の濾過対象液(完全分散状態)と1vol%の養生液(完全分散状態)とを交互に20分ずつ実施例の濾過装置に流通させたときの、濾過速度と経過時間との関係を示す。なお、濾過対象液の供給圧力は0.5MPa、養生液の供給圧力は0.4MPaとした。
図16の例では、濾過対象液の濾過速度の低下が防止でき、結果として濾過対象液の処理量を多くすることができる。
On the other hand, when a suspension containing a concentration of 1/10 or less of the liquid to be filtered (including concentration 0) or a solvent not containing particles (hereinafter referred to as “curing solution”) is passed through the filtration device and cured, It can be seen that the filtration capacity is restored and regenerated. The suspension is in a completely dispersed state or an excessive dispersant added state.
According to the inventor's study, when filtering a high-concentration target liquid, filtration and curing are repeated at a relatively short interval of about 10 to 30 minutes to prevent a decrease in filtration rate. As a result, a high throughput filtration operation can be performed.
In the example of FIG. 16, the filtration rate when 20 vol% of the liquid to be filtered (completely dispersed state) and 1 vol% of the curing liquid (completely dispersed state) are alternately passed through the filtering device of the example for 20 minutes each. The relationship with elapsed time is shown. The supply pressure of the filtration target liquid was 0.5 MPa, and the supply pressure of the curing liquid was 0.4 MPa.
In the example of FIG. 16, it is possible to prevent a decrease in the filtration rate of the filtration target liquid, and as a result, it is possible to increase the processing amount of the filtration target liquid.

実施例の濾過装置を用いて濾過対象液(完全分散状態)の流速を変化させたとき(圧力一定)の濾過速度の変化を図17に示す。なお、図17において、▲で示されるデータは平均粒子径が4μmのセリサイトを試料としている。なお、濾過対象液の濃度変化によるデータのバラツキを防止するため、この実験においては、アウタケース21の排出口23から排出された濾液をタンク1へ戻している。
図17の結果から、濾過対象液の流量に濾過速度が比例していることがわかる。これにより、実施例の濾過装置を用いれば濾過対象液の濾過(若しくは濃縮)の制御を容易に行なうことができる。
The change in filtration rate of the filter object liquid using a filtration equipment of Example while changing the flow rate of the (fully dispersed state) (constant pressure) are shown in Figure 17. In FIG. 17, the data indicated by ▲ uses sericite having an average particle size of 4 μm as a sample. In this experiment, the filtrate discharged from the outlet 23 of the outer case 21 is returned to the tank 1 in order to prevent variation in data due to the concentration change of the filtration target liquid.
From the result of FIG. 17, it can be seen that the filtration rate is proportional to the flow rate of the liquid to be filtered. Thereby, if the filtration apparatus of an Example is used, control of filtration (or concentration) of the filtration object liquid can be performed easily.

以上の例では、筒状のフィルタと、該筒状のフィルタへ挿入されるインナーロッドと、を備え、該インナーロッドとフィルタとの間にスパイラル状の流路が形成される濾過装置へ流通させる濾過対象液へ過剰に分散剤を添加することにより、長時間濾過、高濃度濾過が達成できたことを説明してきた。
本発明者の検討によれば、アオコを含んだ水を濾過対象液とした場合にも、この発明の濾過装置によれば、長時間濾過が可能になった(図18参照)。
酸化鉄洗浄液用と同じスペックの濾過装置10を用い、0.3mass%のアオコを含んだ水を0.6MPa、循環流量21L・min−1の条件で濾過した結果を図18は示している。図19は、濾過作業終了後のインナーロッドの状態を示す。
In the above example, a cylindrical filter and an inner rod inserted into the cylindrical filter are provided, and are distributed to a filtration device in which a spiral flow path is formed between the inner rod and the filter. It has been explained that long-time filtration and high-concentration filtration can be achieved by adding an excessive amount of dispersant to the liquid to be filtered.
According to the study of the present inventor, even when water containing water is used as the liquid to be filtered, the filtration device of the present invention enables filtration for a long time (see FIG. 18).
FIG. 18 shows a result of filtering water containing 0.3 mass% of aquatic seam under the conditions of 0.6 MPa and a circulation flow rate of 21 L · min −1 using the filtration device 10 having the same specifications as that for the iron oxide cleaning liquid. FIG. 19 shows the state of the inner rod after completion of the filtering operation.

酸化鉄洗浄液用と同じスペックの濾過装置10を用い、0.3mass%のアオコを含んだ水を0.4MPa、循環流量21L・min−1の条件で濾過し原液を3倍の濃度まで濃縮した。その後、フィルタを1時間超音波洗浄し、3倍濃度の液を一定濃度に維持して濾過を実行した。結果を図20に示す。
図20の結果から、アオコを濾過対象とするときはフィルタの目詰まり回復に超音波洗浄が有効であることがわかる。
Using the filtration device 10 having the same specifications as that for the iron oxide cleaning solution, water containing 0.3 mass% of the sea cucumber was filtered under the conditions of 0.4 MPa and a circulation flow rate of 21 L · min −1 , and the stock solution was concentrated to 3 times the concentration. . Thereafter, the filter was subjected to ultrasonic cleaning for 1 hour, and filtration was performed while maintaining a 3-fold concentration liquid at a constant concentration. The results are shown in FIG.
From the results shown in FIG. 20, it is understood that ultrasonic cleaning is effective in recovering clogging of the filter when the watermelon is to be filtered.

超音波洗浄による目詰まり解消の効果をセリサイト懸濁液についても検証してみた。
試料粉体にセリサイト(FSN;平均粒子径4μm:三信鉱工株式会社製)、分散媒には水道水、分散剤には水ガラスを使用し、それらを撹拌して1vol%の懸濁液を調製した。水ガラスの量はセリサイト100gに対して30mgの割合で添加した。
図14に示した実験と同じ条件で濃縮した30vol%懸濁液をろ過したフィルタにおいて超音波洗浄前でどれほどの目詰まりがあるか、また、超音波洗浄後でどれほど回復するかを調べるために、1時間の超音波洗浄を行う前と後でそれぞれ1vol%のセリサイト懸濁液をろ過した。
The effect of eliminating clogging by ultrasonic cleaning was also verified for sericite suspension.
Sericite (FSN; average particle size 4μm: Sanshin Mining Co., Ltd.) is used as the sample powder, tap water is used as the dispersion medium, and water glass is used as the dispersant. Was prepared. The amount of water glass was added at a rate of 30 mg per 100 g of sericite.
In order to examine how much clogging is present before ultrasonic cleaning in a filter obtained by filtering a 30 vol% suspension concentrated under the same conditions as in the experiment shown in FIG. 1 vol% sericite suspension was filtered before and after 1 hour of ultrasonic cleaning.

目詰まりのないフィルタ(バージンフィルタ)で1vol%のセリサイト懸濁液をろ過したろ過速度を図21に示す。このろ過速度と今回の結果を比較した。
実験結果を図22に示す。30vol%の高濃度でろ過を行うと目詰まりが多く起こり、ろ過速度はかなり低下することがわかった。しかし、1時間の超音波洗浄後のろ過速度と図21の目詰まりのないフィルタでのろ過速度を比較すると、ほぼ同じろ過速度になっていることから高濃度まで濃縮を行っても、超音波洗浄で十分にろ過速度が回復することがわかった。
超音波洗浄の条件(周波数、時間等)はフィルタは濾過対象に応じて適宜選択することができる。この実施例では出力300W、周波数38kHzの超音波洗浄機によりフィルタを1時間超音波洗浄した。
FIG. 21 shows the filtration rate at which 1 vol% sericite suspension was filtered with a filter without clogging (virgin filter). This filtration rate was compared with the current result.
The experimental results are shown in FIG. It was found that when filtration was performed at a high concentration of 30 vol%, clogging occurred frequently and the filtration rate was considerably reduced. However, comparing the filtration rate after 1 hour of ultrasonic cleaning with the filtration rate of the filter without clogging shown in FIG. 21, the filtration rate is almost the same. It was found that the filtration rate was sufficiently recovered by washing.
The conditions for ultrasonic cleaning (frequency, time, etc.) can be appropriately selected according to the object to be filtered. In this example, the filter was subjected to ultrasonic cleaning for 1 hour using an ultrasonic cleaner with an output of 300 W and a frequency of 38 kHz.

この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

Claims (5)

筒状のフィルタと、該筒状のフィルタへ挿入されるインナーロッドと、を備え、該インナーロッドとフィルタとの間にスパイラル状の流路が形成されている濾過装置へ濾過対象となる懸濁液を流通させる濾過方法であって、
前記懸濁液は酸化鉄若しくはセリサイトが水に分散したものであり、
前記懸濁液には分散剤が添加されている、ことを特徴とする懸濁液の濾過方法。
Suspension to be filtered in a filtration device having a cylindrical filter and an inner rod inserted into the cylindrical filter, and having a spiral flow path formed between the inner rod and the filter A filtration method for circulating a liquid,
The suspension is a dispersion of iron oxide or sericite in water,
A suspension filtration method, wherein a dispersant is added to the suspension.
前記懸濁液へ前記分散剤が最も分散した状態とするのに添加される量以上添加されている、ことを特徴とする請求項1に記載の濾過方法。 The filtration process of claim 1 wherein the the are added above amount, it is added to the state of being the dispersant most dispersed into the suspension. 前記懸濁液へ前記分散剤が最も分散した状態とするのに添加される量を超えて添加されている、ことを特徴とする請求項2に記載の濾過方法。 The filtration method according to claim 2, wherein the dispersant is added in an amount exceeding that added to make the dispersant most dispersed in the suspension. 前記濾過装置へ前記懸濁液と養生液を繰り返し流通させる、ことを特徴とする請求項1〜3のいずれかに記載の濾過方法。 The filtration method according to claim 1, wherein the suspension and the curing solution are repeatedly circulated through the filtration device. 前記濾過装置へ前記懸濁液を流通させた後、前記濾過装置のフィルタを超音波洗浄する、ことを特徴とする請求項1〜3のいずれかに記載の濾過方法。 The filtration method according to claim 1, wherein after the suspension is circulated through the filtration device, the filter of the filtration device is subjected to ultrasonic cleaning.
JP2009526355A 2007-08-06 2008-03-18 Filtration method Active JP5403682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009526355A JP5403682B2 (en) 2007-08-06 2008-03-18 Filtration method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007204516 2007-08-06
JP2007204516 2007-08-06
PCT/JP2007/071381 WO2009019800A1 (en) 2007-08-06 2007-11-02 Filtering apparatus and method of filtering
JPPCT/JP2007/071381 2007-11-02
PCT/JP2008/054983 WO2009019905A1 (en) 2007-08-06 2008-03-18 Method of filtration
JP2009526355A JP5403682B2 (en) 2007-08-06 2008-03-18 Filtration method

Publications (2)

Publication Number Publication Date
JPWO2009019905A1 JPWO2009019905A1 (en) 2010-10-28
JP5403682B2 true JP5403682B2 (en) 2014-01-29

Family

ID=40341047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009526355A Active JP5403682B2 (en) 2007-08-06 2008-03-18 Filtration method

Country Status (2)

Country Link
JP (1) JP5403682B2 (en)
WO (2) WO2009019800A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5775519B2 (en) 2009-09-25 2015-09-09 ニヴァリス・セラピューティクス・インコーポレーテッド Novel dihydropyrimidin-2 (1H) -one compounds as S-nitrosoglutathione reductase inhibitors
JP5620845B2 (en) * 2011-02-10 2014-11-05 山田 克彦 Filtration apparatus and filtration method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586481Y2 (en) * 1979-08-31 1983-02-04 日東電工株式会社 membrane separation tube
JPS6351905A (en) * 1986-08-20 1988-03-05 Toshiba Ceramics Co Ltd Ceramic filter
JPS63242310A (en) * 1987-03-31 1988-10-07 Fuji Filter Kogyo Kk Filter structure in slurry filtration device
JP2000079304A (en) * 1998-09-07 2000-03-21 Tenryu Saw Mfg Co Ltd Apparatus for filtering polishing liquid
JP2002307194A (en) * 2001-04-09 2002-10-22 Arai Tekkosho:Kk Axial flow type wringer device
JP2002361489A (en) * 2001-06-05 2002-12-18 Yoshikazu Shoda Dewatering equipment
JP2005066384A (en) * 2003-08-25 2005-03-17 Nagoya Industrial Science Research Inst Filtration method and device therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586481Y2 (en) * 1979-08-31 1983-02-04 日東電工株式会社 membrane separation tube
JPS6351905A (en) * 1986-08-20 1988-03-05 Toshiba Ceramics Co Ltd Ceramic filter
JPS63242310A (en) * 1987-03-31 1988-10-07 Fuji Filter Kogyo Kk Filter structure in slurry filtration device
JP2000079304A (en) * 1998-09-07 2000-03-21 Tenryu Saw Mfg Co Ltd Apparatus for filtering polishing liquid
JP2002307194A (en) * 2001-04-09 2002-10-22 Arai Tekkosho:Kk Axial flow type wringer device
JP2002361489A (en) * 2001-06-05 2002-12-18 Yoshikazu Shoda Dewatering equipment
JP2005066384A (en) * 2003-08-25 2005-03-17 Nagoya Industrial Science Research Inst Filtration method and device therefor

Also Published As

Publication number Publication date
WO2009019905A1 (en) 2009-02-12
JPWO2009019905A1 (en) 2010-10-28
WO2009019800A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5638390B2 (en) Filtration method, polishing composition purification method using the same, filter regeneration method and filter regeneration device used for filtration
EP0829456A3 (en) Sewage Treatment Plant
JP5403682B2 (en) Filtration method
JP7150231B2 (en) Filtration membrane module and filtration treatment method
JP5569217B2 (en) Oxygen treatment boiler cleaning method and apparatus
JP2014213241A (en) Concentric circle spring filter for filtration and processing method
CN203989992U (en) High-efficiency fiber filter
JP4519878B2 (en) Filtration device
CN105561660A (en) Sewage filtering system
CN112774311B (en) Sewage treatment device
CN109420373A (en) Self-cleaning filter
JP6010421B2 (en) Backwash method for long fiber filtration equipment
CN105189883B (en) The solution-air distribution technique of water or effluent filter for using closed conduit
JPH10192605A (en) Filter for filter bed and power generation plant provided with the same
JP6329814B2 (en) Iron / manganese-containing water treatment apparatus and treatment method
CN220201709U (en) Filter for water quality purification treatment
JP6301668B2 (en) Manganese-containing water treatment apparatus and treatment method
CN202516360U (en) Convection scrubbing structure for filter material in pressure filter tank
JP4422531B2 (en) Coagulation aid and method for suppressing aggregation of piping of aggregation aid slurry
CN208166721U (en) A kind of Water purifier filter screen component
JPH02135103A (en) Method for filtering off suspended solid
JP4001490B2 (en) Filtration device, seawater treatment method using the same, and coagulant regeneration method
CN116159363A (en) Iron filtering device and method for indirect air cooling circulating water system
CN110639275A (en) Chemical filter tank
JP2018197472A (en) Recharge method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131024

R150 Certificate of patent or registration of utility model

Ref document number: 5403682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250