JP5403500B2 - Conductive material - Google Patents

Conductive material Download PDF

Info

Publication number
JP5403500B2
JP5403500B2 JP2008127074A JP2008127074A JP5403500B2 JP 5403500 B2 JP5403500 B2 JP 5403500B2 JP 2008127074 A JP2008127074 A JP 2008127074A JP 2008127074 A JP2008127074 A JP 2008127074A JP 5403500 B2 JP5403500 B2 JP 5403500B2
Authority
JP
Japan
Prior art keywords
oxide
furnace
zno
crystal structure
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008127074A
Other languages
Japanese (ja)
Other versions
JP2009274904A (en
Inventor
勇一 道上
周一 下村
康 菅家
昇 君塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008127074A priority Critical patent/JP5403500B2/en
Publication of JP2009274904A publication Critical patent/JP2009274904A/en
Application granted granted Critical
Publication of JP5403500B2 publication Critical patent/JP5403500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Conductive Materials (AREA)

Description

本発明は、可視光の透過性を有する導電性材料に関する。   The present invention relates to a conductive material having visible light permeability.

この種、透明導電材料はディスプレイパネルや太陽電池などに用いられる重要な材料である。現在主に使用されている透明導電体はスズ添加酸化インジウム(ITO)であるが、インジウムが稀少元素であることから、これを含まない透明導電体の開発が求められている。
ITO代替材料の代表的な候補の一つが特許文献1〜3に示す酸化亜鉛系材料であるが、いずれの文献においても、素材となる物質は酸化亜鉛中の亜鉛原子の一部を他の原子(ガリウム等)で置き換えたものであり、その結晶構造は酸化亜鉛構造(ウルツ鉱型構造)である。
これらの性能は未だにITOには及ばず、今後においても飛躍的な改善がはかられる可能性は低い。そのため、酸化亜鉛とは異なる結晶構造をもった新たなITO代替材料の候補となる素材が求められている。
米国特許3538022 特開昭61−205619 特開2005−306684 Journal of Solid State Chemistry 116巻, 170−178ページ (1995年)
This kind of transparent conductive material is an important material used for display panels, solar cells and the like. The transparent conductor currently mainly used is tin-added indium oxide (ITO). However, since indium is a rare element, development of a transparent conductor that does not contain this is required.
One of the typical candidates for the ITO substitute material is the zinc oxide-based material shown in Patent Documents 1 to 3, but in any document, the material used as a material is a part of the zinc atom in the zinc oxide to other atoms. The crystal structure is a zinc oxide structure (wurtzite structure).
These performances still do not reach ITO, and it is unlikely that dramatic improvements will be made in the future. Therefore, a material that is a candidate for a new ITO alternative material having a crystal structure different from that of zinc oxide is demanded.
US Pat. No. 3,580,022 JP-A 61-205619 JP 2005-306684 A Journal of Solid State Chemistry, 116, 170-178 (1995)

本発明は、このような実情に鑑み、インジウムを用いることのない導電性材料を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a conductive material that does not use indium.

発明1は、可視光の透過性を有する導電性材料であって、化学式Ga2−x(ZnO)(mは自然数。M:Gaに代替可能な元素)であらわされ、図1に示す結晶構造を有することを特徴とする。 Invention 1 is a conductive material having visible light permeability, and is represented by a chemical formula Ga 2−x M x O 3 (ZnO) m (m is a natural number, M: an element that can be substituted for Ga). It has the crystal structure shown in 1.

非特許文献1ではGa(ZnO)(mは自然数)の組成式で表される一連の化合物群の存在が報告されている。
本願発明は、このような組成の材料が図1に示す結晶構造を持つこと、および高い導電性を有することを知見し、これを利用したものである。
Non-Patent Document 1 reports the existence of a series of compound groups represented by a composition formula of Ga 2 O 3 (ZnO) m (m is a natural number).
The present invention finds out that the material having such a composition has the crystal structure shown in FIG. 1 and has high conductivity, and utilizes this.

Gaに代替し得る元素としては、Gaと同様に酸化物中において3価のイオンとなり、イオンサイズもガリウムと極端には違わない元素のことである。例えば例えば、AlおよびInはこれに該当する。
実施例1〜4のガリウムの一部をAlあるいはIn若しくはこれらと同様な元素に置き換えても基本的には同様な作用効果を発揮させ得ることは容易に類推できる。
実施例1〜4の組成パラメータmとして0以上の任意の有理数および無理数に置き換えた場合はそれに最も近い二つの整数m1、m2(ただしm1<m<m2)に対応した二つの相の共存状態となる。このことから、mが整数の場合と同様な作用効果を発揮させ得ることは容易に類推できる。
実施例2の混合ガスは還元性ガスをCOに、不活性ガスをN2あるいはHe, Ne, Xeに置き換えても試料中に酸素欠陥を導入する効果は本質的に変わらないので、同様な作用効果を発揮させ得ることは容易に類推できる。
また、混合ガスの比は任意の比に置き換えても、あるいは還元性ガスのみとしても試料中に酸素欠陥を導入する効果は本質的に変わらないので、同様な作用効果を発揮させ得ることは容易に類推できる。
以下の実施例において温度は50℃単位で示した。
An element that can replace Ga is an element that becomes trivalent ions in an oxide like Ga and has an ion size that is not extremely different from that of gallium. For example, Al and In correspond to this.
It can be easily analogized that even if a part of gallium in Examples 1 to 4 is replaced with Al, In, or an element similar to these, basically the same effect can be exhibited.
When the composition parameter m in Examples 1 to 4 is replaced with any rational number or irrational number greater than or equal to 0, two coexistence states corresponding to the two integers m1 and m2 (where m1 <m <m2) are the closest to it. It becomes. From this, it can be easily inferred that the same operational effects as when m is an integer can be exhibited.
Since the mixed gas of Example 2 replaces the reducing gas with CO and the inert gas with N 2, He, Ne, or Xe, the effect of introducing oxygen defects into the sample is essentially the same, so the same effect is obtained. It can be easily analogized that the effect can be exhibited.
In addition, even if the ratio of the mixed gas is replaced with an arbitrary ratio, or even if only the reducing gas is used, the effect of introducing oxygen defects into the sample is essentially the same, so it is easy to achieve the same effect. Can be analogized.
In the following examples, the temperature is shown in units of 50 ° C.

酸化亜鉛(純度99.99%)3.662g、酸化ガリウム(純度99.99%)0.937gを秤量し、めのう乳鉢により少量のエタノールを添加しながら粉砕、混合した。
このときの酸化物の混合比は一般式Ga(ZnO)におけるm=9に相当している。
白金管(外径6mm、長さ50mm)に上記の混合物の一部(0.93g)を充填した。
(このとき、白金管の両端を押しつぶしたうえで、これを折り返してさらに押しつぶした。)
これを電気炉にて1450℃で4日間保持した後、炉外へ取り出すことにより急冷した。
生成物をめのう乳鉢を用いて粉砕した後、先と同様に白金管に充填し、1450℃で3日間保持した後、炉外に取り出し急冷した。
生成物の一部を粉砕し、X線回折測定法によりこの物質の同定を行ったところ、
Ga(ZnO)で表される一連の長周期構造化合物群のm=9に相当する相であることが確認された。
生成物から1.2mm×1.7mm×3.6mmの角柱を切り出し、両端面にGaIn合金を塗布して電極とした。
これの電気抵抗を直流四端子法により測定し、試料形状による補正を行って電導度をもとめた。その結果を図2に示す。
酸化物の焼結体としては非常に高い電導性を示している。
結晶構造中に微量の酸素欠陥が存在し、これがキャリアーとなる電子の生成をもたらしていると考えられる。
Zinc oxide (purity 99.99%) 3.662 g and gallium oxide (purity 99.99%) 0.937 g were weighed and ground and mixed with an agate mortar while adding a small amount of ethanol.
The mixing ratio of the oxide at this time corresponds to m = 9 in the general formula Ga 2 O 3 (ZnO) m .
A platinum tube (outer diameter 6 mm, length 50 mm) was filled with a part (0.93 g) of the above mixture.
(At this time, after crushing both ends of the platinum tube, it was folded and further crushed.)
This was held in an electric furnace at 1450 ° C. for 4 days, and then rapidly cooled by taking it out of the furnace.
The product was pulverized using an agate mortar, filled in a platinum tube in the same manner as described above, held at 1450 ° C. for 3 days, taken out of the furnace, and rapidly cooled.
A part of the product was pulverized and identified by X-ray diffraction measurement.
It was confirmed that this was a phase corresponding to m = 9 in a series of long-period structure compound groups represented by Ga 2 O 3 (ZnO) m .
A 1.2 mm × 1.7 mm × 3.6 mm prism was cut from the product, and a GaIn alloy was applied to both end faces to form an electrode.
The electrical resistance was measured by the direct current four-terminal method, and the conductivity was determined by correcting the sample shape. The result is shown in FIG.
As an oxide sintered body, it exhibits very high electrical conductivity.
A small amount of oxygen vacancies are present in the crystal structure, which is considered to cause the generation of electrons as carriers.

酸化亜鉛(純度99.99%)3.662g、酸化ガリウム(純度99.99%)0.937gを秤量し、めのう乳鉢により少量のエタノールを添加しながら粉砕、混合した。
このときの酸化物の混合比は一般式Ga(ZnO)におけるm=9に相当している。
白金管(外径6mm、長さ50mm)に上記の混合物の一部(0.93g)を充填した。
(このとき、白金管の両端を押しつぶしたうえで、これを折り返してさらに押しつぶした。)
これを電気炉にて1450℃で4日間保持した後、炉外へ取り出すことにより急冷した。
生成物をめのう乳鉢を用いて粉砕した後、先と同様に白金管に充填し、1450℃で3日間保持した後、炉外に取り出し急冷した。
生成物の一部を粉砕し、X線回折測定法によりこの物質の同定を行ったところ、Ga(ZnO)で表される一連の長周期構造化合物群のm=9に相当する相であることが確認された。
試料より1.1mm×1.8mm×3.3mmの角柱を切り出し、これを水素6cc/min、アルゴン194cc/minの混合ガス中に保ち、室温から300℃/hの速度で500℃まで昇温した。
そのまま1時間保持した後、試料を炉内に残したまま電気炉の出力を0 として室温まで放冷した。
取り出した試料の両端面にGaIn合金を塗布して電極とし、これの電気抵抗を測定した後、試料形状による補正を行って電導度をもとめた。その結果を図2に示す。
この処理により電導性が向上したが、これは酸素欠陥がさらに導入されたためと考えられる。
Zinc oxide (purity 99.99%) 3.662 g and gallium oxide (purity 99.99%) 0.937 g were weighed and ground and mixed with an agate mortar while adding a small amount of ethanol.
The mixing ratio of the oxide at this time corresponds to m = 9 in the general formula Ga 2 O 3 (ZnO) m .
A platinum tube (outer diameter 6 mm, length 50 mm) was filled with a part (0.93 g) of the above mixture.
(At this time, after crushing both ends of the platinum tube, it was folded and further crushed.)
This was held in an electric furnace at 1450 ° C. for 4 days, and then rapidly cooled by taking it out of the furnace.
The product was pulverized using an agate mortar, filled in a platinum tube in the same manner as described above, held at 1450 ° C. for 3 days, taken out of the furnace, and rapidly cooled.
When a part of the product was pulverized and this substance was identified by X-ray diffraction measurement, it corresponds to m = 9 in a series of long-period structure compounds represented by Ga 2 O 3 (ZnO) m. Phase was confirmed.
A 1.1 mm × 1.8 mm × 3.3 mm prism is cut out from the sample and kept in a mixed gas of hydrogen 6 cc / min and argon 194 cc / min, and the temperature is raised from room temperature to 500 ° C. at a rate of 300 ° C./h. did.
After maintaining for 1 hour, the sample was left in the furnace and allowed to cool to room temperature with the output of the electric furnace being 0.
A GaIn alloy was applied to both end faces of the sample taken out to form an electrode, and after measuring the electrical resistance, the conductivity was determined by correcting the sample shape. The result is shown in FIG.
This treatment improved the electrical conductivity, which is probably because oxygen defects were further introduced.

酸化亜鉛(純度99.99%)3.662g、酸化ガリウム(純度99.99%)0.937gを秤量し、めのう乳鉢により少量のエタノールを添加しながら粉砕、混合した。
このときの酸化物の混合比は一般式Ga(ZnO)におけるm=9に相当している。
白金管(外径6mm、長さ50mm)に上記の混合物の一部(0.93g)を充填した。
(このとき、白金管の両端を押しつぶしたうえで、これを折り返してさらに押しつぶした。)
これを電気炉にて1450℃で4日間保持した後、炉外へ取り出すことにより急冷した。
生成物をめのう乳鉢を用いて粉砕した後、先と同様に白金管に充填し、1450℃で3日間保持した後、炉外に取り出し急冷した。
生成物の一部を粉砕し、X線回折測定法によりこの物質の同定を行ったところ、
Ga(ZnO)で表される一連の長周期構造化合物群のm=9に相当する相であることが確認された。
この試料より1.2mm×1.6mm×3.5mmの角柱を切り出し、白金るつぼを用いて電気炉にて大気中1000℃で10分間保持した後、炉外に取り出し急冷した。
取り出した試料の両端面にGaIn合金を塗布して電極とし、電気抵抗を測定した後、試料形状による補正を行って電導度をもとめた。その結果を図2に示す。
この処理により電導性が著しく低下した。これは、結晶構造中の酸素欠陥が消失したためと考えられる。
Zinc oxide (purity 99.99%) 3.662 g and gallium oxide (purity 99.99%) 0.937 g were weighed and ground and mixed with an agate mortar while adding a small amount of ethanol.
The mixing ratio of the oxide at this time corresponds to m = 9 in the general formula Ga 2 O 3 (ZnO) m .
A platinum tube (outer diameter 6 mm, length 50 mm) was filled with a part (0.93 g) of the above mixture.
(At this time, after crushing both ends of the platinum tube, it was folded and further crushed.)
This was held in an electric furnace at 1450 ° C. for 4 days, and then rapidly cooled by taking it out of the furnace.
The product was pulverized using an agate mortar, filled in a platinum tube in the same manner as described above, held at 1450 ° C. for 3 days, taken out of the furnace, and rapidly cooled.
A part of the product was pulverized and identified by X-ray diffraction measurement.
It was confirmed that this was a phase corresponding to m = 9 in a series of long-period structure compound groups represented by Ga 2 O 3 (ZnO) m .
A 1.2 mm × 1.6 mm × 3.5 mm prism was cut out from this sample, held in an electric furnace at 1000 ° C. for 10 minutes in an electric furnace using a platinum crucible, and then taken out of the furnace and rapidly cooled.
A GaIn alloy was applied to both end faces of the sample taken out to form an electrode, and after measuring the electrical resistance, the conductivity was determined by correcting the sample shape. The result is shown in FIG.
This treatment significantly reduced the electrical conductivity. This is presumably because oxygen defects in the crystal structure disappeared.

酸化亜鉛(純度99.99%)3.051g、酸化ガリウム(純度99.99%)0.469gを秤量し、めのう乳鉢により少量のエタノールを添加しながら粉砕、混合した。
このときの酸化物の混合比は一般式Ga(ZnO)におけるm=15に相当している。
白金管(外径6mm、長さ50mm)に上記の混合物の一部(2.367g)を充填した。
(このとき、白金管の両端を押しつぶしたうえで、これを折り返してさらに押しつぶした。)
これを電気炉にて1450℃で4日間保持した後、炉外へ取り出すことにより急冷した。
生成物をめのう乳鉢を用いて粉砕した後、先と同様に白金管に充填し、1450℃で3日間保持した後、炉外に取り出し急冷した。
生成物の一部を粉砕し、X線回折測定法によりこの物質の同定を行ったところ、
Ga(ZnO)で表される一連の長周期構造化合物群のm=15に相当する相の生成がみとめられたが、回折ピークの幅が広く、結晶構造の周期性が不完全であることが判明した。
生成物から2.8mm×3.0mm×9.7mmの角柱を切り出し、両端面にGaIn合金を塗布して電極とした。
これの電気抵抗を測定し、試料形状による補正を行って電導度をもとめた。その結果を図2に示す。
酸化物の焼結体としては非常に高い電導性を示している。
結晶構造中に微量の酸素欠陥が存在し、これがキャリアーとなる電子の生成をもたらしていると考えられる。

Zinc oxide (purity 99.99%) 3.051 g and gallium oxide (purity 99.99%) 0.469 g were weighed and ground and mixed with an agate mortar while adding a small amount of ethanol.
The mixing ratio of the oxide at this time corresponds to m = 15 in the general formula Ga 2 O 3 (ZnO) m .
A platinum tube (outer diameter 6 mm, length 50 mm) was filled with a part of the above mixture (2.367 g).
(At this time, after crushing both ends of the platinum tube, it was folded and further crushed.)
This was held in an electric furnace at 1450 ° C. for 4 days, and then rapidly cooled by taking it out of the furnace.
The product was pulverized using an agate mortar, filled in a platinum tube in the same manner as described above, held at 1450 ° C. for 3 days, taken out of the furnace, and rapidly cooled.
A part of the product was pulverized and identified by X-ray diffraction measurement.
The generation of a phase corresponding to m = 15 in a series of long-period structure compounds represented by Ga 2 O 3 (ZnO) m was observed, but the diffraction peak was wide and the periodicity of the crystal structure was incomplete. It turned out to be.
A 2.8 mm × 3.0 mm × 9.7 mm prism was cut out from the product, and a GaIn alloy was applied to both end faces to form an electrode.
The electrical resistance of this was measured, and the conductivity was determined by correcting the sample shape. The result is shown in FIG.
As an oxide sintered body, it exhibits very high electrical conductivity.
A small amount of oxygen vacancies are present in the crystal structure, which is considered to cause the generation of electrons as carriers.

本発明の導電性酸化物は、透明導電材料をはじめとし、熱電変換材料、ガスセンサー、発光材料、触媒材料などへの応用が可能である。   The conductive oxide of the present invention can be applied to a transparent conductive material, a thermoelectric conversion material, a gas sensor, a light emitting material, a catalyst material, and the like.

本発明の結晶構造を示す図The figure which shows the crystal structure of this invention 製造方法を示すフロー及び各方法で製造した物の電気伝導度Flow showing manufacturing method and electrical conductivity of product manufactured by each method

Claims (1)

化学式Ga(ZnO)(mは自然数)であらわされ、斜方晶の結晶構造を有するとともに、結晶構造内に酸素欠陥を有する、可視光の透過性を有する導電性材料。
A conductive material having visible light permeability, represented by the chemical formula Ga 2 O 3 (ZnO) m (m is a natural number), having an orthorhombic crystal structure, and having an oxygen defect in the crystal structure .
JP2008127074A 2008-05-14 2008-05-14 Conductive material Expired - Fee Related JP5403500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127074A JP5403500B2 (en) 2008-05-14 2008-05-14 Conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127074A JP5403500B2 (en) 2008-05-14 2008-05-14 Conductive material

Publications (2)

Publication Number Publication Date
JP2009274904A JP2009274904A (en) 2009-11-26
JP5403500B2 true JP5403500B2 (en) 2014-01-29

Family

ID=41440670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127074A Expired - Fee Related JP5403500B2 (en) 2008-05-14 2008-05-14 Conductive material

Country Status (1)

Country Link
JP (1) JP5403500B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3881407B2 (en) * 1996-07-31 2007-02-14 Hoya株式会社 Conductive oxide thin film, article having this thin film, and method for producing the same
JP4298194B2 (en) * 2001-11-05 2009-07-15 独立行政法人科学技術振興機構 A method for producing a natural superlattice homologous single crystal thin film.
JP4321162B2 (en) * 2003-08-14 2009-08-26 東ソー株式会社 Indium zinc oxide single crystal and method for producing the same
JP4982695B2 (en) * 2006-03-16 2012-07-25 株式会社リコー Optical recording medium

Also Published As

Publication number Publication date
JP2009274904A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
Lorger et al. Transport and charge carrier chemistry in lithium oxide
RU2689155C2 (en) Perovskite structure, method for production thereof, electrode for fuel cell comprising perovskite structure, and fuel cell stack containing perovskite structure
Li et al. Thermal, electrical, and electrochemical properties of Lanthanum-doped Ba0. 5Sr0. 5 Co0. 8Fe0. 2O3–δ
Amarsingh Bhabu et al. Cubic fluorite phase of samarium doped cerium oxide (CeO 2) 0.96 Sm 0.04 for solid oxide fuel cell electrolyte
Pikalova et al. The effect of co-dopant addition on the properties of Ln0. 2Ce0. 8O2− δ (Ln= Gd, Sm, La) solid-state electrolyte
Sun et al. Preparation and electrochemical properties of Sr-doped Nd2NiO4 cathode materials for intermediate-temperature solid oxide fuel cells
Li et al. Proton-conducting barium stannates: Doping strategies and transport properties
Basu et al. Nb-doped La2Mo2O9: a new material with high ionic conductivity
Wang et al. Structures and electrical conductivities of Gd3+ and Fe3+ co-doped cerium oxide electrolytes sintered at low temperature for ILT-SOFCs
Li et al. Effects of strontium doping on the structure, oxygen nonstoichiometry and electrochemical performance of Pr2− xSrxNi0. 6Cu0. 4O4+ δ (0.1≤ x≤ 0.5) cathode materials
Yi et al. Ga-doped Ca 12 Al 14 O 33 mayenite oxide ion conductors: synthesis, defects, and electrical properties
He et al. Boosting thermoelectric performance of BiCuSeO by improving carrier mobility through light element doping and introducing nanostructures
EP0286503A1 (en) Conducting oxide-nitride perovskites, their preparation and their use, particularly as an electrode material
Mason et al. Point defects and related properties of highly co-doped bixbyite In 2 O 3
Kanmani et al. Influence of Ti dopant on the properties and dye sensitized solar cell performance of ZnO chunk-shaped nanostructures
JP5403500B2 (en) Conductive material
Liu et al. The effect of local structure on ionic conductivity of apatite-type La9. 5Si6O26. 25
He et al. The effects of dopant valence on the structure and electrical conductivity of LaInO3
Li et al. Ionic conductivity across the disorder–order phase transition in the SmO1. 5–CeO2 system
JP4604247B2 (en) Electrically conductive material comprising terbium, bismuth, tungsten oxide solid solution and method for producing the same
Sun et al. Microstructure and varistor properties of Pr–Co co-doped ZnO ceramics obtained by sol–gel method
Merkulov et al. Structural features and high-temperature properties of SrFe1− xSixO3− δ
Li et al. Reducibility study of oxide-ion conductors La2− xBaxMo2− yAyO9− δ (A= W, Al, Ga) assessed by impedance spectroscopy
Ferreira et al. Properties of Ca1− xHoxMnO3 perovskite-type electrodes
Trnovcová et al. Electrical properties of bismuth phosphate and bismuth germanate single crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5403500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees