JP5397171B2 - Vibration type angular velocity sensor - Google Patents

Vibration type angular velocity sensor Download PDF

Info

Publication number
JP5397171B2
JP5397171B2 JP2009256089A JP2009256089A JP5397171B2 JP 5397171 B2 JP5397171 B2 JP 5397171B2 JP 2009256089 A JP2009256089 A JP 2009256089A JP 2009256089 A JP2009256089 A JP 2009256089A JP 5397171 B2 JP5397171 B2 JP 5397171B2
Authority
JP
Japan
Prior art keywords
signal
excitation
vibration
angular velocity
velocity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009256089A
Other languages
Japanese (ja)
Other versions
JP2011099818A (en
JP2011099818A5 (en
Inventor
潤弥 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2009256089A priority Critical patent/JP5397171B2/en
Publication of JP2011099818A publication Critical patent/JP2011099818A/en
Publication of JP2011099818A5 publication Critical patent/JP2011099818A5/ja
Application granted granted Critical
Publication of JP5397171B2 publication Critical patent/JP5397171B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

本発明は、本発明はMEMS(Micro Electro Mechanical System)による振動型角速度センサに関する。   The present invention relates to a vibration type angular velocity sensor using MEMS (Micro Electro Mechanical System).

従来、角速度センサに関して、複数の軸まわりの角速度を、励振方向を順に切り換えて、角軸まわりの角速度を時分割的に検出する手法が知られている(例えば、特許文献1,3)。また、検出された振動を示す信号の逆位相の信号を用いて、角速度が加わっていない状態での不要振動を除去する手段を有するジャイロスコープが知られている(例えば、特許文献2)。   Conventionally, with respect to an angular velocity sensor, a method is known in which angular velocities around a plurality of axes are switched in turn in order to detect angular velocities around the angular axes in a time-sharing manner (for example, Patent Documents 1 and 3). There is also known a gyroscope having means for removing unnecessary vibration in a state where angular velocity is not applied using a signal having a phase opposite to that of a signal indicating the detected vibration (for example, Patent Document 2).

特開2006−317462号公報JP 2006-317462 A 特開平8−122080号公報Japanese Patent Laid-Open No. 8-122080 特開平6−300568号公報JP-A-6-300568

時分割的に複数の軸まわりの角速度を検出する手法では、切り換え後の励振方向に対応する軸まわりのコリオリ力を精度よく検出するためには、切り換え前の励振方向の振動が静定している必要がある。したがって、切り換え前の励振方向の振動を早く減衰できることが望まれる。
本発明は、時分割駆動方式の角速度センサにおいて、励振方向を切り換える際に切り換え前の励振方向の振動を早く減衰させることを目的の1つとする。
In the method of detecting angular velocities around multiple axes in a time-sharing manner, in order to accurately detect the Coriolis force around the axis corresponding to the excitation direction after switching, the vibration in the excitation direction before switching is stabilized. Need to be. Therefore, it is desirable to be able to quickly attenuate the vibration in the excitation direction before switching.
An object of the present invention is to quickly attenuate vibration in an excitation direction before switching when switching the excitation direction in an angular velocity sensor of a time-division drive system.

(1)上記目的を達成するための振動型角速度センサは、可撓部と、前記可撓部を支持する支持部と、前記可撓部と結合し前記可撓部とともに運動する錘部と、交する複数の励振方向に前記錘部を振動させる励振手段と、リオリ力に対応する検出方向における前記錘部の振動を検出する検出手段と、切り換え前の励振方向に前記錘部を振動させる駆動信号の印加終了後から切り換え前と別の励振方向に前記錘部を振動させる駆動信号を印加するまでの切り換え期間中に、切り換え前の前記錘部の振動に関連する信号に基づいて生成した静定信号を、前記励振手段に印加する静定制御手段と、を備える。
本発明によると、静定振動を加えない場合と比較して、切り換え前の励振方向の振動を早く減衰させることができる。励振方向の振動を早く減衰させることによって、時分割の動作周波数を高くすることができる。
(1) vibrating angular velocity sensor for achieving the above object, a flexible portion, and a support portion for supporting the flexible portion, a weight portion coupled to the flexible portion for movement with said flexible portion, vibration and excitation means for vibrating the weight section immediately interlinked plurality of driving direction, and detecting means for detecting the vibration of the weight section in the detection direction corresponding to the Coriolis force, the weight part in the driving direction before switching Generated based on signals related to the vibration of the weight part before switching during the switching period from the end of the application of the driving signal to be applied until the driving signal to vibrate the weight part in a different excitation direction is applied. And a stabilization control means for applying the determined stabilization signal to the excitation means .
According to the present invention, the vibration in the excitation direction before switching can be attenuated faster than in the case where static vibration is not applied. By quickly attenuating vibration in the excitation direction, the time-division operating frequency can be increased.

(2)上記目的を達成するための振動型角速度センサにおいて、前記静定制御手段は、切り換え前に前記励振手段に加されていた信号の位相を反転した信号を、前記励振手段に印加してもよい。
この場合、低コストな回路構成で静定信号を生成し、印加することができる。
(2) In the vibrating angular velocity sensor for achieving the above object, the electrostatic constant control means, a signal obtained by inverting the phase of the signal that has been marked pressurized to said exciting means before switching, is applied to the excitation means May be.
In this case, a static signal can be generated and applied with a low-cost circuit configuration.

(3)上記目的を達成するための振動型角速度センサにおいて、前記静定制御手段は、前記検出手段によって検出された前記検出信号の位相を反転した信号を、前記励振手段に印加してもよい。
検出手段によって検出された錘部の振動を示す検出信号に基づいて、その逆位相の信号(振幅や周波数は同じ)を励振手段に印加することにより、錘部の振動を確実に減衰させることができる。
(3) In the vibration type angular velocity sensor for achieving the above object, the static control means may apply a signal obtained by inverting the phase of the detection signal detected by the detection means to the excitation means. .
Based on the detection signal indicating the vibration of the weight portion detected by the detection means, a signal having the opposite phase (the same amplitude and frequency) is applied to the excitation means , so that the vibration of the weight portion can be surely attenuated. it can.

(4)上記目的を達成するための振動型角速度センサにおいて、前記静定制御手段は、前記検出手段によって検出された前記検出信号と同じ振幅であって、切り換え前に前記励振手段によって印加されていた駆動信号と位相が反転した信号を、前記励振手段に印加してもよい。
検出手段により検出した振動の振幅で、位相は、駆動手段によって与えられていた励振振動の逆位相の振動を静定振動として与えることで、静定振動を加えない場合と比較して、錘部の切り換え前の励振方向の振動を早く減衰させることができる。
(4) In the vibration type angular velocity sensor for achieving the above object, the static control means has the same amplitude as the detection signal detected by the detection means, and is applied by the excitation means before switching. A signal whose phase is inverted from that of the drive signal may be applied to the excitation means .
The amplitude of the vibration detected by the detecting means, and the phase of the weight portion is compared with the case where no static definite vibration is applied by giving the vibration of the opposite phase of the excitation vibration given by the driving means as a static definite vibration. It is possible to quickly attenuate the vibration in the excitation direction before switching.

(5)上記目的を達成するための振動型角速度センサにおいて、前記静定制御手段は、前記励振手段および前記検出手段の等価回路を用いて、切り換え前の励振方向の振動に対する静定信号をシミュレートし、前記シミュレートすることによって得られる静定信号を、前記励振手段に印加してもよい。
この場合、シミュレーションによって得られる、切り換え前の励振方向の振動を減衰するために効果的な静定信号を、励振手段に印加することができる。その結果、当該静定信号を印加しない場合と比較すると錘部の振動を早く減衰させることができる。
(5) In the vibration type angular velocity sensor for achieving the above object, the static control means simulates a static signal for vibration in the excitation direction before switching, using an equivalent circuit of the excitation means and the detection means. Then, a static signal obtained by the simulation may be applied to the excitation means .
In this case, it is possible to apply to the excitation means a static definite signal that is obtained by simulation and is effective for attenuating vibration in the excitation direction before switching. As a result, the vibration of the weight portion can be attenuated faster than in the case where the static signal is not applied.

(1A)は第一実施形態にかかる振動型角速度センサの上面図、(1B)および(1C)は断面図。(1A) is a top view of the vibration type angular velocity sensor according to the first embodiment, and (1B) and (1C) are sectional views. (2A)は第一実施形態にかかる振動型角速度センサのブロック図、(2B)は圧電素子に印加する信号を説明する図。(2A) is a block diagram of the vibration type angular velocity sensor according to the first embodiment, and (2B) is a diagram for explaining a signal applied to a piezoelectric element. (3A)は第二実施形態にかかる振動型角速度センサのブロック図、(3B)は圧電素子に印加する信号を説明する図。(3A) is a block diagram of a vibration type angular velocity sensor according to the second embodiment, and (3B) is a diagram for explaining a signal applied to a piezoelectric element. (4A)は第三実施形態にかかる振動型角速度センサのブロック図、(4B)は圧電素子に印加する信号を説明する図、(4C)は等価回路を示す回路図。(4A) is a block diagram of a vibration type angular velocity sensor according to the third embodiment, (4B) is a diagram for explaining a signal applied to a piezoelectric element, and (4C) is a circuit diagram showing an equivalent circuit.

以下、本発明の実施の形態を、添付図面を参照しながら以下の順に説明する。尚、各図において対応する構成要素には同一の符号が付され、重複する説明は省略される。   Hereinafter, embodiments of the present invention will be described in the following order with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the corresponding component in each figure, and the overlapping description is abbreviate | omitted.

1.第一実施形態
図1は本発明による振動型角速度センサの第一実施形態を示している。説明の便宜のために図1に示すように直交するxyz軸を定める。振動型角速度センサ1は、MEMSとして構成され、単結晶珪素、酸化珪素、白金、PZT(チタン酸ジルコン酸鉛)などの半導体デバイス材料からなる積層構造体である。振動型角速度センサ1は図示しないパッケージに収容される。振動型角速度センサ1は、支持部10、錘部15、梁部12a、12b、12c、12d、駆動用圧電素子13、検出用圧電素子14などが形成されているダイ1aと駆動用圧電素子13および検出用圧電素子14に接続される後述する駆動検出回路とを備えている。駆動検出回路はダイ1aに形成しても良いし、ダイ1aとともに1つのパッケージに収容される別のダイに形成しても良いし、ダイ1aのパッケージとは別パッケージに収容される1つ以上のダイに形成しても良い。
1. First Embodiment FIG. 1 shows a first embodiment of a vibration type angular velocity sensor according to the present invention. For convenience of description, orthogonal xyz axes are defined as shown in FIG. The vibration type angular velocity sensor 1 is configured as a MEMS and is a laminated structure made of a semiconductor device material such as single crystal silicon, silicon oxide, platinum, or PZT (lead zirconate titanate). The vibration type angular velocity sensor 1 is accommodated in a package (not shown). The vibration type angular velocity sensor 1 includes a die 1a and a driving piezoelectric element 13 on which a support portion 10, a weight portion 15, beam portions 12a, 12b, 12c, and 12d, a driving piezoelectric element 13, a detecting piezoelectric element 14, and the like are formed. And a drive detection circuit (to be described later) connected to the detection piezoelectric element 14. The drive detection circuit may be formed on the die 1a, may be formed on another die accommodated in one package together with the die 1a, or one or more accommodated in a package different from the package of the die 1a. It may be formed on the die.

ダイ1aを構成する各層の界面は図1Bおよび図1Cにおいて破線によって示されている。基層100は例えば厚さ625μmの単結晶珪素からなる。基層100は他の層に比べて突出して厚い層である。基層100は支持部10および錘部15の大部分を構成している。梁部12a、12b、12c、12dは、ばね層104と絶縁層106から構成されている。ばね層104と絶縁層106とは支持部10および錘部15の上層部をも構成しており、支持部10、梁部12a、12b、12c、12dおよび錘部15にわたって連続している。これにより支持部10、梁部12a、12b、12c、12dおよび錘部15が一体に連結されている。ばね層104は例えば厚さ10μmの単結晶珪素からなる。絶縁層106は例えば厚さ0.5μmの酸化珪素からなる。基層100とばね層104との間には製造時にエッチングストッパとして機能するストッパ層102が形成されている。ストッパ層102は例えば厚さ1μmの酸化珪素からなる。駆動用圧電素子13、検出用圧電素子14および図示しない配線要素(導線、ボンディングパッド等)は圧電層110とこれを両側から挟み込んでいる電極層108、112とからなる。電極層108、112は例えば厚さ0.1μmの白金からなる。圧電層110は例えば厚さ3μmのPZTからなる。   The interfaces of the layers constituting the die 1a are indicated by broken lines in FIGS. 1B and 1C. The base layer 100 is made of, for example, single crystal silicon having a thickness of 625 μm. The base layer 100 is a thick layer that protrudes from the other layers. The base layer 100 constitutes most of the support portion 10 and the weight portion 15. The beam portions 12 a, 12 b, 12 c, and 12 d are composed of a spring layer 104 and an insulating layer 106. The spring layer 104 and the insulating layer 106 also constitute the upper layer portion of the support portion 10 and the weight portion 15, and are continuous over the support portion 10, the beam portions 12 a, 12 b, 12 c, 12 d, and the weight portion 15. Thereby, the support part 10, beam part 12a, 12b, 12c, 12d, and the weight part 15 are connected integrally. The spring layer 104 is made of, for example, single crystal silicon having a thickness of 10 μm. The insulating layer 106 is made of, for example, silicon oxide having a thickness of 0.5 μm. Between the base layer 100 and the spring layer 104, a stopper layer 102 that functions as an etching stopper at the time of manufacture is formed. The stopper layer 102 is made of silicon oxide having a thickness of 1 μm, for example. The driving piezoelectric element 13, the detecting piezoelectric element 14, and a wiring element (not shown) such as a conductive wire and a bonding pad are composed of a piezoelectric layer 110 and electrode layers 108 and 112 sandwiching the piezoelectric layer 110 from both sides. The electrode layers 108 and 112 are made of, for example, platinum having a thickness of 0.1 μm. The piezoelectric layer 110 is made of PZT having a thickness of 3 μm, for example.

支持部10は矩形枠の形態を有する。支持部10は梁部12a、12b、12c、12dに比べて十分厚くパッケージに固定されるため実質的に剛体として振る舞う。支持部10は内側に梁部12a、12b、12c、12dおよび錘部15が収まる空間を形成し実質的に剛体として振る舞う形態であればどのような形態であっても良い。   The support portion 10 has a rectangular frame shape. Since the support portion 10 is fixed to the package sufficiently thicker than the beam portions 12a, 12b, 12c, and 12d, it substantially behaves as a rigid body. The support portion 10 may have any shape as long as it forms a space in which the beam portions 12a, 12b, 12c, 12d and the weight portion 15 are accommodated and behaves substantially as a rigid body.

可撓性を有する4つの梁部12a、12b、12c、12dは、いずれも一端が支持部10に他端が錘部15に結合している。すなわち4つの梁部12a、12b、12c、12dは支持部10の内側において錘部15を支持している。4つの梁部12a、12b、12c、12dは、支持部10の内側に十字形に配置され、xy平面と平行に整列している。梁部12a、12cの対は、y軸方向に整列し、それぞれy軸方向に延びている。梁部12b、12dの対は、x軸方向に整列し、それぞれx軸方向に延びている。4つの梁部12a、12b、12c、12dは、錘部15と支持部10とを構成している複数の層のうち突出して厚い基層100を含まないため、錘部15と支持部10に対して十分z方向に薄い扁平な板形である。したがって4つの梁部12a、12b、12c、12dは、それぞれ一端が支持部10に固定され他端が支持部10に対して変位する弾性梁として振る舞う。扁平な梁部12a、12b、12c、12dがz軸方向に撓むことによって錘部15は支持部10に対してx、y、z軸のそれぞれの方向に振動可能である。   Each of the four beam portions 12a, 12b, 12c, and 12d having flexibility has one end coupled to the support portion 10 and the other end coupled to the weight portion 15. That is, the four beam portions 12 a, 12 b, 12 c, and 12 d support the weight portion 15 inside the support portion 10. The four beam portions 12a, 12b, 12c, and 12d are arranged in a cross shape inside the support portion 10 and aligned in parallel with the xy plane. The pair of beam portions 12a and 12c is aligned in the y-axis direction and extends in the y-axis direction. The pair of beam portions 12b and 12d is aligned in the x-axis direction and extends in the x-axis direction. Since the four beam portions 12a, 12b, 12c, and 12d do not include the thick base layer 100 that protrudes from the plurality of layers constituting the weight portion 15 and the support portion 10, the four beam portions 12a, 12b, 12c, and 12d And a flat plate shape that is sufficiently thin in the z direction. Therefore, each of the four beam portions 12 a, 12 b, 12 c, and 12 d behaves as an elastic beam having one end fixed to the support portion 10 and the other end displaced with respect to the support portion 10. When the flat beam portions 12a, 12b, 12c, and 12d are bent in the z-axis direction, the weight portion 15 can vibrate in the x-, y-, and z-axis directions with respect to the support portion 10.

錘部15は4つの梁部12a、12b、12c、12dと結合している中央部と、隣り合う梁部12の間に中央部から突出する4つの周辺部とが結合した形態を有する。錘部15は支持部10を構成している複数の層のうち突出して厚い基層100を含むため、支持部10に対して3次元運動する剛体として振る舞う。中央部は梁部12を構成している層を含む支持部10と同一の積層構造を有し、周辺部は梁部12を構成している層を含まない。z軸方向において梁部12よりも厚い錘部15のz軸方向の端部に梁部12が結合しているため、錘部15の重心は梁部12を含む平面からz軸方向に離間している。したがって、錘部15にx軸方向またはy軸方向の慣性力が作用すると、錘部15の重心の運動はx軸またはy軸周りの回転を伴う運動となる。錘部15の重心のx軸方向の振動には梁部12b、12dの撓み振動が伴う。錘部15の重心のy軸方向の振動には梁部12a、12cの撓み振動が伴う。錘部15の重心のz軸方向の振動には梁部12a、12b、12c、12dの撓み振動が伴う。   The weight portion 15 has a form in which a central portion coupled to the four beam portions 12a, 12b, 12c, and 12d and four peripheral portions protruding from the central portion between the adjacent beam portions 12 are coupled. Since the weight portion 15 includes the thick base layer 100 that protrudes among the plurality of layers constituting the support portion 10, the weight portion 15 behaves as a rigid body that moves three-dimensionally with respect to the support portion 10. The central portion has the same laminated structure as the support portion 10 including the layers constituting the beam portion 12, and the peripheral portion does not include the layers constituting the beam portion 12. Since the beam portion 12 is coupled to the end portion in the z-axis direction of the weight portion 15 that is thicker than the beam portion 12 in the z-axis direction, the center of gravity of the weight portion 15 is separated from the plane including the beam portion 12 in the z-axis direction. ing. Therefore, when an inertial force in the x-axis direction or the y-axis direction acts on the weight portion 15, the motion of the center of gravity of the weight portion 15 becomes a motion accompanied by rotation around the x-axis or the y-axis. The vibration in the x-axis direction of the center of gravity of the weight portion 15 is accompanied by the bending vibration of the beam portions 12b and 12d. The vibration in the y-axis direction of the center of gravity of the weight portion 15 is accompanied by the bending vibration of the beam portions 12a and 12c. The vibration in the z-axis direction of the center of gravity of the weight portion 15 is accompanied by the bending vibration of the beam portions 12a, 12b, 12c, and 12d.

梁部12a、12b、12c、12dのそれぞれの表面の支持部10との境界近傍に励振部として駆動用圧電素子13a、13b、13c、13dが設けられる。錘部15のy軸方向の励振は、y軸方向に整列している駆動用圧電素子13a、13cに極性が互いに逆の励振信号を印加することによって行われる。すなわち駆動用圧電素子13a、13cはy軸励振部として機能する。錘部15のz軸方向の励振は、x軸方向に整列している駆動用圧電素子13b、13dに極性が一致した励振信号を印加することによって行われる。すなわち駆動用圧電素子13b、13dはz軸励振部として機能する。   Driving piezoelectric elements 13a, 13b, 13c, and 13d are provided as excitation portions in the vicinity of the boundaries between the beam portions 12a, 12b, 12c, and 12d and the support portions 10 on the respective surfaces. Excitation of the weight portion 15 in the y-axis direction is performed by applying excitation signals having opposite polarities to the driving piezoelectric elements 13a and 13c aligned in the y-axis direction. That is, the driving piezoelectric elements 13a and 13c function as a y-axis excitation unit. Excitation in the z-axis direction of the weight portion 15 is performed by applying excitation signals having the same polarity to the driving piezoelectric elements 13b and 13d aligned in the x-axis direction. That is, the driving piezoelectric elements 13b and 13d function as a z-axis excitation unit.

それぞれの梁部12の表面の錘部15との境界近傍に検出手段として検出用圧電素子14a、14b、14c、14dが設けられる。支持部10に対して錘部15の重心がx軸方向に変位するとき、x軸方向に整列している梁部12b、12dの表面の支持部10との境界近傍領域は一方が延びて他方が縮む。したがって、梁部12b、12dの表面の支持部10との境界近傍に設けられている検出用圧電素子14b、14dの対は、支持部10に対する錘部15のx軸方向の振動を検出するx軸検出部として機能する。支持部10に対して錘部15の重心がy軸方向に変位するとき、y軸方向に整列している梁部12a、12cの表面の支持部10との境界近傍領域は一方が延びて他方が縮む。したがって、梁部12a、12cの表面の支持部10との境界近傍に設けられている検出用圧電素子14a、14cの対は、支持部10に対する錘部15のy軸方向の振動を検出するy軸検出部として機能する。   Detecting piezoelectric elements 14a, 14b, 14c, and 14d are provided as detecting means in the vicinity of the boundary with the weight portion 15 on the surface of each beam portion 12. When the center of gravity of the weight portion 15 is displaced in the x-axis direction with respect to the support portion 10, one of the regions in the vicinity of the boundary between the surfaces of the beam portions 12b and 12d aligned in the x-axis direction and the support portion 10 extends. Shrinks. Therefore, the pair of detection piezoelectric elements 14b and 14d provided in the vicinity of the boundary between the beam portions 12b and 12d and the support portion 10 detects the vibration in the x-axis direction of the weight portion 15 relative to the support portion x. Functions as an axis detector. When the center of gravity of the weight portion 15 is displaced in the y-axis direction with respect to the support portion 10, one of the regions in the vicinity of the boundary with the support portion 10 on the surfaces of the beam portions 12a and 12c aligned in the y-axis direction extends. Shrinks. Therefore, the pair of detection piezoelectric elements 14a and 14c provided near the boundary between the beam portions 12a and 12c and the support portion 10 detects the vibration of the weight portion 15 relative to the support portion 10 in the y-axis direction. Functions as an axis detector.

ダイ1aがx軸周りに回転するとz軸方向に進行する錘部15の重心に対してy軸と平行なコリオリ力が作用する。錘部15がz軸方向に振動している場合、x軸周りの回転に伴うy軸と平行なコリオリ力も振動するため、ダイ1aがx軸周りに回転すると錘部15の重心はz軸の参照振動と同じ振動数においてy軸と平行に振動する。すなわちx軸周りの角速度は錘部15の重心のy軸方向の振動に基づいて導出される。   When the die 1a rotates around the x-axis, a Coriolis force parallel to the y-axis acts on the center of gravity of the weight portion 15 traveling in the z-axis direction. When the weight portion 15 vibrates in the z-axis direction, the Coriolis force parallel to the y-axis accompanying the rotation around the x-axis also vibrates, so that when the die 1a rotates around the x-axis, the center of gravity of the weight portion 15 becomes the z-axis. It vibrates parallel to the y-axis at the same frequency as the reference vibration. That is, the angular velocity around the x axis is derived based on the vibration in the y axis direction of the center of gravity of the weight portion 15.

ダイ1aがy軸周りに回転するとz軸方向に進行する錘部15の重心に対してx軸と平行なコリオリ力が作用する。錘部15がz軸方向に振動している場合、y軸周りの回転に伴うx軸と平行なコリオリ力も振動するため、ダイ1aがy軸周りに回転すると錘部15の重心はz軸の参照振動と同じ振動数においてx軸と平行に振動する。すなわちy軸周りの角速度は錘部15の重心のx軸方向の振動に基づいて導出される。   When the die 1a rotates around the y-axis, a Coriolis force parallel to the x-axis acts on the center of gravity of the weight portion 15 that advances in the z-axis direction. When the weight portion 15 vibrates in the z-axis direction, the Coriolis force parallel to the x-axis accompanying the rotation around the y-axis also vibrates, so that when the die 1a rotates around the y-axis, the center of gravity of the weight portion 15 becomes the z-axis. Vibrates parallel to the x-axis at the same frequency as the reference vibration. That is, the angular velocity around the y-axis is derived based on the vibration in the x-axis direction of the center of gravity of the weight portion 15.

ダイ1aがz軸周りに回転するとy軸方向に進行する錘部15の重心に対してx軸と平行なコリオリ力が作用する。錘部15がy軸方向に振動している場合、z軸周りの回転に伴うx軸と平行なコリオリ力も振動するため、ダイ1aがz軸周りに回転すると錘部15の重心はy軸の参照振動と同じ振動数においてx軸と平行に振動する。すなわちz軸周りの角速度は錘部15の重心のx軸方向の振動に基づいて導出される。   When the die 1a rotates around the z-axis, a Coriolis force parallel to the x-axis acts on the center of gravity of the weight portion 15 traveling in the y-axis direction. When the weight portion 15 vibrates in the y-axis direction, the Coriolis force parallel to the x-axis accompanying the rotation around the z-axis also vibrates. Therefore, when the die 1a rotates around the z-axis, the center of gravity of the weight portion 15 becomes the y-axis. Vibrates parallel to the x-axis at the same frequency as the reference vibration. That is, the angular velocity around the z axis is derived based on the vibration in the x axis direction of the center of gravity of the weight portion 15.

図2Aは振動型角速度センサ1の回路構成を示すブロック図である。図2Bは駆動用圧電素子13a、13b、13c、13dに印加される信号のタイミングや位相を説明する図である(励振期間中あるいは反転期間中に駆動用圧電素子に印加される信号の波数は例示でありこれに限定されない)。駆動信号生成回路21、時分割制御回路23、反転回路22は上述の駆動検出回路を構成する一部である。振動部24には、梁部12a、12b、12c、12dに形成された駆動用圧電素子13と検出用圧電素子14が含まれる。駆動信号生成回路21は、駆動用圧電素子13a、13b、13c、13dに印加するための励振信号Dy1、Dy2、Dz1、Dz2を生成する回路である。駆動信号生成回路21から出力される励振信号Dy1、Dy2、Dz1、Dz2は、時分割制御回路23が生成するタイミングに基づいて、y軸方向の励振信号の出力とz軸方向の励振信号の出力とを切り換えて、駆動用圧電素子に印加される。駆動用圧電素子13a、13cに印加される励振信号Dy1、Dy2は駆動用圧電素子13a、13cが設けられている梁部12a、12cが整列しているy軸方向に錘部15の重心を振動させる信号である。励振信号Dy1、Dy2は、同一の振動数および振幅で振動し、πだけ位相が相互にずれている。駆動用圧電素子13b、13dに印加される励振信号Dz1、Dz2は錘部15の重心をz軸方向に振動させる信号である。励振信号Dz1、Dz2は、振動数、振幅、位相が互いに一致している。   FIG. 2A is a block diagram showing a circuit configuration of the vibration type angular velocity sensor 1. FIG. 2B is a diagram illustrating the timing and phase of signals applied to the driving piezoelectric elements 13a, 13b, 13c, and 13d (the wave number of the signal applied to the driving piezoelectric elements during the excitation period or the inversion period is It is illustrative and not limited to this). The drive signal generation circuit 21, the time division control circuit 23, and the inverting circuit 22 are part of the drive detection circuit described above. The vibrating portion 24 includes a driving piezoelectric element 13 and a detecting piezoelectric element 14 formed on the beam portions 12a, 12b, 12c, and 12d. The drive signal generation circuit 21 is a circuit that generates excitation signals Dy1, Dy2, Dz1, and Dz2 to be applied to the drive piezoelectric elements 13a, 13b, 13c, and 13d. The excitation signals Dy1, Dy2, Dz1, and Dz2 output from the drive signal generation circuit 21 are output in the y-axis direction and in the z-axis direction based on the timing generated by the time division control circuit 23. And are applied to the driving piezoelectric element. The excitation signals Dy1 and Dy2 applied to the driving piezoelectric elements 13a and 13c vibrate the center of gravity of the weight part 15 in the y-axis direction in which the beam parts 12a and 12c provided with the driving piezoelectric elements 13a and 13c are aligned. It is a signal to make. Excitation signals Dy1 and Dy2 vibrate at the same frequency and amplitude, and are out of phase with each other by π. Excitation signals Dz1 and Dz2 applied to the driving piezoelectric elements 13b and 13d are signals that vibrate the center of gravity of the weight portion 15 in the z-axis direction. The excitation signals Dz1 and Dz2 have the same frequency, amplitude, and phase.

y軸方向に整列している検出用圧電素子14a、14cからそれぞれ出力される信号に基づいて錘部15の重心のy軸方向の振動を表す信号が得られる。具体的には、上述したように、支持部10に対して錘部15の重心がy軸方向に変位するとき、y軸方向に整列している梁部12a、12cの表面の支持部10との境界近傍領域は一方が延びて他方が縮むため、梁部12a、12cの表面に設けられた検出用圧電素子14a、14cからそれぞれ出力される信号の極性は互いに逆になる。したがって検出用圧電素子14a、14cから出力された信号の差分を取ることによって錘部15の重心のy軸方向の振動を表す信号yを得ることができる。   Based on the signals output from the detection piezoelectric elements 14a and 14c aligned in the y-axis direction, signals representing the vibration in the y-axis direction of the center of gravity of the weight portion 15 are obtained. Specifically, as described above, when the center of gravity of the weight portion 15 is displaced in the y-axis direction with respect to the support portion 10, the support portions 10 on the surfaces of the beam portions 12a and 12c aligned in the y-axis direction Since one of the regions in the vicinity of the boundary extends and the other contracts, the polarities of the signals output from the detection piezoelectric elements 14a and 14c provided on the surfaces of the beam portions 12a and 12c are opposite to each other. Therefore, a signal y representing the vibration of the center of gravity of the weight portion 15 in the y-axis direction can be obtained by taking the difference between the signals output from the detecting piezoelectric elements 14a and 14c.

x軸方向に整列している検出用圧電素子14b、14dからそれぞれ出力される信号に基づいて、錘部15の重心のx軸方向の振動を表す信号が得られる。具体的には、上述したように、支持部10に対して錘部15の重心がx軸方向に変位するとき、x軸方向に整列している梁部12b、12dの表面の支持部10との境界近傍領域は一方が延びて他方が縮むため、梁部12b、12dの表面に設けられた検出用圧電素子14b、14dから出力される信号の極性は互いに逆になる。したがってそれらの信号の差分を取ることによって錘部15の重心のx軸方向の振動を表す信号xが得られる。   Based on the signals output from the detection piezoelectric elements 14b and 14d aligned in the x-axis direction, a signal representing the vibration in the x-axis direction of the center of gravity of the weight portion 15 is obtained. Specifically, as described above, when the center of gravity of the weight portion 15 is displaced in the x-axis direction with respect to the support portion 10, the support portions 10 on the surfaces of the beam portions 12b and 12d aligned in the x-axis direction Since one of the regions in the vicinity of the boundary extends and the other contracts, the polarities of signals output from the detecting piezoelectric elements 14b and 14d provided on the surfaces of the beam portions 12b and 12d are opposite to each other. Therefore, a signal x representing the vibration of the center of gravity of the weight portion 15 in the x-axis direction is obtained by taking the difference between these signals.

支持部10に対して錘部15の重心がz軸方向に変位するとき、x軸方向に整列している梁部12b、12dの表面の支持部10との境界近傍領域は一方が延びるとき他方も延び一方が縮むとき他方も縮むため、梁部12b、12dの表面に設けられた検出用圧電素子14b、14dから出力される信号の極性は一致する。したがって、検出用圧電素子14b、14dから出力された信号の和分を取ることによって錘部15の重心のz軸方向の振動を表す信号zが得られる。   When the center of gravity of the weight portion 15 is displaced in the z-axis direction with respect to the support portion 10, the region near the boundary with the support portion 10 on the surfaces of the beam portions 12b and 12d aligned in the x-axis direction is the other when one extends. When one of them extends and the other contracts, the other also contracts, so that the polarities of the signals output from the detecting piezoelectric elements 14b and 14d provided on the surfaces of the beam portions 12b and 12d are the same. Therefore, a signal z representing the vibration of the center of gravity of the weight portion 15 in the z-axis direction is obtained by taking the sum of the signals output from the detection piezoelectric elements 14b and 14d.

駆動信号生成回路21は、y軸方向に錘部15を振動させるための励振信号Dy1、Dy2と、z軸方向に錘部15を振動させるための励振信号Dz1、Dz2を時分割制御回路23の生成するタイミングa1にしたがって時分割して出力する。y軸方向に錘部15を振動させるための励振信号Dy1、Dy2を印加しているy軸励振期間においては、錘部15の重心のy軸方向の参照振動を表す信号として信号yを扱い、y軸方向の参照振動に対してz軸周りの角速度に伴って作用するコリオリ力を表す信号として信号xを扱う。z軸方向に錘部15を振動させるための励振信号Dz1、Dz2を印加しているz軸励振期間においては、錘部15の重心のz軸方向の参照振動を表す信号として信号zを扱い、z軸方向の参照振動に対してy軸周りの角速度にともなって発生するコリオリ力を表す信号として信号xを扱うとともに、z軸方向の参照振動に対してx軸周りの角速度にともなって発生するコリオリ力を表す信号として信号yを扱う。   The drive signal generation circuit 21 generates excitation signals Dy1 and Dy2 for vibrating the weight portion 15 in the y-axis direction and excitation signals Dz1 and Dz2 for vibrating the weight portion 15 in the z-axis direction. The output is time-divided according to the generation timing a1. In the y-axis excitation period in which the excitation signals Dy1 and Dy2 for vibrating the weight portion 15 in the y-axis direction are applied, the signal y is treated as a signal representing the reference vibration in the y-axis direction of the center of gravity of the weight portion 15; The signal x is treated as a signal representing the Coriolis force acting with the angular velocity around the z-axis with respect to the reference vibration in the y-axis direction. In the z-axis excitation period in which the excitation signals Dz1 and Dz2 for vibrating the weight portion 15 in the z-axis direction are applied, the signal z is treated as a signal representing the reference vibration in the z-axis direction of the center of gravity of the weight portion 15, The signal x is treated as a signal representing the Coriolis force generated with the angular velocity around the y-axis with respect to the reference vibration in the z-axis direction, and generated with the angular velocity around the x-axis with respect to the reference vibration in the z-axis direction. The signal y is treated as a signal representing Coriolis force.

本実施形態では、y軸励振期間とz軸励振期間との間の切り換え期間に、切り換え前の励振振動を静定するための信号を印加する。具体的には、時分割制御回路23が生成するタイミングa2に基づいて、反転回路22によって励振信号の位相が反転された信号が駆動用圧電素子に印加される。その結果、励振と同じ振幅および周波数で位相が反転した信号を駆動用圧電素子13に印加することができ、切り換え期間の直前まで印加されていた励振信号による振動を静定することができる。ただし、次の軸方向の励振期間の開始直前まで上述の逆位相の信号を印加するのではなく、次の軸方向の励振期間開始までに所定時間を残して印加を終了する。すなわち、静定振動を起こすための信号の印加を終了してから次の軸方向の励振のための信号を印加するまでの間、自然な減衰に任せる期間を設ける。
なお、本実施形態によると、低コストで静定信号を生成し印加することができる。
In the present embodiment, a signal for stabilizing the excitation vibration before switching is applied during the switching period between the y-axis excitation period and the z-axis excitation period. Specifically, based on the timing a2 generated by the time division control circuit 23, a signal obtained by inverting the phase of the excitation signal by the inverting circuit 22 is applied to the driving piezoelectric element. As a result, a signal whose phase is inverted with the same amplitude and frequency as the excitation can be applied to the driving piezoelectric element 13, and the vibration due to the excitation signal applied until immediately before the switching period can be settled. However, the application of the above-described antiphase signal is not applied until immediately before the start of the next axial excitation period, but the application is finished with a predetermined time left until the start of the next axial excitation period. That is, a period for which natural damping is left from the end of application of a signal for causing static vibration to the application of a signal for excitation in the next axial direction is provided.
According to the present embodiment, a static signal can be generated and applied at low cost.

2.第二実施形態
図3Aは、第二実施形態にかかる振動型角速度センサの回路構成を示すブロック図である。図3Bは、駆動用圧電素子13a、13b、13c、13dに印加される信号のタイミングや位相を説明する図である。振動型角速度センサの機械的構成は第一実施形態と共通であるため説明を省略する。
2. Second Embodiment FIG. 3A is a block diagram showing a circuit configuration of a vibration type angular velocity sensor according to a second embodiment. FIG. 3B is a diagram illustrating the timing and phase of signals applied to the driving piezoelectric elements 13a, 13b, 13c, and 13d. Since the mechanical configuration of the vibration type angular velocity sensor is the same as that of the first embodiment, the description thereof is omitted.

本実施形態では、励振方向を切り換える前に、検出用圧電素子14a、14b、14c、14dによって検出された信号に基づいて生成した静定信号を駆動用圧電素子13a、13b、13c、13dに印加する。具体的には、検出用圧電素子14a、14b、14c、14dによって検出された信号が示す振動と振幅・周波数が同じで位相が反転した振動を加えるための信号を、フィードバック制御回路25において静定信号として生成し、駆動用圧電素子13a、13b、13c、13dに印加する。なお、フィードバック制御回路25によって静定信号が印加されている期間は、駆動信号生成回路21から励振信号は出力されない。以上のように、本実施形態では、検出用圧電素子14によって検出された振動を示す検出信号の振幅・周波数・位相に基づいて生成された静定信号を駆動用圧電素子13に加えることにより、振動を確実に減衰させることができる。   In this embodiment, before switching the excitation direction, a static signal generated based on the signals detected by the detecting piezoelectric elements 14a, 14b, 14c, 14d is applied to the driving piezoelectric elements 13a, 13b, 13c, 13d. To do. Specifically, the feedback control circuit 25 statically determines a signal for applying a vibration having the same amplitude and frequency as the vibration detected by the signals detected by the detection piezoelectric elements 14a, 14b, 14c, and 14d, but having the phase reversed. A signal is generated and applied to the driving piezoelectric elements 13a, 13b, 13c, and 13d. Note that no excitation signal is output from the drive signal generation circuit 21 during the period in which the static control signal is applied by the feedback control circuit 25. As described above, in the present embodiment, by adding the static signal generated based on the amplitude, frequency, and phase of the detection signal indicating the vibration detected by the detection piezoelectric element 14 to the drive piezoelectric element 13, The vibration can be reliably damped.

なお、その他の実施形態として、フィードバック制御回路25は、検出用圧電素子14によって検出された振動と同じ振幅の振動であって、直前に駆動用圧電素子13によって加えられていた振動と位相が反転した振動を起こすための信号を、駆動用圧電素子13に加えてもよい。すなわち、振幅のみフィードバックし、位相は駆動用圧電素子13に直前まで印加していた振動の位相と逆位相となる信号を静定信号として印加してもよい。なお、この場合、第一実施形態と同様に、静定信号の印加を終了してから切り換え後の軸方向の励振のための信号を印加するまでの間、自然な減衰に任せる期間を設けるようにしてもよい。   As another embodiment, the feedback control circuit 25 is a vibration having the same amplitude as the vibration detected by the detecting piezoelectric element 14, and the phase of the vibration is reversed from that of the vibration applied by the driving piezoelectric element 13 immediately before. A signal for causing such vibration may be applied to the driving piezoelectric element 13. That is, only the amplitude may be fed back, and a signal whose phase is opposite to the phase of the vibration applied to the driving piezoelectric element 13 just before may be applied as a static signal. In this case, as in the first embodiment, a period for leaving natural attenuation is provided between the end of application of the static signal and the application of the signal for axial excitation after switching. It may be.

3.第三実施形態
図4Aは、第三実施形態にかかる振動型角速度センサの回路構成を示すブロック図である。図4Bは、駆動用圧電素子13a、13b、13c、13dに印加される信号のタイミングや位相を説明する図である。機械的構成は第一実施形態と共通であるため説明を省略する。本実施形態では、振動部の等価回路を用いて、切り換え前の励振方向の振動を減衰するために効果的な静定信号をシミュレートし、シミュレートによって得られた最適な静定信号を静定信号生成回路26によって生成し、駆動用圧電素子13に印加する。なお、静定信号生成回路26によって静定信号が印加されている期間は、駆動信号生成回路21から励振信号は出力されない。図4Cは駆動部と振動部と検出部の等価回路を示している。本実施形態によると、シミュレートにより効果的な静定信号を導くことができるため、確実に切り換え前の振動を静定することができる。
3. Third Embodiment FIG. 4A is a block diagram showing a circuit configuration of a vibration type angular velocity sensor according to a third embodiment. FIG. 4B is a diagram illustrating the timing and phase of signals applied to the driving piezoelectric elements 13a, 13b, 13c, and 13d. Since the mechanical configuration is the same as that of the first embodiment, description thereof is omitted. In the present embodiment, an effective static stabilization signal for damping vibration in the excitation direction before switching is simulated using an equivalent circuit of the vibration section, and the optimal static stabilization signal obtained by the simulation is It is generated by the constant signal generation circuit 26 and applied to the driving piezoelectric element 13. Note that the excitation signal is not output from the drive signal generation circuit 21 during the period in which the stabilization signal is applied by the stabilization signal generation circuit 26. FIG. 4C shows an equivalent circuit of the drive unit, the vibration unit, and the detection unit. According to the present embodiment, an effective stabilization signal can be derived by simulation, so that the vibration before switching can be reliably stabilized.

4.他の実施形態
尚、本発明の技術的範囲は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態で示した材質や寸法や形状はあくまで例示である。
4). Other Embodiments The technical scope of the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the scope of the present invention. For example, the materials, dimensions, and shapes shown in the above embodiment are merely examples.

1:振動型角速度センサ、1a:ダイ、10:支持部、12(12a、12b、12c、12d):梁部、13(13a、13b、13c、13d):駆動用圧電素子、14(14a、14b、14c、14d):検出用圧電素子、15:錘部、21:駆動信号生成回路、22:反転回路、23:時分割制御回路、24:振動部、25:フィードバック制御回路、100:基層、102:ストッパ層、104:ばね層、106:絶縁層、108:電極層、110:圧電層、112:電極層。   1: vibration type angular velocity sensor, 1a: die, 10: support part, 12 (12a, 12b, 12c, 12d): beam part, 13 (13a, 13b, 13c, 13d): driving piezoelectric element, 14 (14a, 14b, 14c, 14d): detection piezoelectric element, 15: weight part, 21: drive signal generation circuit, 22: inversion circuit, 23: time division control circuit, 24: vibration part, 25: feedback control circuit, 100: base layer , 102: stopper layer, 104: spring layer, 106: insulating layer, 108: electrode layer, 110: piezoelectric layer, 112: electrode layer.

Claims (6)

可撓部と、
前記可撓部を支持する支持部と、
前記可撓部と結合し前記可撓部とともに運動する錘部と、
直交する複数の励振方向に前記錘部を振動させる励振手段と、
コリオリ力に対応する検出方向における前記錘部の振動を検出する検出手段と、
切り換え前の励振方向に前記錘部を振動させる駆動信号の印加終了後から切り換え前と別の励振方向に前記錘部を振動させる駆動信号を印加するまでの切り換え期間中に、切り換え前の前記錘部の振動に関連する信号に基づいて生成した静定信号を、前記切換期間終了まで所定時間を残して前記励振手段に印加するとともに、前記静定信号の印加後に前記錘部の振動を自然減衰させる静定制御手段と、
を備える振動型角速度センサ。

A flexible part;
A support part for supporting the flexible part;
A weight portion coupled to the flexible portion and moving together with the flexible portion;
Excitation means for vibrating the weight portion in a plurality of orthogonal excitation directions;
Detection means for detecting the vibration of the weight portion in the detection direction corresponding to the Coriolis force;
The weight before switching during the switching period from the end of application of the drive signal for vibrating the weight in the excitation direction before switching to the application of the drive signal for vibrating the weight in another excitation direction before switching. A static signal generated based on a signal related to the vibration of the part is applied to the excitation means leaving a predetermined time until the switching period ends, and the vibration of the weight part is naturally attenuated after the static signal is applied. A static control means for causing
A vibration type angular velocity sensor comprising:

前記静定制御手段は、切り換え前に前記励振手段に加されていた信号の位相を反転した信号を、前記励振手段に印加する、
請求項1に記載の振動型角速度センサ。
Wherein the settling control means, a signal obtained by inverting the phase of the signal that has been marked pressurized to said exciting means before switching, it is applied to the excitation means,
The vibration type angular velocity sensor according to claim 1.
前記静定制御手段は、前記検出手段によって検出された前記検出信号の位相を反転した信号を、前記励振手段に印加する、
請求項1に記載の振動型角速度センサ。
The static control means applies a signal obtained by inverting the phase of the detection signal detected by the detection means to the excitation means .
The vibration type angular velocity sensor according to claim 1.
前記静定制御手段は、前記検出手段によって検出された前記検出信号と同じ振幅であって、切り換え前に前記励振手段に印加されていた駆動信号と位相が反転した信号を、前記励振手段に印加する、
請求項1に記載の振動型角速度センサ。
Wherein the settling control means applies a same amplitude detection signal and detected by said detecting means, a signal drive signal and the phase which has been applied to the excitation means before switching is inverted, the driving means To
The vibration type angular velocity sensor according to claim 1.
前記静定制御手段は、前記励振手段および前記検出手段の等価回路を用いて、切り換え前の励振方向の振動に対する静定信号をシミュレートし、前記シミュレートすることによって得られる静定信号を、前記励振手段に印加する、
請求項1に記載の振動型角速度センサ。
The static control means uses an equivalent circuit of the excitation means and the detection means to simulate a static signal for vibration in the excitation direction before switching, and to obtain a static signal obtained by the simulation. Applying to the excitation means ;
The vibration type angular velocity sensor according to claim 1.
前記励振手段および前記検出手段は圧電素子である、  The excitation means and the detection means are piezoelectric elements.
請求項1から5のいずれか一項に記載の振動型角速度センサ。  The vibration type angular velocity sensor according to any one of claims 1 to 5.
JP2009256089A 2009-11-09 2009-11-09 Vibration type angular velocity sensor Expired - Fee Related JP5397171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256089A JP5397171B2 (en) 2009-11-09 2009-11-09 Vibration type angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256089A JP5397171B2 (en) 2009-11-09 2009-11-09 Vibration type angular velocity sensor

Publications (3)

Publication Number Publication Date
JP2011099818A JP2011099818A (en) 2011-05-19
JP2011099818A5 JP2011099818A5 (en) 2012-12-13
JP5397171B2 true JP5397171B2 (en) 2014-01-22

Family

ID=44191099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256089A Expired - Fee Related JP5397171B2 (en) 2009-11-09 2009-11-09 Vibration type angular velocity sensor

Country Status (1)

Country Link
JP (1) JP5397171B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218991B1 (en) 2010-08-06 2013-01-07 삼성전기주식회사 Apparatus for driving gyroscope sensor
KR101237604B1 (en) 2011-09-02 2013-02-26 한국기술교육대학교 산학협력단 Apparatus for driving gyroscope sensor and method thereof
JP6067102B2 (en) * 2013-03-29 2017-01-25 旭化成株式会社 Angular velocity sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308530A (en) * 2004-04-21 2005-11-04 Denso Corp Angular speed/acceleration composite sensor
JP2006226770A (en) * 2005-02-16 2006-08-31 Seiko Instruments Inc Mechanical quantity sensor
JP2007271320A (en) * 2006-03-30 2007-10-18 Kyocera Corp Acceleration/angular velocity detecting element and manufacturing method therefor, and acceleration/angular velocity measuring instrument
JP4234734B2 (en) * 2006-07-05 2009-03-04 和廣 岡田 Angular velocity sensor
JP5177740B2 (en) * 2007-10-11 2013-04-10 日本信号株式会社 Gyro sensor drift suppression method
JP2009128164A (en) * 2007-11-22 2009-06-11 Alps Electric Co Ltd Composite sensor for acceleration-angular velocity-magnetic azimuth detection, and device using it

Also Published As

Publication number Publication date
JP2011099818A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
WO2007145113A1 (en) Inertial sensor
JP6575129B2 (en) Vibration type angular velocity sensor
JP2007256235A (en) Inertia force sensor
JP2003028644A (en) Angular velocity sensor
JP5397171B2 (en) Vibration type angular velocity sensor
JP2006242730A (en) Sensor and physical quantity detection system
WO2018003692A1 (en) Physical quantity sensor
JP5360020B2 (en) Angular velocity sensor
JP4710926B2 (en) Angular velocity sensor
JP5407259B2 (en) Angular velocity sensor element
JP6733621B2 (en) Vibration type angular velocity sensor
JP6740965B2 (en) Vibration type angular velocity sensor
JP2012112819A (en) Vibration gyro
JP2010145315A (en) Vibration gyroscope
JP6074629B2 (en) Angular velocity sensor element and angular velocity sensor
WO2018092449A1 (en) Gyro sensor and electronic device
WO2016067543A1 (en) Vibration-type angular velocity sensor
JP2010197062A (en) Vibration-type angular velocity sensor
JP2012042250A (en) Vibration type angular velocity sensor
JP6922850B2 (en) Physical quantity sensor
JP6604158B2 (en) Vibration type angular velocity sensor
JP5849190B2 (en) Angular velocity sensor element
JP2008232704A (en) Inertia force sensor
JP2004301575A (en) Angular velocity sensor
JP6657842B2 (en) Angular velocity sensor device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5397171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees