JP5396901B2 - Mold and manufacturing method thereof - Google Patents

Mold and manufacturing method thereof Download PDF

Info

Publication number
JP5396901B2
JP5396901B2 JP2009036687A JP2009036687A JP5396901B2 JP 5396901 B2 JP5396901 B2 JP 5396901B2 JP 2009036687 A JP2009036687 A JP 2009036687A JP 2009036687 A JP2009036687 A JP 2009036687A JP 5396901 B2 JP5396901 B2 JP 5396901B2
Authority
JP
Japan
Prior art keywords
mold
electric discharge
work
discharge machining
affected layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009036687A
Other languages
Japanese (ja)
Other versions
JP2010188654A (en
Inventor
照善 宗像
欣吾 古川
伸介 筒井
剛 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2009036687A priority Critical patent/JP5396901B2/en
Publication of JP2010188654A publication Critical patent/JP2010188654A/en
Application granted granted Critical
Publication of JP5396901B2 publication Critical patent/JP5396901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

本発明は、プラスチック部品等の成形に用いられる金型及びその製造方法に関するものであり、特にワイヤーハーネスにおけるコネクタ等の小型のプラスチック部品の成形に好適に用いられる金型及びその製造方法に関する。   The present invention relates to a mold used for molding plastic parts and the like and a method for manufacturing the same, and more particularly to a mold suitably used for molding small plastic parts such as a connector in a wire harness and a method for manufacturing the same.

自動車用ワイヤーハーネスでは、ワイヤーの接続部分に小型のプラスチック部品からなるコネクタが用いられている。このようなワイヤーハーネス用コネクタは、所定の金型にプラスチックを射出成形することで所定の形状に製造されている。   In a wire harness for automobiles, a connector made of a small plastic part is used at a wire connecting portion. Such a wire harness connector is manufactured in a predetermined shape by injection-molding plastic into a predetermined mold.

コネクタの成形に用いられる金型は、一般に、金属の母材の表面を放電加工することで所定の形状に形成されている。しかし、放電加工を施した金型は、加工面となる金型表面に、引張り方向の残留応力が残ってしまう。引っ張り方向の残留応力は、金型の強度を低下させ、金型寿命を短くするという問題があった。そこで、放電加工を施した金型表面に、圧縮方向の残留応力を発生させて、金型の強度低下を改良する方法が公知である(例えば、特許文献1、2参照)。   A mold used for forming a connector is generally formed into a predetermined shape by subjecting the surface of a metal base material to electrical discharge machining. However, in a die subjected to electric discharge machining, residual stress in the tensile direction remains on the die surface serving as a machined surface. The residual stress in the pulling direction has a problem of reducing the strength of the mold and shortening the mold life. Therefore, a method is known in which a residual stress in the compression direction is generated on the surface of the die subjected to electric discharge machining to improve the strength reduction of the die (for example, see Patent Documents 1 and 2).

特許文献1に記載の方法は、放電加工面にアルミナ等の不定形の粒子を噴射して加工変質層を完全除去する第1工程と、スチール、セラミック、ガラスビーズ等の球状の粒子を噴射して表面荒さを調整するとともに圧縮方向の残留応力を付加する第2工程とを行う方法である。   In the method described in Patent Document 1, the first step of completely removing the work-affected layer by injecting amorphous particles such as alumina onto the electric discharge machining surface, and spherical particles such as steel, ceramic, and glass beads are injected. And a second step of adjusting the surface roughness and applying a residual stress in the compression direction.

また上記特許文献2に記載の方法は、金型表面に衝撃塑性加工を施した後、加工表面に0MPa超〜1000MPa、深さ0.2mmの位置に300MPa以上降伏応力以下の残留応力を付加した後、電解研磨、エメリー紙研磨、ワイヤー放電等により、上記処理を施した部分を厚さ0.3mm〜1mm未満の範囲で除去するものである。   In the method described in Patent Document 2, after applying impact plastic working to the mold surface, residual stress of 300 MPa or more and yield stress or less is added to the processed surface at a position of more than 0 MPa to 1000 MPa and a depth of 0.2 mm. Then, the part which performed the said process is removed in the range whose thickness is 0.3 mm-less than 1 mm by electrolytic polishing, emery paper polishing, wire discharge, etc.

特開昭63−207563号公報JP-A 63-207563 特開2008−73706号公報JP 2008-73706 A

しかしながら、上記特許文献1に記載の方法をワイヤーハーネス用金型に適用して、加工変質層を完全除去してしまうと、金型の寸法の変化が大きくなってしまうという問題があった。ワイヤーハーネス用金型は、部品寸法が小さな精密金型であり、加工変質層を全部除去してしまうと、除去前後の寸法変化が大きくなりすぎる。また上記特許文献1の方法では、第1工程及び第2工程の合計の加工時間が20分程度かかっており、加工時間が長くなり、加工コストが上昇してしまう。   However, if the method described in Patent Document 1 is applied to a wire harness mold and the work-affected layer is completely removed, there has been a problem that a change in the dimensions of the mold becomes large. The wire harness mold is a precision mold with small component dimensions, and if the work-affected layer is completely removed, the dimensional change before and after removal becomes too large. Further, in the method of Patent Document 1, the total processing time of the first step and the second step takes about 20 minutes, the processing time becomes long, and the processing cost increases.

また上記特許文献2に記載の方法をワイヤーハーネス用金型に適用しようとすると、電解研磨等により表面の研磨を0.3〜1mm行うため、加工量が大きく、加工コストが上昇してしまうという問題があった。また、金型の加工量が大きくなると、金型の加工精度にも悪影響を与えると考えられる。   Further, if the method described in Patent Document 2 is applied to a wire harness mold, the surface is polished by 0.3 to 1 mm by electrolytic polishing or the like, so that the processing amount is large and the processing cost is increased. There was a problem. Further, it is considered that when the amount of processing of the mold increases, the processing accuracy of the mold is also adversely affected.

本発明の解決しようとする課題は、上記問題点を解決しようとするものであり、加工精度が良好で、加工コストが安価な金型及びその製造方法を提供することにある。   The problem to be solved by the present invention is to solve the above-mentioned problems, and to provide a mold having good machining accuracy and low machining cost, and a method for manufacturing the same.

上記課題を解決するために本発明の金型は、放電加工により形成された加工変質層が残存し、該加工変質層が圧縮方向の残留応力を有していることを要旨とするものである。   In order to solve the above problems, the mold of the present invention is characterized in that a work-affected layer formed by electric discharge machining remains and the work-affected layer has residual stress in the compression direction. .

本発明の金型の製造方法は、放電加工を施して所定の金型形状に加工を行う放電加工工程と、上記放電加工工程で生じた加工変質層を残存し該加工変質層に圧縮方向の残留応力を付加する応力付加工程とを備えることを要旨とするものである。   The mold manufacturing method of the present invention includes an electric discharge machining process in which electric discharge machining is performed to form a predetermined mold shape, and a work-affected layer generated in the electric discharge machining process remains, and the work-affected layer has a compression direction. And a stress applying step for adding residual stress.

本発明の金型は、放電加工による加工変質層に圧縮方向の残留応力を有しているので、金型の強度が上昇し、金型の寿命を伸ばすことができる。更に、加工変質層を除去しないことにより、金型寸法が大きく変化することがないので、金型寸法の精度が良好である。また加工変質層を除去しないので、金型に反りが発生することもない。更に、加工変質層を除去しないので、短時間で加工を行うことができ、加工コストが上昇することもないといった効果を有する。   Since the metal mold | die of this invention has the residual stress of a compression direction in the process-affected layer by electric discharge machining, the intensity | strength of a metal mold | die can be raised and the lifetime of a metal mold | die can be extended. Furthermore, since the mold dimension does not change greatly by not removing the work-affected layer, the precision of the mold dimension is good. In addition, since the work-affected layer is not removed, the mold does not warp. Furthermore, since the work-affected layer is not removed, the work can be performed in a short time, and the processing cost is not increased.

本発明の金型の製造方法は、放電加工を施して所定の金型形状に加工を行う放電加工工程と、上記放電加工工程で生じた加工変質層を残存し該加工変質層に圧縮方向の残留応力を付加する応力付加工程とを有するものであるから、寸法精度の良好な金型が確実に得られる。更に加工時間も短時間でよく加工コストが安価である。   The mold manufacturing method of the present invention includes an electric discharge machining process in which electric discharge machining is performed to form a predetermined mold shape, and a work-affected layer generated in the electric discharge machining process remains, and the work-affected layer has a compression direction. And a stress applying step for adding residual stress, so that a mold with good dimensional accuracy can be obtained with certainty. Furthermore, the processing time is short and the processing cost is low.

図1は本発明の金型の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a mold of the present invention. 図2(a)〜(c)は本発明の金型の製造方法の各工程を示す断面図である。2 (a) to 2 (c) are cross-sectional views showing respective steps of the mold manufacturing method of the present invention. 図3(a)は疲労試験に用いる試験片の斜視図であり、(b)は疲労試験方法の説明図である。FIG. 3A is a perspective view of a test piece used in the fatigue test, and FIG. 3B is an explanatory diagram of the fatigue test method. 実施例、比較例の疲労試験結果を示すグラフである。It is a graph which shows the fatigue test result of an Example and a comparative example.

以下、図面を参照して本発明の実施形態について詳細に説明する。図1は本発明の金型の一例を示す断面図である。図1に示すように、本発明の金型1は、母材2の表面が放電加工により所定の形状に形成されている。そして母材2の表面には、放電加工による加工変質層3が除去されずに残存している。更に金型1は、加工変質層3に圧縮方向の応力を付加して、加工変質層3が圧縮方向の残留応力を有している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of a mold of the present invention. As shown in FIG. 1, in the mold 1 of the present invention, the surface of a base material 2 is formed into a predetermined shape by electric discharge machining. Then, the work-affected layer 3 by electric discharge machining remains on the surface of the base material 2 without being removed. Further, the mold 1 applies a stress in the compression direction to the work-affected layer 3, and the work-affected layer 3 has a residual stress in the compression direction.

加工変質層3の圧縮方向の応力からなる残留応力は、金型1の表面の加工変質層3に対して粒子を噴射することにより付加されたものである。この圧縮方向の応力を付加するための粒子の噴射は、加工変質層3を除去せず、金型寸法が変化しない噴射圧力、噴射時間等の噴射条件で行えばよい。   The residual stress composed of stress in the compression direction of the work-affected layer 3 is added by injecting particles onto the work-affected layer 3 on the surface of the mold 1. The injection of the particles for applying the stress in the compression direction may be performed under injection conditions such as an injection pressure and an injection time that do not remove the work-affected layer 3 and change the mold size.

以下、本発明の金型の製造方法について説明する。図2(a)〜(c)は本発明の金型の製造方法の各工程を示す断面図である。本発明の金型の製造方法は、先ず図2(a)に示すように母材2を準備して母材2の表面に放電加工を施す放電加工工程を行う。放電加工工程を行うと、図2(b)に示すようにで、母材2の表面が所定の金型形状に形成される。また同図に示すように、母材2の表面には放電加工による加工変質層3が形成される。   Hereinafter, the manufacturing method of the metal mold | die of this invention is demonstrated. 2 (a) to 2 (c) are cross-sectional views showing respective steps of the mold manufacturing method of the present invention. In the mold manufacturing method of the present invention, first, as shown in FIG. 2A, a base material 2 is prepared, and an electric discharge machining process is performed in which electric discharge machining is performed on the surface of the base material 2. When the electric discharge machining process is performed, the surface of the base material 2 is formed in a predetermined mold shape as shown in FIG. Further, as shown in the figure, a work-affected layer 3 is formed on the surface of the base material 2 by electric discharge machining.

金型に凹凸を形成する放電加工方法としては、公知の放電加工装置等を用いた方法が利用できる。また母材2は、ワイヤーハーネス用コネクタ等の小型プラスチック部品の成形用金型に通常用いられる金属材料が利用できる。   As an electric discharge machining method for forming irregularities on the mold, a method using a known electric discharge machining apparatus or the like can be used. In addition, the base material 2 can be a metal material that is usually used in a molding die for small plastic parts such as a connector for a wire harness.

次いで図2(c)に示すように、応力付加工程では、噴射装置4を用いて上記放電加工工程において生じた加工変質層3に粒子を噴射して、圧縮方向の応力を付加する。このとき、粒子の噴射は金型寸法が変化しないように行い、加工変質層3を完全に除去せずに、加工変質層3が残存している状態で圧縮方向の応力を付加する。粒子の噴射に用いる噴射装置4は、ブラスト装置等の研掃装置を利用することができる。   Next, as shown in FIG. 2C, in the stress application step, particles are injected onto the work-affected layer 3 generated in the electric discharge machining step using the injection device 4 to apply a stress in the compression direction. At this time, the injection of particles is performed so as not to change the die size, and the stress in the compression direction is applied while the work-affected layer 3 remains without completely removing the work-affected layer 3. The spraying device 4 used for spraying particles can use a blasting device such as a blasting device.

粒子の噴射による応力付加工程は、第1噴射工程で、アルミナのような角のある不定形の粒子を噴射し、第2噴射工程で、ガラスビーズのような球状の粒子を噴射するのが好ましい。第1噴射工程及び第2噴射工程のいずれも、加工変質層3を完全に除去しないように噴射する。上記第1噴射工程で用いられる不定形の粒子は、金型の母材よりも高い硬度の粒子であればよい。また不定形の粒子は、アルミナ以外の他の不定形の粒子を用いてもよい。上記第2噴射工程で用いられる球状の粒子は、金型の母材よりも高い硬度の球状の粒子であればよく、ガラスビーズ以外にスチール、セラミック等の粒子を用いることができる。   In the step of applying stress by the injection of particles, it is preferable that in the first injection step, angular irregular particles such as alumina are injected, and in the second injection step, spherical particles such as glass beads are injected. . In both the first injection process and the second injection process, the process-affected layer 3 is injected so as not to be completely removed. The amorphous particles used in the first injection step may be particles having a hardness higher than that of the mold base material. The amorphous particles may be other irregular particles other than alumina. The spherical particles used in the second injection step may be spherical particles having a hardness higher than that of the base metal of the mold, and particles such as steel and ceramic can be used in addition to glass beads.

このように応力の付加を、不定形の粒子を用いた第1噴射工程と、球状の粒子を用いた第2噴射工程との二つの噴射工程に分けて行うことにより、以下の利点がある。先ず第1噴射工程では、不定形の角のある粒子を噴射することで、加工変質層3に圧縮方向の残留応力を確実に付与することができる。次いで第2噴射工程では、第1噴射工程において角のある不定形の粒子の噴射により金型の表面が荒れた部分が、球状の粒子の噴射で研磨されて平滑になる。しかも球状の粒子の噴射により、加工変質層3に圧縮方向の応力も更に付与される。   Thus, by adding stress to the two injection processes, the first injection process using irregular particles and the second injection process using spherical particles, there are the following advantages. First, in the first injection step, residual stress in the compression direction can be reliably applied to the work-affected layer 3 by injecting particles having irregular corners. Next, in the second injection step, the portion where the surface of the mold is roughened by the injection of angular irregular particles in the first injection step is polished and smoothed by the injection of spherical particles. Moreover, stress in the compression direction is further imparted to the work-affected layer 3 by the injection of spherical particles.

第1噴射工程、第2噴射工程で、加工変質層3を除去しない具体的な噴射条件の一例は、以下の通りである。第1噴射工程は、不定形粒子の粒径が、20〜40μmであるのが好ましい。また不定形の粒子を噴射する圧力は、0.3MPa以下であるのが好ましく、更に好ましくは0.1〜0.2MPaの範囲である。また不定形の粒子の噴射時間は、30秒以下であるのが好ましく、更に好ましくは20秒以下である。上記の噴射条件は、加工距離が50〜150mmの場合である。   An example of specific injection conditions in which the work-affected layer 3 is not removed in the first injection process and the second injection process is as follows. In the first injection step, it is preferable that the particle size of the irregular shaped particles is 20 to 40 μm. The pressure for injecting the irregular shaped particles is preferably 0.3 MPa or less, more preferably in the range of 0.1 to 0.2 MPa. In addition, the ejection time of the irregular particles is preferably 30 seconds or shorter, more preferably 20 seconds or shorter. Said injection conditions are a case where a processing distance is 50-150 mm.

第2噴射工程は球状の粒子の粒径が、10〜30μmの範囲であるのが好ましい。また球状の粒子を噴射する圧力は、0.3MPa以下であるのが好ましく、更に好ましくは0.1〜0.2MPaの範囲である。また球状の粒子の噴射時間は30秒以下であるのが好ましく、更に好ましくは20秒以下である。   In the second injection step, the spherical particles preferably have a particle size in the range of 10 to 30 μm. The pressure for injecting the spherical particles is preferably 0.3 MPa or less, and more preferably in the range of 0.1 to 0.2 MPa. Further, the ejection time of the spherical particles is preferably 30 seconds or shorter, more preferably 20 seconds or shorter.

〔実験例〕
上記の放電加工層を除去せず2段階で粒子を噴射して圧縮方向の応力を付加した場合の効果を検証する実験を行った。実験には図3(a)に示す形状の試験片5を用いた。試験片5は、厚さ1.2mmの工具鋼製板状体の所定の部分(図中斜線で示した部分)に放電加工を施して放電加工部6を形成した。試験片5の放電加工部6以外の部分は研削加工により形成した。試験片5には、疲労試験器に取り付けるための固定用の取り付け穴7が設けられている。この試験片5の放電加工部6に、粒径30μmの不定形アルミナ粒子を用いて空気圧力0.1〜0.2MPa、距離50〜150mmで約10秒未満噴射し、次いで、放電加工部6に、粒径20μmのガラスビーズを用いて、空気圧力0.1〜0.2MPa、金型までの距離50〜150mmで約10秒未満噴射して、圧縮方向の応力を付加した。この粒子噴射後の試験片5の放電加工部6の断面組織を顕微鏡観察したところ、表面に加工変質層が残存していることが確認できた。
[Experimental example]
An experiment was conducted to verify the effect of applying stress in the compression direction by ejecting particles in two stages without removing the electric discharge machining layer. In the experiment, a test piece 5 having a shape shown in FIG. The test piece 5 formed an electric discharge machining portion 6 by performing electric discharge machining on a predetermined portion (a portion indicated by hatching in the drawing) of a plate-like steel plate having a thickness of 1.2 mm. Parts other than the electric discharge machining part 6 of the test piece 5 were formed by grinding. The test piece 5 is provided with fixing holes 7 for fixing to the fatigue tester. The electrical discharge machining part 6 of the test piece 5 is sprayed for less than about 10 seconds at an air pressure of 0.1 to 0.2 MPa and a distance of 50 to 150 mm using amorphous alumina particles having a particle diameter of 30 μm. Then, using a glass bead having a particle size of 20 μm, an air pressure of 0.1 to 0.2 MPa and a distance to the mold of 50 to 150 mm were sprayed for less than about 10 seconds to apply a stress in the compression direction. When the cross-sectional structure of the electric discharge machining portion 6 of the test piece 5 after the particle injection was observed with a microscope, it was confirmed that the work-affected layer remained on the surface.

更に試験片5の疲労試験を行った。比較のために、放電加工を行って放電加工部を形成したが、圧縮方向の応力を付加しないかった試験片(放電加工のみ)についても試験を行った。試験の結果を図4のグラフに示す。尚、疲労試験方法は下記の通りである。   Further, a fatigue test of the test piece 5 was performed. For comparison, electric discharge machining was performed to form an electric discharge machining portion, but a test piece (only electric discharge machining) that did not add stress in the compression direction was also tested. The test results are shown in the graph of FIG. The fatigue test method is as follows.

疲労試験方法は、JIS Z 2275「金属平板の平面曲げ疲れ試験方法」に準じて行った。図3(b)に示すように、試験器8の固定部9に試験片5の取り付け穴7を用いて取り付け、図中試験片5の上方を支持体10で支持し、繰り返し速度が600cpmとして試験片5の表面に曲げ応力を加え、破壊までの繰り返し数を測定した。   The fatigue test method was performed according to JIS Z 2275 “Flatness bending fatigue test method for metal flat plate”. As shown in FIG.3 (b), it attaches to the fixing | fixed part 9 of the test device 8 using the attachment hole 7 of the test piece 5, the upper part of the test piece 5 is supported by the support body 10 in the figure, and the repetition rate shall be 600 cpm. Bending stress was applied to the surface of the test piece 5 and the number of repetitions until failure was measured.

図4のグラフに示すように、疲労試験の結果、圧縮方向の応力を付加したもの(放電加工+応力付加)は、放電加工のみのものと比較して繰り返し回数が多くなっており、強度の向上が確認できた。   As shown in the graph of FIG. 4, as a result of the fatigue test, the stress added in the compression direction (electric discharge machining + stress addition) has a larger number of repetitions than the electric discharge machining alone, and the strength Improvement was confirmed.

本発明の金型は、大きさとして一辺が10mm以下程度の小型の精密な小型プラスチック部品の成形に好適であり、特に自動車用ワイヤーハーネスのコネクタ等の部品の成形に好適に用いることができる。   The mold of the present invention is suitable for molding small, precise and small plastic parts having a side of about 10 mm or less, and particularly suitable for molding parts such as connectors for automobile wire harnesses.

1 金型
2 母材
3 加工変質層
4 噴射装置
1 Mold 2 Base material 3 Processed alteration layer 4 Injection device

Claims (4)

ワイヤーハーネス用コネクタのプラスチックの成形に用いる金型であって、放電加工により形成された加工変質層が残存し、該加工変質層に圧縮方向の残留応力を有しており、
前記圧縮方向の残留応力が、前記加工変質層に対する粒子の噴射により付加されたものであることを特徴とする金型。
A mold used for molding a plastic for a connector for a wire harness , wherein a work-affected layer formed by electric discharge remains, and the work-affected layer has a residual stress in the compression direction ,
The mold according to claim 1, wherein the residual stress in the compression direction is added by injection of particles to the work-affected layer .
ワイヤーハーネス用コネクタのプラスチックの成形に用いる金型の製造方法であって、放電加工を施して所定の金型形状に加工を行う放電加工工程と、上記放電加工工程で生じた加工変質層を残存し該加工変質層に粒子を噴射して圧縮方向の残留応力を付加する応力付加工程とを備えることを特徴とする金型の製造方法。 A method of manufacturing a mold used for plastic molding of a connector for a wire harness , which includes an electric discharge machining process in which electric discharge machining is performed into a predetermined mold shape, and a work-affected layer generated in the electric discharge machining process remains. And a stress applying step of adding particles to the work-affected layer to inject a residual stress in the compression direction. 前記応力付加工程が、放電加工面に粒子を0.3MPa以下の圧力で噴射して圧縮方向の残留応力を付加するものであることを特徴とする請求項記載の金型の製造方法。 3. The method of manufacturing a mold according to claim 2 , wherein the stress applying step includes applying residual stress in the compression direction by injecting particles onto the electric discharge machining surface at a pressure of 0.3 MPa or less. 前記応力付加工程が、不定形の粒子を噴射する工程と、球状の粒子を噴射する工程とからなることを特徴とする請求項2又は3に記載の金型の製造方法。 The method of manufacturing a mold according to claim 2 or 3 , wherein the stress applying step includes a step of injecting irregularly shaped particles and a step of injecting spherical particles.
JP2009036687A 2009-02-19 2009-02-19 Mold and manufacturing method thereof Expired - Fee Related JP5396901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036687A JP5396901B2 (en) 2009-02-19 2009-02-19 Mold and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036687A JP5396901B2 (en) 2009-02-19 2009-02-19 Mold and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010188654A JP2010188654A (en) 2010-09-02
JP5396901B2 true JP5396901B2 (en) 2014-01-22

Family

ID=42815244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036687A Expired - Fee Related JP5396901B2 (en) 2009-02-19 2009-02-19 Mold and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5396901B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116313331B (en) * 2023-01-30 2023-12-26 中江立江电子有限公司 27-core insulator glass bead auxiliary assembly device and assembly method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170867A (en) * 1999-12-15 2001-06-26 Sumitomo Rubber Ind Ltd Surface treating method for metal molding
JP2004084550A (en) * 2002-08-27 2004-03-18 Ishikawajima Harima Heavy Ind Co Ltd Method for finishing blade embedding section
JP4746310B2 (en) * 2004-11-30 2011-08-10 住友電工ハードメタル株式会社 Mold
JP4681864B2 (en) * 2004-12-01 2011-05-11 矢崎総業株式会社 System for synchronizing component design and mold design, and dedicated server and terminal device used therefor
JP4699264B2 (en) * 2006-04-03 2011-06-08 三菱重工業株式会社 Metal member manufacturing method and structural member

Also Published As

Publication number Publication date
JP2010188654A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
US20180086662A1 (en) Process for forming textured glass component with high bending strength
EP2008771B1 (en) Process for producing metallic member
CA2698946C (en) Process for producing a body provided with a slot as a test crack
US20190022824A1 (en) Method for surface-treating mold
JP6721789B2 (en) Hollow spring and manufacturing method thereof
JP5396901B2 (en) Mold and manufacturing method thereof
WO2009054175A1 (en) Press mold for sheet metal forming, method of treating press mold surface, and process for manufacturing automobile body
JP6614197B2 (en) Method for evaluating delayed fracture characteristics of high strength steel sheets
US8590815B2 (en) Fuel injector tip with compressive residual stress
JP2006278087A (en) Contact member, connector, and contact member surface reforming method
JP4317573B2 (en) Press die for sheet metal molding, processing method of press die surface, and production method of vehicle body
JP5124668B2 (en) Mold finishing method
CN111235380B (en) Control method for surface layer characteristic parameter gradient during damaged metal component repair
CN117182661A (en) Workpiece surface processing method
JP3028624B2 (en) How to strengthen carburized parts
KR100727844B1 (en) Method for reducing spring-back of aluminum ally sheets
JP2005506203A (en) How to modify the roll
JP4467865B2 (en) Mold member processing method and manufacturing method
DE102018105958A1 (en) Method for producing a tool for microstructured optical components
CN115725825A (en) Residual stress removing method, workpiece processing method, composite shot blasting and preparation method
KR101488105B1 (en) Manufacturing method for coil spring
JP6822003B2 (en) Manufacturing method of rotor steel sheet
JP2009131895A (en) Press die for forming sheet metal, method of treating surface of press die, and method of producing car body
JP5261015B2 (en) Resin mold and method for producing resin mold
TW568815B (en) Method of enhancing surface of mold die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees