JP5396092B2 - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP5396092B2
JP5396092B2 JP2009018643A JP2009018643A JP5396092B2 JP 5396092 B2 JP5396092 B2 JP 5396092B2 JP 2009018643 A JP2009018643 A JP 2009018643A JP 2009018643 A JP2009018643 A JP 2009018643A JP 5396092 B2 JP5396092 B2 JP 5396092B2
Authority
JP
Japan
Prior art keywords
ignition
pedestal
discharge
melting
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009018643A
Other languages
Japanese (ja)
Other versions
JP2010177052A (en
Inventor
直道 宮下
守 無笹
彰 鈴木
計良 鳥居
友聡 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009018643A priority Critical patent/JP5396092B2/en
Priority to EP10735630.5A priority patent/EP2393172B1/en
Priority to KR1020117020057A priority patent/KR101346973B1/en
Priority to US13/146,816 priority patent/US8476817B2/en
Priority to PCT/JP2010/000447 priority patent/WO2010087158A1/en
Priority to CN201080005319.3A priority patent/CN102292887B/en
Publication of JP2010177052A publication Critical patent/JP2010177052A/en
Application granted granted Critical
Publication of JP5396092B2 publication Critical patent/JP5396092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode

Landscapes

  • Spark Plugs (AREA)

Description

本発明は、接地電極に、中心電極との間で火花放電間隙を形成する針状の発火部が設けられたスパークプラグに関するものである。   The present invention relates to a spark plug in which a ground-like electrode is provided with a needle-like ignition portion that forms a spark discharge gap with a center electrode.

近年、内燃機関から排出される排気ガスによる環境汚染への対策の強化が求められており、排気ガスの清浄化には着火性の向上が寄与することから、接地電極の内面に耐火花消耗性の高い貴金属を用いて形成した電極チップ(放電部)を中心電極へ向けて突き出すように設けたものがある。この構成のスパークプラグでは、従来のものと比べ接地電極を火花放電間隙から遠ざけることができるため、火花放電間隙で形成される火炎核が、その成長過程の初期の段階において接地電極に接触しにくい。このため、火炎核が接地電極と接触して熱を奪われることによりその成長が阻害される、いわゆる消炎作用が低減されるので、スパークプラグの着火性を向上することができる。   In recent years, there has been a demand for strengthening countermeasures against environmental pollution caused by exhaust gas discharged from internal combustion engines, and the improvement of ignitability contributes to the purification of exhaust gas. There is an electrode tip (discharge part) formed using a noble metal having a high height so as to protrude toward the center electrode. In the spark plug of this configuration, the ground electrode can be moved away from the spark discharge gap as compared with the conventional one, so that the flame nucleus formed in the spark discharge gap is less likely to contact the ground electrode in the initial stage of the growth process. . For this reason, since the so-called flame extinguishing action, in which the growth is hindered by contact of the flame core with the ground electrode and deprived of heat, is reduced, the ignitability of the spark plug can be improved.

このような形態のスパークプラグでは、電極チップに大きな熱負荷がかかるため、放電部と接地電極との接合部位においてクラックや剥離等が生ずる虞がある。そこで、放電部(発火部)と接地電極との接合において、両者間に、両者の中間の線膨張係数を有する中間部材として台座部(突起部)を介在させたものがある。この台座部により、放電部、台座部および接地電極のそれぞれの接合部位において生じ得る熱応力を緩和することで、クラックや剥離等の発生を低減することができる(例えば特許文献1参照。)。また、特許文献1では、電極チップと中間部材との接合を、接合時に過大な圧接力が作用する抵抗溶接では行わず、熱の集中が容易で溶け深さを大きくできると共に、接合後に内部応力が残留しにくいレーザ溶接により行っている。そして、このレーザ溶接によって、電極チップと中間部材との間には、それぞれの構成材料(成分)が混合した溶融部が形成される。   In such a form of spark plug, since a large thermal load is applied to the electrode tip, there is a possibility that cracks, peeling, and the like may occur at the joint portion between the discharge portion and the ground electrode. Therefore, in joining the discharge part (ignition part) and the ground electrode, there is one in which a pedestal part (protrusion part) is interposed as an intermediate member having a linear expansion coefficient intermediate between the two. With this pedestal portion, it is possible to reduce the occurrence of cracks, peeling, and the like by relaxing thermal stress that can occur at the joints of the discharge portion, the pedestal portion, and the ground electrode (see, for example, Patent Document 1). Further, in Patent Document 1, the electrode tip and the intermediate member are not joined by resistance welding in which an excessive pressure contact force acts during joining, heat concentration is easy and the melting depth can be increased, and internal stress after joining can be increased. This is done by laser welding where it is difficult to remain. And by this laser welding, the fusion | melting part which each component material (component) mixed is formed between an electrode tip and an intermediate member.

特開平11−204233号公報JP-A-11-204233

しかしながら、放電部や台座部は、エンジンの燃焼に伴う熱負荷を受けると膨張し、それぞれにおいて変形を生ずるが、両者間に形成された溶融部の形成位置や大きさ、形状など、構造上の形態によっては、溶融部が放電部や台座部の変形を抑制する構造となってしまう場合があった。特に、溶融部が、放電部の側面と台座部の突出先端側の面とを連結するように形成されていると、放電部が接地電極から突出する突出方向と直交する径方向において、内向きに、溶融部が放電部を支える形態となる。このことは溶融部と台座部との間の界面においても同様であり、溶融部が、放電部や台座部の熱膨張に伴う径方向(特に外向き)への伸張を抑制し、それぞれの界面において内部応力が高まると、クラックや剥離等を生ずる虞があった。   However, the discharge part and the pedestal part expand when subjected to a heat load accompanying combustion of the engine and cause deformation in each. However, the structure, such as the formation position, size, and shape of the fusion part formed between the two parts Depending on the form, the melted part may have a structure that suppresses deformation of the discharge part and the pedestal part. In particular, when the melting portion is formed so as to connect the side surface of the discharge portion and the surface on the protruding tip side of the pedestal portion, inward in the radial direction perpendicular to the protruding direction in which the discharge portion protrudes from the ground electrode In addition, the molten part is in a form to support the discharge part. The same applies to the interface between the melted part and the pedestal part. The melted part suppresses the expansion in the radial direction (particularly outward) due to the thermal expansion of the discharge part and the pedestal part, and the respective interfaces. When the internal stress is increased, cracks and peeling may occur.

本発明は上記問題点を解決するためになされたものであり、接地電極に突設される発火部を構成する放電部と台座部との接合部位に形成される、溶融部の構造上の形態を規定することで、クラックや剥離等の発生を抑制できるスパークプラグを提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a structural form of a melting portion formed at a joint portion between a discharge portion and a pedestal portion constituting a firing portion protruding from a ground electrode. It is an object of the present invention to provide a spark plug that can suppress the occurrence of cracks and peeling.

本発明に係るスパークプラグは、中心電極と、軸線方向に沿って延びる軸孔を有し、その軸孔の内部に前記中心電極を保持する絶縁碍子と、当該絶縁碍子を周方向に取り囲んで保持する主体金具と、一端部が前記主体金具に接合され、他端部における自身の一側面が前記中心電極の先端部に向き合うように屈曲された接地電極と、当該接地電極の前記他端部における前記一側面上で、前記中心電極の前記先端部と対向する位置に設けられ、前記一側面から前記中心電極へ向けて突出する発火部とを備えたスパークプラグにおいて、前記発火部が、以下の特徴を有するものである。まず、前記発火部は、前記一側面から前記中心電極に向けて突出する台座部と、前記台座部の突出先端にレーザ溶接によって接合され、自身と前記中心電極の前記先端部との間で火花放電間隙を形成する放電部と、前記台座部と前記放電部との間に介在し、前記レーザ溶接によって両者の構成材料が互いに溶け合って形成された溶融部とを有してなる。そして、前記発火部が前記接地電極の前記一側面から突出する方向に沿う前記発火部の中心軸を含む、前記発火部の任意の断面をみたときに、前記溶融部は、前記発火部の側面から前記中心軸へ向かう形態で形成されており、前記発火部の前記任意の断面の輪郭線形状をみたときに、前記溶融部は、前記台座部の側面および前記放電部の側面と接続された形状をなしている。さらに、前記発火部の前記任意の断面において、前記側面のうち一方の側面における、前記台座部と前記溶融部との境界の位置をX1、前記放電部と前記溶融部との境界の位置をX2としつつ、前記任意の断面のうち前記境界の位置X1とX2との直線距離が最大となる第1断面をみたときに、前記中心軸と直交する径方向における前記放電部の前記外径Sと、前記放電部と前記溶融部との境界の位置X2を基準に前記溶融部が前記径方向内向きに延びる長さTとがT/S≧0.5を満たすとともに、前記境界の位置X1およびX2を通る仮想線と、前記中心軸とがなす角の外角θが、135°≦θ≦175°を満たし、前記台座部の側面と、前記台座部が設けられる前記接地電極の前記一側面とは、前記発火部の前記中心軸を含む断面の形状が内側に凹んだ曲線形状をなす第1連結部によって連結されているThe spark plug according to the present invention has a center electrode, an axial hole extending along the axial direction, an insulator that holds the center electrode inside the axial hole, and surrounds and holds the insulator in the circumferential direction. A metal shell, one end of which is joined to the metal shell, a ground electrode that is bent so that one side surface of the other end faces the tip of the center electrode, and the other end of the ground electrode On the one side surface, a spark plug provided at a position facing the tip portion of the center electrode and projecting from the one side surface toward the center electrode, the ignition portion includes the following: It has characteristics. First, the ignition portion is joined by laser welding to a pedestal portion projecting from the one side surface toward the center electrode, and a projecting tip of the pedestal portion, and a spark is formed between itself and the tip portion of the center electrode. It has a discharge part that forms a discharge gap, and a fusion part that is interposed between the pedestal part and the discharge part, and is formed by melting the constituent materials of each other by the laser welding. And when the said ignition part sees arbitrary cross sections of the said ignition part including the central axis of the said ignition part along the direction which protrudes from the said one side surface of the said ground electrode, the said fusion | melting part is a side surface of the said ignition part The melting portion is connected to the side surface of the pedestal portion and the side surface of the discharge portion when the contour shape of the arbitrary cross section of the ignition portion is viewed. It has a shape. Furthermore, in the arbitrary cross section of the ignition part, the position of the boundary between the pedestal part and the melting part on one of the side surfaces is X1, and the position of the boundary between the discharge part and the melting part is X2. and then while, when the straight line distance between the position X1 and X2 of the boundary of the arbitrary cross-section viewing the first section having a maximum, and the outer diameter S of the discharge portion in a radial direction perpendicular to the central axis The length T of the melted portion extending inward in the radial direction with respect to the position X2 of the boundary between the discharge portion and the melted portion satisfies T / S ≧ 0.5, and the boundary position X1 and a virtual line passing through the X2, external angle theta of the central axis and forms angle, meets the 135 ° ≦ θ ≦ 175 °, and the side surface of the pedestal portion, the one side surface of the ground electrode to which the base portion is provided Is a cross-sectional shape including the central axis of the ignition portion It is connected by a first connecting portion forming a recessed curved shape on the inside.

本発明に係るスパークプラグにおいて、溶融部は、発火部の周方向全周にわたって形成されている。つまり、発火部の径方向において、放電部や台座部と溶融部とが層状の配置となる部位では、放電部や台座部は、溶融部によって径方向内向きに保持される形態をなす。したがって、放電部や台座部は、受熱により径方向に伸張(変形)した際に、発火部の周方向に連続して環状をなす溶融部を径方向外向きに押し広げることによる抗力を受け、伸張が抑制される。ここで、発火部の断面の輪郭線形状をみたとき、溶融部は、台座部の側面および放電部の側面と接続された形状をなす。このため、溶融部が、放電部の側面と、発火部の径方向に沿って広がる平面(例えば接地電極の一側面や、台座部の先端面)とを接続する場合に比べ、放電部の径方向外向きの伸張に対する溶融部による抑制を、小さくすることができる。   In the spark plug according to the present invention, the melting portion is formed over the entire circumference in the circumferential direction of the ignition portion. That is, in the radial direction of the ignition portion, the discharge portion or the pedestal portion is configured to be held inward in the radial direction by the melting portion at a portion where the discharge portion or the pedestal portion and the melting portion are arranged in layers. Therefore, when the discharge part and the pedestal part are stretched (deformed) in the radial direction by receiving heat, the discharge part and the pedestal part are subjected to a drag force by expanding the annular melt part continuously outward in the circumferential direction of the ignition part, Stretching is suppressed. Here, when the outline shape of the cross section of the ignition part is seen, the melting part is connected to the side surface of the pedestal part and the side surface of the discharge part. For this reason, compared with the case where a fusion part connects the side surface of a discharge part, and the plane (for example, one side surface of a ground electrode, or the front end surface of a base part) which spreads along the radial direction of a firing part, the diameter of a discharge part. It is possible to reduce the suppression by the melted portion with respect to the outward extension in the direction.

また、本発明に係るスパークプラグによれば、発火部の第1断面において、位置X1と位置X2とを通る仮想線と、発火部の中心軸とがなす角の外角θが、135°≦θ≦175°を満たすことを規定している。外角θが180°未満の場合、溶融部のなすテーパ形状は、位置X2から位置X1へ向けて広がる形態となり、位置X2においては、溶融部が放電部を径方向内向きに押さえる形態となる。外角θが小さくなり、そのテーパの広がり具合が大きくなるほど、溶融部自身が、径方向外向きへの押圧力に対し、耐えやすい構造となる。このため、放電部が受熱し熱膨張による変形が生じた際に、放電部の径方向外向きへの変形が溶融部によって抑制されやすくなり、具体的に、外角θが135°より小さくなると、放電部と溶融部との界面において内部応力が高まり、クラックや剥離等を生ずる虞がある。一方、放電部よりも線膨張係数の大きな台座部は、熱膨張による変形が生じた場合に、放電部よりも大きな変形を生ずるため、台座部は、放電部よりも、自身の変形に対する溶融部からの抑制を受けやすい。外角θが180°未満で、溶融部のなすテーパ形状が、位置X2から位置X1へ向けて広がる形態であっても、台座部は、溶融部による自身の変形に対する抑制の影響を受けやすい。具体的に、外角θが175°より大きくなると、台座部と溶融部との界面において内部応力が高まり、クラックや剥離等を生ずる虞がある。   Further, according to the spark plug according to the present invention, in the first cross section of the ignition portion, the outer angle θ of the angle formed by the imaginary line passing through the position X1 and the position X2 and the central axis of the ignition portion is 135 ° ≦ θ It satisfies that ≦ 175 °. When the outer angle θ is less than 180 °, the taper shape formed by the melted portion becomes a form spreading from the position X2 toward the position X1, and at the position X2, the melted part presses the discharge part radially inward. The smaller the outer angle θ and the greater the extent of the taper, the more easily the melted part itself can withstand the radially outward pressing force. For this reason, when the discharge part receives heat and deformation due to thermal expansion occurs, the outward deformation in the radial direction of the discharge part is easily suppressed by the melting part, and specifically, when the outer angle θ is smaller than 135 °, Internal stress increases at the interface between the discharge part and the melted part, which may cause cracks and peeling. On the other hand, when the pedestal portion having a larger linear expansion coefficient than the discharge portion is deformed due to thermal expansion, the pedestal portion is deformed larger than the discharge portion. It is easy to receive suppression from. Even if the outer angle θ is less than 180 ° and the taper shape formed by the melting portion is widened from the position X2 toward the position X1, the pedestal portion is easily affected by suppression of the deformation of the melting portion. Specifically, when the outer angle θ is greater than 175 °, internal stress increases at the interface between the pedestal portion and the melted portion, which may cause cracks and peeling.

ところで、中心電極の先端部と対向する位置に発火部を配置したが、本発明でいう対向とは、厳密に、先端部と発火部との向かい合う面同志が平行に配置された状態をいうものではなく、また、中心電極と発火部とを厳密に軸合わせした構成を意味するものでもない。すなわち、本発明のスパークプラグに所定の電力を供給したときに中心電極の先端部と発火部との間で火花放電間隙が形成されれば足りる。   By the way, although the ignition part is arranged at a position facing the tip part of the center electrode, the term “opposite” in the present invention strictly refers to a state in which the opposing surfaces of the tip part and the ignition part are arranged in parallel. However, it does not mean a configuration in which the center electrode and the ignition part are precisely aligned. That is, it is sufficient if a spark discharge gap is formed between the tip portion of the center electrode and the ignition portion when predetermined power is supplied to the spark plug of the present invention.

さらに、本発明に係るスパークプラグによれば、発火部の任意の断面において、放電部の外径Sに対する溶融部の形成深さの割合(溶融部形成割合)をT/Sとして求めたとき、T/S≧0.5を満たすことを規定している。放電部と台座部との間の線膨張係数を有する溶融部を両者間に介在させることは、両者の間において生ずる熱応力を緩和する上で好ましい。溶融部が内向きに延びる長さ(形成深さ)Tは、大きいほど、放電部と台座部との間において溶融部の介在する大きさが大きくなるので、両者間に生ずる熱応力が緩和されやすくなる。具体的に、T/Sが0.5以上となるように溶融部を形成すれば、クラックや剥離等の発生を効果的に抑制することができる。
また、本発明に係るスパークプラグにおいて、前記台座部の側面と、前記台座部が設けられる前記接地電極の前記一側面とは、前記発火部の前記中心軸を含む断面の形状が内側に凹んだ曲線形状をなす第1連結部によって連結されている。発火部は接地電極の一側面から突出する形態に設けられるため、その根元部分に第1連結部を設けて肉厚を増せば、例えばエンジンの駆動に伴う振動等を受けた場合でも十分に、その振動による負荷に耐え得る構造を得ることができる。
本発明に係るスパークプラグは、中心電極と、軸線方向に沿って延びる軸孔を有し、その軸孔の内部に前記中心電極を保持する絶縁碍子と、当該絶縁碍子を周方向に取り囲んで保持する主体金具と、一端部が前記主体金具に接合され、他端部における自身の一側面が前記中心電極の先端部に向き合うように屈曲された接地電極と、当該接地電極の前記他端部における前記一側面上で、前記中心電極の前記先端部と対向する位置に設けられ、前記一側面から前記中心電極へ向けて突出する発火部とを備えたスパークプラグにおいて、前記発火部が、以下の特徴を有するものである。まず、前記発火部は、前記一側面から前記中心電極に向けて突出する台座部と、前記台座部の突出先端にレーザ溶接によって接合され、自身と前記中心電極の前記先端部との間で火花放電間隙を形成する放電部と、前記台座部と前記放電部との間に介在し、前記レーザ溶接によって両者の構成材料が互いに溶け合って形成された溶融部とを有してなる。そして、前記発火部が前記接地電極の前記一側面から突出する方向に沿う前記発火部の中心軸を含む、前記発火部の任意の断面をみたときに、前記溶融部は、前記発火部の側面から前記中心軸へ向かう形態で形成されており、前記発火部の前記任意の断面の輪郭線形状をみたときに、前記溶融部は、前記台座部の側面および前記放電部の側面と接続された形状をなしている。さらに、前記発火部の前記任意の断面において、前記側面のうち一方の側面における、前記台座部と前記溶融部との境界の位置をX1、前記放電部と前記溶融部との境界の位置をX2としつつ、前記任意の断面のうち前記境界の位置X1とX2との直線距離が最大となる第1断面をみたときに、前記中心軸と直交する径方向における前記放電部の前記外径Sと、前記放電部と前記溶融部との境界の位置X2を基準に前記溶融部が前記径方向内向きに延びる長さTとがT/S≧0.5を満たすとともに、前記境界の位置X1およびX2を通る仮想線と、前記中心軸とがなす角の外角θが、135°≦θ≦175°を満たし、前記台座部は、前記接地電極の前記一側面側において、自身の外径が拡径されてなる鍔部を有し、前記台座部の前記鍔部において前記突出先端側を向く面と、前記鍔部よりも前記突出先端における前記台座部の側面とは、前記発火部の前記中心軸を含む断面の形状が内側に凹んだ曲線形状をなす第2連結部によって連結されている。
本発明に係るスパークプラグにおいて、溶融部は、発火部の周方向全周にわたって形成されている。つまり、発火部の径方向において、放電部や台座部と溶融部とが層状の配置となる部位では、放電部や台座部は、溶融部によって径方向内向きに保持される形態をなす。したがって、放電部や台座部は、受熱により径方向に伸張(変形)した際に、発火部の周方向に連続して環状をなす溶融部を径方向外向きに押し広げることによる抗力を受け、伸張が抑制される。ここで、発火部の断面の輪郭線形状をみたとき、溶融部は、台座部の側面および放電部の側面と接続された形状をなす。このため、溶融部が、放電部の側面と、発火部の径方向に沿って広がる平面(例えば接地電極の一側面や、台座部の先端面)とを接続する場合に比べ、放電部の径方向外向きの伸張に対する溶融部による抑制を、小さくすることができる。
また、本発明に係るスパークプラグによれば、発火部の第1断面において、位置X1と位置X2とを通る仮想線と、発火部の中心軸とがなす角の外角θが、135°≦θ≦175°を満たすことを規定している。外角θが180°未満の場合、溶融部のなすテーパ形状は、位置X2から位置X1へ向けて広がる形態となり、位置X2においては、溶融部が放電部を径方向内向きに押さえる形態となる。外角θが小さくなり、そのテーパの広がり具合が大きくなるほど、溶融部自身が、径方向外向きへの押圧力に対し、耐えやすい構造となる。このため、放電部が受熱し熱膨張による変形が生じた際に、放電部の径方向外向きへの変形が溶融部によって抑制されやすくなり、具体的に、外角θが135°より小さくなると、放電部と溶融部との界面において内部応力が高まり、クラックや剥離等を生ずる虞がある。一方、放電部よりも線膨張係数の大きな台座部は、熱膨張による変形が生じた場合に、放電部よりも大きな変形を生ずるため、台座部は、放電部よりも、自身の変形に対する溶融部からの抑制を受けやすい。外角θが180°未満で、溶融部のなすテーパ形状が、位置X2から位置X1へ向けて広がる形態であっても、台座部は、溶融部による自身の変形に対する抑制の影響を受けやすい。具体的に、外角θが175°より大きくなると、台座部と溶融部との界面において内部応力が高まり、クラックや剥離等を生ずる虞がある。
ところで、中心電極の先端部と対向する位置に発火部を配置したが、本発明でいう対向とは、厳密に、先端部と発火部との向かい合う面同志が平行に配置された状態をいうものではなく、また、中心電極と発火部とを厳密に軸合わせした構成を意味するものでもない。すなわち、本発明のスパークプラグに所定の電力を供給したときに中心電極の先端部と発火部との間で火花放電間隙が形成されれば足りる。
さらに、本発明に係るスパークプラグによれば、発火部の任意の断面において、放電部の外径Sに対する溶融部の形成深さの割合(溶融部形成割合)をT/Sとして求めたとき、T/S≧0.5を満たすことを規定している。放電部と台座部との間の線膨張係数を有する溶融部を両者間に介在させることは、両者の間において生ずる熱応力を緩和する上で好ましい。溶融部が内向きに延びる長さ(形成深さ)Tは、大きいほど、放電部と台座部との間において溶融部の介在する大きさが大きくなるので、両者間に生ずる熱応力が緩和されやすくなる。具体的に、T/Sが0.5以上となるように溶融部を形成すれば、クラックや剥離等の発生を効果的に抑制することができる。
さらに、前記台座部は、前記接地電極の前記一側面側において、自身の外径が拡径されてなる鍔部を有している。この場合、前記台座部の前記鍔部において前記突出先端側を向く面と、前記鍔部よりも前記突出先端における前記台座部の側面とは、前記発火部の前記中心軸を含む断面の形状が内側に凹んだ曲線形状をなす第2連結部によって連結されている。台座部に鍔部を設けた場合、接地電極の一側面に対し、台座部の接合安定性を高めることができる。そして、その鍔部と、台座部の本体の側面との間に第2連結部を設けて肉厚を増せば、上記同様、発火部が、自身の根元部分にかかる振動等の負荷に十分に耐え得る構造を得ることができる。
Furthermore, according to the spark plug according to the present invention, when the ratio of the formation depth of the melted part to the outer diameter S of the discharge part (melted part forming ratio) is determined as T / S in an arbitrary cross section of the ignition part, It satisfies that T / S ≧ 0.5. It is preferable to interpose a molten part having a linear expansion coefficient between the discharge part and the pedestal part between them in order to relieve the thermal stress generated between them. The larger the length (formation depth) T at which the melted portion extends inward, the greater the size of the melted portion between the discharge portion and the pedestal portion, so that the thermal stress generated between them is alleviated. It becomes easy. Specifically, if the melted part is formed so that T / S is 0.5 or more, the occurrence of cracks and peeling can be effectively suppressed.
Further, in the spark plug according to the present invention, the side surface of the pedestal portion and the one side surface of the ground electrode provided with the pedestal portion are recessed inward in the shape of a cross section including the central axis of the ignition portion. It is connected by a first connecting part having a curved shape. Since the ignition part is provided in a form protruding from one side surface of the ground electrode, if the thickness is increased by providing the first connecting part at the base part, for example, even when subjected to vibration or the like associated with driving the engine, A structure that can withstand the load caused by the vibration can be obtained.
The spark plug according to the present invention has a center electrode, an axial hole extending along the axial direction, an insulator that holds the center electrode inside the axial hole, and surrounds and holds the insulator in the circumferential direction. A metal shell, one end of which is joined to the metal shell, a ground electrode that is bent so that one side surface of the other end faces the tip of the center electrode, and the other end of the ground electrode On the one side surface, a spark plug provided at a position facing the tip portion of the center electrode and projecting from the one side surface toward the center electrode, the ignition portion includes the following: It has characteristics. First, the ignition portion is joined by laser welding to a pedestal portion projecting from the one side surface toward the center electrode, and a projecting tip of the pedestal portion, and a spark is formed between itself and the tip portion of the center electrode. It has a discharge part that forms a discharge gap, and a fusion part that is interposed between the pedestal part and the discharge part, and is formed by melting the constituent materials of each other by the laser welding. And when the said ignition part sees arbitrary cross sections of the said ignition part including the central axis of the said ignition part along the direction which protrudes from the said one side surface of the said ground electrode, the said fusion | melting part is a side surface of the said ignition part The melting portion is connected to the side surface of the pedestal portion and the side surface of the discharge portion when the contour shape of the arbitrary cross section of the ignition portion is viewed. It has a shape. Furthermore, in the arbitrary cross section of the ignition part, the position of the boundary between the pedestal part and the melting part on one of the side surfaces is X1, and the position of the boundary between the discharge part and the melting part is X2. However, when the first cross section where the linear distance between the boundary positions X1 and X2 is the maximum among the arbitrary cross sections is viewed, the outer diameter S of the discharge portion in the radial direction perpendicular to the central axis The length T of the melted portion extending inward in the radial direction with respect to the position X2 of the boundary between the discharge portion and the melted portion satisfies T / S ≧ 0.5, and the boundary position X1 and An outer angle θ formed by an imaginary line passing through X2 and the central axis satisfies 135 ° ≦ θ ≦ 175 °, and the pedestal portion has its outer diameter enlarged on the one side surface of the ground electrode. It has a collar part that is formed into a diameter, and the collar part of the pedestal part And the side facing the protruding tip side and the side surface of the pedestal portion at the protruding tip rather than the flange portion are formed in a curved shape in which the shape of the cross section including the central axis of the ignition portion is recessed inward. It is connected by a connecting part.
In the spark plug according to the present invention, the melting portion is formed over the entire circumference in the circumferential direction of the ignition portion. That is, in the radial direction of the ignition portion, the discharge portion or the pedestal portion is configured to be held inward in the radial direction by the melting portion at a portion where the discharge portion or the pedestal portion and the melting portion are arranged in layers. Therefore, when the discharge part and the pedestal part are stretched (deformed) in the radial direction by receiving heat, the discharge part and the pedestal part are subjected to a drag force by expanding the annular melt part continuously outward in the circumferential direction of the ignition part, Stretching is suppressed. Here, when the outline shape of the cross section of the ignition part is seen, the melting part is connected to the side surface of the pedestal part and the side surface of the discharge part. For this reason, compared with the case where a fusion part connects the side surface of a discharge part, and the plane (for example, one side surface of a ground electrode, or the front end surface of a base part) which spreads along the radial direction of a firing part, the diameter of a discharge part. It is possible to reduce the suppression by the melted portion with respect to the outward extension in the direction.
Further, according to the spark plug according to the present invention, in the first cross section of the ignition portion, the outer angle θ of the angle formed by the imaginary line passing through the position X1 and the position X2 and the central axis of the ignition portion is 135 ° ≦ θ It satisfies that ≦ 175 °. When the outer angle θ is less than 180 °, the taper shape formed by the melted portion becomes a form spreading from the position X2 toward the position X1, and at the position X2, the melted part presses the discharge part radially inward. The smaller the outer angle θ and the greater the extent of the taper, the more easily the melted part itself can withstand the radially outward pressing force. For this reason, when the discharge part receives heat and deformation due to thermal expansion occurs, the outward deformation in the radial direction of the discharge part is easily suppressed by the melting part, and specifically, when the outer angle θ is smaller than 135 °, Internal stress increases at the interface between the discharge part and the melted part, which may cause cracks and peeling. On the other hand, when the pedestal portion having a larger linear expansion coefficient than the discharge portion is deformed due to thermal expansion, the pedestal portion is deformed larger than the discharge portion. It is easy to receive suppression from. Even if the outer angle θ is less than 180 ° and the taper shape formed by the melting portion is widened from the position X2 toward the position X1, the pedestal portion is easily affected by suppression of the deformation of the melting portion. Specifically, when the outer angle θ is greater than 175 °, internal stress increases at the interface between the pedestal portion and the melted portion, which may cause cracks and peeling.
By the way, although the ignition part is arranged at a position facing the tip part of the center electrode, the term “opposite” in the present invention strictly refers to a state in which the opposing surfaces of the tip part and the ignition part are arranged in parallel. However, it does not mean a configuration in which the center electrode and the ignition part are precisely aligned. That is, it is sufficient if a spark discharge gap is formed between the tip portion of the center electrode and the ignition portion when predetermined power is supplied to the spark plug of the present invention.
Furthermore, according to the spark plug according to the present invention, when the ratio of the formation depth of the melted part to the outer diameter S of the discharge part (melted part forming ratio) is determined as T / S in an arbitrary cross section of the ignition part, It satisfies that T / S ≧ 0.5. It is preferable to interpose a molten part having a linear expansion coefficient between the discharge part and the pedestal part between them in order to relieve the thermal stress generated between them. The larger the length (formation depth) T at which the melted portion extends inward, the greater the size of the melted portion between the discharge portion and the pedestal portion, so that the thermal stress generated between them is alleviated. It becomes easy. Specifically, if the melted part is formed so that T / S is 0.5 or more, the occurrence of cracks and peeling can be effectively suppressed.
Furthermore, the pedestal portion has a flange portion whose outer diameter is enlarged on the one side surface side of the ground electrode. In this case, the surface of the pedestal portion facing the protruding tip side in the flange portion and the side surface of the pedestal portion at the protruding tip end than the flange portion have a cross-sectional shape including the central axis of the ignition portion. It is connected by a second connecting portion having a curved shape recessed inward. When the collar portion is provided on the pedestal portion, the stability of joining the pedestal portion to one side surface of the ground electrode can be enhanced. And if a 2nd connection part is provided between the collar part and the side surface of the main body of a base part, and a thickness is increased, the ignition part is enough for the load of vibration etc. concerning its root part like the above. An endurable structure can be obtained.

また、本発明に係るスパークプラグにおいて、前記発火部の前記任意の断面であって前記中心軸を中心とし異なる周方向位置にて観察される複数の断面のうち、全周の半数以上の断面が、前記外径Sと前記長さTとがT/S≧0.5を満たすとともに、前記外角θが135°≦θ≦175°を満たすとよい。上記した、135°≦θ≦175°およびT/S≧0.5の規定は、第1断面だけでなく、発火部の任意の断面であって中心軸を中心とし異なる周方向位置にて観察される複数の断面のうち、全周の半数以上の断面において満たされることが好ましい。溶融部を形成する際に、発火部の周囲に、例えばスポット溶接を断続的に行った場合、形成される溶融部は、発火部の全周にわたって一様な形状とはなりにくく、レーザ光照射の間隔が大きいほど、溶融部の形状や大きさが断面によって大きく異なる。こうした場合、発火部の任意の断面で、中心軸を中心とし異なる周方向位置にて観察される複数の断面のうち、上記規定の満たされない断面が増えることになる。発火部の上記任意の断面のうち、少なくとも全周の半数以上の断面において上記規定が満たされれば、放電部、台座部および溶融部のそれぞれの界面において部分的に内部応力が高まるところがあっても、その内部応力を分散させやすくなり、クラックや剥離等の発生を効果的に抑制することができる。   Moreover, in the spark plug according to the present invention, among the plurality of cross sections observed at different circumferential positions around the central axis, the cross section of more than half of the entire circumference is the arbitrary cross section of the ignition portion. The outer diameter S and the length T satisfy T / S ≧ 0.5, and the outer angle θ preferably satisfies 135 ° ≦ θ ≦ 175 °. The above-mentioned provisions of 135 ° ≦ θ ≦ 175 ° and T / S ≧ 0.5 are observed not only in the first cross section but also in an arbitrary cross section of the ignition part at different circumferential positions around the central axis. Of the plurality of cross sections, it is preferable that the cross section is filled in half or more of the entire circumference. When forming the melted part, for example, when spot welding is intermittently performed around the ignition part, the formed melted part is unlikely to have a uniform shape over the entire circumference of the ignition part. The larger the gap is, the more greatly the shape and size of the melted portion varies depending on the cross section. In such a case, among the plurality of cross-sections observed at different circumferential positions around the central axis in any cross-section of the ignition portion, the cross-sections that do not satisfy the above-mentioned definition increase. Of the above-mentioned arbitrary cross sections of the ignition part, if the above definition is satisfied in at least half of the entire circumference, even if there is a place where the internal stress partially increases at each interface of the discharge part, the pedestal part and the melting part The internal stress can be easily dispersed, and the occurrence of cracks and peeling can be effectively suppressed.

また、本発明に係るスパークプラグにおいて、前記発火部の前記放電部を構成する材料の線膨張係数と、前記台座部を構成する材料の線膨張係数との差が8.1×10−6[1/K]以下であるとよい。このようにすれば、受熱時に放電部と台座部とが径方向へ伸張(変形)した際に、それぞれと溶融部との界面に生ずる内部応力の差を制限し、内部応力の偏りを抑制することができるので、クラックや剥離等の発生をより効果的に抑制することができる。 In the spark plug according to the present invention, a difference between a linear expansion coefficient of a material constituting the discharge part of the ignition part and a linear expansion coefficient of a material constituting the pedestal part is 8.1 × 10 −6 [ 1 / K] or less. In this way, when the discharge part and the pedestal part are stretched (deformed) in the radial direction during heat reception, the difference in internal stress generated at the interface between the discharge part and the melt part is limited, and the deviation of the internal stress is suppressed. Therefore, the occurrence of cracks and peeling can be more effectively suppressed.

また、本発明に係るスパークプラグにおいて、前記台座部は、前記接地電極の前記一側面側において、自身の外径が拡径されてなる鍔部を有してもよい。この場合、前記台座部の前記鍔部において前記突出先端側を向く面と、前記鍔部よりも前記突出先端における前記台座部の側面とは、前記発火部の前記中心軸を含む断面の形状が内側に凹んだ曲線形状をなす第2連結部によって連結されていてもよい。台座部に鍔部を設けた場合、接地電極の一側面に対し、台座部の接合安定性を高めることができる。そして、その鍔部と、台座部の本体の側面との間に第2連結部を設けて肉厚を増せば、上記同様、発火部が、自身の根元部分にかかる振動等の負荷に十分に耐え得る構造を得ることができ、望ましい。
Further, in the spark plug according to the present invention, the front Symbol pedestal, on the one side surface of the ground electrode may have a flange portion outer diameter of its own, which are expanded. In this case, the surface of the pedestal portion facing the protruding tip side in the flange portion and the side surface of the pedestal portion at the protruding tip end than the flange portion have a cross-sectional shape including the central axis of the ignition portion. You may be connected by the 2nd connection part which makes the curved shape dented inside . Case in which the flange portion to the pedestal portion, with respect to one side surface of the ground electrode, it is possible to increase the bonding stability of the pedestal. And if a 2nd connection part is provided between the collar part and the side surface of the main body of a base part, and a thickness is increased, the ignition part is enough for the load of vibration etc. concerning its root part like the above. A durable structure can be obtained and is desirable.

なお、本発明に係るスパークプラグにおいて、前記発火部の前記放電部は、Pt、Ir、RhまたはRuのうちのいずれかの単一の貴金属を用いて形成してもよいし、もしくはそれら貴金属のうち少なくともいずれか1つ以上の貴金属を含有する貴金属合金を用いて形成してもよい。中心電極との間で火花放電間隙を形成する放電部を、貴金属または貴金属合金を用いて形成することは、耐酸化性、耐火花消耗性を得る上で望ましい。   In the spark plug according to the present invention, the discharge portion of the ignition portion may be formed using any single noble metal of Pt, Ir, Rh, or Ru, or the noble metal Of these, a noble metal alloy containing at least one or more noble metals may be used. It is desirable to form a discharge portion that forms a spark discharge gap with the center electrode using a noble metal or a noble metal alloy in order to obtain oxidation resistance and spark consumption resistance.

スパークプラグ100の部分断面図である。1 is a partial cross-sectional view of a spark plug 100. FIG. 火花放電間隙GAP付近を拡大した部分断面図である。It is the fragmentary sectional view which expanded the spark discharge gap GAP vicinity. 発火部80の第1断面を見た図である。It is the figure which looked at the 1st cross section of the ignition part 80. FIG. 変形例としての発火部180を示す図である。It is a figure which shows the ignition part 180 as a modification. 変形例としての発火部280を示す図である。It is a figure which shows the ignition part 280 as a modification. 酸化スケールを求める方法を説明するための例として示す発火部380の断面図である。It is sectional drawing of the ignition part 380 shown as an example for demonstrating the method to obtain | require an oxide scale.

以下、本発明を具体化したスパークプラグの一実施の形態について、図面を参照して説明する。まず、図1,図2を参照し、一例としてのスパークプラグ100の構造について説明する。図1は、スパークプラグ100の部分断面図である。図2は、火花放電間隙GAP付近を拡大した部分断面図である。なお、図1,図2において、スパークプラグ100の軸線O方向を図面における上下方向とし、下側をスパークプラグ100の先端側、上側を後端側として説明する。   Hereinafter, an embodiment of a spark plug embodying the present invention will be described with reference to the drawings. First, the structure of the spark plug 100 as an example will be described with reference to FIGS. FIG. 1 is a partial cross-sectional view of a spark plug 100. FIG. 2 is an enlarged partial sectional view of the vicinity of the spark discharge gap GAP. 1 and 2, the axis O direction of the spark plug 100 is the vertical direction in the drawings, the lower side is the front end side of the spark plug 100, and the upper side is the rear end side.

図1に示すように、スパークプラグ100は、概略、自身の軸孔12内の先端側に中心電極20を保持し、後端側に端子金具40を保持した絶縁碍子10を、その径方向周囲を主体金具50で取り囲んで保持した構造を有する。また、主体金具50には接地電極30が接合されており、その他端部(先端部31)側が中心電極20の先端部22と向き合うように屈曲されている。   As shown in FIG. 1, the spark plug 100 generally includes an insulator 10 that holds the center electrode 20 on the front end side in its own shaft hole 12 and holds the terminal fitting 40 on the rear end side. Is surrounded and held by the metal shell 50. A ground electrode 30 is joined to the metal shell 50, and the other end (tip 31) side is bent so as to face the tip 22 of the center electrode 20.

まず、このスパークプラグ100の絶縁碍子10について説明する。絶縁碍子10は周知のようにアルミナ等を焼成して形成され、軸中心に軸線O方向へ延びる軸孔12が形成された筒形状を有する。軸線O方向の略中央には外径が最も大きな鍔部19が形成されており、それより後端側(図1における上側)には後端側胴部18が形成されている。鍔部19より先端側(図1における下側)には後端側胴部18よりも外径の小さな先端側胴部17が形成され、更にその先端側胴部17よりも先端側に、先端側胴部17よりも外径の小さな脚長部13が形成されている。脚長部13は先端側ほど縮径されており、スパークプラグ100が内燃機関のエンジンヘッド(図示外)に取り付けられた際には、その燃焼室内に曝される。また、脚長部13と先端側胴部17との間は段部15として段状に形成されている。   First, the insulator 10 of the spark plug 100 will be described. As is well known, the insulator 10 is formed by firing alumina or the like, and has a cylindrical shape in which an axial hole 12 extending in the direction of the axis O is formed at the axial center. A flange portion 19 having the largest outer diameter is formed substantially at the center in the direction of the axis O, and a rear end body portion 18 is formed on the rear end side (upper side in FIG. 1). A front end side body portion 17 having an outer diameter smaller than that of the rear end side body portion 18 is formed on the front end side (lower side in FIG. 1) from the flange portion 19, and further, the front end side is closer to the front end side than the front end side body portion 17. A long leg portion 13 having an outer diameter smaller than that of the side body portion 17 is formed. The long leg portion 13 is reduced in diameter toward the distal end side, and when the spark plug 100 is attached to the engine head (not shown) of the internal combustion engine, it is exposed to the combustion chamber. Further, a step portion 15 is formed in a step shape between the leg long portion 13 and the distal end side trunk portion 17.

次に、中心電極20について説明する。中心電極20は、インコネル(商標名)600または601等のNiを主成分とする合金から形成された母材24の内部に、その母材24よりも熱伝導性に優れる銅または銅を主成分とする合金からなる芯材25を埋設した構造を有する棒状の電極である。中心電極20は絶縁碍子10の軸孔12内の先端側に保持されており、その先端部22が、絶縁碍子10の先端よりも、先端側に突出されている。中心電極20の先端部22は、先端側に向かって径小となるように形成されており、その先端部22の先端面には、耐火花消耗性を向上するため貴金属からなる電極チップ90が接合されている。   Next, the center electrode 20 will be described. The center electrode 20 is mainly composed of copper or copper, which is superior in thermal conductivity to the base material 24 inside the base material 24 formed of an alloy containing Ni as a main component, such as Inconel (trade name) 600 or 601. This is a rod-like electrode having a structure in which a core material 25 made of an alloy is embedded. The center electrode 20 is held on the distal end side in the shaft hole 12 of the insulator 10, and the distal end portion 22 of the center electrode 20 protrudes further toward the distal end side than the distal end of the insulator 10. The distal end portion 22 of the center electrode 20 is formed so that the diameter thereof becomes smaller toward the distal end side, and an electrode tip 90 made of a noble metal is provided on the distal end surface of the distal end portion 22 in order to improve spark wear resistance. It is joined.

中心電極20は、絶縁碍子10の軸孔12内を後端側に向けて延びており、軸線O方向に沿って延設される導電性のシール体4およびセラミック抵抗3を経由して、後方(図1における上方)の端子金具40と電気的に接続されている。そして端子金具40には高圧ケーブル(図示外)がプラグキャップ(図示外)を介して接続され、高電圧が印加されるようになっている。   The center electrode 20 extends toward the rear end side in the shaft hole 12 of the insulator 10, and passes through the conductive seal body 4 and the ceramic resistor 3 extending along the axis O direction. It is electrically connected to the terminal fitting 40 (upper in FIG. 1). A high voltage cable (not shown) is connected to the terminal fitting 40 via a plug cap (not shown) so that a high voltage is applied.

次に、主体金具50について説明する。主体金具50は、内燃機関のエンジンヘッド(図示外)にスパークプラグ100を固定するための円筒状の金具である。主体金具50は、絶縁碍子10の後端側胴部18の一部から脚長部13にかけての部位を取り囲むようにして、自身の内部に絶縁碍子10を保持している。主体金具50は低炭素鋼材より形成され、図示外のスパークプラグレンチが嵌合する工具係合部51と、エンジンヘッドの取付孔(図示外)に螺合するねじ山が形成された取付部52とを備えている。   Next, the metal shell 50 will be described. The metal shell 50 is a cylindrical metal fitting for fixing the spark plug 100 to the engine head (not shown) of the internal combustion engine. The metal shell 50 holds the insulator 10 inside itself so as to surround a portion from the rear end side body portion 18 of the insulator 10 to the leg long portion 13. The metal shell 50 is formed of a low carbon steel material, and a tool engaging portion 51 to which a spark plug wrench (not shown) is fitted, and a mounting portion 52 in which a screw thread to be screwed into a mounting hole (not shown) of the engine head is formed. And.

また、主体金具50の工具係合部51と取付部52との間には、鍔状のシール部54が形成されている。そして、シール部54と取付部52との間のねじ首の部分には、板体を折り曲げて形成した環状のガスケット5が嵌挿されている。ガスケット5は、スパークプラグ100をエンジンヘッドの取付孔(図示外)に取り付けた際に、シール部54の座面と取付孔の開口周縁との間で押し潰されて変形し、両者間を封止することで、取付孔を介したエンジン内の気密漏れを防止するものである。   Further, a hook-shaped seal portion 54 is formed between the tool engaging portion 51 and the attachment portion 52 of the metal shell 50. An annular gasket 5 formed by bending a plate is fitted into the screw neck portion between the seal portion 54 and the attachment portion 52. When the spark plug 100 is mounted in the engine head mounting hole (not shown), the gasket 5 is crushed and deformed between the seating surface of the seal portion 54 and the opening periphery of the mounting hole, and seals between the two. By stopping, airtight leakage in the engine through the mounting hole is prevented.

次に、主体金具50の工具係合部51より後端側には薄肉の加締部53が設けられ、シール部54と工具係合部51との間には、加締部53と同様に薄肉の座屈部58が設けられている。工具係合部51から加締部53にかけての主体金具50の内周面と絶縁碍子10の後端側胴部18の外周面との間には、円環状のリング部材6,7が介在されており、更に両リング部材6,7間にタルク(滑石)9の粉末が充填されている。加締部53を内側に折り曲げるようにして加締めることにより、リング部材6,7およびタルク9を介し、絶縁碍子10が主体金具50内で先端側に向け押圧される。これにより、主体金具50の内周で取付部52の位置に形成された段部56に、環状の板パッキン8を介し、絶縁碍子10の段部15が支持されて、主体金具50と絶縁碍子10とが一体となる。このとき、主体金具50と絶縁碍子10との間の気密性は板パッキン8によって保持され、燃焼ガスの流出が防止される。また、座屈部58は、加締めの際に、圧縮力の付加に伴い外向きに撓み変形するように構成されており、タルク9の軸線O方向の圧縮長を長くして主体金具50内の気密性を高めている。   Next, a thin caulking portion 53 is provided on the rear end side of the metal fitting 50 from the tool engaging portion 51, and between the seal portion 54 and the tool engaging portion 51, similarly to the caulking portion 53. A thin buckling portion 58 is provided. Between the inner peripheral surface of the metal shell 50 from the tool engagement portion 51 to the crimping portion 53 and the outer peripheral surface of the rear end side body portion 18 of the insulator 10, annular ring members 6 and 7 are interposed. Furthermore, talc (talc) 9 powder is filled between the ring members 6 and 7. By crimping the crimping portion 53 so as to be bent inward, the insulator 10 is pressed toward the front end side in the metal shell 50 via the ring members 6, 7 and the talc 9. Thereby, the step portion 15 of the insulator 10 is supported by the step portion 56 formed at the position of the mounting portion 52 on the inner periphery of the metal shell 50 via the annular plate packing 8, so that the metal shell 50 and the insulator 50 are supported. 10 and unity. At this time, the airtightness between the metal shell 50 and the insulator 10 is maintained by the plate packing 8, and the outflow of combustion gas is prevented. Further, the buckling portion 58 is configured to bend outwardly and deform with the addition of a compressive force during caulking. The compression length in the direction of the axis O of the talc 9 is increased so that the inside of the metal shell 50 is increased. Increases airtightness.

次に、接地電極30について説明する。接地電極30は、断面矩形の棒状の電極であり、一端部(基端部32)が主体金具50の先端面57に接合され、軸線O方向に沿って延びつつ、他端部(先端部31)において、自身の一側面(内面33)が中心電極20の先端部22と向き合うように、屈曲されている。接地電極30は、中心電極20と同様に、インコネル(商標名)600または601等のNiを主成分とする合金からなる。   Next, the ground electrode 30 will be described. The ground electrode 30 is a bar-shaped electrode having a rectangular cross section. One end (base end 32) is joined to the front end surface 57 of the metal shell 50 and extends along the direction of the axis O while the other end (tip 31). ) Is bent so that one side surface (inner surface 33) thereof faces the front end portion 22 of the center electrode 20. Similarly to the center electrode 20, the ground electrode 30 is made of an alloy containing Ni as a main component, such as Inconel (trade name) 600 or 601.

この接地電極30の先端部31には、内面33から中心電極20の先端部22へ向けて突出する発火部80が設けられている。発火部80は、中心電極20の先端部22(より詳細には先端部22に接合された電極チップ90)と対向する位置に設けられており、両者間で火花放電間隙GAPが形成されている。なお、発火部80と中心電極20の先端部22との対向関係は、両者間で火花放電間隙GAPが形成されれば足り、必ずしも発火部80と電極チップ90の互いの対向面(向き合う面)同士が厳密な対応関係になくともよい。よって、スパークプラグ100の軸線Oと、発火部80の中心軸P(図2参照)とが厳密に一致していなくともよい。ここで、発火部80の中心軸Pとは、発火部80の突出方向(すなわち接地電極30の内面33から中心電極20へ向けて発火部80が突出する方向)と直交する自身の断面の中央を通り、その突出方向と平行な直線あるいはその近似直線をいう。   The tip portion 31 of the ground electrode 30 is provided with a firing portion 80 that protrudes from the inner surface 33 toward the tip portion 22 of the center electrode 20. The ignition part 80 is provided at a position facing the tip part 22 of the center electrode 20 (more specifically, the electrode tip 90 joined to the tip part 22), and a spark discharge gap GAP is formed therebetween. . It should be noted that the opposing relationship between the ignition portion 80 and the tip portion 22 of the center electrode 20 is sufficient if a spark discharge gap GAP is formed between them, and the opposing surfaces (facing surfaces) of the ignition portion 80 and the electrode tip 90 are not necessarily limited. They do not have to have a strict correspondence. Therefore, the axis O of the spark plug 100 and the central axis P (see FIG. 2) of the ignition part 80 do not have to exactly match. Here, the central axis P of the ignition part 80 is the center of its cross section orthogonal to the protruding direction of the ignition part 80 (that is, the direction in which the ignition part 80 protrudes from the inner surface 33 of the ground electrode 30 toward the center electrode 20). A straight line that passes through and parallel to the protruding direction or an approximate straight line.

図2に示すように、発火部80は、接地電極30の内面33に形成された台座部84と、その台座部84に接合された放電部81とからなる。台座部84は、接地電極30の内面33で、中心電極20の先端部22と向き合う位置において、内面33の一部を先端部22へ向けて突出させて、柱状に形成したものである。台座部84の側面85と、内面33との合わせ部位には、断面の形状が内側に凹んだ連結部89が設けられ、この連結部89を介し、側面85と内面33とが連結されている。   As shown in FIG. 2, the ignition part 80 includes a pedestal part 84 formed on the inner surface 33 of the ground electrode 30 and a discharge part 81 joined to the pedestal part 84. The pedestal portion 84 is formed in a columnar shape by projecting a part of the inner surface 33 toward the distal end portion 22 at a position facing the distal end portion 22 of the center electrode 20 on the inner surface 33 of the ground electrode 30. A connecting portion 89 having a cross-sectional shape recessed inward is provided at a position where the side surface 85 of the pedestal portion 84 and the inner surface 33 are combined, and the side surface 85 and the inner surface 33 are connected via the connecting portion 89. .

放電部81もまた柱状をなし、台座部84の突出先端86に配置された状態でレーザ溶接されることにより、台座部84と一体に接合されている。放電部81は、Pt合金を用いて形成したものであり、耐酸化性および耐火花消耗性に優れる。なお、放電部81の材料としては、Pt合金だけでなく、Pt、Ir、RhまたはRuのうちのいずれかの単一の貴金属を用いてもよいし、もしくはそれら貴金属のうちの少なくともいずれか1つ以上の貴金属を含有する貴金属合金を用いてもよい。そして、放電部81と台座部84の合わせ部位には、両者の構成材料(成分)が互いに溶け合って混合された溶融部83が形成されている。   The discharge part 81 also has a column shape, and is joined to the pedestal part 84 integrally by laser welding in a state of being disposed at the protruding tip 86 of the pedestal part 84. The discharge part 81 is formed using a Pt alloy, and is excellent in oxidation resistance and spark wear resistance. In addition, as a material of the discharge part 81, you may use not only Pt alloy but the single noble metal in any one of Pt, Ir, Rh, or Ru, or at least any one of these noble metals. A noble metal alloy containing two or more noble metals may be used. A fusion part 83 in which the constituent materials (components) of both are melted and mixed with each other is formed at the joint portion of the discharge part 81 and the pedestal part 84.

このように構成された本実施の形態のスパークプラグ100では、上記のように、発火部80を構成する放電部81と台座部84との接合がレーザ溶接によってなされている。具体的には、以下のように、発火部80が形成される。接地電極30に対し、例えばプレス加工や切削加工等を施すことにより、内面33から突出する台座部84を形成する。また、貴金属または貴金属合金を用いて柱状の放電部81を形成し、台座部84の突出先端86上に軸方向を揃えて重ねる。台座部84の外径は、放電部81の外径よりも若干大きく形成されており、溶接前の状態では、台座部84上に放電部81を配置したとき、台座部84の突出先端86の一部(縁部分)が放電部81よりも外方へ突出する形態となる。この状態で、放電部81と台座部84との合わせ面を狙うように、放電部81の側面82および台座部84の側面85(すなわち形成後の発火部80の側面87)から中心軸Pに向けてレーザ光を照射する。これにより、放電部81と台座部84との間に、両者の構成材料が互いに溶け合い混合された溶融部83が形成される。このとき、放電部81から突出した突出先端86の縁部分は溶融され、放電部81の側面82と台座部84の側面85とが、溶融部83の露出面88によって接続されることになる。レーザ溶接は、発火部80の周りを中心軸Pの周方向に一周して行い、放電部81と台座部84との間を溶融部83で接続する。このときのレーザ光の照射は連続的に行っても断続的に行ってもよいが、断続的に行う場合には、発火部80の外周側から見たときの放電部81と台座部84との合わせ面の位置が溶融部83となるように、レーザ光の照射位置を隣同士重ねることが望ましい。   In the spark plug 100 of the present embodiment configured as described above, the discharge part 81 and the pedestal part 84 constituting the ignition part 80 are joined by laser welding as described above. Specifically, the ignition part 80 is formed as follows. The ground electrode 30 is subjected to, for example, pressing or cutting, thereby forming a pedestal portion 84 that protrudes from the inner surface 33. In addition, a columnar discharge portion 81 is formed using a noble metal or a noble metal alloy, and is stacked on the protruding tip 86 of the pedestal portion 84 with the axial direction aligned. The outer diameter of the pedestal portion 84 is formed to be slightly larger than the outer diameter of the discharge portion 81. When the discharge portion 81 is disposed on the pedestal portion 84 in a state before welding, the protruding tip 86 of the pedestal portion 84 is A portion (edge portion) protrudes outward from the discharge portion 81. In this state, the side surface 82 of the discharge portion 81 and the side surface 85 of the pedestal portion 84 (that is, the side surface 87 of the ignition portion 80 after formation) are directed to the central axis P so as to aim at the mating surface of the discharge portion 81 and the pedestal portion 84. Irradiate with laser light. Thereby, between the discharge part 81 and the base part 84, the fusion | melting part 83 by which both component materials melt | dissolved and mixed was formed. At this time, the edge portion of the protruding tip 86 protruding from the discharge portion 81 is melted, and the side surface 82 of the discharge portion 81 and the side surface 85 of the pedestal portion 84 are connected by the exposed surface 88 of the melting portion 83. Laser welding is performed by making a round around the ignition part 80 in the circumferential direction of the central axis P, and the discharge part 81 and the pedestal part 84 are connected by the melting part 83. The laser beam irradiation at this time may be performed continuously or intermittently. However, when intermittently performed, the discharge unit 81 and the pedestal unit 84 when viewed from the outer peripheral side of the ignition unit 80, It is desirable that the irradiation positions of the laser beams be overlapped next to each other so that the position of the mating surface is the melting portion 83.

こうして形成される溶融部83について、本実施の形態では、発火部80の中心軸Pを含む任意の断面でみたときの形態について、以下のように規定している。まず、溶融部83は、放電部81と台座部84との間において、発火部80の両側の側面87それぞれから中心軸Pへ向かう形態に形成されている。さらに、その断面において発火部80の輪郭線形状(つまり発火部80の露出面88の断面形状)をみたとき、溶融部83は、放電部81の側面82および台座部84の側面85と接続された形態をなす。したがって溶融部83の露出面88は、接地電極30の内面33とは接続していない。   In the present embodiment, the melting part 83 formed in this way is defined as follows when viewed in an arbitrary cross section including the central axis P of the ignition part 80. First, the melting part 83 is formed between the discharge part 81 and the pedestal part 84 in a form from the side surfaces 87 on both sides of the ignition part 80 toward the central axis P. Furthermore, when the outline shape of the ignition part 80 (that is, the cross-sectional shape of the exposed surface 88 of the ignition part 80) is seen in the cross section, the melting part 83 is connected to the side surface 82 of the discharge part 81 and the side surface 85 of the pedestal part 84. Form. Therefore, the exposed surface 88 of the melting part 83 is not connected to the inner surface 33 of the ground electrode 30.

また、発火部80の上記任意の断面の輪郭線形状において、発火部80の一方の側面側で、台座部84と溶融部83との境界の位置(断面上における側面85と露出面88との境界の位置)をX1とする。同様に、放電部81と溶融部83との境界の位置(断面上における側面82と露出面88との境界の位置)をX2とする。次に、位置X1と位置X2とを直線で結び、上記任意の断面として想定される複数の断面のうち、位置X1と位置X2との直線距離が最大となる断面を選び、発火部80の第1断面とする。この第1断面を図3に示す。そして、第1断面において、位置X1と位置X2とを通る仮想線Qを想定し、仮想線Qが発火部80の中心軸Pと交差する点Cにて、仮想線Qと中心軸Pとがなす角の外角θを求める。このとき、本実施の形態では、135°≦θ≦175°を満たすことを規定している。   In the contour shape of the arbitrary cross section of the ignition part 80, the position of the boundary between the pedestal part 84 and the melting part 83 (the side surface 85 and the exposed surface 88 on the cross section on one side of the ignition part 80). Let X1 be the position of the boundary. Similarly, the position of the boundary between the discharge part 81 and the melting part 83 (the position of the boundary between the side surface 82 and the exposed surface 88 on the cross section) is X2. Next, the position X1 and the position X2 are connected with a straight line, and the cross section where the linear distance between the position X1 and the position X2 is the largest among the plurality of cross sections assumed as the arbitrary cross section is selected, and the ignition unit 80 One section. This first cross section is shown in FIG. In the first cross section, assuming a virtual line Q passing through the position X1 and the position X2, the virtual line Q and the central axis P are at a point C where the virtual line Q intersects the central axis P of the ignition unit 80. The external angle θ of the formed angle is obtained. At this time, in this embodiment, it is specified that 135 ° ≦ θ ≦ 175 ° is satisfied.

Pt合金からなる放電部81は、Ni合金からなる接地電極30ならびに台座部84よりも、線膨張係数が小さく、両者の構成材料を混合した溶融部83は、線膨張係数が、両者の間の値をとる。エンジン駆動によって発火部80が受熱した場合、溶融部83も含め、放電部81や台座部84が熱による変形を生じ、伸張することになる。中心軸P方向については、放電部81、溶融部83および台座部84が層状の配置となっており、また、放電部81が火花放電間隙GAPに面していているため、中心軸P方向へ放電部81、溶融部83および台座部84が伸張(変形)しても、その伸張に対する抑制は受けにくい。一方、溶融部83が、発火部80の側面87を一周しつつ径方向内向きに形成されていることにより、中心軸Pの径方向において、放電部81や台座部84と溶融部83とが層状の配置となる部位では、放電部81や台座部84は、溶融部83によって径方向内向きに保持される形態をなす。このため、放電部81や台座部84が径方向に伸張(変形)した場合、その伸張は、溶融部83によって抑制を受ける。   The discharge part 81 made of Pt alloy has a smaller linear expansion coefficient than the ground electrode 30 made of Ni alloy and the pedestal part 84, and the melting part 83 in which both constituent materials are mixed has a linear expansion coefficient between them. Takes a value. When the ignition part 80 receives heat by driving the engine, the discharge part 81 and the pedestal part 84 including the melting part 83 are deformed by heat and are expanded. Regarding the central axis P direction, the discharge portion 81, the melting portion 83, and the pedestal portion 84 are arranged in layers, and the discharge portion 81 faces the spark discharge gap GAP. Even if the discharge portion 81, the melting portion 83, and the pedestal portion 84 are stretched (deformed), it is difficult to suppress the stretch. On the other hand, the melting portion 83 is formed inward in the radial direction while circling the side surface 87 of the ignition portion 80, so that the discharge portion 81, the pedestal portion 84, and the melting portion 83 are in the radial direction of the central axis P. The discharge part 81 and the pedestal part 84 are configured to be held inward in the radial direction by the melting part 83 at the portion having the layered arrangement. For this reason, when the discharge part 81 and the pedestal part 84 extend (deform) in the radial direction, the extension is suppressed by the melting part 83.

溶融部83の露出面88の断面形状について、位置X1と位置X2とを結ぶ方向(仮想線Qの延びる方向)に着目すると、位置X2においては、上記の外角θが小さくなるほど、その方向のうち径方向内向きの成分が大きくなる。溶融部83がテーパ状をなせば、溶融部83は、台座部84よりも小径の放電部81を径方向内向きに押さえる形態となる。そして、そのテーパの広がり具合が大きくなるほど、溶融部83自身は、径方向外向きへの押圧力に対し、耐えやすい構造となる。このため、放電部81が受熱し熱膨張による変形が生じた際に、放電部81の径方向外向きへの変形は、上記のように、溶融部83によって抑制されやすくなる。このため、放電部81と溶融部83との界面では内部応力が高まり、後述する実施例1によれば、外角θが135°より小さくなると、クラックや剥離等を生ずる虞がある。   Focusing on the direction connecting the position X1 and the position X2 (the direction in which the imaginary line Q extends) with respect to the cross-sectional shape of the exposed surface 88 of the melted part 83, at the position X2, the smaller the outer angle θ is, The radially inward component increases. If the melting part 83 is tapered, the melting part 83 is configured to hold the discharge part 81 having a smaller diameter than the base part 84 inward in the radial direction. And, as the degree of taper spread increases, the melted part 83 itself has a structure that can easily withstand the outward pressing force in the radial direction. For this reason, when the discharge part 81 receives heat and the deformation | transformation by thermal expansion arises, the deformation | transformation to the radial direction outward of the discharge part 81 becomes easy to be suppressed by the fusion | melting part 83 as mentioned above. For this reason, the internal stress increases at the interface between the discharge part 81 and the melting part 83, and according to Example 1 described later, if the outer angle θ is smaller than 135 °, there is a risk of causing cracks or peeling.

一方、台座部84は、放電部81よりも線膨張係数が大きく、熱膨張による変形が生じた場合、台座部84は、放電部81よりも大きな変形を生ずる。溶融部83の露出面88の断面形状について、位置X1と位置X2とを結ぶ方向(仮想線Qの延びる方向)に着目すると、位置X1においては、上記の外角θが大きくなるほど、その方向のうち径方向外向きの成分が小さくなる。つまり、位置X1において、台座部84は、外角θが大きくなるほど、自身の変形に対する溶融部83からの抑制を受けやすくなる。台座部84は、放電部81よりも熱膨張による変形が大きいため、外角θが180°未満であっても、溶融部83による自身の変形に対する抑制の影響を受けやすい。このため、後述する実施例1によれば、外角θが175°より大きくなると、台座部84と溶融部83との界面において内部応力が高まり、クラックや剥離等を生ずる虞がある。   On the other hand, the pedestal portion 84 has a larger linear expansion coefficient than the discharge portion 81, and when the deformation due to thermal expansion occurs, the pedestal portion 84 deforms larger than the discharge portion 81. Focusing on the direction connecting the position X1 and the position X2 (the direction in which the imaginary line Q extends) with respect to the cross-sectional shape of the exposed surface 88 of the melting portion 83, the larger the outer angle θ at the position X1, The radially outward component is reduced. That is, at the position X1, the pedestal portion 84 is more likely to be suppressed from the melting portion 83 with respect to its own deformation as the outer angle θ increases. Since the pedestal portion 84 is more deformed by thermal expansion than the discharge portion 81, the pedestal portion 84 is easily affected by the suppression of the deformation of the melting portion 83 even when the outer angle θ is less than 180 °. For this reason, according to Example 1 to be described later, when the outer angle θ is larger than 175 °, internal stress increases at the interface between the pedestal portion 84 and the melting portion 83, which may cause cracks and peeling.

次に、発火部80の上記任意の断面(便宜上、図3の第1断面を用いて説明する。)において、発火部80の中心軸Pに対する径方向における放電部81の外径をSとする。また、位置X2(断面上における放電部81の側面82と溶融部83の露出面88との境界の位置)を基準とし、溶融部83が径方向内向きに延びる長さ(形成深さ)をTとする。なお、溶融部83は、上記のように、発火部80の側面87から中心軸Pへ向けて形成されており、その形成深さが中心軸Pに達していなければ、図3に示すように、発火部80の断面において、中心軸Pよりも左側と右側とに二分される。したがって、発火部80の断面において溶融部83が径方向内向きに延びる長さTを、中心軸Pよりも左側で径方向内向きに延びる長さT1と、中心軸Pよりも右側で径方向内向きに延びる長さT2との合計の長さとして定義する。そして、放電部81の外径Sに対する溶融部83の形成深さの割合(溶融部形成割合)をT/Sとして求めたとき、本実施の形態では、T/S≧0.5を満たすことを規定している。   Next, in the above-mentioned arbitrary cross section of the ignition part 80 (for the sake of convenience, description will be made using the first cross section of FIG. 3), the outer diameter of the discharge part 81 in the radial direction with respect to the central axis P of the ignition part 80 is S. . The length (formation depth) at which the melted portion 83 extends radially inward with reference to the position X2 (the position of the boundary between the side surface 82 of the discharge portion 81 and the exposed surface 88 of the melted portion 83 on the cross section). T. As described above, the melting portion 83 is formed from the side surface 87 of the ignition portion 80 toward the central axis P. If the formation depth does not reach the central axis P, as shown in FIG. In the cross section of the ignition part 80, the left and right sides of the central axis P are divided into two. Therefore, in the cross section of the ignition part 80, the length T in which the melting part 83 extends radially inward is defined as the length T1 that extends radially inward on the left side of the central axis P and the radial direction on the right side of the central axis P. It is defined as the total length with the length T2 extending inward. When the ratio of the formation depth of the melted part 83 to the outer diameter S of the discharge part 81 (melted part formation ratio) is obtained as T / S, in this embodiment, T / S ≧ 0.5 is satisfied. Is stipulated.

放電部81と台座部84との間の線膨張係数を有する溶融部83を、両者間に介在させることは、両者の間において生ずる熱応力の緩和の面で好適である。発火部80の径方向において溶融部83が位置X2から内向きに延びる長さTは、大きいほど、放電部81と台座部84との間において溶融部83の介在する大きさが大きくなるので、両者間に生ずる熱応力が緩和されやすくなり、クラックや剥離等の発生を効果的に抑制することができる。後述する実施例2によれば、T/Sが小さくなるほど、発火部80の断面上において、放電部81、台座部84および溶融部83のそれぞれの界面に生じたクラックの大きさの割合(酸化スケール)が大きくなる傾向がみられた。そしてT/Sが0.5以上となるように溶融部83を形成すれば、酸化スケールを50%未満に抑えることができることがわかった。   It is preferable to interpose a melting part 83 having a linear expansion coefficient between the discharge part 81 and the pedestal part 84 between them in terms of mitigating thermal stress generated between them. Since the length T in which the melting portion 83 extends inward from the position X2 in the radial direction of the ignition portion 80 is larger, the size of the melting portion 83 interposed between the discharge portion 81 and the pedestal portion 84 is larger. The thermal stress generated between the two can be easily relaxed, and the occurrence of cracks and peeling can be effectively suppressed. According to Example 2 to be described later, the smaller the T / S, the ratio of the size of cracks generated at the interfaces of the discharge part 81, the pedestal part 84, and the melting part 83 on the cross section of the ignition part 80 (oxidation). There was a tendency for the scale to increase. It was found that the oxide scale can be suppressed to less than 50% if the melted portion 83 is formed so that T / S is 0.5 or more.

また、上記の規定、すなわち135°≦θ≦175°およびT/S≧0.5は、第1断面だけでなく、発火部80の任意の断面であって中心軸Pを中心とし異なる周方向位置にて観察される複数の断面のうち、全周の半数以上の断面において満たされることが好ましい。溶融部83を形成する際に、発火部80の周囲に、例えばスポット溶接を断続的に行った場合、形成される溶融部83は、発火部80の全周にわたって一様な形状とはなりにくく、レーザ光照射の間隔が大きいほど、溶融部83の形状や大きさが断面によって大きく異なる。こうした場合、発火部80の任意の断面であって中心軸Pを中心とし異なる周方向位置にて観察される複数の断面のうち、上記規定の満たされない断面が増えることになる。発火部の上記任意の断面のうち、少なくとも全周の半数以上の断面において上記規定が満たされれば、放電部81、台座部84および溶融部83のそれぞれの界面において部分的に内部応力が高まるところがあっても、その内部応力を分散させやすくなり、クラックや剥離等の発生の抑制に効果を奏する。   Further, the above-mentioned regulations, that is, 135 ° ≦ θ ≦ 175 ° and T / S ≧ 0.5 are not only the first cross section but also arbitrary cross sections of the ignition portion 80 and different circumferential directions around the central axis P Of the plurality of cross-sections observed at the position, it is preferable that the cross-sections are half or more of the entire circumference. When forming the melting part 83, for example, when spot welding is intermittently performed around the ignition part 80, the formed melting part 83 is unlikely to have a uniform shape over the entire circumference of the ignition part 80. The larger the interval between the laser beam irradiations, the more greatly the shape and size of the melted portion 83 differ depending on the cross section. In such a case, among the plurality of cross-sections that are arbitrary cross-sections of the ignition portion 80 and are observed at different circumferential positions around the central axis P, the cross-sections that do not satisfy the above-mentioned regulations increase. If the above-mentioned definition is satisfied in at least half of the entire cross section of the ignition part, the internal stress is partially increased at each interface of the discharge part 81, the pedestal part 84, and the melting part 83. Even if it exists, it becomes easy to disperse | distribute the internal stress, and there exists an effect in suppression of generation | occurrence | production of a crack, peeling, etc.

なお、後述する実施例1の結果によると、放電部81を構成する材料の線膨張係数と、台座部84を構成する材料の線膨張係数との差が、8.1×10−6[1/K]以下となるように、それぞれの構成材料の選定を行うとよい。このようにすれば、受熱時に放電部81と台座部84とが径方向へ伸張(変形)した際に、それぞれと溶融部83との界面に生ずる内部応力の差を制限し、内部応力の偏りを抑制できるので、クラックや剥離等の発生をより効果的に抑制することができる。 In addition, according to the result of Example 1 described later, the difference between the linear expansion coefficient of the material constituting the discharge part 81 and the linear expansion coefficient of the material constituting the pedestal part 84 is 8.1 × 10 −6 [1 / K] Each constituent material may be selected so that the following is satisfied. In this way, when the discharge portion 81 and the pedestal portion 84 expand (deform) in the radial direction during heat reception, the difference in internal stress generated at the interface between each of the discharge portion 81 and the pedestal portion 84 is limited. Therefore, the occurrence of cracks and peeling can be more effectively suppressed.

さらに本実施の形態では、上記したように、台座部84の側面85と、接地電極30の内面33との間を連結部89によって連結している。発火部80は接地電極30の内面33から突出する形態に設けられるため、例えばエンジンの駆動に伴う振動等を受けた場合、その振動による負荷が、発火部80の根元部分にかかりやすい。ここで、放電部81の側面82と接地電極30の内面33とを接続する形態で溶融部83を形成すれば、発火部80の根元部分の肉厚が増し、溶融部83が発火部80を支える形態となるため、発火部80は、根元部分にかかる負荷に対し十分に耐え得る構造を得られる。しかし、本実施の形態では、溶融部83と放電部81および台座部84との界面にかかる内部応力の影響を低減するため、溶融部83の露出面88が、放電部81の側面82および台座部84の側面85と接続される形態としている。こうしたことから、発火部80が、自身の根元部分にかかる負荷に耐え得る構造を得るには、上記のように、台座部84の側面85と、接地電極30の内面33との間に連結部89を有するとよい。   Further, in the present embodiment, as described above, the side surface 85 of the pedestal portion 84 and the inner surface 33 of the ground electrode 30 are connected by the connecting portion 89. Since the ignition part 80 is provided so as to protrude from the inner surface 33 of the ground electrode 30, for example, when receiving vibration or the like accompanying driving of the engine, a load due to the vibration is likely to be applied to the root part of the ignition part 80. Here, if the melting part 83 is formed in a form in which the side surface 82 of the discharge part 81 and the inner surface 33 of the ground electrode 30 are connected, the thickness of the root part of the ignition part 80 increases, and the melting part 83 causes the ignition part 80 to move. Since it becomes a form to support, the ignition part 80 can obtain the structure which can fully endure the load concerning a root part. However, in the present embodiment, in order to reduce the influence of internal stress on the interface between the melting portion 83 and the discharge portion 81 and the pedestal portion 84, the exposed surface 88 of the melting portion 83 is the side surface 82 and the pedestal of the discharge portion 81. It is configured to be connected to the side surface 85 of the portion 84. For this reason, in order to obtain a structure in which the ignition part 80 can withstand the load applied to its root part, the connecting part is provided between the side surface 85 of the base part 84 and the inner surface 33 of the ground electrode 30 as described above. 89 may be included.

なお、本発明は各種の変形が可能なことはいうまでもない。例えば、放電部81と台座部84との接合をレーザ溶接により行ったが、電子ビーム溶接を施してもよい。また、レーザ溶接は、厳密に、放電部81と台座部84との合わせ面を狙って中心軸Pと直交する方向からレーザ光を照射することにより行うものに限らない。例えば、中心軸Pに対し斜め方向から放電部81と台座部84との合わせ面を狙ってレーザ光を照射して、溶融部83を形成してもよい。   Needless to say, the present invention can be modified in various ways. For example, although the discharge part 81 and the pedestal part 84 are joined by laser welding, electron beam welding may be applied. Further, the laser welding is not limited to being performed by irradiating laser light from a direction orthogonal to the central axis P aiming at a mating surface between the discharge portion 81 and the pedestal portion 84. For example, the melting portion 83 may be formed by irradiating laser light from the oblique direction with respect to the central axis P toward the mating surface between the discharge portion 81 and the pedestal portion 84.

また、図4に示す、発火部180のように、放電部81と台座部84との間に形成する溶融部183の形成深さが中心軸Pに達し、発火部180の断面において中心軸Pよりも一方側の部分と他方側の部分とが連続する形態の溶融部183を形成してもよい。   Further, like the ignition part 180 shown in FIG. 4, the formation depth of the melting part 183 formed between the discharge part 81 and the pedestal part 84 reaches the central axis P, and the central axis P in the cross section of the ignition part 180 Alternatively, the melting part 183 may be formed in such a form that the part on one side and the part on the other side are continuous.

また、図5に示す、発火部280のように、台座部284と接地電極230とを別体に形成し、台座部284と接地電極230とを、例えば抵抗溶接により接合し、台座部284と放電部281とを、本実施の形態と同様、レーザ溶接により溶融部283を形成して接合してもよい。そして、放電部281と台座部284との接合において、上記した各規定が満たされるとよい。また、台座部284については、接地電極230側の端部に、自身の外径を拡径した鍔部274を有してもよい。この鍔部274を接地電極230の内面233に接合することで、接合面積を広く確保でき、より安定した接合性が得られる。また、この鍔部274の側面275と接地電極230の内面233との間に、上記同様の連結部289を設ければ、発火部280が、自身の根元部分にかかる負荷(振動等)に耐え得る構造を得ることができる。さらに、鍔部274の先端面276(発火部の突出先端側を向く面)と、台座部284の側面285との間にも、両者を連結し断面の形状が内側に凹んだ連結部279を設ければ、発火部280が、台座部284と鍔部274との境目付近にかかる負荷に耐え得る構造を得られ、望ましい。   Further, like the ignition part 280 shown in FIG. 5, the pedestal part 284 and the ground electrode 230 are formed separately, and the pedestal part 284 and the ground electrode 230 are joined together by, for example, resistance welding, The discharge part 281 may be joined by forming the fusion part 283 by laser welding as in the present embodiment. In the joining of the discharge part 281 and the pedestal part 284, it is preferable that the above-mentioned regulations are satisfied. Further, the pedestal portion 284 may have a flange portion 274 whose diameter is increased at the end on the ground electrode 230 side. By joining the flange portion 274 to the inner surface 233 of the ground electrode 230, a large joining area can be secured and more stable joining properties can be obtained. Further, if the same connecting portion 289 is provided between the side surface 275 of the flange portion 274 and the inner surface 233 of the ground electrode 230, the ignition portion 280 can withstand a load (vibration or the like) applied to its root portion. The resulting structure can be obtained. Further, a connecting portion 279 having a cross-sectional shape recessed inside is also connected between the front end surface 276 of the flange portion 274 (the surface facing the protruding front end side of the ignition portion) and the side surface 285 of the base portion 284. If provided, the structure in which the ignition part 280 can withstand the load applied near the boundary between the pedestal part 284 and the collar part 274 is desirable.

このように、スパークプラグ100の接地電極30に設けた発火部80に形成される溶融部83の形態に規定を設けたことによる効果を確認するため評価試験を行った。まず、溶融部83の露出面88の傾き加減(外角θによる。)と耐剥離性との関係、および、発火部80を構成する放電部81の形成材料と台座部84の形成材料の線膨張係数の差と耐剥離性との関係について、評価を行った。この評価試験では、1000℃における線膨張係数が、8.3,9.7,10.4,13.4(×10−6)[1/K]の4種類の貴金属合金からなる材料を用意し、それぞれの材料から外径Sを0.7mmにした放電部を作製した。また、1000℃における線膨張係数が17.8×10−6[1/K]のNi合金を用いて接地電極を作製し、その内面に対しプレス加工を施して台座部を形成した。そして台座部上に放電部を配置し、両者の側面から合わせ面に向けてレーザ光を照射して、一周にわたるレーザ溶接を行って両者を接合して、内面に発火部が形成された接地電極の評価材(サンプル)を作製した。なお、台座部と放電部との間に形成した溶融部が、その形成深さ(径方向内向きに延びる長さT)が、S/T=1を満たしつつ(つまり、発火部の断面において中心軸Pよりも一方側の溶融部と他方側の溶融部とが連続する形態となるようにしつつ)、外角θが適宜異なるように、レーザ光の照射位置や照射角度、出力、照射時間などを調整した。そして作製された各サンプルそれぞれについて、位置X1と位置X2との間の直線距離が最大となる部分を特定し、仮想線Qと中心軸Pとがなす角の外角θを測定した。 As described above, an evaluation test was conducted to confirm the effect of providing the provision in the form of the melting portion 83 formed in the ignition portion 80 provided in the ground electrode 30 of the spark plug 100. First, the relationship between the inclination of the exposed surface 88 of the melting portion 83 (depending on the external angle θ) and the peel resistance, and the linear expansion of the forming material of the discharge portion 81 and the forming material of the pedestal portion 84 constituting the ignition portion 80. The relationship between the coefficient difference and the peel resistance was evaluated. In this evaluation test, materials consisting of four types of noble metal alloys having linear expansion coefficients at 1000 ° C. of 8.3, 9.7, 10.4, 13.4 (× 10 −6 ) [1 / K] are prepared. And the discharge part which made the outer diameter S 0.7mm from each material was produced. Moreover, the ground electrode was produced using the Ni alloy whose linear expansion coefficient in 1000 degreeC is 17.8 * 10 < -6 > [1 / K], The press part was given to the inner surface, and the base part was formed. Then, the discharge part is arranged on the pedestal part, laser light is irradiated from the side surfaces of the both sides toward the mating surface, laser welding is performed over the entire circumference, the two are joined, and the ground electrode having the ignition part formed on the inner surface The evaluation material (sample) was prepared. Note that the melted portion formed between the pedestal portion and the discharge portion has a formation depth (length T extending radially inward) satisfying S / T = 1 (that is, in the cross section of the ignition portion). The irradiation position, the irradiation angle, the output, the irradiation time, etc. of the laser beam are appropriately adjusted so that the outer angle θ is appropriately changed (with the molten portion on one side and the molten portion on the other side continuous with respect to the central axis P). Adjusted. And about each produced sample, the part where the linear distance between the position X1 and the position X2 becomes the largest was specified, and the external angle (theta) of the angle which the virtual line Q and the central axis P make was measured.

次に、各サンプルそれぞれに対し、机上で加熱冷却試験を行った。各サンプルを発火部ごとバーナーで到達温度が1100℃となるように2分間加熱したあと大気温雰囲気で1分間冷却(徐冷)し、これを1サイクルとして1000サイクル行った。その後、各サンプルの発火部を、中心軸Pを通る断面で切断し、拡大鏡を用いて溶融部の観察を行った。そして溶融部において、クラックや剥離等の生じた部分を観察し、発生箇所を、放電部と溶融部との境界付近、台座部と溶融部との境界付近に分類し、それぞれ、径方向における長さを測定した。   Next, a heating / cooling test was performed on each sample. Each sample was heated with a burner for 2 minutes so that the final temperature was 1100 ° C. together with the ignition part, and then cooled (slow cooling) for 1 minute in an atmospheric temperature atmosphere. Then, the ignition part of each sample was cut | disconnected in the cross section which passes along the central axis P, and the fusion | melting part was observed using the magnifier. Then, in the melted part, observe the part where cracks, peeling, etc. occurred, classify the occurrence part into the vicinity of the boundary between the discharge part and the melted part, and the vicinity of the boundary between the pedestal part and the melted part. Was measured.

ここで、図6に示す、サンプルの発火部380を例に説明すると、発火部380の中心軸Pを含む断面において、中心軸Pを境に径方向の一方側(図6では左側)で、放電部381と溶融部383との境界の位置(側面382と露出面388との境界の位置)X2を基準に、溶融部383が径方向内向きに延びる長さをT1、他方側(図6では右側)においてはT2とする。また、中心軸Pを境に径方向の一方側で、放電部381と溶融部383との境界側に生じたクラックや剥離が径方向に延びる長さをA1とし、他方側においてはA2とする。そして、放電部381と溶融部383との境界側において生じたクラックや剥離の長さの割合(酸化スケール)を、以下の式により求める。
{(A1+A2)/(T1+T2)}×100[%]・・・(1)
Here, the sample ignition part 380 shown in FIG. 6 will be described as an example. In the cross section including the central axis P of the ignition part 380, on one side in the radial direction with respect to the central axis P (on the left side in FIG. 6), Based on the position X2 of the boundary between the discharge part 381 and the melting part 383 (the position of the boundary between the side surface 382 and the exposed surface 388) X2, the length that the melting part 383 extends radially inward is T1, and the other side (FIG. 6). In the right side), T2. In addition, a length in which a crack or a peeling that occurs on the boundary side between the discharge part 381 and the fusion part 383 extends in the radial direction on one side in the radial direction with the central axis P as a boundary is A1, and on the other side is A2. . And the ratio (oxidation scale) of the length of the crack and peeling which arose in the boundary side of the discharge part 381 and the fusion | melting part 383 is calculated | required with the following formula | equation.
{(A1 + A2) / (T1 + T2)} × 100 [%] (1)

次に、上記同様、中心軸Pを境に径方向の一方側で、台座部384と溶融部383との境界の位置(側面385と露出面388との境界の位置)X1を基準に、溶融部383が径方向内向きに延びる長さをU1、他方側においてはU2とする。また、中心軸Pを境に径方向の一方側で、台座部384と溶融部383との境界側に生じたクラックや剥離が径方向に延びる長さをB1とし、他方側においてはB2とする。そして、台座部384と溶融部383との境界側において生じた酸化スケールを、以下の式により求める。
{(B1+B2)/(U1+U2)}×100[%]・・・(2)
Next, as described above, on the one side in the radial direction with respect to the central axis P, melting is performed on the basis of the position of the boundary between the pedestal portion 384 and the melting portion 383 (the position of the boundary between the side surface 385 and the exposed surface 388) X1. The length of the portion 383 extending radially inward is U1, and the other side is U2. Further, the length in which the cracks and separations that have occurred on the boundary side between the pedestal portion 384 and the melting portion 383 on the one side in the radial direction with the central axis P as the boundary extend in the radial direction is B1, and the other side is B2. . Then, an oxide scale generated on the boundary side between the pedestal portion 384 and the melting portion 383 is obtained by the following equation.
{(B1 + B2) / (U1 + U2)} × 100 [%] (2)

(1)の式により得られた放電部381と溶融部383との境界側に生じたクラックや剥離の長さの割合と、(2)の式により得られた台座部384と溶融部383との境界側に生じたクラックや剥離の長さの割合とを比較する。そして2種類のクラックや剥離の長さの割合のうち、大きい方を、その発火部における酸化スケールとして採用する。   The ratio of the length of cracks and separation generated on the boundary side between the discharge part 381 and the melting part 383 obtained by the expression (1), and the base part 384 and the melting part 383 obtained by the expression (2) The ratio of the length of cracks and peeling occurring on the boundary side is compared. And the larger one of the ratios of the two kinds of cracks and peeling length is adopted as the oxide scale in the ignition part.

発火部の酸化スケールが25%未満の場合、クラックや剥離が発生しても問題ないとして「◎」と評価し、25%以上50%未満の場合は、影響が少ないとして「○」と評価した。しかし、酸化スケールが50%以上であった場合、放電部が脱落する虞があるとして「×」と評価した。この評価試験の結果を、仮想線Qと中心軸Pとがなす角の外角θの大きさ、および、放電部の形成材料と台座部の形成材料との線膨張係数差により分類し、表1に示した。   When the oxidation scale of the ignition part is less than 25%, it is evaluated as “◎” because there is no problem even if cracking or peeling occurs, and when it is 25% or more and less than 50%, it is evaluated as “◯” because the influence is small. . However, when the oxide scale was 50% or more, it was evaluated as “x” because there was a possibility that the discharge part might fall off. The results of this evaluation test are classified according to the magnitude of the outer angle θ of the angle formed by the imaginary line Q and the central axis P, and the difference in linear expansion coefficient between the discharge portion forming material and the base portion forming material. It was shown to.

Figure 0005396092
Figure 0005396092

表1に示すように、仮想線Qと中心軸Pとがなす角の外角θの大きさが135°未満のサンプルは、いずれも、発火部の酸化スケールが50%以上となった。また、外角θの大きさが175°を越えるサンプルについても、そのほとんどのサンプルが、発火部の酸化スケールは50%以上となり、耐剥離性の面において望ましくないことがわかった。一方、外角θが135°以上175°以下のサンプルについては、いずれも、発火部の酸化スケールが50%未満となり、耐剥離性において良好な結果を得られることが確認できた。また、外角θが135°以上175°以下のサンプルの中でも、放電部の形成材料と台座部の形成材料の線膨張係数の差が8.1×10−6[1/K]以下のサンプルは、発火部の酸化スケールが25%未満に留まった。したがって、放電部の形成材料と台座部の形成材料の線膨張係数の差を8.1×10−6[1/K]とすれば、耐剥離性においてさらに良好な結果を得られることが確認できた。 As shown in Table 1, in all the samples in which the magnitude of the outer angle θ formed by the imaginary line Q and the central axis P is less than 135 °, the oxidation scale of the ignition part is 50% or more. Further, it was found that most of the samples having an outer angle θ exceeding 175 ° had an oxidation scale of 50% or more in the ignition portion, which was not desirable in terms of peeling resistance. On the other hand, it was confirmed that any sample having an outer angle θ of 135 ° or more and 175 ° or less had an oxidation scale of the ignition portion of less than 50%, and a good result in peeling resistance could be obtained. Among samples having an outer angle θ of 135 ° or more and 175 ° or less, samples having a difference in linear expansion coefficient between the discharge portion forming material and the base portion forming material of 8.1 × 10 −6 [1 / K] or less The oxidation scale of the ignition part remained below 25%. Therefore, if the difference in linear expansion coefficient between the material for forming the discharge part and the material for forming the pedestal is set to 8.1 × 10 −6 [1 / K], it is confirmed that even better results can be obtained in terms of peel resistance. did it.

次に、溶融部83が径方向内向きに延びる長さ(形成深さ)と耐剥離性との関係について評価を行った。この評価試験では、1000℃における線膨張係数が10.4×10−6[1/K]のPt合金からなる材料を用い、外径Sを0.7mmおよび1.2mmにした2種類の放電部を作製した。また、1000℃における線膨張係数が17.8×10−6[1/K]のNi合金を用いて接地電極を作製し、その内面に対しプレス加工を施して台座部を形成した。この台座部上に放電部を配置し、両者の側面から合わせ面に向けてレーザ光を照射し、一周にわたるレーザ溶接を行って両者を接合して、内面に発火部が形成された接地電極の評価材(サンプル)を作製した。このとき、レーザ光の出力(強度)を適宜異ならせ、形成される溶融部の形成深さが適宜異なるようにした。そして、実施例1と同様に、仮想線Qと中心軸Pとがなす角の外角θの大きさを測定し、135°≦θ≦175°を満たすサンプルを、評価対象として抽出した。 Next, the relationship between the length (formation depth) at which the melted portion 83 extends radially inward and the peel resistance was evaluated. In this evaluation test, two types of discharges were used, which were made of a Pt alloy having a linear expansion coefficient of 10.4 × 10 −6 [1 / K] at 1000 ° C. and having an outer diameter S of 0.7 mm and 1.2 mm. Part was produced. Moreover, the ground electrode was produced using the Ni alloy whose linear expansion coefficient in 1000 degreeC is 17.8 * 10 < -6 > [1 / K], The press part was given to the inner surface, and the base part was formed. The discharge part is arranged on this pedestal part, laser light is irradiated from the side surfaces of the both sides toward the mating surface, laser welding is performed over the entire circumference, the two are joined together, and the ground electrode having the ignition part formed on the inner surface An evaluation material (sample) was prepared. At this time, the output (intensity) of the laser beam was appropriately changed so that the formation depth of the melted portion to be formed was appropriately different. Then, in the same manner as in Example 1, the magnitude of the outer angle θ of the angle formed by the virtual line Q and the central axis P was measured, and a sample satisfying 135 ° ≦ θ ≦ 175 ° was extracted as an evaluation target.

次に、抽出した各サンプルそれぞれに対し、実施例1と同様の加熱冷却試験を行った。その後、各サンプルの発火部を、中心軸Pを通る断面で切断し、拡大鏡を用いて溶融部の観察を行い、溶融部の形成深さ(径方向内向きに延びる長さT)の測定を行い、溶融部形成割合T/Sを求めた。さらに、各サンプルの溶融部において、クラックや剥離等の生じた部分を観察し、発生箇所を、放電部と溶融部との境界付近、台座部と溶融部との境界付近に分類し、それぞれ、径方向における長さを測定した。そして上記した(1)および(2)の式を用いて発火部に生じたクラックや剥離の長さの割合(酸化スケール)を求め、実施例1と同様の評価を行った。この評価試験の結果を表2に示す。   Next, the same heating and cooling test as in Example 1 was performed on each extracted sample. Thereafter, the ignition portion of each sample is cut along a cross section passing through the central axis P, the melted portion is observed using a magnifying glass, and the formation depth of the melted portion (length T extending radially inward) is measured. And the melted portion formation ratio T / S was determined. Furthermore, in the melted part of each sample, observe the part where cracks, peeling, etc. occurred, classify the occurrence location near the boundary between the discharge part and the melted part, near the boundary between the pedestal part and the melted part, The length in the radial direction was measured. And the ratio (oxidation scale) of the crack and peeling length which arose in the ignition part was calculated | required using the above-mentioned formula (1) and (2), and evaluation similar to Example 1 was performed. The results of this evaluation test are shown in Table 2.

Figure 0005396092
Figure 0005396092

表2に示すように、溶融部形成割合T/Sが0.70以上のサンプル3,4,7,8では酸化スケールが25%未満となり、耐剥離性において良好な結果を得られることが確認できた。また、サンプル2,6のように、溶融部形成割合T/Sが0.50以上であれば酸化スケールを50%未満に抑えることができることがわかった。しかし、サンプル1,5のように、溶融部形成割合T/Sが0.50未満であると、発火部の酸化スケールが50%以上となり、耐剥離性の面において望ましくないことがわかった。   As shown in Table 2, it was confirmed that samples 3, 4, 7, and 8 having a melted portion formation ratio T / S of 0.70 or more had an oxide scale of less than 25%, and good results in peeling resistance could be obtained. did it. In addition, as in Samples 2 and 6, it was found that the oxide scale can be suppressed to less than 50% when the melted portion formation ratio T / S is 0.50 or more. However, as in Samples 1 and 5, it was found that when the melted portion formation ratio T / S is less than 0.50, the oxidized scale of the ignition portion is 50% or more, which is undesirable in terms of peeling resistance.

10 絶縁碍子
12 軸孔
20 中心電極
30 接地電極
31 先端部
33 内面
50 主体金具
80,180,280 発火部
81 放電部
82 側面
83 溶融部
84 台座部
85,285 側面
86 突出先端
87 側面
89,289 連結部
100 スパークプラグ
274 鍔部
276 先端面
279 連結部
DESCRIPTION OF SYMBOLS 10 Insulator 12 Shaft hole 20 Center electrode 30 Ground electrode 31 Tip part 33 Inner surface 50 Main metal fittings 80, 180, 280 Ignition part 81 Discharge part 82 Side surface 83 Melting part 84 Base part 85,285 Side surface 86 Projection tip 87 Side surface 89,289 Connecting Portion 100 Spark Plug 274 Hook 276 Tip Surface 279 Connecting Portion

Claims (6)

中心電極と、 軸線方向に沿って延びる軸孔を有し、その軸孔の内部に前記中心電極を保持する絶縁碍子と、 当該絶縁碍子を周方向に取り囲んで保持する主体金具と、 一端部が前記主体金具に接合され、他端部における自身の一側面が前記中心電極の先端部に向き合うように屈曲された接地電極と、 当該接地電極の前記他端部における前記一側面上で、前記中心電極の前記先端部と対向する位置に設けられ、前記一側面から前記中心電極へ向けて突出する発火部と を備えたスパークプラグにおいて、 前記発火部は、 前記一側面から前記中心電極に向けて突出する台座部と、 前記台座部の突出先端にレーザ溶接によって接合され、自身と前記中心電極の前記先端部との間で火花放電間隙を形成する放電部と、 前記台座部と前記放電部との間に介在し、前記レーザ溶接によって両者の構成材料が互いに溶け合って形成された溶融部と を有してなるものであり、 前記発火部が前記接地電極の前記一側面から突出する方向に沿う前記発火部の中心軸を含む、前記発火部の任意の断面をみたときに、前記溶融部は、前記発火部の側面から前記中心軸へ向かう形態で形成されており、 前記発火部の前記任意の断面の輪郭線形状をみたときに、前記溶融部は、前記台座部の側面および前記放電部の側面と接続された形状をなしており、 さらに、前記発火部の前記任意の断面において、前記側面のうち一方の側面における、前記台座部と前記溶融部との境界の位置をX1、前記放電部と前記溶融部との境界の位置をX2としつつ、前記任意の断面のうち前記境界の位置X1とX2との直線距離が最大となる第1断面をみたときに、 前記中心軸と直交する径方向における前記放電部の外径Sと、前記放電部と前記溶融部との境界の位置X2を基準に前記溶融部が前記径方向内向きに延びる長さTとがT/S≧0.5を満たすとともに、
前記境界の位置X1およびX2を通る仮想線と、前記中心軸とがなす角の外角θが、135°≦θ≦175°を満たし、
前記台座部の側面と、前記台座部が設けられる前記接地電極の前記一側面とは、前記発火部の前記中心軸を含む断面の形状が内側に凹んだ曲線形状をなす第1連結部によって連結されていることを特徴とするスパークプラグ。
A central electrode, an axial hole extending along the axial direction, an insulator that holds the central electrode inside the axial hole, a metal shell that surrounds and holds the insulator in the circumferential direction, and one end portion of which A ground electrode joined to the metal shell and bent so that one side surface of the other end portion faces the tip of the center electrode, and on the one side surface of the other end portion of the ground electrode, the center A spark plug provided at a position facing the tip portion of the electrode and projecting from the one side surface toward the central electrode, wherein the ignition portion is directed from the one side surface toward the central electrode. A projecting pedestal, a discharge part joined to the projecting tip of the pedestal by laser welding and forming a spark discharge gap between itself and the tip of the center electrode, the pedestal and the discharge unit Between And a melting part formed by melting both constituent materials by laser welding. The ignition part along a direction in which the ignition part protrudes from the one side surface of the ground electrode. When the arbitrary cross section of the ignition part including the central axis of the ignition part is viewed, the melting part is formed from the side surface of the ignition part toward the central axis, and the arbitrary cross section of the ignition part When the contour shape is viewed, the melting portion has a shape connected to the side surface of the pedestal portion and the side surface of the discharge portion. Further, in the arbitrary cross section of the ignition portion, On one side, the boundary position between the pedestal part and the melting part is X1, the boundary position between the discharge part and the melting part is X2, and the boundary positions X1 and X2 in the arbitrary cross section. Linear distance to When the first cross section that is the largest is viewed, the melted portion is determined based on the outer diameter S of the discharge portion in the radial direction orthogonal to the central axis and the position X2 of the boundary between the discharge portion and the melted portion. A length T extending radially inward satisfies T / S ≧ 0.5, and
A virtual line passing through the positions X1 and X2 of the boundary, external angle theta of the central axis and forms angle, meets the 135 ° ≦ θ ≦ 175 °,
The side surface of the pedestal portion and the one side surface of the ground electrode provided with the pedestal portion are connected by a first connecting portion having a curved shape in which a shape of a cross section including the central axis of the ignition portion is recessed inward. Spark plug characterized by being .
中心電極と、 軸線方向に沿って延びる軸孔を有し、その軸孔の内部に前記中心電極を保持する絶縁碍子と、 当該絶縁碍子を周方向に取り囲んで保持する主体金具と、 一端部が前記主体金具に接合され、他端部における自身の一側面が前記中心電極の先端部に向き合うように屈曲された接地電極と、 当該接地電極の前記他端部における前記一側面上で、前記中心電極の前記先端部と対向する位置に設けられ、前記一側面から前記中心電極へ向けて突出する発火部と を備えたスパークプラグにおいて、 前記発火部は、 前記一側面から前記中心電極に向けて突出する台座部と、 前記台座部の突出先端にレーザ溶接によって接合され、自身と前記中心電極の前記先端部との間で火花放電間隙を形成する放電部と、 前記台座部と前記放電部との間に介在し、前記レーザ溶接によって両者の構成材料が互いに溶け合って形成された溶融部と を有してなるものであり、 前記発火部が前記接地電極の前記一側面から突出する方向に沿う前記発火部の中心軸を含む、前記発火部の任意の断面をみたときに、前記溶融部は、前記発火部の側面から前記中心軸へ向かう形態で形成されており、 前記発火部の前記任意の断面の輪郭線形状をみたときに、前記溶融部は、前記台座部の側面および前記放電部の側面と接続された形状をなしており、 さらに、前記発火部の前記任意の断面において、前記側面のうち一方の側面における、前記台座部と前記溶融部との境界の位置をX1、前記放電部と前記溶融部との境界の位置をX2としつつ、前記任意の断面のうち前記境界の位置X1とX2との直線距離が最大となる第1断面をみたときに、 前記中心軸と直交する径方向における前記放電部の外径Sと、前記放電部と前記溶融部との境界の位置X2を基準に前記溶融部が前記径方向内向きに延びる長さTとがT/S≧0.5を満たすとともに、A central electrode, an axial hole extending along the axial direction, an insulator that holds the central electrode inside the axial hole, a metal shell that surrounds and holds the insulator in the circumferential direction, and one end portion of which A ground electrode joined to the metal shell and bent so that one side surface of the other end portion faces the tip of the center electrode, and on the one side surface of the other end portion of the ground electrode, the center A spark plug provided at a position facing the tip portion of the electrode and projecting from the one side surface toward the central electrode, wherein the ignition portion is directed from the one side surface toward the central electrode. A projecting pedestal, a discharge part joined to the projecting tip of the pedestal by laser welding and forming a spark discharge gap between itself and the tip of the center electrode, the pedestal and the discharge unit And a melted portion formed by melting the constituent materials of each other by laser welding, and the ignition portion extends in a direction protruding from the one side surface of the ground electrode. When the arbitrary cross section of the ignition part including the central axis of the ignition part is viewed, the melting part is formed in a form from the side surface of the ignition part toward the central axis, and the arbitrary part of the ignition part When the profile shape of the cross section is viewed, the melting portion has a shape connected to the side surface of the pedestal portion and the side surface of the discharge portion, and further, in the arbitrary cross section of the ignition portion, The position of the boundary of the arbitrary cross section while X1 is the position of the boundary between the pedestal part and the melted part and X2 is the position of the boundary between the discharge part and the melted part on one of the side surfaces Between X1 and X2 When the first cross section having the maximum linear distance is viewed, the melting is performed based on the outer diameter S of the discharge portion in the radial direction orthogonal to the central axis and the position X2 of the boundary between the discharge portion and the fusion portion. And the length T extending inward in the radial direction satisfies T / S ≧ 0.5,
前記境界の位置X1およびX2を通る仮想線と、前記中心軸とがなす角の外角θが、135°≦θ≦175°を満たし、  An outer angle θ of an angle formed by an imaginary line passing through the boundary positions X1 and X2 and the central axis satisfies 135 ° ≦ θ ≦ 175 °,
前記台座部は、前記接地電極の前記一側面側において、自身の外径が拡径されてなる鍔部を有し、  The pedestal portion has a flange portion whose outer diameter is enlarged on the one side surface side of the ground electrode,
前記台座部の前記鍔部において前記突出先端側を向く面と、前記鍔部よりも前記突出先端における前記台座部の側面とは、前記発火部の前記中心軸を含む断面の形状が内側に凹んだ曲線形状をなす第2連結部によって連結されていることを特徴とするスパークプラグ。  A surface of the base portion facing the protruding tip side in the flange portion and a side surface of the pedestal portion at the protruding tip end from the flange portion are recessed inward in a cross-sectional shape including the central axis of the ignition portion. A spark plug characterized by being connected by a second connecting portion having an elliptical shape.
前記発火部の前記任意の断面であって前記中心軸を中心とし異なる周方向位置にて観察される複数の断面のうち、全周の半数以上の断面が、前記外径Sと前記長さTとがT/S≧0.5を満たすとともに、前記外角θが135°≦θ≦175°を満たすことを特徴とする請求項1又は2に記載のスパークプラグ。 Among the plurality of cross-sections observed at different circumferential positions around the central axis, the cross-sections of more than half of the entire circumference are the outer diameter S and the length T. DOO together with satisfy T / S ≧ 0.5, spark plug according to claim 1 or 2, wherein the external angle theta is to satisfy the 135 ° ≦ θ ≦ 175 °. 前記発火部の前記放電部を構成する材料の線膨張係数と、前記台座部を構成する材料の線膨張係数との差が8.1×10
−6 [1/K]以下であることを特徴とする請求項1乃至のいずれかに記載のスパークプラグ。
The difference between the linear expansion coefficient of the material constituting the discharge part of the ignition part and the linear expansion coefficient of the material constituting the pedestal part is 8.1 × 10
The spark plug according to any one of claims 1 to 3 , wherein the spark plug is -6 [1 / K] or less.
前記発火部の前記放電部は、Pt、Ir、RhまたはRuのうちのいずれかの単一の貴金属からなること、もしくはそれら貴金属のうち少なくともいずれか1つ以上の貴金属を含有する貴金属合金からなることを特徴とする請求項1乃至のいずれかに記載のスパークプラグ。 The discharge part of the ignition part is made of a single noble metal of any one of Pt, Ir, Rh or Ru, or made of a noble metal alloy containing at least one of the noble metals. The spark plug according to any one of claims 1 to 4 , wherein: 前記台座部は、前記接地電極の前記一側面側において、自身の外径が拡径されてなる鍔部を有し、The pedestal portion has a flange portion whose outer diameter is enlarged on the one side surface side of the ground electrode,
前記台座部の前記鍔部において前記突出先端側を向く面と、前記鍔部よりも前記突出先端における前記台座部の側面とは、前記発火部の前記中心軸を含む断面の形状が内側に凹んだ曲線形状をなす第2連結部によって連結されていることを特徴とする請求項1に記載のスパークプラグ。  A surface of the base portion facing the protruding tip side in the flange portion and a side surface of the pedestal portion at the protruding tip end from the flange portion are recessed inward in a cross-sectional shape including the central axis of the ignition portion. The spark plug according to claim 1, wherein the spark plugs are connected by a second connecting portion having a curved shape.
JP2009018643A 2009-01-29 2009-01-29 Spark plug Active JP5396092B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009018643A JP5396092B2 (en) 2009-01-29 2009-01-29 Spark plug
EP10735630.5A EP2393172B1 (en) 2009-01-29 2010-01-27 Spark plug
KR1020117020057A KR101346973B1 (en) 2009-01-29 2010-01-27 Spark plug
US13/146,816 US8476817B2 (en) 2009-01-29 2010-01-27 Spark plug
PCT/JP2010/000447 WO2010087158A1 (en) 2009-01-29 2010-01-27 Spark plug
CN201080005319.3A CN102292887B (en) 2009-01-29 2010-01-27 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018643A JP5396092B2 (en) 2009-01-29 2009-01-29 Spark plug

Publications (2)

Publication Number Publication Date
JP2010177052A JP2010177052A (en) 2010-08-12
JP5396092B2 true JP5396092B2 (en) 2014-01-22

Family

ID=42395422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018643A Active JP5396092B2 (en) 2009-01-29 2009-01-29 Spark plug

Country Status (6)

Country Link
US (1) US8476817B2 (en)
EP (1) EP2393172B1 (en)
JP (1) JP5396092B2 (en)
KR (1) KR101346973B1 (en)
CN (1) CN102292887B (en)
WO (1) WO2010087158A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942473B2 (en) * 2012-02-28 2016-06-29 株式会社デンソー Spark plug for internal combustion engine and method for manufacturing the same
JP6055490B2 (en) * 2012-03-06 2016-12-27 フラム・グループ・アイピー・エルエルシー Spark plug having ground electrode plateau and method of manufacturing the same
JP5880428B2 (en) * 2012-12-28 2016-03-09 株式会社オートネットワーク技術研究所 Card edge connector
JP5938392B2 (en) * 2013-12-26 2016-06-22 日本特殊陶業株式会社 Spark plug
JP5956514B2 (en) * 2014-06-30 2016-07-27 日本特殊陶業株式会社 Spark plug
JP5956513B2 (en) * 2014-06-30 2016-07-27 日本特殊陶業株式会社 Spark plug
DE102014225402A1 (en) * 2014-12-10 2016-06-16 Robert Bosch Gmbh Spark plug electrode with deep weld and spark plug with the spark plug electrode and method of manufacturing the spark plug electrode
CN108123368A (en) * 2016-11-28 2018-06-05 霾消天蓝(北京)环保科技有限公司 A kind of spark plug
JP7121081B2 (en) * 2020-08-19 2022-08-17 日本特殊陶業株式会社 Spark plug

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3796342B2 (en) 1998-01-19 2006-07-12 日本特殊陶業株式会社 Spark plug and manufacturing method thereof
JP3121309B2 (en) * 1998-02-16 2000-12-25 株式会社デンソー Spark plugs for internal combustion engines
JP2005294272A (en) * 2001-02-08 2005-10-20 Denso Corp Manufacturing method of spark plug
JP3702838B2 (en) * 2001-02-08 2005-10-05 株式会社デンソー Spark plug and manufacturing method thereof
JP2003142226A (en) * 2001-10-31 2003-05-16 Ngk Spark Plug Co Ltd Spark plug
JP2004207219A (en) * 2002-12-10 2004-07-22 Denso Corp Spark plug
US7083488B2 (en) * 2003-03-28 2006-08-01 Ngk Spark Plug Co., Ltd. Method for manufacturing spark plug and apparatus for manufacturing spark plug
JP2006173141A (en) * 2006-02-27 2006-06-29 Ngk Spark Plug Co Ltd Spark plug
JP4603005B2 (en) * 2007-03-28 2010-12-22 日本特殊陶業株式会社 Manufacturing method of spark plug
JP4674696B2 (en) * 2007-04-03 2011-04-20 日本特殊陶業株式会社 Manufacturing method of spark plug

Also Published As

Publication number Publication date
JP2010177052A (en) 2010-08-12
KR20110122145A (en) 2011-11-09
CN102292887A (en) 2011-12-21
EP2393172A4 (en) 2013-12-11
KR101346973B1 (en) 2014-01-02
US20110294369A1 (en) 2011-12-01
EP2393172B1 (en) 2019-06-05
US8476817B2 (en) 2013-07-02
CN102292887B (en) 2014-04-09
WO2010087158A1 (en) 2010-08-05
EP2393172A1 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP5396092B2 (en) Spark plug
JP5113161B2 (en) Spark plug
JP4787339B2 (en) Plasma jet ignition plug
US8624473B2 (en) Spark plug
US8841827B2 (en) Spark plug with improved resistance to spark-induced erosion of the ground electrode tip
WO2012039090A1 (en) Spark plug
JP2011175980A5 (en)
JP5476360B2 (en) Spark plug
US10186845B2 (en) Electrode tip for spark plug, and spark plug
JP5001963B2 (en) Spark plug for internal combustion engines.
US8294344B2 (en) Spark plug and weld metal zone
JP2009158408A (en) Method of manufacturing sparking plug
JP6261537B2 (en) Spark plug
JP6903717B2 (en) Spark plug
JP6971956B2 (en) How to make a spark plug and a spark plug
JP6992017B2 (en) Spark plug

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121002

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121010

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5396092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250