JP5392535B2 - Resin composition for insulating electrical equipment and electrical equipment electrically insulated using the same - Google Patents

Resin composition for insulating electrical equipment and electrical equipment electrically insulated using the same Download PDF

Info

Publication number
JP5392535B2
JP5392535B2 JP2008281110A JP2008281110A JP5392535B2 JP 5392535 B2 JP5392535 B2 JP 5392535B2 JP 2008281110 A JP2008281110 A JP 2008281110A JP 2008281110 A JP2008281110 A JP 2008281110A JP 5392535 B2 JP5392535 B2 JP 5392535B2
Authority
JP
Japan
Prior art keywords
electrical equipment
resin composition
parts
mass
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008281110A
Other languages
Japanese (ja)
Other versions
JP2010108820A (en
Inventor
伊三雄 馬上
学 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008281110A priority Critical patent/JP5392535B2/en
Publication of JP2010108820A publication Critical patent/JP2010108820A/en
Application granted granted Critical
Publication of JP5392535B2 publication Critical patent/JP5392535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Organic Insulating Materials (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、電気絶縁用樹脂組成物及びそれを用いて電気絶縁処理した電気機器に関し、ツイストペアの寿命評価において、20000時間の耐熱温度が155℃以上のモータ、トランスなどの電気機器の処理方法に用いる電気機器絶縁用樹脂組成物、及び、この電気機器絶縁用樹脂組成物を用いて電気絶縁処理してなる電気機器に関する。   The present invention relates to a resin composition for electrical insulation and an electrical device electrically insulated using the same, and in a life evaluation of a twisted pair, a method for treating electrical devices such as motors and transformers having a heat resistant temperature of 20,000 hours or more for 20,000 hours. The present invention relates to an electric equipment insulating resin composition to be used and an electric equipment obtained by electric insulation treatment using the electric equipment insulating resin composition.

モータ、トランス等の電気機器は、鉄コアの固着又は防錆、コイルの絶縁若しくは固着等を目的として、電気機器絶縁用樹脂組成物で処理されている。電気機器絶縁用樹脂組成物としては、固着性、硬化性、電気絶縁性などのバランスに優れた不飽和ポリエステル樹脂組成物が広く用いられている。   Electric devices such as motors and transformers are treated with a resin composition for insulating electric devices for the purpose of fixing or preventing rusting of iron cores and insulating or fixing coils. As resin compositions for insulating electrical equipment, unsaturated polyester resin compositions having an excellent balance of adhesion, curability, electrical insulation and the like are widely used.

近年の電気機器は、小型・軽量化、高出力化が進んだため、実機スロット内の電線が占有する割合(占積率)が高くなる傾向があり、スロット内の空隙が減少し、電気機器絶縁用樹脂組成物がスロットの中へ含浸し難くなってきている。   In recent years, electrical equipment has become smaller, lighter, and has higher output, so the proportion occupied by the wires in the actual machine slot (space factor) tends to increase, and the gap in the slot decreases, resulting in electrical equipment. It has become difficult to impregnate the insulating resin composition into the slot.

特に、ドリップ処理では、予熱後の未だ熱い実機コイルへ電気機器絶縁用樹脂組成物を滴下しても、電気機器へ滴下した後に電気機器絶縁用樹脂組成物の温度が上昇して粘度が低下するため、電気機器絶縁用樹脂組成物が直ぐに垂れてしまい、満足する含浸性が得られず、さらに垂れた電気機器絶縁用樹脂組成物がコアへ付着してしまうことにより、コアに付着した電気機器絶縁用樹脂組成物を剥がし取る作業が生じ、生産性が低下してしまう事があった。   In particular, in the drip treatment, even if the resin composition for insulating an electric device is dropped on the still hot coil after preheating, the temperature of the resin composition for insulating the electric device rises and drops in viscosity after dropping on the electric device. For this reason, the resin composition for insulating an electric device immediately sags, a satisfactory impregnation property cannot be obtained, and the sagging resin composition for insulating an electric device adheres to the core, so that the electric device attached to the core The work which peels off the resin composition for insulation arises, and productivity may fall.

また、含浸性の向上を目指し、電気機器絶縁用樹脂組成物の滴下量を増やして滴下するが、電気機器絶縁用樹脂組成物がまた直ぐに垂れてしまい、満足する含浸性が得られず、更に、垂れた電気機器絶縁用樹脂組成物が更にコアへ付着してしまうという悪循環が生じ、さらに、生産性が低下していた。
近年の電気機器は、高出力化が進展したため、電気機器が運転時に、より高温にさらされるようになってきた。特に、モータの回転子の場合、運転時の温度がより高くなるとともに、回転速度がより速くなり、回転子の遠心力によって、電気絶縁処理した回転子の固着性が低下し、コイルが変形してしまい、回転のバランスがとれない場合があった。このため、高温で高接着性を示す電気機器絶縁用樹脂組成物が求められるようになってきた。
In addition, aiming to improve the impregnation property, the dropping amount of the resin composition for electrical equipment insulation is increased, but the resin composition for electrical equipment insulation is dripped immediately, and a satisfactory impregnation property is not obtained. As a result, a vicious cycle occurred in which the sagging resin composition for insulating electrical equipment was further adhered to the core, and the productivity was lowered.
In recent years, since the output of electric devices has increased, electric devices have been exposed to higher temperatures during operation. In particular, in the case of a rotor of a motor, the temperature during operation becomes higher and the rotational speed becomes faster, and due to the centrifugal force of the rotor, the fixing property of the electrically insulated rotor is lowered and the coil is deformed. In some cases, the rotation could not be balanced. For this reason, the resin composition for electrical equipment insulation which shows high adhesiveness at high temperature has come to be calculated | required.

特開2000−235813号公報JP 2000-235813 A

本発明の目的は、電気機器絶縁用樹脂組成物が滴下処理後に電気機器の予熱によって高温にさらされた場合でも、コイルからの垂れ落ちが少なく、含浸性が良好で、且つ、コアへの付着が少ない電気機器絶縁用樹脂組成物及びこの電気機器絶縁用樹脂組成物を用いて電気絶縁処理してなる電気機器を提供することにある。
特に、環境対応の面から、ワニス処理時に発生するVOCを従来の不飽和エポキシエステル樹脂よりも、大幅に低減することが可能となる電気機器絶縁用樹脂組成物を提供することにある。
更に、近年の電気機器の高出力化・高速回転化に対応して、高温で高接着性を示す電気機器絶縁用樹脂組成物を提供することにある。
The object of the present invention is that even when the resin composition for insulating electrical equipment is subjected to a high temperature by preheating of the electrical equipment after the dropping treatment, the dripping from the coil is small, the impregnation property is good, and the adhesion to the core An object of the present invention is to provide a resin composition for insulating electrical equipment with a small amount and an electrical equipment obtained by electrical insulation treatment using the resin composition for insulating electrical equipment.
In particular, from an environmental standpoint, an object of the present invention is to provide a resin composition for insulating electrical equipment that can significantly reduce VOC generated during varnish treatment as compared with conventional unsaturated epoxy ester resins.
Another object of the present invention is to provide a resin composition for insulating electrical equipment that exhibits high adhesion at high temperatures in response to the recent increase in output and speed of electrical equipment.

本発明者らは鋭意検討の結果、高温でさらされる温度での電気機器絶縁用樹脂組成物の粘度範囲を規定する事により、滴下処理後に電気機器絶縁用樹脂組成物のコイルからの垂れ落ちが少なく、含浸性が良好で、且つ、コアへの付着が少なく、結果として、電気絶縁用樹脂組成物の滴下量を低減できることを見出した。   As a result of intensive studies, the present inventors have prescribed the viscosity range of the resin composition for insulating electrical equipment at a temperature exposed to a high temperature, so that the resin composition for insulating electrical equipment drips from the coil after the dropping treatment. It has been found that the amount of the resin composition for electrical insulation can be reduced as a result, with little impregnation and good adhesion to the core.

本発明は、[1]80℃における粘度が10〜500mPa・sで、200℃でのストラッカー固着力が300N以上である電気機器絶縁用樹脂組成物に関する。
また、本発明は、[2]上記[1]に記載の電気機器絶縁用樹脂組成物とMW30、MW35、MW73またはMW81の電線を組み合わせた時のツイストペアの寿命評価において、20000時間の耐熱温度が155℃以上である上記[1]に記載の電気機器絶縁用樹脂組成物に関する。
また、本発明は、[3]上記[1]又は[2]に記載の電気機器絶縁用樹脂組成物が、(A)ポリエポキシドとα,β−不飽和塩基酸とを反応させ、更に不飽和二塩基酸を反応させて得られる不飽和エポキシエステル樹脂を10〜50質量部、(B)ジシクロペンテニルオキシエチルメタクリレ−トを(A)成分10〜50質量部に対して、1〜50質量部、(C)トリス(2−アクリロイルオキシエチル)イソシアヌレートを(A)成分と(B)成分の合計100質量部に対して0〜30質量部、(D)3官能以上のアクリレートまたはメタクリレートを(A)成分と(B)成分の合計100質量部に対して10〜200質量部含有してなる電気機器絶縁処理用樹脂組成物に関する。
また、本発明は、[4]上記[1]ないし上記[3]のいずれかに記載の電気機器絶縁用樹脂組成物を用いた電気絶縁処理方法が、ドリップ処理方法を用いて電気絶縁処理してなる電気機器に関する。
The present invention relates to [1] a resin composition for insulating electrical equipment having a viscosity at 80 ° C. of 10 to 500 mPa · s and a sticker fixing strength at 200 ° C. of 300 N or more.
In addition, the present invention provides [2] a heat resistant temperature of 20000 hours in the life evaluation of a twisted pair when the resin composition for insulating electrical equipment according to the above [1] is combined with an electric wire of MW30, MW35, MW73 or MW81. It is related with the resin composition for electric equipment insulation as described in said [1] which is 155 degreeC or more.
Further, the present invention provides: [3] The resin composition for insulating electrical equipment according to [1] or [2] described above, wherein (A) a polyepoxide and an α, β-unsaturated basic acid are reacted, and further unsaturated. 10 to 50 parts by mass of an unsaturated epoxy ester resin obtained by reacting a dibasic acid, and 1 to 50 parts of (B) dicyclopentenyloxyethyl methacrylate with respect to 10 to 50 parts by mass of component (A). Parts by mass, (C) tris (2-acryloyloxyethyl) isocyanurate, 0 to 30 parts by mass with respect to a total of 100 parts by mass of component (A) and component (B), (D) trifunctional or higher functional acrylate or methacrylate It is related with the resin composition for an electrical equipment insulation process which contains 10-200 mass parts with respect to a total of 100 mass parts of (A) component and (B) component.
The present invention also provides [4] an electrical insulation treatment method using the resin composition for electrical equipment insulation according to any one of [1] to [3] above, wherein the electrical insulation treatment is performed using a drip treatment method. It relates to electrical equipment.

本発明になる電気機器絶縁用樹脂組成物は、高温でさらされる温度での電気機器絶縁用樹脂組成物の粘度範囲を規定する事によって、滴下処理後に電気絶縁用樹脂組成物のコイルからの垂れ落ちが少なく、含浸性が良好で、且つ、コアへの付着が少なく、結果として、電気機器絶縁用樹脂組成物の滴下量を低減でき、コアに付着した電気機器絶縁用樹脂組成物の削り取り作業を削減することができる。また、この電気機器絶縁用樹脂組成物は高温における固着性にも優れ、これを用いて電気機器絶縁処理された電気機器は、コイルの変形が防止され回転のバランスがとれるためより高温にさらされる高出力モータに対応できるなど工業的に極めて優れる。   The resin composition for electrical equipment insulation according to the present invention sags from the coil of the resin composition for electrical insulation after the dropping treatment by defining the viscosity range of the resin composition for electrical equipment insulation at a temperature exposed at a high temperature. Less dropping, good impregnation, and less adhesion to the core. As a result, the dripping amount of the resin composition for electrical equipment insulation can be reduced, and the electrical resin insulation resin composition adhered to the core is scraped off. Can be reduced. In addition, the resin composition for insulating electrical equipment is excellent in adhesion at high temperatures, and electrical equipment insulated using the electrical composition is exposed to higher temperatures because the deformation of the coil is prevented and the rotation is balanced. It is industrially excellent, such as being compatible with high output motors.

本発明において、電気機器絶縁用樹脂組成物は、特に制限は無く、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アルキド樹脂等の熱硬化樹脂が挙げられ、単独で用いても、複数を組合せて用いても良い。
また、これらの電気機器絶縁用樹脂組成物に、二酸化珪素、窒化アルミニウム、タルク等のフィラーを用いても良く、フィラーは特に制限は無く、単独で用いても、複数を組合せて用いても良い。
前記熱硬化性樹脂の中でも、不飽和エポキシエステル樹脂が好ましいものとして挙げられる。本発明で用いられる不飽和エポキシエステル樹脂は、ポリエポキシドとα,β-不飽和塩基酸とを反応させて、樹脂酸価を10mgKOH/g以下とし、次いで、不飽和二塩基酸を反応させて得られる樹脂酸価が10〜30mgKOH/gとして得られるものである。
不飽和エポキシエステル樹脂の製造条件には制限は無く、例えば、触媒を用いて100℃〜120℃で、5〜10時間反応させて合成される。本発明に用いられるポリエポキシドは、分子あたり1個以上のエポキシ基を含有する化合物で、多価アルコールもしくは、多価フェノールのグリシジルポリエーテル、エポキシ化脂肪酸もしくは、乾性油酸、エポキシジオレフィン、エポキシ化ジ不飽和酸のエステル、エポキシ化飽和ポリエステル等が挙げられる。
In the present invention, the resin composition for insulating electrical equipment is not particularly limited, and examples thereof include thermosetting resins such as epoxy resins, unsaturated polyester resins, polyurethane resins, phenol resins, melamine resins, urea resins, alkyd resins, and the like. Or may be used in combination.
In addition, fillers such as silicon dioxide, aluminum nitride, and talc may be used for these electrical equipment insulating resin compositions, and the filler is not particularly limited, and may be used alone or in combination. .
Among the thermosetting resins, unsaturated epoxy ester resins are preferable. The unsaturated epoxy ester resin used in the present invention is obtained by reacting a polyepoxide with an α, β-unsaturated basic acid so that the resin acid value is 10 mg KOH / g or less, and then reacting with an unsaturated dibasic acid. The obtained resin acid value is 10 to 30 mgKOH / g.
There is no restriction | limiting in the manufacturing conditions of unsaturated epoxy ester resin, For example, it is made to react by making it react at 100 to 120 degreeC for 5 to 10 hours using a catalyst. The polyepoxide used in the present invention is a compound containing one or more epoxy groups per molecule, polyhydric alcohol, glycidyl polyether of polyhydric phenol, epoxidized fatty acid, drying oil acid, epoxy diolefin, epoxidation Examples thereof include esters of diunsaturated acids and epoxidized saturated polyesters.

α,β-不飽和塩基酸としては、メタクリル酸、アクリル酸、クロトン酸等があり、併用してもさしつかえない。
不飽和二塩基酸としては、マレイン酸、無水マレイン酸、フマル酸等の不飽和酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸などが用いられる。
付加触媒としては、塩化亜鉛、塩化リチウムなどのハロゲン化物、ジメチルサルファイト、メチルフェニルサルファイトなどのサルファイト類、ジメチルスルホキサイド、メチルスルホキサイド、メチルエチルスルホキサイドなどのスルホキサイド類、N,N−ジメチルアニリン、ピリジン、トリエチルアミン、ヘキサメチレンジアミンなどの3級アミン及びその塩基酸または臭酸塩、テトラメチルアンモニウムクロライド、トリメチルドデシルベンジルアンモニウムクロライドなどの4級アンモニウム塩、パラトルエンスルホン酸などのスルホン酸類、エチルメルカプタン、プロピルメルカプタンなどのメルカプタン類などが用いられる。
ポリエポキシドとα,β-不飽和塩基酸との反応は、ポリエポキシド1.0モルに対し、α,β-不飽和塩基酸を1.0〜2.0モル反応させることが望ましい。
更に、次の不飽和エポキシエステルと不飽和二塩基酸との反応は、ポリエポキシド1.0モルに対し、α,β-不飽和塩基酸を1.0〜2.0モル反応させて得られた不飽和エポキシエステルに対し、不飽和二塩基酸を、0.1〜1.0モル反応させることが望ましく、不飽和エポキシエステルのモル数と、α,β-不飽和塩基酸及び不飽和二塩基酸のモル数の合計が、ほぼ同じモル数になる事が望ましい。
Examples of the α, β-unsaturated basic acid include methacrylic acid, acrylic acid, crotonic acid and the like.
Examples of the unsaturated dibasic acid include unsaturated acids such as maleic acid, maleic anhydride and fumaric acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride and the like.
Examples of the addition catalyst include halides such as zinc chloride and lithium chloride, sulfites such as dimethyl sulfite and methylphenyl sulfite, sulfoxides such as dimethyl sulfoxide, methyl sulfoxide and methylethyl sulfoxide, N , N-dimethylaniline, pyridine, triethylamine, tertiary amines such as hexamethylenediamine and their basic acids or oxalates, quaternary ammonium salts such as tetramethylammonium chloride, trimethyldodecylbenzylammonium chloride, p-toluenesulfonic acid, etc. Mercaptans such as sulfonic acids, ethyl mercaptan and propyl mercaptan are used.
The reaction between the polyepoxide and the α, β-unsaturated basic acid is desirably performed by reacting 1.0 to 2.0 mol of the α, β-unsaturated basic acid with respect to 1.0 mol of the polyepoxide.
Furthermore, the following reaction of unsaturated epoxy ester and unsaturated dibasic acid was obtained by reacting 1.0 to 2.0 mol of α, β-unsaturated basic acid with respect to 1.0 mol of polyepoxide. It is desirable to react 0.1 to 1.0 mole of unsaturated dibasic acid with respect to unsaturated epoxy ester, the number of moles of unsaturated epoxy ester, α, β-unsaturated basic acid and unsaturated dibasic It is desirable that the total number of moles of acid be approximately the same.

本発明で用いられる(B)成分のジシクロペンテニルオキシエチルメタクリレ−ト以外に、ジシクロペンタニルメタクリレートを用いても良い。(B)成分の使用量は、(A)成分10〜50質量部に対して1〜50質量部の範囲とされる。   In addition to the component (B) dicyclopentenyloxyethyl methacrylate used in the present invention, dicyclopentanyl methacrylate may be used. (B) The usage-amount of a component shall be the range of 1-50 mass parts with respect to 10-50 mass parts of (A) component.

本発明で用いられる(C)成分として、トリス(2−アクリロイルオキシエチル)イソシアヌレートを用い、その使用量は、(A)成分と(B)成分の合計100質量部に対して、0〜30重量部の範囲とされ、(C)成分を用いない場合もある。   As the component (C) used in the present invention, tris (2-acryloyloxyethyl) isocyanurate is used, and the amount used is 0 to 30 parts per 100 parts by mass in total of the components (A) and (B). The range is in parts by weight, and the component (C) may not be used.

本発明で用いられる(D)成分は、3官能以上のアクリル基を持つアクリレートまたは3官能以上のメタクリル基を持つメタクリレートであればよい。
3官能以上のアクリル基を持つアクリレートとしては、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、ジメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールエトキシテトラアクリレート、ジペンタエリスリトールヘキサアクリレート等が挙げられる。
3官能以上のメタクリル基を持つメタクリレートとしては、トリメチロールプロパントリメタクリレート、エトキシ化トリメチロールプロパントリメタクリレート、ジメチロールプロパンテトラメタクリレート、ペンタエリスリトールテトラメタクリレート、ペンタエリスリトールエトキシテトラメタクリレート、ジペンタエリスリトールヘキサメタクリレート等が挙げられる。
これらは、単品で用いても、複数の種類を組み合わせて用いてもよく、その使用量は、(A)成分と(B)成分の合計100質量部に対して、10〜200質量部の範囲とされる。
The component (D) used in the present invention may be an acrylate having a trifunctional or higher acrylic group or a methacrylate having a trifunctional or higher methacrylic group.
Examples of the acrylate having a trifunctional or higher functional acrylic group include trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, dimethylolpropane tetraacrylate, pentaerythritol tetraacrylate, pentaerythritol ethoxytetraacrylate, and dipentaerythritol hexaacrylate. Can be mentioned.
Examples of the methacrylate having a trifunctional or higher methacrylic group include trimethylolpropane trimethacrylate, ethoxylated trimethylolpropane trimethacrylate, dimethylolpropane tetramethacrylate, pentaerythritol tetramethacrylate, pentaerythritol ethoxytetramethacrylate, dipentaerythritol hexamethacrylate, and the like. Can be mentioned.
These may be used alone or in combination of a plurality of types, and the amount used is in the range of 10 to 200 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). It is said.

本発明の電気機器絶縁用樹脂組成物は、コア汚染が少なく、良好な含浸性を得る点から、80℃における粘度が10〜500mPa・sとする。80℃における粘度は20〜100mPa・sであることが好ましく、40〜80mPa・sであることがより好ましい。80℃における粘度が10mPa・s未満であると電気機器へ滴下したワニスが垂れ易くなってコアへ付着し易くなる傾向があり、500mPa・sを超えると浸透性が悪くなって含浸性が低下する傾向がある。   The resin composition for insulating electrical equipment of the present invention has a viscosity of 10 to 500 mPa · s at 80 ° C. from the viewpoint of little core contamination and good impregnation. The viscosity at 80 ° C. is preferably 20 to 100 mPa · s, and more preferably 40 to 80 mPa · s. When the viscosity at 80 ° C. is less than 10 mPa · s, the varnish dripped onto the electric device tends to sag and tends to adhere to the core, and when it exceeds 500 mPa · s, the permeability is deteriorated and the impregnation property is lowered. Tend.

本発明では、電気機器絶縁用樹脂組成物として、上記の80℃における粘度が5〜500mPa・sであることの他に、200℃でのストラッカー固着力が300N以上である必要がある。
高温における固着性に優れたものとし、これを用いて電気機器絶縁処理された電気機器のコイルの変形が防止され回転のバランスがとれるためより高温にさらされる高出力モータに対応できるようにする。
ストラッカー固着力はJIS C2103(電機絶縁用ワニス試験方法)に記載された方法により測定する。試験片は、電機バインド用すずめっきピアノ線で、目視で傷がない真っ直ぐな直径1.2mm、長さ50mm±1mm及び約100mmのものを用い、粗粒を全く含まない塗料用べんがら、粘土、けいそう土、軽質酸化マグネシウムなどの研磨剤を水でぬらし、これでピアノ線をよく磨いて、さび、その他の付着物を落とし、流水中でよく洗ってから、汚れがない布などで水をふき取り、約100℃の恒温槽中で乾かした後、デシケ-タ(固形乾燥剤入り)中に保管しておく。このピアノ線各2本をとり、長い方のピアノ線(約100mm)2本の一端を突き合わせ、その接点を中心に短い方のピアノ線(50mm)を両側に沿わせ、その上を軟銅線で片道10回ずつ、往復で20回軽く巻き止める。この巻き止めた接合部に原液のままの試料をはけで十分に塗布し、水平の位置で室温に約30分間放置した後、既定の条件によって乾燥する。
そして、引張試験機を用い、つかみの間隔を100〜150mmとして50〜200mm/minの速さで引張って、試験片の接点を引き剥がした時の荷重を固着力(N)とする。
本発明では、測定に用いたエナメル線は、直径2.0mmの1AIWを用い、ワニスの硬化は、150℃で1時間硬化させた。そして、200℃の雰囲気中で、つかみ間隔を125mm、引張り速度100mm/minで測定した。
ストラッカー固着力は、高出力モータに対応するため300N以上であることが好ましい。340N以上であることがより好ましい。
In the present invention, as the resin composition for insulating electrical equipment, the viscosity at 80 ° C. is 5 to 500 mPa · s, and in addition, the adherence strength of the tracker at 200 ° C. needs to be 300 N or more.
It has excellent adhesion at high temperatures, and is used to prevent deformation of coils of electrical equipment that has been subjected to insulation treatment of electrical equipment and to balance rotation so that it can be used for high-power motors that are exposed to higher temperatures.
The adhesion strength of the tracker is measured by the method described in JIS C2103 (Testing method for varnish for electrical insulation). The test piece is a tin-plated piano wire for electric binding, and has a straight diameter of 1.2 mm, a length of 50 mm ± 1 mm and about 100 mm with no visual damage, and a paintbrush containing no coarse particles, clay, Wet abrasives such as diatomaceous earth and light magnesium oxide with water, polish the piano wire well with this, remove rust and other deposits, wash well under running water, and then use a clean cloth to remove water. After wiping and drying in a constant temperature bath at about 100 ° C., it is stored in a desiccator (containing a solid desiccant). Take two each of these piano wires, butt one end of two longer piano wires (about 100mm), center the contact with the shorter piano wire (50mm) on both sides, and top with soft copper wire 10 times each way, lightly wrap around 20 times. The undiluted sample is sufficiently applied to the unsealed joint with a brush, left at room temperature for about 30 minutes at a horizontal position, and then dried under predetermined conditions.
Then, using a tensile testing machine, the load when the gripping interval is 100 to 150 mm and pulled at a speed of 50 to 200 mm / min, and the contact of the test piece is peeled off is defined as the fixing force (N).
In the present invention, 1 AIW having a diameter of 2.0 mm was used as the enamel wire used for the measurement, and the varnish was cured at 150 ° C. for 1 hour. Then, in an atmosphere of 200 ° C., the gripping interval was measured at 125 mm and the pulling speed was 100 mm / min.
It is preferable that the straper fixing force is 300 N or more in order to cope with a high output motor. More preferably, it is 340 N or more.

本発明の電気機器絶縁用樹脂組成物はエアコン用ファン、扇風機、洗濯機等のコンデンサーモートル、電気ドリルなどのアマチュア、テレビ、ステレオ、コンパクトディスクプレーヤー等電源トランスなどの電気機器の絶縁処理に適用される。電気機器絶縁用樹脂組成物を、電気機器自体、又は電気機器の部品に塗布、含浸、又は充填した後、通常、100〜200℃、好ましくは120〜150℃で加熱することにより、電気機器絶縁用樹脂組成物を硬化させる。加熱時間は、通常、0.2〜3.0時間である。   The resin composition for insulating electrical equipment of the present invention is applied to insulation treatment of electrical equipment such as power transformers such as condenser motors such as air conditioner fans, electric fans and washing machines, amateurs such as electric drills, televisions, stereos and compact disc players. The After applying, impregnating or filling the resin composition for electrical equipment insulation to the electrical equipment itself or parts of the electrical equipment, the electrical equipment is usually insulated by heating at 100 to 200 ° C, preferably 120 to 150 ° C. The resin composition is cured. The heating time is usually 0.2 to 3.0 hours.

以下実施例により本発明を説明する。下記例中の部は、質量部を意味する。
(製造例1)
不飽和エポキシエステル樹脂(A−1)の合成
4,4−イソピリデンジフェノール(ビスフェノールA)のジグリシジルエーテル(シェル化学株式会社製、EP−828,エポキシ当量188)376部、メタクリル酸172部、ベンジルジメチルアミン2部、ハイドロキノン0.05部を反応釜に仕込み、115℃、10時間反応させ、樹脂酸価が8mgKOH/gとなった所で、フマル酸5部を仕込み、115℃、2時間反応させて樹脂酸価20mgKOH/gの不飽和エポキシエステル樹脂(A−1)を得た。
The following examples illustrate the invention. The part in the following example means a mass part.
(Production Example 1)
Synthesis of unsaturated epoxy ester resin (A-1) 376 parts of diglycidyl ether of 4,4-isopyridenediphenol (bisphenol A) (manufactured by Shell Chemical Co., EP-828, epoxy equivalent 188), 172 parts of methacrylic acid Then, 2 parts of benzyldimethylamine and 0.05 part of hydroquinone were charged into a reaction kettle and reacted at 115 ° C. for 10 hours. When the resin acid value reached 8 mgKOH / g, 5 parts of fumaric acid was charged at 115 ° C., 2 It was made to react for time, and the unsaturated epoxy ester resin (A-1) of resin acid value 20mgKOH / g was obtained.

(実施例1)
(A)成分として不飽和エポキシエステル樹脂(A−1)30部、(B)のジシクロペンテニルオキシエチルメタクリレ−トとしてFA−512MT(日立化成工業株式会社製) 20部、(D)成分の3官能以上のアクリレートとしてトリメチロールプロパントリアクリレート50部、ベンゾイルパーオキサイド1.0部を撹拌混合して電気機器絶縁用樹脂組成物を調製した。
Example 1
(A) 30 parts of unsaturated epoxy ester resin (A-1) as component, 20 parts of FA-512MT (manufactured by Hitachi Chemical Co., Ltd.) as dicyclopentenyloxyethyl methacrylate of (B), component (D) As a trifunctional or higher functional acrylate, 50 parts of trimethylolpropane triacrylate and 1.0 part of benzoyl peroxide were stirred and mixed to prepare a resin composition for electrical equipment insulation.

(実施例2)
(A)成分として不飽和エポキシエステル樹脂(A−1)30部、(B)のジシクロペンテニルオキシエチルメタクリレ−トとしてFA−512MT(日立化成工業株式会社製) 20部、(C)成分のトリス(2−アクリロイルオキシエチル)イソシアヌレートとしてFA−731A(日立化成工業株式会社製) 10部、(D)成分の3官能以上のアクリレートとしてトリメチロールプロパントリアクリレート 60部、ベンゾイルパーオキサイド1.0部を撹拌混合して電気機器絶縁用樹脂組成物を調製した。
(Example 2)
30 parts of unsaturated epoxy ester resin (A-1) as component (A), 20 parts of FA-512MT (manufactured by Hitachi Chemical Co., Ltd.) as dicyclopentenyloxyethyl methacrylate of (B), component (C) 10 parts of FA-731A (manufactured by Hitachi Chemical Co., Ltd.) as tris (2-acryloyloxyethyl) isocyanurate, 60 parts of trimethylolpropane triacrylate as trifunctional or higher acrylate of component (D), benzoyl peroxide 0 parts was stirred and mixed to prepare a resin composition for insulating electrical equipment.

(比較例1)
不飽和エポキシエステル樹脂(A−1)40部、スチレン60部、ベンゾイルパーオキサイド1.0部を撹拌混合して電気機器絶縁用樹脂組成物を調製した。
(Comparative Example 1)
40 parts of unsaturated epoxy ester resin (A-1), 60 parts of styrene, and 1.0 part of benzoyl peroxide were mixed with stirring to prepare a resin composition for insulating electrical equipment.

(比較例2)
不飽和エポキシエステル樹脂(A−1)30部、ジシクロペンテニルオキシエチルメタクリレ−ト(日立化成工業株式会社製FA−512MT) 50部、ベンゾイルパーオキサイド1.0部を撹拌混合して電気機器絶縁用樹脂組成物を調製した。
(Comparative Example 2)
30 parts of unsaturated epoxy ester resin (A-1), 50 parts of dicyclopentenyloxyethyl methacrylate (FA-512MT, manufactured by Hitachi Chemical Co., Ltd.) and 1.0 part of benzoyl peroxide are stirred and mixed to obtain an electric device. An insulating resin composition was prepared.

得られた電気機器絶縁用樹脂組成物について、所定雰囲気温度で粘度、ストラッカー固着力、コア汚染及びステータコイルの含浸性を調べた。その結果を表1に示した。
尚、粘度の試験方法は、JIS C 2105に準じて測定を行った。
ストラッカー固着力、VOC、コア汚染及びステータコイルの含浸性は以下の試験方法に準じて評価を行った。
With respect to the obtained resin composition for insulating electrical equipment, the viscosity, the adhesion of the tracker, the core contamination and the impregnation property of the stator coil were examined at a predetermined atmospheric temperature. The results are shown in Table 1.
The viscosity test method was performed according to JIS C 2105.
The evaluation of the adhesion strength of the tracker, VOC, core contamination and impregnation of the stator coil was performed according to the following test methods.

(1)ストラッカー固着力
JIS C−2103のストラッカー法に準じて測定した。
測定に用いたエナメル線は、直径2.0mmの1AIWを用い、ワニスの硬化は、150℃で1時間硬化させた。
(2)VOC(揮発性有機化合物、volatile organic compounds)
ワニス5.0gを直径60mm金属シャーレに投入し、130℃、1時間硬化を行い、硬化時に減少した質量減少率(%)とした。
(3)コア汚染
コア汚染の試験方法は、ステータコイル(直径200mm、質量10kg)を用い、回転速度15回転/分とし、ステータコイルのコア表面温度が80℃の時にコイルエンドの(1)リード線有り側の外側、(2)リード線有り側の内側、(3)リード線無し側の外側、(4)リード線無し側の内側の合計四ヶ所(図1)にノズルを配置し、所定のワニスを20分間に合計300ml滴下し、滴下終了後、回転を続行しながら150℃の乾燥機へ投入し、1時間後に乾燥機から取り出して、コア部に付着したワニスの付着の有無を目視で調査した。
(1) Adhering strength of the tracker It was measured according to the JIS C-2103 tracker method.
The enamel wire used for the measurement was 1 AIW having a diameter of 2.0 mm, and the varnish was cured at 150 ° C. for 1 hour.
(2) VOC (volatile organic compounds)
Varnish (5.0 g) was put into a metal petri dish with a diameter of 60 mm and cured at 130 ° C. for 1 hour to obtain a mass reduction rate (%) decreased during curing.
(3) Core contamination The core contamination test method uses a stator coil (diameter 200 mm, mass 10 kg) with a rotation speed of 15 revolutions / minute, and when the core surface temperature of the stator coil is 80 ° C, (1) lead at the coil end Nozzles are arranged at a total of four locations (Fig. 1) on the outer side of the wire side, (2) the inner side of the lead wire side, (3) the outer side of the lead wire side, and (4) the inner side of the lead wire side. In total, 300 ml of varnish was dripped in 20 minutes. After completion of dripping, the varnish was put into a dryer at 150 ° C. while continuing to rotate, taken out from the dryer after 1 hour, and visually checked for varnish adhering to the core. We investigated in.

(4)ステータコイルの含浸性
含浸性の試験方法は、コア汚染の試験方法でワニス処理したステータコイルのコアをコア積み厚の半分の部位で輪切り状に切断し、スロット内の空隙に対して含浸したワニスの割合を目視で評価した。
スロット内の空隙に対して含浸したワニスの割合が70%以上を良好とし、50%未満を含浸不足とした。
(4) Impregnation of stator coil The impregnation test method is to cut the varnished stator coil core into a ring shape at half the core stack thickness by the core contamination test method. The proportion of impregnated varnish was visually evaluated.
The ratio of the varnish impregnated with respect to the voids in the slot was 70% or more, and less than 50% was insufficient.

Figure 0005392535
Figure 0005392535

表1に示したように、実施例1及び2で得られた電気機器絶縁用樹脂組成物は、80℃での粘度が適正範囲内であるため、コア汚染が発生し難く、含浸性が良好である。更に、高温での接着力が高い。また、VOCが少なく作業環境面から良好である。
これに対して、比較例1で得られた電気絶縁用樹脂組成物は、80℃での粘度が適正範囲よりも低く、コア汚染が発生してしまい、含浸不足となっている。更に、高温での固着力(接着力)が低い。
また、比較例2で得られた電気絶縁用樹脂組成物は、高温での固着力(接着力)が低い。
As shown in Table 1, since the resin composition for insulating electrical equipment obtained in Examples 1 and 2 has a viscosity at 80 ° C. within an appropriate range, core contamination hardly occurs and the impregnation property is good. It is. Furthermore, the adhesive strength at high temperatures is high. Moreover, there is little VOC and it is favorable from a work environment side.
On the other hand, the resin composition for electrical insulation obtained in Comparative Example 1 has a viscosity at 80 ° C. lower than the appropriate range, and core contamination occurs, resulting in insufficient impregnation. Furthermore, the adhesive strength (adhesive force) at high temperatures is low.
Moreover, the resin composition for electrical insulation obtained in Comparative Example 2 has a low fixing strength (adhesive strength) at high temperatures.

本発明のドリップ処理のノズル位置とコア汚染の試験方法を説明するためのステータコイルを用いた模式図であり、(a)は、正面からみた図で、(b)は、横から見た図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic diagram using the stator coil for demonstrating the test method of the nozzle position of a drip process of this invention, and a core contamination, (a) is the figure seen from the front, (b) is the figure seen from the side It is.

Claims (4)

80℃における粘度が10〜500mPa・sで、200℃でのストラッカー固着力が300N以上である電気機器絶縁用樹脂組成物。   A resin composition for electrical equipment insulation having a viscosity at 80 ° C. of 10 to 500 mPa · s and a sticker fixing strength at 200 ° C. of 300 N or more. 請求項1に記載の電気機器絶縁用樹脂組成物とMW30、MW35、MW73またはMW81の電線を組み合わせた時のツイストペアの寿命評価において、20000時間の耐熱温度が155℃以上である請求項1に記載の電気機器絶縁用樹脂組成物。   2. The heat resistant temperature of 20000 hours is 155 ° C. or higher in the life evaluation of the twisted pair when the resin composition for insulating electrical equipment according to claim 1 and the electric wire of MW30, MW35, MW73 or MW81 are combined. Resin composition for electrical equipment insulation. 請求項1又は請求項2に記載の電気機器絶縁用樹脂組成物が、(A)ポリエポキシドとα,β−不飽和塩基酸とを反応させ、更に不飽和二塩基酸を反応させて得られる不飽和エポキシエステル樹脂を10〜50質量部、(B)ジシクロペンテニルオキシエチルメタクリレ−トを(A)成分10〜50質量部に対して、1〜50質量部、(C)トリス(2−アクリロイルオキシエチル)イソシアヌレートを(A)成分と(B)成分の合計100質量部に対して0〜30質量部、(D)3官能以上のアクリレートまたはメタクリレートを(A)成分と(B)成分の合計100質量部に対して10〜200質量部含有してなる電気機器絶縁処理用樹脂組成物。   The resin composition for insulating electrical equipment according to claim 1 or 2 is obtained by reacting (A) a polyepoxide with an α, β-unsaturated basic acid and further reacting with an unsaturated dibasic acid. 10-50 parts by mass of a saturated epoxy ester resin, 1-50 parts by mass of (B) dicyclopentenyloxyethyl methacrylate with respect to 10-50 parts by mass of component (A), (C) Tris (2- (Acryloyloxyethyl) isocyanurate is 0 to 30 parts by mass with respect to a total of 100 parts by mass of component (A) and component (B), and (D) trifunctional or higher functional acrylate or methacrylate is component (A) and component (B). A resin composition for electrical equipment insulation treatment comprising 10 to 200 parts by mass with respect to 100 parts by mass in total. 請求項1ないし請求項3のいずれかに記載の電気機器絶縁用樹脂組成物を用いた電気絶縁処理方法が、ドリップ処理方法を用いて電気絶縁処理してなる電気機器。   An electrical device obtained by electrical insulation treatment using a drip treatment method, wherein the electrical insulation treatment method using the resin composition for electrical equipment insulation according to any one of claims 1 to 3.
JP2008281110A 2008-10-31 2008-10-31 Resin composition for insulating electrical equipment and electrical equipment electrically insulated using the same Active JP5392535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281110A JP5392535B2 (en) 2008-10-31 2008-10-31 Resin composition for insulating electrical equipment and electrical equipment electrically insulated using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281110A JP5392535B2 (en) 2008-10-31 2008-10-31 Resin composition for insulating electrical equipment and electrical equipment electrically insulated using the same

Publications (2)

Publication Number Publication Date
JP2010108820A JP2010108820A (en) 2010-05-13
JP5392535B2 true JP5392535B2 (en) 2014-01-22

Family

ID=42298055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281110A Active JP5392535B2 (en) 2008-10-31 2008-10-31 Resin composition for insulating electrical equipment and electrical equipment electrically insulated using the same

Country Status (1)

Country Link
JP (1) JP5392535B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674026B2 (en) * 2011-03-10 2015-02-18 日立化成株式会社 Thixotropic liquid insulating varnish and electrical equipment insulator and electric motor using the same
JP7249180B2 (en) * 2019-03-20 2023-03-30 ジャパンコンポジット株式会社 Curable resin composition and molded article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571816B2 (en) * 1988-04-18 1997-01-16 日立化成工業 株式会社 Resin composition for electrical insulation for refrigerator motor
JPH0367406A (en) * 1989-08-04 1991-03-22 Hitachi Chem Co Ltd Insulating resin composition material for small transformer and manufacture of small transformer
JP3461111B2 (en) * 1997-12-18 2003-10-27 日立化成工業株式会社 Thermosetting resin composition and coil for rotating equipment using the same
JP4389137B2 (en) * 2000-07-04 2009-12-24 日立化成工業株式会社 Photocurable resin composition
JP2008266492A (en) * 2007-04-23 2008-11-06 Hitachi Chem Co Ltd Resin composition for insulating electrical apparatus and electrical apparatus having been electrically insulated
JP5349946B2 (en) * 2008-04-23 2013-11-20 日立化成株式会社 Induction heating member, electrical insulation processing apparatus, electrical equipment, and method of manufacturing electrical equipment

Also Published As

Publication number Publication date
JP2010108820A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP2011190434A (en) Insulating coating material and manufacturing method thereof as well as insulating electric wire using the same and manufacturing method thereof
NO135846B (en)
JP5392535B2 (en) Resin composition for insulating electrical equipment and electrical equipment electrically insulated using the same
JP2006187059A (en) Method and apparatus for impregnating insulation varnish
US4168989A (en) Stripping composition for thermoset resins and method of repairing electrical apparatus
JP5349946B2 (en) Induction heating member, electrical insulation processing apparatus, electrical equipment, and method of manufacturing electrical equipment
JP2008266492A (en) Resin composition for insulating electrical apparatus and electrical apparatus having been electrically insulated
JP4160041B2 (en) Insulating varnish impregnation method
US20080064809A1 (en) Impregnating Resin Formulation
CN102592752B (en) Production method of single-coating enamelled wire
JP2008048555A (en) Insulating varnish impregnation treatment method and impregnation treatment apparatus
JP5102547B2 (en) Insulated wire and manufacturing method thereof
JP2011225767A (en) Resin composition for electric insulation and electric appliance using the composition
JP2010280840A (en) Resin composition for insulating electric instrument and electric instrument treated using the same
JP5500358B2 (en) Resin composition for electrical insulation and electrical equipment using the composition
JP3376490B2 (en) Resin composition for electrical insulation and method for producing electrical-insulated transformer
JP2009123403A (en) Insulated electric wire and its manufacturing method
JP2011233465A (en) Resin composition for electric equipment insulation and electric equipment processed using the same
JP2014045120A (en) Resin composition for electric insulation, and electric device
JP2017115015A (en) Unsaturated polyester resin composition, rotor using the same and manufacturing method of electric device insulating material
JP4427741B2 (en) Resin composition, resin composition for electrical insulation, and method for producing electrical equipment insulator
WO2012146469A1 (en) Resin compositions comprising modified epoxy resins with sorbic acid
JPH10139994A (en) Resin composition for electrical insulation, and production of insulation material for electric appliances
JP5321876B2 (en) Resin composition for electrical insulation and method for producing electrical equipment insulator using the same
JP2007095639A (en) Electrically insulating resin composition and enameled wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R151 Written notification of patent or utility model registration

Ref document number: 5392535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350