JP5392025B2 - Motor control device and electric power steering device using the same - Google Patents

Motor control device and electric power steering device using the same Download PDF

Info

Publication number
JP5392025B2
JP5392025B2 JP2009266389A JP2009266389A JP5392025B2 JP 5392025 B2 JP5392025 B2 JP 5392025B2 JP 2009266389 A JP2009266389 A JP 2009266389A JP 2009266389 A JP2009266389 A JP 2009266389A JP 5392025 B2 JP5392025 B2 JP 5392025B2
Authority
JP
Japan
Prior art keywords
duty
detection
phase
current
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009266389A
Other languages
Japanese (ja)
Other versions
JP2011114883A (en
Inventor
洋介 今村
賢一 島田
昇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2009266389A priority Critical patent/JP5392025B2/en
Publication of JP2011114883A publication Critical patent/JP2011114883A/en
Application granted granted Critical
Publication of JP5392025B2 publication Critical patent/JP5392025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Description

本発明は、制御演算によりモータの電流を制御するための各相Duty指令値を算出し、各相Duty指令値に応じたPWM波形を形成し、PWM制御インバータにてモータに指令電流(電圧)を与えて駆動すモータ制御装置と、そのモータ制御装置を用いて車両のステアリング機構にモータによるアシストトルクを付与するようにした電動パワーステアリング装置とに関し、特にPWM制御インバータの電源入力側又は電源出力側(接地側)に単一の電流検出器を配設してPWM制御すると共に、相電流値を必要とする制御周期1回に対してPWM周期がn(>2)回ある構成とし、PWM周期n回中の1回を電流検出周期とすると共に、(n−1)回をDuty調整周期としてDuty演算を制御することで、コンパクト化、軽量化及びコストダウンを図ったモータ制御装置及びそれを用いた電動パワーステアリング装置に関する。   The present invention calculates a duty command value for each phase for controlling the motor current by control calculation, forms a PWM waveform corresponding to the duty command value for each phase, and instructs the motor with a command current (voltage) by a PWM control inverter. And a motor control device for driving the motor by using the motor control device, and an electric power steering device for applying an assist torque by a motor to a steering mechanism of a vehicle. A single current detector is disposed on the side (ground side) for PWM control, and the PWM cycle is n (> 2) times per control cycle that requires a phase current value. One of the n cycles is set as the current detection cycle, and (n-1) times as the duty adjustment cycle to control the duty calculation, thereby reducing the size, weight, and cost. The present invention relates to a motor control device and an electric power steering device using the same.

車両のステアリング装置をモータの回転力で補助負荷付勢する電動パワーステアリング装置は、モータの駆動力を減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に補助負荷付勢するようになっている。かかる従来の電動パワーステアリング装置は、アシストトルク(操舵補助力)を正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、電流指令値(操舵補助指令値)とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御インバータのDuty比の調整で行っている。   An electric power steering device for energizing a vehicle steering device with an auxiliary load by a rotational force of a motor energizes an auxiliary load to a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt via a speed reducer. It is supposed to be. Such a conventional electric power steering apparatus performs feedback control of motor current in order to accurately generate assist torque (steering assist force). In feedback control, the motor applied voltage is adjusted so that the difference between the current command value (steering assist command value) and the motor current detection value is small. The adjustment of the motor applied voltage is generally performed by PWM (pulse width). Modulation) It is done by adjusting the duty ratio of the control inverter.

ここで、電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸2は減速ギア3、ユニバーサルジョイント4A及び4B、ピニオンラック機構5を経て操向車輪のタイロッド6に連結されている。コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10が設けられており、ハンドル1の操舵力を補助するモータ20が、減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット30には、バッテリ14から電力が供給されると共に、イグニッションキー11を経てイグニッション信号が入力され、コントロールユニット30は、トルクセンサ10で検出された操舵トルクTと車速センサ12で検出された車速Vとに基づいてアシスト指令のモータ電流Imの演算を行い、演算されたモータ電流Imがモータ20に供給される。   Here, the general configuration of the electric power steering apparatus will be described with reference to FIG. 1. The column shaft 2 of the handle 1 is connected to a tie rod 6 of a steered wheel via a reduction gear 3, universal joints 4 A and 4 B and a pinion rack mechanism 5. It is connected to. The column shaft 2 is provided with a torque sensor 10 that detects the steering torque of the handle 1, and a motor 20 that assists the steering force of the handle 1 is connected to the column shaft 2 via the reduction gear 3. The control unit 30 that controls the electric power steering device is supplied with electric power from the battery 14 and is also input with an ignition signal via the ignition key 11. The control unit 30 detects the steering torque T detected by the torque sensor 10. The motor current Im of the assist command is calculated based on the vehicle speed V detected by the vehicle speed sensor 12, and the calculated motor current Im is supplied to the motor 20.

コントロールユニット30は主としてCPU(MPUやMCUを含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと図2のようになる。   The control unit 30 is mainly composed of a CPU (including an MPU and MCU). FIG. 2 shows general functions executed by a program in the CPU.

図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10で検出された操舵トルクTは位相補償部31で位相補償されて操舵補助指令値演算部32に入力され、車速センサ12で検出された車速Vも操舵補助指令値演算部32に入力される。操舵補助指令値演算部32は、入力された操舵トルクT及び車速Vに基づいて、アシストマップを参照してモータ20に供給する電流の制御目標値である操舵補助指令値Iを決定する。操舵補助指令値Iは減算部30Aに入力されると共に、応答速度を高めるためのフィードフォワード系の微分補償部34に入力され、減算部30Aの偏差(I−i)は比例演算部35に入力されると共に、フィードバック系の特性を改善するための積分演算部36に入力され、その比例出力は加算部30Bに入力される。微分補償部34及び積分演算部36の出力も加算部30Bに加算入力され、加算部30Bでの加算結果である電流制御値Eが、モータ駆動信号としてモータ駆動回路37に入力される。モータ駆動回路37にはバッテリ14からイグニッションキー11及びフューズ13を経て電力が供給され、モータ20のモータ電流値iはモータ電流検出回路38で検出され、モータ電流値iは減算部30Aに入力されてフィードバックされる。   The function and operation of the control unit 30 will be described with reference to FIG. 2. The steering torque T detected by the torque sensor 10 is phase-compensated by the phase compensator 31 and input to the steering assist command value calculator 32, and the vehicle speed sensor The vehicle speed V detected at 12 is also input to the steering assist command value calculator 32. Based on the input steering torque T and vehicle speed V, the steering assist command value calculator 32 determines a steering assist command value I that is a control target value of the current supplied to the motor 20 with reference to the assist map. The steering assist command value I is input to the subtraction unit 30A and is also input to the feedforward differential compensation unit 34 for increasing the response speed, and the deviation (Ii) of the subtraction unit 30A is input to the proportional calculation unit 35. At the same time, it is input to the integral calculation unit 36 for improving the characteristics of the feedback system, and its proportional output is input to the addition unit 30B. The outputs of the differential compensator 34 and the integral calculator 36 are also added to the adder 30B, and the current control value E, which is the addition result of the adder 30B, is input to the motor drive circuit 37 as a motor drive signal. Electric power is supplied to the motor drive circuit 37 from the battery 14 via the ignition key 11 and the fuse 13, the motor current value i of the motor 20 is detected by the motor current detection circuit 38, and the motor current value i is input to the subtractor 30A. Feedback.

モータ駆動回路37の一般的な構成例を図3に示して説明する。モータ駆動回路37は、PWM制御部37Aとインバータ37Bとで構成されている。PWM制御部37Aは、電流制御値Eを所定式に従って3相分のPWM Duty指令値D1〜D6を演算するデューティ演算部371と、PWM Duty指令値D1〜D6でスイッチング駆動素子としてのFETのゲートを駆動すると共に、デッドタイムの補償をしてON/OFFするゲート駆動部372とで構成されており、インバータ37BはFETの3相ブリッジで構成されており、PWM Duty指令値D1〜D6でON/OFFされることによってモータ20を駆動する。   A general configuration example of the motor drive circuit 37 will be described with reference to FIG. The motor drive circuit 37 includes a PWM control unit 37A and an inverter 37B. The PWM control unit 37A includes a duty calculation unit 371 for calculating the PWM control command values D1 to D6 for three phases according to a predetermined formula, and a gate of an FET as a switching drive element based on the PWM duty command values D1 to D6. And a gate drive unit 372 that turns ON / OFF by compensating for dead time, and the inverter 37B is constituted by a three-phase bridge of FET, and is turned on by PWM Duty command values D1 to D6. The motor 20 is driven by being turned off.

このようなモータ駆動装置において、多相のブラシレスモータをインバータにより駆動するに当たってはロータの位置、つまりモータ位相を把握した上、モータ位相に応じて各相への通電状態を順次切替えていく必要がある。モータ位相は、一般的にはホール素子やレゾルバ等のロータ位置センサにてロータ位置を検出し、検出されたロータ位置に応じてインバータ(FET)のスイッチングを行うモータ駆動装置が実用化されている。また、モータの各コイル層に流れる電流値とモータ位相との関係式は知られており、各コイル相の電流値を計測し、その電流値からモータ位相を検出するモータ駆動装置が提案されている。   In such a motor drive device, when driving a multi-phase brushless motor by an inverter, it is necessary to grasp the position of the rotor, that is, the motor phase, and sequentially switch the energization state to each phase according to the motor phase. is there. In general, a motor drive device that detects a rotor position by a rotor position sensor such as a Hall element or a resolver and switches an inverter (FET) according to the detected rotor position has been put into practical use. . In addition, the relational expression between the current value flowing in each coil layer of the motor and the motor phase is known, and a motor drive device that measures the current value of each coil phase and detects the motor phase from the current value has been proposed. Yes.

前述したような電流フィードバック系の構成及びモータ位置の演算のため、各コイル相の電流値を計測する必要があり、一方では、電動パワーステアリング装置のコンパクト化、軽量化、コストダウンの項目の1つとして電流検出器の単一化が要請されている。つまり、単一の電流検出器により各相電流を計測することが要請されている。   In order to calculate the current feedback system and the motor position as described above, it is necessary to measure the current value of each coil phase. On the other hand, one of the items of downsizing, weight saving, and cost reduction of the electric power steering device is required. For example, a single current detector is required. That is, it is required to measure each phase current with a single current detector.

かかる要請に応える各相の相電流検出に関して、例えば特開平8−19263号公報(特許文献1)に開示されるPWM制御インバータが提案されている。特許文献1に記載の装置では、インバータ主回路の各相スイッチング素子のスイッチング直前及び直後に電流センサを接続し、電流センサでインバータ主回路の直流母線電流を検出し、検出電流の変化分をスイッチングタイミングに応じて各相別に分配して相別の検出電流としている。これにより、相電流検出を1つの電流センサで実施できるようになっている。   Regarding the detection of the phase current of each phase in response to such a request, for example, a PWM control inverter disclosed in JP-A-8-19263 (Patent Document 1) has been proposed. In the device described in Patent Document 1, a current sensor is connected immediately before and after switching of each phase switching element of the inverter main circuit, the DC bus current of the inverter main circuit is detected by the current sensor, and the change in the detected current is switched. According to the timing, each phase is distributed and used as a detection current for each phase. Thereby, phase current detection can be implemented by one current sensor.

しかしながら、特許文献1に開示されたPWM制御インバータでは、電圧指令値が3相共に0となったり、或いは2相の電圧指令値がほぼ等しくなる場合が発生する。この結果、例えば3相のスイッチング素子が同時にスイッチングを行ったときは前者となり、2相のスイッチング素子が同時にスイッチングを行えば後者となる。そのため、直流母線電流を1つの電流センサで検出する特許文献1に記載のPWM制御インバータでは、例えばv相電圧とw相電圧の立ち上がり及び立ち下がりが同時では、各相の電流情報が直流母線に現われる時間が短くて電流検出が困難であると共に、v相電流とw相電流とを分離することができない。これは、スイッチングが完全に同時である場合だけでなく、1つの相のスイッチングから他の相のスイッチングまでの間隔が短い場合も同様であり、スイッチング間の直流母線電流の検出が困難、或いは検出精度の低下を招き、各相電流を適正に求めることができないという問題がある。   However, in the PWM control inverter disclosed in Patent Document 1, there are cases where the voltage command value becomes 0 for all three phases, or the voltage command values for two phases become substantially equal. As a result, for example, when the three-phase switching elements are simultaneously switched, the former is obtained, and when the two-phase switching elements are simultaneously switched, the latter is obtained. Therefore, in the PWM control inverter described in Patent Document 1 that detects the DC bus current with a single current sensor, for example, when the v-phase voltage and the w-phase voltage rise and fall simultaneously, the current information of each phase is transferred to the DC bus. The time that appears is short and current detection is difficult, and the v-phase current and the w-phase current cannot be separated. This is the case not only when the switching is completely simultaneous, but also when the interval from one phase switching to the other phase switching is short, it is difficult to detect or detect the DC bus current between switching There is a problem in that the accuracy is lowered and the current of each phase cannot be obtained properly.

このような問題を解決し、単一の電流検出器を用いて相電流を検出してモータを駆動するものとして、特許第3664040号(特許文献2)に開示されているPWM制御インバータがある。その構成は、Dutyの大きさの差が電流検出時間に相当するDuty量に満たないとき、1PWMの前半と後半で異なるDuty指令値となるように変更する手法で、変更するDuty指令値は、前半では3相Dutyのうちの中間Duty(2番目に大きいDuty)を基準とし、電流検出時間が確保できるように最大Dutyと最小Dutyを変更した値とし、後半では平均値が元のDuty指令値と同じとなるように、前半で変更したDuty分を調整するDuty指令値とするものである。   A PWM control inverter disclosed in Japanese Patent No. 3664040 (Patent Document 2) is one that solves such a problem and detects a phase current using a single current detector to drive a motor. The configuration is a method of changing the duty command value to be different in the first half and the second half of 1PWM when the difference in the magnitude of the duty is less than the duty amount corresponding to the current detection time. In the first half, the middle duty (second largest duty) of the three-phase duty is used as a reference, and the maximum duty and the minimum duty are changed so that the current detection time can be secured. In the second half, the average value is the original duty command value. This is the duty command value that adjusts the duty changed in the first half.

しかし、特許文献2に記載のPWM制御インバータでは、1PWM周期内でDutyを変更するため、1PWM周期が短い場合には、ソフトウェア負荷が非常に高くなる問題がある。また、電流検出時間を確保するためのDutyを、中間Dutyを基準として算出しているため、最大Dutyが100%となったときに、電流検出時間を確保するためのDuty変更を行うことができなくなる可能性がある。   However, in the PWM control inverter described in Patent Document 2, since the duty is changed within one PWM period, there is a problem that the software load becomes very high when the one PWM period is short. In addition, since the duty to secure the current detection time is calculated based on the intermediate duty, the duty can be changed to ensure the current detection time when the maximum duty is 100%. There is a possibility of disappearing.

また、特許第3931079号公報(特許文献3)に開示された装置では、1相がON、2相がON状態となる時間を、電流検出必要時間分だけ確保できるようにDutyを補正し、次キャリアで補正による増減分を調整し、平均値が元のDuty指令値と同値となるようにしている。このようにDuty変更が1キャリア毎であるため、特許文献3の装置によれば、特許文献2に記載の装置で問題となった点、つまり1PWM周期が短い場合にソフトウェア負荷が非常に高くなるという問題は緩和することができる。   Further, in the apparatus disclosed in Japanese Patent No. 3931079 (Patent Document 3), the duty is corrected so that the time required for one phase to be ON and two phases to be ON can be ensured for the time required for current detection. The amount of increase / decrease due to correction is adjusted by the carrier so that the average value is the same as the original duty command value. As described above, since the duty change is performed for each carrier, the apparatus disclosed in Patent Document 3 causes a problem in the apparatus described in Patent Document 2, that is, the software load becomes very high when one PWM cycle is short. This problem can be alleviated.

しかしながら、特許文献3に開示された装置では、補正するDutyの算出方法が明示されておらず、しかも、検出のためのDuty補正分を次キャリア周期内でのみで調整するため、補正できるDuty量に調整時のDuty範囲の制約が大きく影響する。特にPWM周期が短い構成のシステムでは、1PWM周期に対し、電流検出に必要な時間の比率が大きくなるため、その影響度が大きくなり、電流検出が可能なDuty範囲が狭まってしまう問題がある。例えば電流検出に必要な時間がDuty12%分とし、最大Dutyを100%、最小Dutyを0%とすると、6%≦中間Duty≦94%の範囲でのみモータ印加電圧への影響を抑制しつつ、相電流の検出が可能であり、その他の領域では相電流を検出することができない問題がある。   However, in the apparatus disclosed in Patent Document 3, the method of calculating the duty to be corrected is not clearly described, and the duty correction for detection is adjusted only within the next carrier period, so that the amount of duty that can be corrected The restriction of the Duty range at the time of adjustment greatly affects. In particular, in a system with a short PWM cycle, the ratio of time required for current detection with respect to one PWM cycle is large, so that the degree of influence increases, and there is a problem that the duty range in which current detection is possible is narrowed. For example, if the time required for current detection is set to 12% duty, the maximum duty is 100%, and the minimum duty is 0%, the influence on the motor applied voltage is suppressed only in the range of 6% ≦ intermediate duty ≦ 94%. There is a problem that the phase current can be detected and the phase current cannot be detected in other regions.

総じて、単一の電流検出器で電流検出を行う構成では、電流検出可能なDuty範囲でDutyを制限する必要があり、その分モータ特性を十分に発揮できないことがあるため、可能な限り電流検出可能なDuty範囲を拡大することが望まれる。また、近年のソフトウェアに要望される機能の多様化から、ソフトウェア負荷を可能な限り低減することが望まれる。   In general, in a configuration in which current detection is performed with a single current detector, it is necessary to limit the duty within the duty range within which current detection is possible, and the motor characteristics may not be fully displayed accordingly, so current detection is possible as much as possible. It is desirable to expand the possible duty range. Moreover, it is desired to reduce the software load as much as possible due to the diversification of functions required for software in recent years.

特開平8−19263号公報JP-A-8-19263 特許第3664040号公報Japanese Patent No. 3664040 特許第3931079号公報Japanese Patent No. 3931079

本発明は上述のような事情によりなされたものであり、本発明の目的は、単一の電流検出器を用いてモータ相電流を検出してフィードバックし、PWM制御インバータでモータを駆動しても、1PWM周期が短い場合にもソフトウェア負荷を高めることなく、最大Dutyが100%となったときにも電流検出時間を確保するためのDuty補正を行うことができると共に、電流検出が可能なDuty範囲を狭くすることがなく、コンパクト化、軽量化、コストダウンを図ったモータ制御装置及びそれを用いた電動パワーステアリング装置を提供することにある。   The present invention has been made under the circumstances described above, and the object of the present invention is to detect and feed back a motor phase current using a single current detector and drive the motor with a PWM control inverter. Even when the PWM period is short, it is possible to perform duty correction to ensure the current detection time even when the maximum duty becomes 100% without increasing the software load, and the duty range in which current detection is possible An object of the present invention is to provide a motor control device and an electric power steering device using the motor control device that are compact, light weight, and cost-reduced without reducing the size.

本発明は、制御演算によりモータの電流を制御するための各相Duty指令値を算出し、前記各相Duty指令値に応じたPWM波形を形成し、前記PWM波形に基づいてインバータにより前記モータを駆動するモータ制御装置に関するものであり、本発明の上記目的は、前記インバータの電源入力側又は電源出力側に単一の電流検出器を接続し、相電流値を必要とする制御周期1回に対してPWM周期がn(>2)回ある構成であり、前記PWM周期n回中の1回を電流検出周期とすると共に、(n−1)回をDuty調整周期とし、前記各相Duty指令値の最大Duty、中間Duty、最小Dutyを判定する機能と、前記電流検出周期では、前記最大Dutyと前記最小Dutyの差分が、電流検出必要Duty量τの2倍より小さく、且つ前記中間Dutyが前記電流検出必要Duty量τより大きく、(100%−τ)より小さくなるという第1の条件下においては、前記中間Dutyを基準とし、基準とする前記中間Dutyに前記電流検出必要Duty量τを加算した値と、前記最大Dutyのどちらか大きい方を検出用最大Dutyとし、基準とする前記中間Dutyから前記電流検出必要Duty量τを減算した値と、前記最小Dutyのどちらか小さい方を検出用最小Dutyとし、基準とする前記中間Dutyをそのまま検出用中間Dutyとすることにより、前記電流検出周期の検出用各相Dutyを算出し、前記第1の条件以外の場合という第2の条件下においては、前記最大Dutyを基準とし、基準とする前記最大Dutyをそのまま検出用最大Dutyとし、ただし、前記最大Dutyが前記電流検出必要Duty量τの2倍より小さいときに、2τを前記検出用最大Dutyとし、前記検出用最大Dutyを基準とし、基準とする前記検出用最大Duty(又は前記最大Duty)と前記中間Dutyとの差が前記電流検出必要Duty量τより小さいとき(第1ときと言う)に、前記検出用最大Dutyから前記電流検出必要Duty量τを減算した値を検出用中間Dutyとし、前記中間Dutyが前記電流検出必要Duty量τより小さいとき(第2ときと言う)に、前記電流検出必要Duty量τを前記検出用中間Dutyとし、前記第1とき及び前記第2とき以外の場合に、前記中間Dutyをそのまま検出用中間Dutyとし、前記検出用中間Dutyと前記最小Dutyとの差が前記電流検出必要Duty量τより小さいとき(第3ときと言う)に、前記検出用中間Dutyから前記電流検出必要Duty量τを減算した値を検出用最小Dutyとし、前記第3とき以外の場合に、前記最小Dutyをそのまま検出用最小Dutyとすることにより、前記検出用各相Dutyを算出し、前記Duty調整周期では、前記各相Duty指令値と前記電流検出周期で算出された前記検出用各相Dutyとの差分を(n−1)で割って得られた値を、前記各相Duty指令値に加算することにより得られた値を、調整用各相Dutyとする機能とを具備することにより達成される。 The present invention calculates a duty command value for each phase for controlling the motor current by control calculation, forms a PWM waveform according to the duty command value for each phase, and controls the motor by an inverter based on the PWM waveform. The present invention relates to a motor control device for driving, and the object of the present invention is to connect a single current detector to the power input side or the power output side of the inverter and to control the phase current value once. On the other hand, the PWM cycle has a configuration of n (> 2) times, and one of the PWM cycles n is set as a current detection cycle, and (n−1) times is set as a duty adjustment cycle. In the function for determining the maximum duty, intermediate duty, and minimum duty of the value, and in the current detection period, the difference between the maximum duty and the minimum duty is smaller than twice the current detection required duty amount τ, and the intermediate duty is Greater than the current detection required duty amount τ , (100% −τ) under a first condition that is smaller than (100% −τ), the intermediate duty is used as a reference, and the value obtained by adding the current detection required duty amount τ to the reference intermediate duty and the maximum duty The larger one is the maximum duty for detection, the value obtained by subtracting the current detection required duty amount τ from the intermediate duty to be the reference, and the smaller one of the minimum duty is the minimum duty for detection, and the reference is the above By calculating the intermediate duty as it is as the detection intermediate duty, each phase duty for detection of the current detection cycle is calculated. Under the second condition other than the first condition, the maximum duty is used as a reference. The maximum duty as a reference is directly used as the maximum duty for detection. However, when the maximum duty is smaller than twice the current detection required duty amount τ, 2τ is set as the maximum duty for detection, and the maximum duty for detection As a standard, the standard When the difference between the outgoing maximum duty (or the maximum duty) and the intermediate duty is smaller than the current detection required duty amount τ (referred to as the first time), the current detection required duty amount τ from the detection maximum duty. Is the detection intermediate duty, and when the intermediate duty is smaller than the current detection required duty amount τ (referred to as the second time), the current detection required duty amount τ is set as the detection intermediate duty, In cases other than the first time and the second time, the intermediate duty is directly used as the detection intermediate duty, and the difference between the detection intermediate duty and the minimum duty is smaller than the current detection required duty amount τ (third) The value obtained by subtracting the current detection required duty amount τ from the detection intermediate duty is used as the detection minimum duty. In cases other than the third time, the minimum duty is used as it is as the detection minimum duty. it allows to calculate the detection phase Duty, the Duty adjustment Period, the sum of the value obtained by dividing the difference (n-1) between the phase Duty command value and the current the detection phase Duty calculated in the detection period, the phase Duty command value the value obtained by, is achieved by and a function of the adjustment phase Dut y.

本発明に係るモータ制御装置によれば、n回のPWM周期中に1回のDuty変更でよいため、ソフトウェア(CPU)負荷を軽減することができる。また、Dutyを調整する周期を(n−1)周期と長く設定しているため、Duty調整周期1回に対し、加算する調整Duty量を1/(n−1)と小さくすることができ、モータ印加電圧への影響を抑制しつつ、相電流検出が可能なDuty範囲を広くできることで、Dutyの制限を緩和してモータ出力特性を十分活用することができる利点がある。   According to the motor control device of the present invention, since only one duty change is required during n PWM cycles, the software (CPU) load can be reduced. Moreover, since the period for adjusting the duty is set to be as long as (n−1) period, the adjustment duty amount to be added can be reduced to 1 / (n−1) for one duty adjustment period. Since it is possible to widen the duty range in which phase current can be detected while suppressing the influence on the motor applied voltage, there is an advantage that the duty output can be relaxed and the motor output characteristics can be fully utilized.

更に本発明に係るモータ制御装置によれば、電流検出周期において、各相Dutyの差分量が全て電流検出時間の確保に必要なDuty量よりも小さくなったときは中間Dutyを基準とし、最大Duty及び最小Dutyを補正して電流検出時間を確保し、それ以外は最大Dutyを基準として中間Duty及び最小Dutyを補正するようにしているので、最大Dutyが100%となったときでも、電流検出に必要な時間を確保するためのDuty補正が可能となり、相電流検出が可能なDuty範囲を広くできることで、Dutyの制限を緩和してモータ出力特性を十分活用することができる利点がある。   Further, according to the motor control device of the present invention, when the difference amount of each phase duty is smaller than the duty amount necessary for securing the current detection time in the current detection cycle, the intermediate duty is used as a reference, and the maximum duty is obtained. In addition, the current detection time is secured by correcting the minimum duty, and other than that, the intermediate duty and the minimum duty are corrected based on the maximum duty, so even when the maximum duty is 100%, current detection is possible. Duty correction can be performed to secure the necessary time, and the duty range in which phase current can be detected can be widened. This has the advantage that the duty output can be relaxed and the motor output characteristics can be fully utilized.

上記特長を有するモータ制御装置を単一の電流検出器を設けることによって実現できるため、かかるモータ制御装置を電動パワーステアリング装置に搭載すれば、電動パワーステアリング装置のコンパクト化、軽量化、コストダウンを図ることができる。また、本発明のモータ制御装置を用いることで、実用されるDuty範囲において相電流の検出が可能となるため、電動パワーステアリング装置の制御を確実に安定して実施することができる。   Since a motor control device having the above features can be realized by providing a single current detector, if such a motor control device is mounted on an electric power steering device, the electric power steering device can be made compact, light weight, and cost reduced. Can be planned. Further, by using the motor control device of the present invention, it becomes possible to detect the phase current in a practical duty range, so that the control of the electric power steering device can be carried out reliably and stably.

一般的な電動パワーステアリング装置の構成例を示す図である。It is a figure showing an example of composition of a general electric power steering device. 従来の電動パワーステアリング装置のコントロールユニットの構成例を示すブロック図である。It is a block diagram which shows the structural example of the control unit of the conventional electric power steering apparatus. 3相モータのモータ駆動回路の一例を示す結線図である。It is a connection diagram which shows an example of the motor drive circuit of a three-phase motor. 単一の電流検出器を用いたインバータの構成例を示す結線図である。It is a connection diagram which shows the structural example of the inverter using a single electric current detector. インバータの動作例(A相ON)を説明するための図である。It is a figure for demonstrating the operation example (A phase ON) of an inverter. インバータの動作例((A相+B相)ON)を説明するための図である。It is a figure for demonstrating the operation example ((A phase + B phase) ON) of an inverter. 電流検出周期及びDuty調整周期でのDuty補正方法を説明するための図である。It is a figure for demonstrating the Duty correction method in an electric current detection period and a Duty adjustment period. 電流検出周期及びDuty調整周期でのDuty補正を行う装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the apparatus which performs Duty correction | amendment in an electric current detection period and a Duty adjustment period. 電流検出周期及びDuty調整周期でのDuty補正方法の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the duty correction method in an electric current detection period and a duty adjustment period. 2相のDutyが均衡する場合のPWM波形(鋸波キャリア)の一例を示す波形図である。It is a wave form diagram which shows an example of the PWM waveform (sawtooth carrier) in case 2 phase Duty is balanced. 3相のDutyが均衡し、各相Dutyの差が全て電流検出必要Duty量τ以内のPWM波形(鋸波キャリア)の一例を示す波形図である。FIG. 6 is a waveform diagram showing an example of a PWM waveform (sawtooth carrier) in which the three-phase duty is balanced and the differences between the respective phases are all within the current detection required duty amount τ. 3相のDutyが均衡し、最大Dutyと中間Dutyの差のみが電流検出可能な場合のPWM波形(鋸波キャリア)の一例を示す波形図である。It is a wave form diagram which shows an example of a PWM waveform (sawtooth carrier) in case the three-phase duty is balanced and only the difference between the maximum duty and the intermediate duty can be detected. Duty調整周期で調整可能な各相Duty指令値の範囲を示す図である。It is a figure which shows the range of each phase Duty command value which can be adjusted with a duty adjustment period. キャリア波形の違いによるDuty調整周期で調整可能な各相Duty指令値の範囲を示す図である。It is a figure which shows the range of each phase Duty command value which can be adjusted with the Duty adjustment period by the difference in a carrier waveform. 2相のDutyが均衡する場合のPWM波形(三角波キャリア)の一例を示す波形図である。It is a wave form diagram which shows an example of the PWM waveform (triangular wave carrier) in case 2 phase Duty is balanced.

本発明は、電動パワーステアリング装置のコンパクト化、軽量化、コストダウンの項目の1つである電流検出器の単一化の要請を満たしながら、モータ制御装置のPWM制御インバータの相電流値を必要とする制御周期1回に対し、PWM周期がn回ある構成 (n>2)とし、n回のPWM周期中の1周期を電流検出周期とし、残りの(n−1)周期をDuty調整周期としてDuty演算(補正)する。本発明のモータ制御装置では、n回のPWM周期中に1回のDuty補正でよいため、ソフトウェア(CPU)負荷を軽減することができる。更にDutyを調整する周期を(n−1)周期と長く設定しているため、Duty調整周期1回に対し、加算する調整Duty量を1/(n−1)と小さくすることができ、モータ印加電圧への影響を抑制しつつ、相電流の検出が可能なDuty範囲を広くすることができる。例えば電流検出に必要な時間がDuty12%分とし、最大Dutyを100%、最小Dutyを0%、n=5とすると、2.4%≦中間Duty≦97.6%の範囲でモータ印加電圧への影響を抑制できると共に、相電流の検出が可能である。   The present invention requires the phase current value of the PWM control inverter of the motor control device while satisfying the demand for the unification of the current detector which is one of the items of downsizing, weight reduction and cost reduction of the electric power steering device. The configuration is such that there are n PWM cycles (n> 2) for one control cycle, and one of the n PWM cycles is the current detection cycle, and the remaining (n-1) cycles are the duty adjustment cycle. As a duty calculation (correction). In the motor control device of the present invention, since only one duty correction is required during n PWM cycles, the software (CPU) load can be reduced. Furthermore, since the period for adjusting the duty is set to be as long as (n-1) period, the amount of adjustment duty to be added can be reduced to 1 / (n-1) for one duty adjustment period. The duty range in which the phase current can be detected can be widened while suppressing the influence on the applied voltage. For example, if the time required for current detection is set to 12% duty, the maximum duty is 100%, the minimum duty is 0%, and n = 5, the influence on the motor applied voltage is suppressed in the range of 2.4% ≤ intermediate duty ≤ 97.6%. In addition, the phase current can be detected.

また、電流検出周期において、各相Dutyの差分量が全て電流検出時間の確保に必要なDuty量よりも小さくなったときは中間Dutyを基準とし、最大Duty及び最小Dutyを補正して電流検出時間を確保し、それ以外は最大Dutyを基準として中間Duty及び最小Dutyを補正する機能を具備している。これにより、最大Dutyが100%となったときでも、電流検出に必要な時間を確保するためのDuty変更が可能となる。   Also, in the current detection cycle, if the difference amount of each phase duty is all smaller than the duty amount necessary to secure the current detection time, the current duty is corrected by correcting the maximum duty and the minimum duty based on the intermediate duty. Other than that, it has a function of correcting the intermediate duty and the minimum duty with the maximum duty as a reference. As a result, even when the maximum duty becomes 100%, the duty can be changed to ensure the time required for current detection.

以下に、本発明の実施の形態を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、単一の電流検出器が接続されたインバータの構成例を図4に示して説明する。この構成例では、A〜C相の3相モータ50がブリッジ構成の6個のFETでPWM制御され、ハイサイドFETには電源(バッテリ)51から電力が供給され、ブリッジ構成の電源出力側(接地側)に単一の電流検出器60が接続されている。この場合、電流検出器60に流れる電流、つまりモータ検出電流は各FETのON/OFF状態により異なる。図5は例として、A相ハイサイドFETがON(A相ローサイドFETはOFF)で、B相及びC相のハイサイドFETがいずれもOFF (B相及びC相ローサイドFETはON)の状態時の電流経路を示している。また、図6は、A相及びB相ハイサイドFETがいずれもON(A相及びB相ローサイドFETはOFF)で、C相ハイサイドFETがOFF(C相ローサイドFETはON)の状態時の電流経路を示している。これら図5及び図6から分かるように、ハイサイドFETがONしている相の合計値が電流検出器60に電流として現れる。これは、電流検出器60がインバータの電源入力側に接続されている場合も同様である。   First, a configuration example of an inverter to which a single current detector is connected will be described with reference to FIG. In this configuration example, the A- to C-phase three-phase motor 50 is PWM-controlled by six FETs having a bridge configuration, and power is supplied from a power source (battery) 51 to the high-side FET, A single current detector 60 is connected to the ground side. In this case, the current flowing through the current detector 60, that is, the motor detection current varies depending on the ON / OFF state of each FET. FIG. 5 shows an example in which the A-phase high-side FET is ON (the A-phase low-side FET is OFF) and the B-phase and C-phase high-side FETs are both OFF (the B-phase and C-phase low-side FETs are ON). The current path is shown. FIG. 6 shows a state in which both the A-phase and B-phase high-side FETs are ON (A-phase and B-phase low-side FETs are OFF) and the C-phase high-side FET is OFF (C-phase low-side FETs are ON). The current path is shown. As can be seen from FIGS. 5 and 6, the total value of the phases in which the high-side FET is ON appears as a current in the current detector 60. This is the same when the current detector 60 is connected to the power input side of the inverter.

以上のことより、1相ON状態のとき、及び2相ON状態のときに電流検出器60で電流を検出し、3相の電流和が0である特性を利用すると、3相の各相電流の検出が可能となる。図5の場合にはA相の電流Iを検出することになり、図6の場合にはA相の電流IとB相の電流Iの加算値が電流検出器60で検出されるが、I+I+I=0の関係があるので、C相の電流IがI=−(I+I)として検出されることになる。即ち、単一の電流検出器60による電流検出によっても、3相の電流和が0である特性を利用することにより、各相の電流を検出することができる。 As described above, when the current is detected by the current detector 60 in the one-phase ON state and in the two-phase ON state and the characteristic that the three-phase current sum is 0 is used, the current of each of the three phases Can be detected. It will detect the current I A of the A phase in the case of FIG. 5, the sum of the current I B of the current I A and the B-phase A-phase is detected by the current detector 60 in the case of FIG. 6 However, since there is a relationship of I A + I B + I C = 0, the C-phase current I C is detected as I C = − (I A + I B ). That is, even when current is detected by a single current detector 60, the current of each phase can be detected by utilizing the characteristic that the current sum of the three phases is zero.

しかしながら、各FETのON直後に電流検出器60に流れるリギングノイズ等のノイズ成分を除去しながら正確に電流検出するためには、一定の検出時間が必要となる。そのため、1相ONの状態、及び2相ONの状態を電流検出に必要な時間だけ継続する必要があるが、各相Dutyが均衡する場合、つまり各相Dutyが近似している場合はその時間を確保することができない。また、通常PWM周期は、サンプリング定理、モータ音の抑制のため、制御演算周期に対して短い周期に設定されるのが一般的である。相電流検出値を実際に用いるのは制御演算であるため、PWM周期のうち制御演算が開始される直前の周期の相電流値を検出できればよい。   However, in order to accurately detect the current while removing noise components such as rigging noise flowing in the current detector 60 immediately after each FET is turned on, a certain detection time is required. Therefore, it is necessary to continue the one-phase ON state and the two-phase ON state for the time required for current detection. However, when each phase Duty is balanced, that is, when each phase Duty is approximate, the time Can not be secured. Also, the normal PWM period is generally set to a period shorter than the control calculation period in order to suppress the sampling theorem and motor noise. Since the phase current detection value is actually used for the control calculation, it is only necessary to detect the phase current value in the period immediately before the start of the control calculation in the PWM period.

そのため、本発明では、相電流値を必要とする制御周期1回に対してPWM周期がn (n>2)回ある構成とし、n回のPWM周期の内の1周期を電流検出周期とし、(n−1)周期をDuty調整周期とする。そして、電流検出周期では、1相ONの状態及び2相ONの状態となる時間が電流検出に必要な時間を確保できるように、各相Duty指令値に各相Duty補正値を加減算することで補正し、Duty調整周期では、電流検出周期において電流検出のために補正したDuty補正値分を(n−1)分割したDuty補正値を各相Duty指令値に減加算して補正する。このようにすることで、電流検出周期において、各相電流検出に必要な時間を確保して電流検出を行い、検出された電流値を制御演算に使用し、電流検出値の必要がないPWM周期においては電流検出のために補正したDuty分を補うことにより、与えたいDutyと、n回のPWM周期の平均Dutyとを一致させ、モータ印加電圧に影響を極力及ぼさずに相電流を検出できるようにしている。   Therefore, in the present invention, the PWM cycle is configured to be n (n> 2) times per control cycle that requires the phase current value, and one of the n PWM cycles is set as the current detection cycle. (N-1) Let the period be the duty adjustment period. Then, in the current detection cycle, each phase duty correction value is added to or subtracted from each phase duty command value so that the time required for the current detection can be ensured for the time when the one phase is ON and the two phases are ON. In the duty adjustment cycle, the duty correction value obtained by dividing the duty correction value corrected for current detection in the current detection cycle by (n-1) is subtracted and corrected to each phase duty command value. By doing in this way, in the current detection cycle, the time necessary for detecting each phase current is secured, current detection is performed, the detected current value is used for the control calculation, and the PWM cycle in which the current detection value is not necessary By compensating for the corrected duty for current detection, the duty to be given can be matched with the average duty of the n PWM cycles so that the phase current can be detected without affecting the motor applied voltage as much as possible. I have to.

また、n回のPWM周期の平均Dutyと、与えたいDutyとを一致させるための調整Duty量を(n−1)回に分割することで、Duty調整周期における1PWM周期でのDutyの補正量を少なくすることができる。このため、Duty補正量によるモータ電流への影響を最小限にでき、且つ調整におけるDutyの制約(0%≦(Duty指令値+Duty調整値)≦100%)に対して有利となり、電流検出が可能となるDuty領域を広くすることができる。   In addition, by dividing the adjustment duty amount for matching the average duty of the PWM cycles of n times with the duty to be given into (n−1) times, the correction amount of the duty in one PWM cycle in the duty adjustment cycle can be obtained. Can be reduced. For this reason, the influence on the motor current due to the duty correction amount can be minimized, and it is advantageous for the duty restriction in the adjustment (0% ≤ (Duty command value + Duty adjustment value) ≤ 100%). The possible Duty area can be widened.

次に、電流検出周期及びDuty調整周期におけるDutyの変更(補正)方法を、図7を参照して説明する。   Next, a method for changing (correcting) the duty in the current detection cycle and the duty adjustment cycle will be described with reference to FIG.

各相のDuty指令値において、Duty値が大きい順に最大Duty、中間Duty、最小Dutyを判定すると共に、電流検出が可能な領域であるかを判定し、電流検出が可能であるとき、電流検出周期の各相Duty
(検出用各相Duty)を算出する。
In the duty command value of each phase, the maximum duty, intermediate duty, and minimum duty are determined in descending order of the duty value, and it is determined whether the current detection is possible. Each phase of Duty
(Each phase for detection Duty) is calculated.

条件(1)では、最大Duty(MAX_Duty)と最小Duty(MIN_Duty)の差分量(MAX_Duty-MIN_Duty)が、電流検出に必要な時間を確保するために必要な電流検出必要Duty量τの2倍よりも小さくなり、且つ中間Duty(MID_Duty)が電流検出必要Duty量τより大きく、且つ(100%-τ)よりも小さくなる条件下では、中間Duty(MID_Duty)を基準として、最大Duty(MAX_Duty)及び最小Duty(MIN_Duty)を補正対象とする。即ち、条件(1)の場合には、最大Duty(MAX_Duty)は、中間Duty(MID_Duty)に電流検出必要Duty量τを加算した値(MID_Duty+τ)と、最大Duty(MAX_Duty)のどちらか大きい方を検出用最大Dutyとして選択し、最小Duty(MIN_Duty)は、中間Duty(MID_Duty)から電流検出必要Duty量τを減算した値(MID_Duty-τ)と、最小Duty(MID_Duty)のどちらか小さい方を電流検出周期の検出用最小Dutyとして選択する。
また、条件(2)では、上記条件(1)以外である場合、最大Duty(MAX_Duty)を基準として、中間Duty(MID_Duty)及び最小Duty(MIN_Duty)を補正対象とする。ただし、最大Duty(MAX_Duty)が電流検出必要Duty量τの2倍より小さくなったとき、最大Duty(MAX_Duty)を“2τ”に補正した値を検出用最大Dutyとし、これを基準とする。即ち、条件(2)では、検出用最大Duty(又は最大Duty(MAX_Duty))と中間Duty(MID_Duty)との差(検出用最大Duty(MAX_Duty)-MID_Duty)が電流検出必要Duty量τより小さいとき、中間Duty(MID_Duty)を(検出用最大Duty−τ)に補正し、中間Duty(MID_Duty)が電流検出必要Duty量τより小さいとき、中間Duty(MID_Duty)を電流検出必要Duty量τに補正して検出用中間Dutyとする。そして、検出用中間Dutyと最小Duty(MID_Duty)との差(検出用中間Duty-MID_Duty)が電流検出必要Duty量τより小さいとき、最小Duty(MIN_Duty)を(検出用中間Duty−τ)に補正して検出用最小Dutyとする。
In condition (1), the difference amount (MAX_Duty-MIN_Duty) between the maximum duty (MAX_Duty) and the minimum duty (MIN_Duty) is more than twice the current detection required duty amount τ required to secure the time required for current detection. And the intermediate duty (MID_Duty) is larger than the current detection required duty amount τ and smaller than (100% -τ), the maximum duty (MAX_Duty) and the maximum duty (MAX_Duty) and The minimum Duty (MIN_Duty) is the correction target. That is, in the case of the condition (1), the maximum duty (MAX_Duty) is larger of the value obtained by adding the current detection required duty amount τ to the intermediate duty (MID_Duty) (MID_Duty + τ) or the maximum duty (MAX_Duty). Is selected as the maximum detection duty, and the minimum duty (MIN_Duty) is the smaller of the value obtained by subtracting the current detection required duty amount τ from the intermediate duty (MID_Duty) (MID_Duty-τ) or the minimum duty (MID_Duty) Is selected as the minimum duty for detection of the current detection cycle.
In the condition (2), when the condition is other than the above condition (1), the intermediate duty (MID_Duty) and the minimum duty (MIN_Duty) are set as correction targets based on the maximum duty (MAX_Duty). However, when the maximum duty (MAX_Duty) becomes smaller than twice the current detection required duty amount τ, a value obtained by correcting the maximum duty (MAX_Duty) to “2τ” is set as the maximum detection duty, which is used as a reference. That is, in the condition (2), when the difference between the maximum detection duty (or maximum duty (MAX_Duty)) and the intermediate duty (MID_Duty) (maximum detection duty (MAX_Duty) -MID_Duty) is smaller than the current detection required duty amount τ. The intermediate duty (MID_Duty) is corrected to (maximum detection duty-τ), and when the intermediate duty (MID_Duty) is smaller than the current detection required duty amount τ, the intermediate duty (MID_Duty) is corrected to the current detection required duty amount τ. To detect the intermediate duty. When the difference between the detection intermediate duty and the minimum duty (MID_Duty) (detection intermediate duty-MID_Duty) is smaller than the current detection required duty amount τ, the minimum duty (MIN_Duty) is corrected to (detection intermediate duty−τ). This is the minimum duty for detection.

一方、Duty調整周期における各相Duty指令値の算出は、次のように行う。即ち、算出された検出用各相Dutyと、基となる各相Duty指令値との差分を(n−1)分割した値を算出し、元の各相Duty指令値に加算して調整用各相Dutyとする。   On the other hand, the calculation of each phase duty command value in the duty adjustment cycle is performed as follows. That is, a value obtained by dividing (n−1) the difference between the calculated detection phase Duty and the base phase Duty command value is calculated and added to the original phase Duty command value. Let it be the phase Duty.

なお、例外処理として、各Dutyが電流検出可能な領域の外である場合にはDutyの補正を行わず、電流検出が不可能な状態であることを示すフラグ等を立てて出力する。   As exception processing, when each duty is outside the current detectable region, duty correction is not performed, and a flag indicating that current detection is impossible is set and output.

次に、上記処理を実現する装置の構成例を図8に示し、そのソフトウェア動作例を図9のフローチャートに示して詳細に説明する。   Next, a configuration example of an apparatus for realizing the above processing is shown in FIG. 8, and an example of the software operation will be described in detail with reference to a flowchart of FIG.

全体の制御や演算処理等を行うCPU70を具備しており、CPU70には、電流制御値Eを入力して各相Duty指令値を演算するDuty演算部71と、最大Dutyや最大相等を判定するDuty判定部72と、条件(1)であるか又は条件(2)であるかを判定する条件判定部73と、各変更用Dutyを算出する各変更用Duty算出部74と、検出用最大Dutyを算出する検出用最大Duty算出部75と、検出用最小Dutyを算出する検出用最小Duty算出部76と、調整用各相Dutyを算出する調整用各相Duty算出部77とが接続されている。CPU70には更に、電流検出に必要な時間を確保するために必要な電流検出必要Duty量τをパラメータとして設定するτ設定部80と、検出用中間Dutyを算出する検出用中間Duty算出部81と、種々のデータの比較を行う比較部82と、電流検出周期とDuty調整周期を判定する電流検出周期/Duty調整周期判定部83と、補正や算出されたDutyを出力してゲート駆動部85に与えるDuty出力部84と、電流検出器60で検出された電流を入力する電流入力部61とが接続されている。   A CPU 70 that performs overall control, arithmetic processing, and the like is provided. The CPU 70 inputs a current control value E and calculates a duty command value for each phase, and determines a maximum duty, a maximum phase, and the like. Duty determination unit 72, condition determination unit 73 that determines whether the condition (1) or condition (2) is satisfied, each change duty calculation unit 74 that calculates each change duty, and maximum detection duty Are connected to a detection maximum duty calculation unit 75 for calculating a detection minimum duty, a detection minimum duty calculation unit 76 for calculating a detection minimum duty, and an adjustment phase duty calculation unit 77 for calculating each adjustment phase duty. . The CPU 70 further includes a τ setting unit 80 for setting a current detection required duty amount τ necessary for securing a time required for current detection as a parameter, a detection intermediate duty calculation unit 81 for calculating a detection intermediate duty, The comparison unit 82 that compares various data, the current detection cycle / duty adjustment cycle determination unit 83 that determines the current detection cycle and the duty adjustment cycle, and outputs the corrected or calculated duty to the gate drive unit 85. A duty output unit 84 to be applied and a current input unit 61 for inputting a current detected by the current detector 60 are connected.

このような構成において動作がスタートすると、Duty演算部71は電流制御値Eに基づいて各相Duty指令値を演算して入力し、Duty判定部72は最大Duty、中間Duty、最小Dutyを判定すると共に、最大相及び最小相を判定する(ステップS10)。そして、条件判定部73は各相Duty指令値の関係が前記条件(1)を満たすか否か、つまり最大Duty(MAX_Duty)と最小Duty(MIN_Duty)の差分量(MAX_Duty-MIN_Duty)が、τ設定部80に設定されている電流検出必要Duty量τの2倍より小さく、且つ中間Duty(MID_Duty)が電流検出必要Duty量τより大きく、且つ(100%−τ)よりも小さくなっているかの条件(1)を判定する(ステップS11)。   When the operation starts in such a configuration, the duty calculation unit 71 calculates and inputs each phase duty command value based on the current control value E, and the duty determination unit 72 determines the maximum duty, intermediate duty, and minimum duty. At the same time, the maximum phase and the minimum phase are determined (step S10). Then, the condition determining unit 73 determines whether or not the relationship between the duty duty command values of each phase satisfies the condition (1), that is, the difference amount (MAX_Duty−MIN_Duty) between the maximum duty (MAX_Duty) and the minimum duty (MIN_Duty) is set to τ. Condition in which the current detection required duty amount τ set in the unit 80 is smaller than twice and the intermediate duty (MID_Duty) is larger than the current detection required duty amount τ and smaller than (100% −τ). (1) is determined (step S11).

上記ステップS11において、条件判定部73が条件(1)が満たされると判定した場合には、各変更用Duty算出部74は最大Duty下限値、最小Duty上限値、(中間Duty+τ)、(中間Duty−τ)を算出して求め(ステップS12)、Duty判定部72で判定された最大Duty相においては、検出用最大Duty算出部75が最大Dutyを最大Duty下限値でリミットして検出用最大Dutyとして算出し(ステップS13)、中間Duty相においては補正なしで検出用中間Dutyとし(ステップS14)、最小Duty相においては、検出用最小Duty算出部76が最小Dutyを最大Duty下限値でリミットして検出用最小Dutyとする(ステップS15)。   When the condition determination unit 73 determines that the condition (1) is satisfied in step S11, each change duty calculation unit 74 determines the maximum duty lower limit value, the minimum duty upper limit value, (intermediate duty + τ), (intermediate duty). -Τ) is calculated (step S12), and in the maximum duty phase determined by the duty determination unit 72, the maximum detection duty calculation unit 75 limits the maximum duty with the maximum duty lower limit value and detects the maximum duty. (Step S13), and in the intermediate duty phase, the detection intermediate duty is set without correction (step S14). In the minimum duty phase, the detection minimum duty calculation unit 76 limits the minimum duty to the maximum duty lower limit value. The minimum duty for detection is set (step S15).

その後、調整用各相Duty算出部77は、上述で求められた検出用最大Duty、検出用中間Duty、検出用最小Dutyを用いて下記数1に従って調整用各相Dutyを算出する(ステップS16)。
(数1)
調整用各相Duty=各相Duty+(各相Duty−検出用各相Duty)/(n−1)

そして、電流検出周期/Duty調整周期判定部83で判定された電流検出周期において、検出用各相DutyをDuty出力部84にセットし(ステップS17)、電流検出周期/Duty調整周期判定部83で判定されたDuty調整周期において、調整用各相DutyをDuty出力部84にセットして終了する(ステップS18)。
Thereafter, each adjustment phase duty calculation unit 77 calculates each adjustment phase duty according to the following equation 1 using the detection maximum duty, detection intermediate duty, and detection minimum duty obtained above (step S16). .
(Equation 1)
Each phase for adjustment Duty = each phase Duty + (each phase Duty−each phase Duty for detection) / (n−1)

Then, in the current detection cycle determined by the current detection cycle / Duty adjustment cycle determination unit 83, each detection duty is set in the Duty output unit 84 (step S17), and the current detection cycle / Duty adjustment cycle determination unit 83 In the determined duty adjustment cycle, the adjustment phase duty is set in the duty output unit 84 and the process ends (step S18).

一方、上記ステップS11において、条件判定部73により条件(1)を満たさないと判定された場合には、最大Duty相においては、比較部82により最大Dutyが“2τ”よりも小さいか否かを判定し(ステップS20)、最大Dutyが“2τ”よりも小さいときは検出用最大Dutyを“2τ”とし(ステップS21)、最大Dutyが“2τ”以上のときは補正しないで最大Dutyをそのまま検出用最大Dutyとする(ステップS22)。比較部82は更に、検出用最大Dutyと中間Dutyとの差(検出用最大Duty−中間Duty)が電流検出必要Duty量τよりも小さいか否かを判定し(ステップS23)、差(検出用最大Duty−中間Duty)が電流検出必要Duty量τよりも小さい場合には、検出用中間Duty算出部81が下記数2に従って検出用中間Dutyを算出する(ステップS24)。
(数2)
検出用中間Duty=検出用最大Duty−τ

また、差(検出用最大Duty−中間Duty)が電流検出必要Duty量τ以上の場合には、検出用中間Duty算出部81は補正しないで検出用最大Dutyをそのまま検出用中間Dutyとして出力する(ステップS25)。
更に、上記ステップS11において条件(1)を満たさないと判定された場合の中間Duty相においては、比較部82は中間Dutyが電流検出必要Duty量τよりも小さいか否かを判定し(ステップS26)、中間Dutyが電流検出必要Duty量τ以上のときは前記ステップS23に進む。また、中間Dutyが電流検出必要Duty量τよりも小さいときは、検出用中間Duty算出部81は検出用中間Dutyを“τ”とし(ステップS27)、比較部82は求められた検出用中間Dutyと最小Dutyとの差(検出用中間Duty−最小Duty)が電流検出必要Duty量τよりも小さいか否かを判定し(ステップS30)、差(検出用中間Duty−最小Duty)が電流検出必要Duty量τよりも小さいときは、検出用最小Duty算出部81が下記数3に従って検出用最小Dutyを算出し(ステップS31)、上記ステップS16に進む。
(数3)
検出用最小Duty=検出用中間Duty−τ

また、差(検出用中間Duty−最小Duty)が電流検出必要Duty量τ以上のときは、補正なしで(ステップS32)、そのまま上記ステップS16に進む。
On the other hand, if it is determined in step S11 that the condition determination unit 73 does not satisfy the condition (1), whether or not the maximum duty is smaller than “2τ” by the comparison unit 82 in the maximum duty phase. When the maximum duty is smaller than “2τ”, the maximum detection duty is set to “2τ” (step S21), and when the maximum duty is “2τ” or more, the maximum duty is detected without correction. The maximum duty is set (step S22). The comparison unit 82 further determines whether or not the difference between the maximum detection duty and the intermediate duty (maximum detection duty−intermediate duty) is smaller than the current detection required duty amount τ (step S23). When the maximum duty−intermediate duty) is smaller than the current detection required duty amount τ, the detection intermediate duty calculation unit 81 calculates the detection intermediate duty according to the following formula 2 (step S24).
(Equation 2)
Intermediate Duty for detection = Maximum Duty for detection -τ

If the difference (maximum detection duty−intermediate duty) is equal to or greater than the current detection required duty amount τ, the detection intermediate duty calculation unit 81 outputs the detection maximum duty as it is without correction (the detection intermediate duty). Step S25).
Further, in the intermediate duty phase when it is determined in step S11 that the condition (1) is not satisfied, the comparator 82 determines whether or not the intermediate duty is smaller than the current detection required duty amount τ (step S26). ), When the intermediate duty is equal to or greater than the current detection required duty amount τ, the process proceeds to step S23. When the intermediate duty is smaller than the current detection required duty amount τ, the detection intermediate duty calculation unit 81 sets the detection intermediate duty to “τ” (step S27), and the comparison unit 82 obtains the obtained detection intermediate duty. It is determined whether or not the difference between the minimum duty and the detection duty (intermediate duty for detection minus minimum duty) is smaller than the current detection required duty amount τ (step S30), and the difference (intermediate duty for detection minus minimum duty) requires current detection. When it is smaller than the duty amount τ, the minimum detection duty calculation unit 81 calculates the minimum detection duty according to the following equation 3 (step S31), and the process proceeds to step S16.
(Equation 3)
Minimum duty for detection = Intermediate duty for detection -τ

If the difference (detection intermediate duty−minimum duty) is equal to or greater than the current detection required duty amount τ, the process proceeds to step S16 without correction (step S32).

前述したように、各相電流が検出可能な状態とするには、1相ON状態及び2相ON状態がそれぞれ電流検出必要時間を確保するために必要な電流検出必要Duty量τだけ確保されていなければならない。つまり、各相Dutyのうち最大Duty及び最小Dutyの差は少なくとも“2τ”以上必要である。条件(1)では、最大Dutyと最小Dutyとの差が“2τ”よりも小さくなったときに中間Dutyを基準とし、最大Dutyと中間Dutyの差、及び中間Dutyと最小Dutyとの差を電流検出必要Duty量τ以上確保するようにしてDutyを算出し、最大Duty及び最小Dutyの補正が必要かを判断して検出用各相Dutyとしている。このため、必要最小限の相のみを補正することができ、且つその補正量が最大でも電流検出必要Duty量τと補正量を必要最小限とすることができ、その影響度を最小化することができる。   As described above, in order to make each phase current detectable, the one-phase ON state and the two-phase ON state are secured only for the current detection required duty amount τ necessary for securing the current detection required time. There must be. That is, the difference between the maximum duty and the minimum duty among each phase duty must be at least “2τ” or more. In condition (1), when the difference between the maximum duty and the minimum duty is smaller than “2τ”, the intermediate duty is used as a reference, the difference between the maximum duty and the intermediate duty, and the difference between the intermediate duty and the minimum duty is the current. Duty is calculated in such a way as to secure a detection-necessary duty amount τ or more, and it is determined whether the maximum duty and the minimum duty need to be corrected, and is used as each phase duty for detection. For this reason, only the minimum necessary phase can be corrected, and even if the correction amount is maximum, the current detection required duty amount τ and the correction amount can be minimized, and the degree of influence thereof can be minimized. Can do.

また、条件(1)以外であるときは、中間Dutyから電流検出必要Duty量τを加減算した値が0%又は100%を超えてしまうため検出用Dutyを算出することができない。条件(2)はこの条件時にも検出用各相Dutyを算出可能とするものである。最大Dutyは最低限2回分の電流検出時間だけONしておく必要があるため、先ず最大Dutyを“2τ”以上確保するよう検出用最大Dutyを算出する。次に、1相ON状態が最低1回分の電流検出時間だけON状態となるようにするため、検出用最大Dutyとの差分が電流検出必要Duty量τ以上となるように検出用中間Dutyを算出する。また、中間Dutyは最低限1回分の電流検出時間だけONしておく必要があるため、中間Dutyが電流検出必要Duty量τ以下である場合は電流検出必要Duty量τを検出用中間Dutyとして設定する。なお、検出用最大Dutyは最低でも2τが確保されているため、検出用中間Dutyがτ以下となることはない。また、2相ON状態が最低1回分の電流検出時間だけON状態となるようにするため、検出用中間Dutyとの差分が電流検出必要Duty量τ以上となるように検出用最小Dutyを算出する。なお、検出用中間Dutyは最低でも電流検出必要Duty量τが確保されているため、算出された検出用最小Dutyが0%以下となることはない。   When the condition is other than the condition (1), the value obtained by adding or subtracting the current detection required duty amount τ from the intermediate duty exceeds 0% or 100%, so that the detection duty cannot be calculated. Condition (2) makes it possible to calculate the detection phase Duty even under this condition. Since the maximum duty needs to be turned on for at least the current detection time of two times, first, the maximum duty for detection is calculated so as to secure the maximum duty of “2τ” or more. Next, in order to keep the one-phase ON state for at least the current detection time for one time, calculate the detection intermediate duty so that the difference from the maximum detection duty is equal to or greater than the current detection required duty amount τ. To do. Also, since the intermediate duty needs to be turned on for at least the current detection time of one time, if the intermediate duty is less than the current detection required duty amount τ, the current detection required duty amount τ is set as the detection intermediate duty To do. Since the maximum detection duty is 2τ at least, the detection intermediate duty is never lower than τ. Also, in order for the two-phase ON state to be ON for at least one current detection time, the minimum detection duty is calculated so that the difference from the detection intermediate duty is equal to or greater than the current detection required duty amount τ. . Note that the detection minimum duty τ is secured at least for the detection intermediate duty, so the calculated minimum detection duty does not become 0% or less.

次に、本発明を適用したときの具体的な数値例とそのときのPWM波形例を、キャリアを鋸波として下記の例1〜例3に示して説明する。例1〜例3のPWM波形の例はそれぞれ図10〜図12に示されている。なお、本例では簡単化のためA相を最大Duty相、B相を中間Duty相、C相を最小Duty相とし、n=5回、τ=12%であるときを示している。
(a)例1:2相のDutyが均衡するとき(図10参照)
A相Duty:85% −−− 補正なし (検出用、調整用共に85%)
B相Duty:84% −−− 検出用Duty:73% (補正量:11%)
−−− 調整用Duty:86.75% (補正量:11/(5-1)=2.75%)
C相Duty:19% −−− 補正なし (検出用、調整用共に19%)
(b)例2:3相のDutyが均衡し、各相Dutyの差が全てτ以内 (図11参照)
A相Duty:51% −−− 検出用Duty:62% (補正量:11%)
−−− 調整用Duty:51.5% (補正量:11/(5-1)=2.75%)
B相Duty:50% −−− 補正なし (検出用、調整用共に50%)
C相Duty:49% −−− 検出用Duty:38% (補正量:11%)
−−− 調整用Duty:51.75% (補正量:11/(5-1)=2.75%)
(c)例3:3相Dutyが均衡し、最大Dutyと中間Dutyの差のみが電流検出
(図12参照)
A相Duty:54% −−−検出用Duty:64% (補正量:10%)
−−−調整用Duty:51.5% (補正量:10/(5-1)=2.5%)
B相Duty:52% −−−補正なし (検出用、調整用共に52%)
C相Duty:39% −−−補正なし (検出用、調整用共に39%)

ところで、本発明においても、相電流検出を行うために変更したDutyをDuty調整周期に調整できない場合がある。具体的には、Duty調整周期において調整用Dutyが0%未満の場合と100%を超える場合であり、数値例で表すと以下のようになる。
(d)例4:各相Duty指令値がDuty調整可能範囲外であるとき
A相Duty:100% −−−補正なし 検出用、調整用共に100%)
B相Duty:98% −−−検出用Duty:88% (補正量:10%)
−−−調整用Duty:100.5% (補正量:10/(5-1)=2.5%)
C相Duty:2% −−−補正なし (検出用、調整用共に2%)

この場合、意図する調整用Dutyをインバータで生成できないため、与えたいDutyとn回平均Dutyが一致するようにすることができなくなってしまい、トルクリップルの発生や作動音性能の劣化が懸念される。ただし、トルクリップルや作動音性能の劣化が、本内容を適用するシステムとして大きな影響度ではないとき、例えば調整用Dutyを0%〜100%でリミット処理し、可能な限りDutyを調整する方法としても良い。
Next, specific numerical examples when the present invention is applied and PWM waveform examples at that time will be described with reference to Examples 1 to 3 below using a carrier as a sawtooth wave. Examples of PWM waveforms of Examples 1 to 3 are shown in FIGS. 10 to 12, respectively. In this example, for simplicity, the A phase is the maximum Duty phase, the B phase is the intermediate Duty phase, the C phase is the minimum Duty phase, and n = 5 times and τ = 12%.
(A) Example 1: When two-phase duty is balanced (see FIG. 10)
Phase A Duty: 85% ---- No correction (85% for detection and adjustment)
B phase Duty: 84% --- Duty for detection: 73% (Correction: 11%)
---- Duty for adjustment: 86.75% (Correction: 11 / (5-1) = 2.75%)
Phase C Duty: 19% --- No correction (19% for detection and adjustment)
(B) Example 2: The three-phase duty is balanced, and the differences between the respective phases are all within τ (see FIG. 11).
Phase A Duty: 51% --- Detection Duty: 62% (Correction: 11%)
−−− Duty for adjustment: 51.5% (Correction: 11 / (5-1) = 2.75%)
Phase B Duty: 50% --- No correction (50% for both detection and adjustment)
Phase C Duty: 49% --- Duty for detection: 38% (Correction: 11%)
---- Adjustment Duty: 51.75% (Correction: 11 / (5-1) = 2.75%)
(C) Example 3: Three-phase duty is balanced, and only the difference between the maximum duty and the intermediate duty is current detection
(See Figure 12)
Phase A Duty: 54% Duty for detection: 64% (Correction: 10%)
−−− Duty for adjustment: 51.5% (Correction: 10 / (5-1) = 2.5%)
Phase B Duty: 52% --- No correction (52% for detection and adjustment)
Phase C Duty: 39% --- No correction (39% for both detection and adjustment)

By the way, even in the present invention, there are cases where the duty changed to detect the phase current cannot be adjusted to the duty adjustment cycle. Specifically, the adjustment duty is less than 0% and more than 100% in the duty adjustment cycle.
(D) Example 4: When each phase Duty command value is outside the duty adjustable range A phase Duty: 100% --- No correction 100% for both detection and adjustment)
B phase Duty: 98% --- Duty for detection: 88% (Correction: 10%)
−−− Duty for adjustment: 100.5% (Correction: 10 / (5-1) = 2.5%)
Phase C Duty: 2% --- No correction (2% for detection and adjustment)

In this case, since the intended adjustment duty cannot be generated by the inverter, it is impossible to make the desired duty equal to the n-time average duty, and there is a concern about occurrence of torque ripple and deterioration of the operating sound performance. . However, when torque ripple or deterioration of operating sound performance is not a big influence on the system to which this content is applied, for example, as a method of adjusting the duty as much as possible by limiting the adjustment duty to 0% to 100% Also good.

なお、Duty調整周期において必要な調整用Dutyを出力できる各相Duty指令値の範囲は、図13のようになる。   In addition, the range of each phase Duty command value which can output the adjustment Duty required in the Duty adjustment cycle is as shown in FIG.

次に、本発明の別の実施形態を説明する。   Next, another embodiment of the present invention will be described.

上記実施の形態では、キャリア波形を鋸波としているが、キャリア波形が三角波であっても同様の手法で相電流検出は可能である。この場合、電流検出に必要な検出時間を確保するために必要な電流検出必要Duty量τを鋸波の場合の2倍に設定すればよい。ただし、電流検出必要Duty量τが2倍となる分、電流検出周期及びDuty調整周期におけるDutyの変更量が増加し、Duty調整周期に調整可能となる各相Duty指令値の範囲が狭まることになる。図14はそのことを示しており、最大Duty指令値は鋸波の場合には100〜4.8%の範囲であるのに対して三角波の場合には100〜9.6%と狭くなっており、中間Duty指令値は鋸波の場合には97.6〜2.4%の範囲であるのに対して三角波の場合には95.2〜4.8%と狭くなっており、最小Duty指令値は鋸波の場合には95.2〜0%の範囲であるのに対して三角波の場合には90.4〜0%と狭くなっている。   In the above embodiment, the carrier waveform is a sawtooth wave, but even if the carrier waveform is a triangular wave, the phase current can be detected by the same method. In this case, the current detection required duty amount τ necessary for securing the detection time required for current detection may be set to double that of the sawtooth wave. However, the amount of duty change in the current detection cycle and the duty adjustment cycle increases by the amount that the current detection required duty amount τ is doubled, and the range of each phase duty command value that can be adjusted to the duty adjustment cycle is narrowed. Become. FIG. 14 shows this, and the maximum duty command value is in the range of 100 to 4.8% in the case of the sawtooth wave, but narrows to 100 to 9.6% in the case of the triangular wave. The command value is in the range of 97.6 to 2.4% in the case of a sawtooth wave, but narrows to 95.2 to 4.8% in the case of a triangular wave, and the minimum duty command value is 95.2 to 0 in the case of a sawtooth wave. In the case of a triangular wave, the range is 90.4 to 0%.

以下に三角波キャリアに変更した場合の具体的な数値例を、例5として示す。電流検出必要Duty量τは、三角波キャリアの場合の2倍の24%となる。
(e)例5:2相のDutyが均衡するとき (図15参照)
A相Duty:85% −−−補正なし (検出用、調整用共に85%)
B相Duty:84% −−−検出用Duty:61% (補正量:23%)
−−−調整用Duty:89.75% (補正量:23/(5-1)=5.75%)
C相Duty:19% −−−補正なし (検出用、調整用共に19%)
A specific numerical example when changing to a triangular wave carrier is shown as Example 5 below. The current detection required duty amount τ is 24%, which is twice that of the triangular wave carrier.
(E) Example 5: When two-phase duty is balanced (see FIG. 15)
Phase A Duty: 85% --- No correction (85% for detection and adjustment)
B phase Duty: 84% --- Duty for detection: 61% (Correction: 23%)
−−− Duty for adjustment: 89.75% (Correction: 23 / (5-1) = 5.75%)
Phase C Duty: 19% --- No correction (19% for detection and adjustment)

1 ハンドル
2 コラム軸
3 減速ギア
10 トルクセンサ
12 車速センサ
20 モータ
30 コントロールユニット
37 モータ駆動回路
50 3相モータ
51 電源(バッテリ)
60 電流検出器
61 電流入力部
70 CPU
71 Duty演算部
72 Duty判定部
73 条件判定部
74 各変更用Duty算出部
75 検出用最大Duty算出部
76 検出用最小Duty算出部
77 調整用各相Duty算出部
80 τ設定部
81 検出用中間Duty算出部
82 比較部
83 電流検出周期/Duty調整周期判定部
84 Duty出力部
85 ゲート駆動部
1 Handle 2 Column shaft 3 Reduction gear 10 Torque sensor 12 Vehicle speed sensor 20 Motor 30 Control unit 37 Motor drive circuit 50 Three-phase motor 51 Power supply (battery)
60 Current detector 61 Current input unit 70 CPU
71 Duty calculation unit 72 Duty determination unit 73 Condition determination unit 74 Duty calculation unit for change 75 Maximum duty calculation unit for detection 76 Minimum duty calculation unit for detection 77 Duty calculation unit for adjustment 80 τ setting unit 81 Intermediate duty for detection Calculation unit 82 Comparison unit 83 Current detection cycle / Duty adjustment cycle determination unit 84 Duty output unit 85 Gate drive unit

Claims (2)

制御演算によりモータの電流を制御するための各相Duty指令値を算出し、前記各相Duty指令値に応じたPWM波形を形成し、前記PWM波形に基づいてインバータにより前記モータを駆動するモータ制御装置において、
前記インバータの電源入力側又は電源出力側に単一の電流検出器を接続し、相電流値を必要とする制御周期1回に対してPWM周期がn(>2)回ある構成であり、前記PWM周期n回中の1回を電流検出周期とすると共に、(n−1)回をDuty調整周期とし、
前記各相Duty指令値の最大Duty、中間Duty、最小Dutyを判定する機能と、
前記電流検出周期では、
前記最大Dutyと前記最小Dutyの差分が、電流検出必要Duty量τの2倍より小さく、且つ前記中間Dutyが前記電流検出必要Duty量τより大きく、(100%−τ)より小さくなるという第1の条件下においては、前記中間Dutyを基準とし、基準とする前記中間Dutyに前記電流検出必要Duty量τを加算した値と、前記最大Dutyのどちらか大きい方を検出用最大Dutyとし、基準とする前記中間Dutyから前記電流検出必要Duty量τを減算した値と、前記最小Dutyのどちらか小さい方を検出用最小Dutyとし、基準とする前記中間Dutyをそのまま検出用中間Dutyとすることにより、前記電流検出周期の検出用各相Dutyを算出し、
前記第1の条件以外の場合という第2の条件下においては、前記最大Dutyを基準とし、基準とする前記最大Dutyをそのまま検出用最大Dutyとし、ただし、前記最大Dutyが前記電流検出必要Duty量τの2倍より小さいときに、2τを前記検出用最大Dutyとし、前記検出用最大Dutyを基準とし、
基準とする前記検出用最大Duty(又は前記最大Duty)と前記中間Dutyとの差が前記電流検出必要Duty量τより小さいとき(第1ときと言う)に、前記検出用最大Dutyから前記電流検出必要Duty量τを減算した値を検出用中間Dutyとし、前記中間Dutyが前記電流検出必要Duty量τより小さいとき(第2ときと言う)に、前記電流検出必要Duty量τを前記検出用中間Dutyとし、前記第1とき及び前記第2とき以外の場合に、前記中間Dutyをそのまま検出用中間Dutyとし、
前記検出用中間Dutyと前記最小Dutyとの差が前記電流検出必要Duty量τより小さいとき(第3ときと言う)に、前記検出用中間Dutyから前記電流検出必要Duty量τを減算した値を検出用最小Dutyとし、前記第3とき以外の場合に、前記最小Dutyをそのまま検出用最小Dutyとすることにより、前記検出用各相Dutyを算出し、
前記Duty調整周期では、前記各相Duty指令値と前記電流検出周期で算出された前記検出用各相Dutyとの差分を(n−1)で割って得られた値を、前記各相Duty指令値に加算することにより得られた値を、調整用各相Dutyとする機能とを具備したことを特徴とするモータ制御装置。
Motor control for calculating each phase duty command value for controlling the motor current by control calculation, forming a PWM waveform corresponding to each phase duty command value, and driving the motor by an inverter based on the PWM waveform In the device
A single current detector is connected to the power input side or power output side of the inverter, and the PWM cycle is n (> 2) times per control cycle that requires a phase current value. One out of n PWM cycles is set as a current detection cycle, and (n−1) times is set as a duty adjustment cycle.
A function for determining the maximum duty, intermediate duty, and minimum duty of each phase duty command value;
In the current detection period,
A difference between the maximum duty and the minimum duty is smaller than twice the current detection required duty amount τ, and the intermediate duty is larger than the current detection required duty amount τ and smaller than (100% −τ). Under the condition of the above, the intermediate duty is used as a reference, the value obtained by adding the current detection required duty amount τ to the intermediate duty as a reference, and the maximum duty whichever is larger is set as the maximum detection duty, and the reference The value obtained by subtracting the current detection required duty amount τ from the intermediate duty and the minimum duty whichever is smaller is used as the detection minimum duty, and the reference intermediate duty is used as the detection intermediate duty as it is. Calculate each phase Duty for detection of the current detection cycle,
Under a second condition other than the first condition, the maximum duty is used as a reference, and the reference maximum duty is directly used as the detection maximum duty, where the maximum duty is the current detection required duty amount. When less than 2 times τ, 2τ is set as the maximum detection duty, and the maximum detection duty is used as a reference.
When the difference between the maximum detection duty (or the maximum duty) as a reference and the intermediate duty is smaller than the current detection required duty amount τ (referred to as the first time), the current detection is performed from the detection maximum duty. The value obtained by subtracting the required duty amount τ is set as the detection intermediate duty, and when the intermediate duty is smaller than the current detection required duty amount τ (referred to as the second time), the current detection required duty amount τ is determined as the detection intermediate duty. In the case other than the first time and the second time, the intermediate duty is directly used as the detection intermediate duty.
When the difference between the detection intermediate duty and the minimum duty is smaller than the current detection required duty amount τ (referred to as the third time), a value obtained by subtracting the current detection required duty amount τ from the detection intermediate duty In each case other than the third time, the minimum duty for detection is calculated as the minimum duty for detection by setting the minimum duty as it is for the minimum duty for detection.
In the duty adjustment cycle, a value obtained by dividing the difference between each phase duty command value and each detection phase duty calculated in the current detection cycle by (n−1) is used as each phase duty command. motor control apparatus characterized by a value obtained by adding to the value, and and a function of the adjustment phase Dut y.
請求項1に記載のモータ制御装置を搭載したことを特徴とする電動パワーステアリング装置。 An electric power steering device comprising the motor control device according to claim 1 .
JP2009266389A 2009-11-24 2009-11-24 Motor control device and electric power steering device using the same Active JP5392025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009266389A JP5392025B2 (en) 2009-11-24 2009-11-24 Motor control device and electric power steering device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009266389A JP5392025B2 (en) 2009-11-24 2009-11-24 Motor control device and electric power steering device using the same

Publications (2)

Publication Number Publication Date
JP2011114883A JP2011114883A (en) 2011-06-09
JP5392025B2 true JP5392025B2 (en) 2014-01-22

Family

ID=44236836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009266389A Active JP5392025B2 (en) 2009-11-24 2009-11-24 Motor control device and electric power steering device using the same

Country Status (1)

Country Link
JP (1) JP5392025B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724776B2 (en) * 2011-09-12 2015-05-27 日本精工株式会社 Motor control device and electric power steering device
JP6011261B2 (en) * 2012-11-14 2016-10-19 富士電機株式会社 Three-phase PWM inverter device and motor control device using the same
JP6067402B2 (en) * 2013-02-13 2017-01-25 株式会社東芝 Motor control device
CN114825892B (en) * 2022-05-27 2023-08-11 杭州晶丰明源半导体有限公司 Minimum on-time circuit, controller, circuitry and current detection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752111B1 (en) * 1996-07-30 1998-10-30 Texas Instruments France METHOD AND DEVICE FOR CONTROLLING INVERTERS
JP4884356B2 (en) * 2007-11-26 2012-02-29 オムロンオートモーティブエレクトロニクス株式会社 Control device for multiphase motor

Also Published As

Publication number Publication date
JP2011114883A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
US9050996B2 (en) Control device for electric power steering apparatus
JP5402948B2 (en) Motor control device and electric power steering device using the same
CN109463039B (en) Electric power steering apparatus
CN104871425B (en) Controller for multi-phase electric motor and the electric power-assisted steering apparatus using the controller for multi-phase electric motor
JP4681453B2 (en) Control device for electric power steering device
US10494016B2 (en) Electric power steering apparatus
CN110199468B (en) Electric power steering apparatus
JP4984472B2 (en) Control device for electric power steering device
CN109792223B (en) Electric power steering apparatus
US9660565B2 (en) Controller for controlling a motor
CN103155401A (en) Motor control device and electric power steering device
JP5392025B2 (en) Motor control device and electric power steering device using the same
JP4617895B2 (en) Control device for electric power steering device
JP5406226B2 (en) Electric power steering device
US20060113938A1 (en) Power steering control device and method thereof
JP4742797B2 (en) Motor drive control device and control device for electric power steering device using the same
JP6624357B2 (en) Motor control device, motor control method, and electric power steering device
JP4967767B2 (en) Electric power steering control device
JP2006111062A (en) Control device for electric power steering device
JP2009027819A (en) Motor drive controller and electric power steering device
KR20150062304A (en) Motor Driven Power Steering System and Method controlling Motor Current using for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5392025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150