JP5391099B2 - Method and apparatus for forming minute unevenness - Google Patents

Method and apparatus for forming minute unevenness Download PDF

Info

Publication number
JP5391099B2
JP5391099B2 JP2010019924A JP2010019924A JP5391099B2 JP 5391099 B2 JP5391099 B2 JP 5391099B2 JP 2010019924 A JP2010019924 A JP 2010019924A JP 2010019924 A JP2010019924 A JP 2010019924A JP 5391099 B2 JP5391099 B2 JP 5391099B2
Authority
JP
Japan
Prior art keywords
forming
micro
area
workpiece
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010019924A
Other languages
Japanese (ja)
Other versions
JP2011156559A (en
Inventor
拓律 久野
弘之 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aida Engineering Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Aida Engineering Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aida Engineering Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Aida Engineering Ltd
Priority to JP2010019924A priority Critical patent/JP5391099B2/en
Publication of JP2011156559A publication Critical patent/JP2011156559A/en
Application granted granted Critical
Publication of JP5391099B2 publication Critical patent/JP5391099B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、被処理物(ワーク)に微小な凹凸を成形する方法及び装置に関する。   The present invention relates to a method and apparatus for forming minute irregularities on a workpiece (workpiece).

従来、例えば特許文献1には、摺動面構造に関し、スラスト荷重を受けながらすべり接触するすべり面(摺動面)に、特殊バレル研磨加工により、独立した微小くぼみを無数にランダムに形成し、潤滑油等の潤滑剤の存在下において、当該微小くぼみを油溜まりとして機能させ、すべり面の摩擦係数の低減や耐焼付性を改善を図るようにすることが記載されている。   Conventionally, for example, Patent Document 1 relates to a sliding surface structure, and a slide surface (sliding surface) that is in sliding contact with a thrust load is formed by a special barrel polishing process, and an infinite number of independent minute recesses are randomly formed. It is described that in the presence of a lubricant such as a lubricating oil, the minute depression functions as an oil reservoir so as to reduce the friction coefficient of the sliding surface and improve the seizure resistance.

また、特許文献2には、摺動面構造に関し、摺動面に直線偏光のレーザを照射し、定まった形状及び寸法の複数の凹凸部からなるグレーティング部を形成し、摩擦係数の低減を図るようにすることが記載されている。   Patent Document 2 relates to a sliding surface structure, and a linearly polarized laser is irradiated on the sliding surface to form a grating portion composed of a plurality of concave and convex portions having a predetermined shape and size, thereby reducing the friction coefficient. It is described to do so.

ここで、すべり面に複数の微小な窪みを形成する方法として、プレス加工により短時間で精度良く微小窪みを形成することも想定される。
例えば特許文献3は、プレス加工によりスラストプレートに動圧発生溝を形成する場合において、所定の溝深さを得るのに必要な加圧力の80%を1回の加圧力として複数回加圧を行うことで、被加工物の全体的な変形を抑制しつつ摺動面に所定深さの動圧発生溝の形成を可能にする方法が記載されている。
Here, as a method of forming a plurality of minute depressions on the sliding surface, it is assumed that the minute depressions are accurately formed in a short time by pressing.
For example, in Patent Document 3, when a dynamic pressure generating groove is formed in a thrust plate by pressing, pressurization is performed a plurality of times with 80% of the pressing force required to obtain a predetermined groove depth as one pressing force. In doing so, a method is described that enables the formation of a dynamic pressure generating groove having a predetermined depth on the sliding surface while suppressing the overall deformation of the workpiece.

また、例えば特許文献4には、ワークの表面(スラスト軸受面)に凹凸パターンを持つパンチ型を押し付けて変形させ、所定の凹凸パターンを形成するコイニング加工方法に関し、ワークの表面にパンチ型を押し付けて所定の凹凸パターンを形成する工程の前に、パンチ型を押し付けただけでは十分な深さの凹凸パターンを形成することができない部分周辺に盛り上がり部を予め形成する工程を追加することにより、パンチ型を用いたコイニング加工方法においても良好な深さの凹凸パターンの形成を可能にする方法が記載されている。   Further, for example, Patent Document 4 relates to a coining method for forming a predetermined uneven pattern by pressing a punch mold having an uneven pattern on the surface (thrust bearing surface) of the work and deforming the punch mold. Before the step of forming a predetermined concavo-convex pattern, punching is performed by adding a step of forming a raised portion around a portion where a concavo-convex pattern with a sufficient depth cannot be formed only by pressing a punch die. In the coining processing method using a mold, a method is described which enables formation of an uneven pattern having a good depth.

特開平3−172608号公報Japanese Patent Laid-Open No. 3-172608 特開2008−89091号公報JP 2008-89091 A 特開平5−60127号公報Japanese Patent Laid-Open No. 5-60127 特開平6−254629号公報JP-A-6-254629

しかしながら、発明者等が種々の研究実験を行なったところ、特許文献3に記載の方法では、例えば、窪みの密度を大きくすると、所望深さの凹部を成形するのに必要な加圧力の80%で加圧しても、十分な深さの窪みが成形される前に被加工物自体がその厚さ方向(窪みの深さ方向)に圧縮変形してしまい、十分な深さの窪みを形成することができなくなるといった現象の発生が確認された。   However, when the inventors conducted various research experiments, in the method described in Patent Document 3, for example, when the density of the recesses is increased, 80% of the applied pressure required to form a recess having a desired depth is obtained. Even if the pressure is applied, the workpiece itself is compressed and deformed in the thickness direction (the depth direction of the recess) before the recess having a sufficient depth is formed, thereby forming a recess having a sufficient depth. The occurrence of a phenomenon that it was impossible to do so was confirmed.

また、特許文献4に記載の方法では、盛り上がり部を形成する工程が追加されるため製造が複雑化すると共に、盛り上がり量等の設定も難しく、加えて、窪みの密度が大きい場合には、前述の特許文献3に記載の方法と同様に、加圧力により被加工物自体がその厚さ方向(窪みの深さ方向)に圧縮変形してしまい、十分な深さの窪みを形成することができなくなるといった惧れがある。   In addition, in the method described in Patent Document 4, since a step of forming a raised portion is added, the manufacturing is complicated, and it is difficult to set a raised amount and the like. As in the method described in Patent Document 3, the workpiece itself is compressed and deformed in the thickness direction (the depth direction of the recess) by the applied pressure, and a recess having a sufficient depth can be formed. There is a fear that it will disappear.

本発明は、かかる実情に鑑みなされたもので、簡単かつ安価でありながら、複数の微小凹凸を精度良く成形することができる微小凹凸成形方法及び装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method and apparatus for forming a micro unevenness capable of accurately forming a plurality of micro unevenness while being simple and inexpensive.

このため、本発明に係る微小凹凸成形方法は、
プレス装置を用いて被処理物の所定領域に微小凹部を所定数成形する際の微小凹凸成形方法であって、
1回で成形する微小凹部の数を前記所定数より小さくして複数回に分けて所定数の微小凹部を成形すると共に、
前記1回で成形する微小凹部の数は、被処理物のせん断強さの2倍と、微小凹部を成形する際のダイの受圧面積と、の積を、微小凹部の所望の凹部深さに応じて決定されるダイ側の凸部1箇所あたりの成形圧力で除して得られる値以下の数であることを特徴とする微小凹凸成形方法。
For this reason, the method for forming micro unevenness according to the present invention is as follows.
A method for forming a micro unevenness when forming a predetermined number of micro concave portions in a predetermined area of a workpiece using a press device,
While forming the predetermined number of micro concave portions by dividing the number of micro concave portions to be formed at a time smaller than the predetermined number into a plurality of times ,
The number of micro-recesses formed at one time is the product of twice the shear strength of the workpiece and the pressure-receiving area of the die when forming the micro-recesses to the desired recess depth of the micro-recesses. A method for forming fine irregularities, wherein the number is equal to or less than a value obtained by dividing by a forming pressure per one convex portion on the die side determined accordingly .

また、本発明に係る微小凹凸成形装置は、
被処理物の所定領域に微小凹部を所定数成形する際に、
1回で成形する微小凹部の数を前記所定数より小さくして複数回に分けて所定数の微小凹部を成形すると共に、
前記1回で成形する微小凹部の数は、被処理物のせん断強さの2倍と、微小凹部を成形する際のダイの受圧面積と、の積を、微小凹部の所望の凹部深さに応じて決定されるダイ側の凸部1箇所あたりの成形圧力で除して得られる値以下の数であることを特徴とする。
このような本発明に係る微小凹凸成形方法及び装置によれば、成形圧力(コイニング圧力)を被処理物(ワーク)のせん断強さが所定以上となって凹部深さが目標に達する前に、被処理物(ワーク)が降伏してしまって、被処理物(ワーク)の高さが減少してしまい所定深さの凹部を成形できなくなるといった惧れを回避することができ、以って所定深さの複数の微小凹凸を精度良く成形することができる。
In addition, the micro uneven forming apparatus according to the present invention,
When forming a predetermined number of minute recesses in a predetermined area of the workpiece,
While forming the predetermined number of micro concave portions by dividing the number of micro concave portions to be formed at a time smaller than the predetermined number into a plurality of times ,
The number of micro-recesses formed at one time is the product of twice the shear strength of the workpiece and the pressure-receiving area of the die when forming the micro-recesses to the desired recess depth of the micro-recesses. The number is equal to or less than the value obtained by dividing by the molding pressure per one convex portion on the die side determined accordingly .
According to such a micro uneven forming method and apparatus according to the present invention, the forming pressure (coining pressure) before the shear depth of the workpiece (workpiece) becomes a predetermined value or more and the recess depth reaches the target, It is possible to avoid the fear that the workpiece (workpiece) yields and the height of the workpiece (workpiece) decreases, making it impossible to form a recess having a predetermined depth. A plurality of minute irregularities with a depth can be accurately formed.

本発明において、被処理物の所定領域を複数に分割して成形することを特徴とすることができる。
これにより、被処理物(ワーク)の所定領域に、例えば、複雑な形状を有しており、面積が比較的広い拡張領域と、面積が比較的小さい領域(例えば、縦横方向に小さいサイズの狭小領域や細長い細長領域など)と、が混在するような場合でも、所定深さの複数の微小凹凸を精度良く成形することができる。
In the present invention, the predetermined region of the object to be processed can be divided into a plurality of shapes and formed.
As a result, the predetermined region of the workpiece (workpiece) has, for example, a complicated shape, an expansion region having a relatively large area, and a region having a relatively small area (for example, a narrow size having a small size in the vertical and horizontal directions). Even in the case where a region and a long and slender region are mixed, a plurality of minute irregularities having a predetermined depth can be accurately formed.

本発明において、被処理物の所定領域に、比較的細長い領域と、比較的幅方向に拡張された領域と、が混在する場合において、比較的幅方向に拡張された領域を、比較的細長い領域と同等の幅寸法以下の領域に分割して複数回で成形することを特徴とすることができる。   In the present invention, when a predetermined region of the object to be processed includes a relatively elongated region and a region expanded in the width direction, the region expanded in the width direction is defined as a relatively elongated region. It can be characterized in that it is divided into regions having a width dimension equal to or less than that and molded a plurality of times.

本発明によれば、簡単かつ安価でありながら、複数の微小凹凸を精度良く成形することができる微小凹凸成形方法及び装置を提供することができる。   According to the present invention, it is possible to provide a method and apparatus for forming a micro unevenness capable of forming a plurality of micro unevenness with high accuracy while being simple and inexpensive.

本発明の一実施の形態に係るプレス装置(微小凹凸成形装置)の全体構成を概略的に示す正面図である。It is a front view which shows roughly the whole structure of the press apparatus (micro uneven | corrugated shaping | molding apparatus) which concerns on one embodiment of this invention. 同上実施の形態に係るプレス装置で用いられるパンチ及び複数の凸部を模式的に示す図である。It is a figure which shows typically the punch and several convex part which are used with the press apparatus which concerns on embodiment same as the above. スクロール式エアコンプレッサの概略を示す斜視図である。It is a perspective view which shows the outline of a scroll type air compressor. スクロール式エアコンプレッサの固定スクロール、スクロール溝、スクロールラップ、可動スクロールの構成例を拡大して示す図である。It is a figure which expands and shows the structural example of the fixed scroll of a scroll-type air compressor, a scroll groove | channel, a scroll wrap, and a movable scroll. (A)は同上実施の形態に係るワークの微小コイニング凹凸成形部のA部(拡張領域)を、B部(細長領域)の幅寸法に対応させて分割する際の一態様例を示す図である。(A) is a figure which shows the example of 1 aspect at the time of dividing | segmenting A part (expansion area | region) of the fine coining uneven | corrugated shaping | molding part of the workpiece | work which concerns on embodiment same as the above according to the width dimension of B part (elongate area | region). is there. 図5の例において用いるパンチの一例を示す図である。It is a figure which shows an example of the punch used in the example of FIG. (A)は図5(A)の例のように成形領域を分割して成形する場合においてワークの各凹部に生じる応力のFEM計算結果を示す図であり、(B)は図5(B)の例のように成形領域全体を均一に押圧して成形する場合のワークの各凹部に生じる応力のFEM計算結果を示す図である。(A) is a figure which shows the FEM calculation result of the stress which arises in each recessed part of a workpiece | work when dividing | segmenting a shaping | molding area | region like the example of FIG. 5 (A), and (B) is FIG.5 (B). It is a figure which shows the FEM calculation result of the stress which arises in each recessed part of a workpiece | work in the case of shape | molding by pressing the whole forming area | region uniformly like the example of. (A)はパンチの周囲に余肉がない(或いは少ない)部位を成形する場合で比較的狭い成形幅を相応のパンチ幅で成形する際のワークの変形態様を模式的に示す図であり、(B)はパンチの周囲に余肉がない(或いは少ない)部位を成形する場合で比較的広い成形幅を相応のパンチ幅で成形する際のワークの変形態様を模式的に示す図である。(A) is a diagram schematically showing a deformation mode of a work when forming a relatively narrow forming width with a corresponding punch width when forming a portion having no (or less) surplus around the punch, (B) is a figure which shows typically the deformation | transformation aspect of the workpiece | work at the time of shape | molding a comparatively wide shaping | molding width | variety with an appropriate punch width | variety, when shape | molding the site | part which does not have surplus around a punch. (A)はパンチの周囲に余肉がある部位を成形する場合で比較的狭い成形幅を相応のパンチ幅で成形する際のワークの変形態様を模式的に示す図であり、(B)はパンチの周囲に余肉がある部位を成形する場合で比較的広い成形幅を相応のパンチ幅で成形する際のワークの変形態様を模式的に示す図である。(A) is a figure which shows typically the deformation | transformation aspect of the workpiece | work at the time of shape | molding a comparatively narrow shaping | molding width | variety with a suitable punch width | variety, when shape | molding the site | part which has surplus around a punch, (B) It is a figure which shows typically the deformation | transformation aspect of the workpiece | work at the time of shape | molding a comparatively wide shaping | molding width | variety with a suitable punch width | variety, when shape | molding the site | part with a surplus margin around a punch.

以下、本発明の一実施の形態に係る微小凹凸成形方法及び装置について、添付の図面に従って説明する。   Hereinafter, a method and apparatus for forming a micro unevenness according to an embodiment of the present invention will be described with reference to the accompanying drawings.

ワーク表面に、深さが千分の数mm程度(より具体的には、例えば、0.002〜0.01mm程度)で、径が十分の数mm程度(より具体的には、例えば、φ0.1〜0.2mm程度)の複数の微小な凹部を成形するプレス加工において、型の位置を制御する位置制御によりプレス加工を行う場合、ワークの素材厚さを千分の数mm以下のオーダーで管理する必要があり、このように高精度に管理されたワークを供給することは現実的には困難であるため、実際のプレス加工においては、プレス圧力を制御する圧力制御を採用することが多い。   On the workpiece surface, the depth is about several thousandths of a millimeter (more specifically, for example, about 0.002 to 0.01 mm), and the diameter is about a few millimeters (more specifically, for example, φ0 In the press working that forms a plurality of minute recesses of about .1 to 0.2 mm), when the press work is performed by position control that controls the position of the die, the workpiece material thickness is on the order of several thousandths of mm or less. In reality, it is difficult to supply a workpiece controlled with high accuracy, so in actual press work, pressure control that controls the press pressure can be adopted. Many.

ところが、圧力制御によりプレス加工を行なう場合において、ワーク表面に、深さが千分の数mm程度で、径が十分の数mm程度の微小凹部を数千個或いは数万個といったオーダーで複数成形しようとした場合には、微小凹部の数を増加させるとある値を境に、加圧時にワーク自体の厚さ(プレスの加圧力の作用方向に沿った方向における厚さ)が塑性変形により薄くなってしまい、所望深さの微小凹凸を精度良く成形することができなくなるといった現象が生じることを、発明者は実験等により確認した。   However, when press working is performed under pressure control, a plurality of small concave portions having a depth of about several thousandths of a millimeter and a diameter of about several millimeters are formed on the workpiece surface in the order of thousands or tens of thousands. If an attempt is made to increase the number of minute recesses, the thickness of the workpiece itself (thickness in the direction along the direction of action of the pressing force) becomes thinner due to plastic deformation, with a certain value as a boundary. The inventors have confirmed through experiments and the like that a phenomenon occurs in which minute irregularities having a desired depth cannot be accurately formed.

かかる現象は、ワーク表面の微小凹凸成形部に負荷されるパンチ応力と、当該パンチ応力をワーク全体として見たときの平均応力と、の関係によって生じる。   Such a phenomenon is caused by the relationship between the punch stress applied to the minute unevenness forming portion of the workpiece surface and the average stress when the punch stress is viewed as the entire workpiece.

すなわち、例えば、ワーク表面に深さ0.005mm、大きさφ0.2mmの凹部一個を成形するのに必要なパンチ面圧が700MPaであるなら、成形力としては22N(=(0.2mm×0.2mm×π/4)×700N/mm)が必要となる。 That is, for example, if the punching surface pressure required to mold one recess having a depth of 0.005 mm and a size of φ0.2 mm on the workpiece surface is 700 MPa, the molding force is 22 N (= (0.2 mm × 0 2 mm × π / 4) × 700 N / mm 2 ) is required.

例えば、サイズがφ9mm、高さ(厚さ)H=4mmでせん断抵抗(せん断強さ)が161MPaのワークに、このような凹部一個を成形するならば、このワーク全体に作用する平均応力は、
22N/(9mm×π/4)=0.35MPaとなり、ワーク全体の高さを変化させるような応力は発生しない。
For example, if one such recess is formed on a workpiece having a size of φ9 mm, height (thickness) H = 4 mm, and shear resistance (shear strength) of 161 MPa, the average stress acting on the entire workpiece is:
22N / (9 2 mm 2 × π / 4) = 0.35 MPa, and no stress that changes the height of the entire workpiece is generated.

しかし、成形する凹部の個数が増加して行って、ある数を越えると、ワーク高さを減少させる応力が発生するようになる。このような成形加圧時におけるワーク高さの減少は、所望深さの凹部の成形を難しくする。   However, when the number of concave portions to be formed increases and exceeds a certain number, a stress that reduces the workpiece height is generated. Such reduction in the workpiece height during molding pressurization makes it difficult to mold a recess having a desired depth.

本発明に係る微小凹凸を成形するためのプレス装置及び方法は、このような観点からなされたもので、複数の微小凹凸を精度良く成形することを可能にするものである。   The press apparatus and method for forming minute irregularities according to the present invention are made from such a viewpoint, and enable a plurality of minute irregularities to be accurately formed.

図1は、本実施形態に係る微小凹凸を成形するためのプレス装置(微小凹凸成形装置)1の全体的な構成を概略的に示している。   FIG. 1 schematically shows the overall configuration of a press apparatus (micro unevenness forming apparatus) 1 for forming micro unevenness according to the present embodiment.

プレス装置1の往復動機構に連結されて往復動作(プレス動作)されるスライド10の下部には、上型(金型)20が取り付けられている。   An upper die (die) 20 is attached to the lower part of the slide 10 which is connected to the reciprocating mechanism of the pressing device 1 and reciprocated (pressed).

スライド10を介して往復動作される上型20に対向して下型30が備えられ、この下型30はクッション装置40に支持されると共に、当該クッション装置40はボルスタ50を介してプレス装置1の図示しないフレーム等に支持されている。   A lower mold 30 is provided opposite to the upper mold 20 that is reciprocated via the slide 10, and the lower mold 30 is supported by the cushion device 40, and the cushion device 40 is connected to the press device 1 via the bolster 50. Are supported by a frame (not shown).

上型20の下面には、ワーク2に対して所定の微小凹凸を成形するためのパンチ21が取り付けられており、ワーク2を挟んで反対側の下型30の上面にはワーク2を支持するダイ31が取り付けられている。   A punch 21 for forming predetermined minute irregularities on the work 2 is attached to the lower surface of the upper mold 20, and the work 2 is supported on the upper surface of the lower mold 30 on the opposite side across the work 2. A die 31 is attached.

パンチ21の下面は、図2(A)、図2(B)に示すように、ワーク2に対して複数の所定深さの微小凹凸を形成するための複数の凸部22が所定に突出して形成されている。なお、凸部22は、例えばエッチング等の手法により形成可能である。   As shown in FIGS. 2 (A) and 2 (B), the lower surface of the punch 21 has a plurality of protrusions 22 that protrude from the workpiece 2 to form a plurality of minute irregularities having a predetermined depth. Is formed. The convex portion 22 can be formed by a technique such as etching.

より具体的には、例えばパンチ21は、SUS632の時効処理品で、厚さ0.15mm〜0.2mm程度の金属製の板状要素等により構成されることができ、パンチ21のワーク2と対面する表面には、エッチング加工等により、複数の凸部(コイニングパンチ)22として、例えば、径0.2mmの突起が、10000個程度形成される。なお、図2(A)、図2(B)では凸部22の表示を簡略化し、かつ複数の凸部22のうちの一部を抜き出して拡大して模式的に表示している。なお、パンチ21はSUS420J2やSUS440Cの焼き入れ硬化品から製作してもよい。   More specifically, for example, the punch 21 is an SUS632 aging-treated product, and can be composed of a metal plate-like element having a thickness of about 0.15 mm to 0.2 mm. For example, about 10,000 protrusions having a diameter of 0.2 mm are formed as a plurality of convex portions (coining punches) 22 on the facing surface by etching or the like. 2A and 2B, the display of the protrusions 22 is simplified, and a part of the plurality of protrusions 22 is extracted and enlarged and schematically displayed. The punch 21 may be manufactured from a hardened and hardened product of SUS420J2 or SUS440C.

ワーク2としては、スラスト荷重を受けながらすべり接触するすべり面(摺動面)を有する要素、例えば、スラスト軸受の他、例えばFC250に相当する材料とするスクロール式コンプレッサ等のスクロールなどが想定され得る。   As the workpiece 2, an element having a sliding surface (sliding surface) that comes into sliding contact with a thrust load, for example, a thrust bearing or a scroll such as a scroll compressor made of a material corresponding to FC250 can be assumed. .

ここにおいて、スクロール式コンプレッサは、図3、図4(A)に示したように、渦巻状のスクロール溝51Aを有する固定スクロール51と、このスクロール溝51Aに収容されスクロール溝51Aの溝側面と所定間隙をもって係合する渦巻状のスクロールラップ52Aを有する可動スクロール52と、を対面配置し、前記可動スクロール52を固定スクロール51に対して相対回転させることにより、スクロール溝51Aの溝側面とスクロールラップ52Aの側面との間の前記所定間隙の空気を圧縮して圧縮空気を吐出ポートから吐出するように構成されている。   Here, as shown in FIG. 3 and FIG. 4A, the scroll compressor includes a fixed scroll 51 having a spiral scroll groove 51A, a groove side surface of the scroll groove 51A, which is accommodated in the scroll groove 51A, and a predetermined width. A movable scroll 52 having a spiral scroll wrap 52A that engages with a gap is disposed facing each other, and by rotating the movable scroll 52 relative to the fixed scroll 51, the groove side surface of the scroll groove 51A and the scroll wrap 52A are arranged. The compressed air is discharged from the discharge port by compressing the air in the predetermined gap with the side surface.

ここで、前記固定スクロール51と、前記可動スクロール52と、の対面方向における当接面は、気密性維持のために所定面圧で当接されつつ比較的高速で摺動(すべり接触)されることになるため、例えば、前記固定スクロール51(或いは/及び可動スクロール52)(ワーク2に相当)の当接面に微小凹凸を成形して、すべり面の摩擦係数の低減や耐焼付性の改善を図ることが望まれる。   Here, the contact surfaces of the fixed scroll 51 and the movable scroll 52 in the facing direction are slid at a relatively high speed (sliding contact) while maintaining contact with a predetermined surface pressure in order to maintain airtightness. Therefore, for example, minute irregularities are formed on the contact surface of the fixed scroll 51 (or / and the movable scroll 52) (corresponding to the workpiece 2) to reduce the friction coefficient of the sliding surface and improve the seizure resistance. It is hoped that

なお、ワーク2として固定スクロール51を想定するような場合、図4(A)、図4(B)に示すように、ワーク2のすべり面のA部付近は微小凹凸を成形すべき面積が摺動面に沿って横方向に拡張された拡張領域(各方向に比較的均等に広がっている領域)であり、B部付近は微小凹凸を成形すべき面積が細長い細長領域となっている。   When a fixed scroll 51 is assumed as the workpiece 2, as shown in FIGS. 4 (A) and 4 (B), the area where the minute unevenness is to be formed is near the portion A of the sliding surface of the workpiece 2. This is an extended region that is expanded in the lateral direction along the moving surface (region that spreads relatively evenly in each direction), and in the vicinity of the portion B, an area where the minute irregularities are to be formed is an elongated region.

このような拡張領域と細長領域とが混在したワークに対して微小凹凸を成形する場合を含め、図1に示したプレス装置1を用いて発明者が行った実験について、以下に説明する。   An experiment conducted by the inventor using the press apparatus 1 shown in FIG. 1 including the case where minute unevenness is formed on a workpiece in which such an extended region and an elongated region are mixed will be described below.

実験では、スクロール式圧縮機の固定スクロール51をワーク2として、図4(A)において二点鎖線Xの内側領域であってスクロール溝51Aやスクロールラップ52A以外の領域である微小コイニング凹凸成形部(1679mm)に、φ0.20mmの凹部を深さ0.01±0.002mmで40900個成形する。 In the experiment, the fixed scroll 51 of the scroll compressor is used as the work 2, and the minute coining concavo-convex molding portion (the inner region of the two-dot chain line X in FIG. 1900 mm 2 ), 40900 recesses with a diameter of 0.20 mm are formed at a depth of 0.01 ± 0.002 mm.

用いた金型は、図2(A)、図2(B)に示したような平板状のダイ31と微小凸部を持ったパンチ21を用い、微小凹凸を成形する部位に相当する金型の部位には対応する微小凹凸を形成すると共に、微小凹凸を成形しない部位に相当する部分の金型は貫通若しくは凹部の厚みよりも更に薄くして成形時にワーク2と当接せず退避するように構成されている。   The mold used is a mold corresponding to a part for forming minute irregularities using a flat die 31 and a punch 21 having minute projections as shown in FIGS. 2 (A) and 2 (B). Corresponding minute irregularities are formed on the part of the mold, and the mold corresponding to the part where the minute irregularities are not molded is made thinner than the thickness of the penetration or the concave part so that it does not contact the workpiece 2 during molding. It is configured.

図4(A)に示したA部(面積拡張領域)と、B部(細長領域)と、を合わせた総面積(微小コイニング凹凸成形部Xの面積)は1679mmで、その割合は約3:7(=A部面積:B部面積)であり、504mm:1175mmとなる。
なお、A部及びB部の凹部成形数は、A部:B部=12270個:28630個(=3:7)となっている。
The total area (area of the fine coining unevenness forming portion X) of the A portion (area expansion region) and the B portion (elongated region) shown in FIG. 4A is 1679 mm 2 , and the ratio is about 3 : 7 (= A part area: B part area) and 504 mm 2 : 1175 mm 2 .
In addition, the number of recessed portions formed in the A part and the B part is A part: B part = 1270 pieces: 28630 pieces (= 3: 7).

(1)パンチ21のワーク2のB部に対応する部位に、28630個の微小凸部(コイニングパンチ)22が形成されており、このパンチ21を用いて、ワーク2のB部における凹部深さが0.01mmとなるように、図1に示した例えば油圧駆動のクッション装置40を介してコイニング圧力(成形圧力)を増加させていく実験を行った。
その結果、図4(A)に示したワーク2のB部におけるB1部(図4(B)参照)のワーク応力が335MPaとなったときに、B部のワーク高さが0.05mm減少して、成形された凹部深さが0.008mmにとどまり、凹部深さの目標である0.01mmを達成することができなかった。
これは、コイニング圧力がワーク2のせん断強さの161MPaの2倍である322MPaを超えたため、凹部深さが目標に達する前に、材料(ワーク2)が降伏してしまって、ワーク2のB部の高さが減少したためと考えられる。
(1) 28630 minute convex portions (coining punches) 22 are formed in a portion corresponding to the B portion of the workpiece 2 of the punch 21, and the depth of the concave portion in the B portion of the workpiece 2 using the punch 21. An experiment was conducted in which the coining pressure (molding pressure) was increased via the hydraulically driven cushion device 40 shown in FIG.
As a result, when the work stress of the B1 part (see FIG. 4B) in the B part of the work 2 shown in FIG. 4A becomes 335 MPa, the work height of the B part decreases by 0.05 mm. Thus, the depth of the recessed portion thus formed was limited to 0.008 mm, and the target of the recessed portion depth of 0.01 mm could not be achieved.
This is because the coining pressure exceeded 322 MPa, which is twice the shear strength of 161 MPa of the work 2, so that the material (work 2) yielded before the recess depth reached the target, and the B of work 2 It is thought that the height of the part decreased.

(2)次に、予めワーク2の凹部深さが目標である0.01mmとなるパンチ成形面圧(σ)を実験で求めた結果、σ=1640MPaであることを取得した。従って、φ0.2mmの凹部を成形する場合の成形荷重はp=52Nとなる。
ワーク2のせん断強さの2倍は322MPaであり、複数のコイニングパンチ(パンチ21に形成されている微小凸部)22の押圧を受けるダイ面積(ダイ受圧面積)(S=B1部)は1175mmであるから、ワーク2の厚さが減少しない(ワーク2が降伏しない)ための条件は、コイニングパンチ数をnとすると、
2τ>pn/1175であるから、n<1175×2τ/pより、
コイニングパンチ数nは、7276(個)以下となる。
従って、28630(個)/7276(個)=3.9であるから、28630(個)を4回(工程)で成形するようにダイ面積は不変としてコイニングパンチ密度を約1/4とし、コイニングパンチ数を7157個が2回、7158個が2回(7157×2+7158×2=28630)とし、各工程でパンチ位置を変更して(各工程毎にパンチ位置の異なるパンチ21を準備してもよいし、各工程毎に共通のパンチ21であるがそのマウント位置或いはワーク2のマウント位置を変更するようにしてもよい)成形することで、B部においてワーク2の厚さを減少させずに所定数(28630個)の微小凹部を成形することが可能となると考えられる。
そこで、4回に分けて所定数(28630個)の微小凹部を成形する実験を行ったところ、ワーク2のB部(細長領域)に、深さ0.01mm±0.002mmの微小凹部を28630個成形することができ、ワーク2の厚さの減少もなかった。
(2) Next, as a result of experimentally determining the punch forming surface pressure (σ) at which the recess depth of the workpiece 2 is 0.01 mm, which is the target, it was obtained that σ = 1640 MPa. Therefore, the molding load in the case of molding a recess having a diameter of 0.2 mm is p = 52N.
Twice the shear strength of the workpiece 2 is 322 MPa, and the die area (die pressure receiving area) (S = B1 portion) that receives the pressing of a plurality of coining punches (small convex portions formed on the punch 21) 22 is 1175 mm. Since the thickness of the workpiece 2 does not decrease (the workpiece 2 does not yield), if the number of coining punches is n,
Since 2τ> pn / 1175, from n <1175 × 2τ / p,
The coining punch number n is 7276 (pieces) or less.
Therefore, since 28630 (pieces) / 7276 (pieces) = 3.9, the die area is not changed and the coining punch density is set to about ¼ so that 28630 (pieces) are formed in four times (steps). The number of punches is 7157 twice and 7158 twice (7157 × 2 + 7158 × 2 = 28630), and the punch position is changed in each process (even if punches 21 having different punch positions are prepared for each process) (Alternatively, the punch 21 is common to each process, but the mounting position or the mounting position of the work 2 may be changed.) By forming, the thickness of the work 2 is not reduced in the B part. It is considered that a predetermined number (28630) of minute recesses can be formed.
Therefore, when an experiment was performed in which a predetermined number (28630) of minute recesses were formed in four steps, a minute recess having a depth of 0.01 mm ± 0.002 mm was formed in B portion (elongated region) of the work 2. Individual molding was possible, and the thickness of the workpiece 2 was not reduced.

(3)次に、ワーク2のA部及びB部を共に4回(工程)で成形することができるように、ワーク2のA部に関してもダイ面圧は不変としてコイニングパンチ密度を1/4とし、1回当たりのA部のコイニングパンチ数を3067個が2回、3068個が2回(3067×2+3068×2=12270個)とし、A部のコイニングパンチ数+B部のコイニングパンチ数=3068個+7157個=10225個の微小凸部(コイニングパンチ)22により各工程でパンチ位置を変更して(各工程毎にパンチ位置の異なるパンチ21を準備してもよいし、各工程毎に共通のパンチ21であるがそのマウント位置或いはワーク2のマウント位置を変更するようにしてもよい)、パンチ面圧σ=1640MPaの面圧で成形を行った。   (3) Next, so that the A part and the B part of the work 2 can be formed in four times (steps), the die surface pressure is unchanged for the A part of the work 2 and the coining punch density is reduced to 1/4. The number of coining punches in the A portion per time is 3067 twice, 3068 twice (3067 × 2 + 3068 × 2 = 1270), the number of coining punches in the A portion + the number of coining punches in the B portion = 3068 The punch position is changed in each step by the number of +7157 pieces = 10225 minute convex portions (coining punches) 22 (a punch 21 having a different punch position may be prepared for each step, or common to each step) Although the punch 21 is mounted, or the mounting position of the workpiece 2 may be changed), the punching was performed with a surface pressure of punch surface pressure σ = 1640 MPa.

その結果、A部に成形された凹部の深さ平均は約0.005mm、B部に成形された凹部の深さ平均は約0.013mmであり、A部に成形された凹部と、B部に成形された凹部と、の間で、凹部深さのバラツキが大きいことが確認された。   As a result, the depth average of the recesses formed in the A portion is about 0.005 mm, the depth average of the recesses formed in the B portion is about 0.013 mm, and the recesses formed in the A portion and the B portion It was confirmed that there was a large variation in the depth of the recesses between the recesses formed in the above.

このことは、コイニングパンチ(微小凸部)22が設置される面積がB部(細長領域)よりA部(拡張領域)のほうが部分的に見ると大きく、その影響によりワーク2やパンチ21(或いは金型)の全体の弾性変形量がB部と比較してA部のほうが大きくなって、その結果A部(拡張領域)における平均凹部深さがB部(細長領域)における平均凹部深さより浅くなったものと考えられる(図2(B)のワーク応力の発生態様(略等分布荷重)、図7に示した応力ばらつき、図9に示すワーク変形態様を参照)。   This is because the area where the coining punch (small convex portion) 22 is installed is larger in the A portion (expanded region) than in the B portion (elongated region). The total amount of elastic deformation of the mold) is larger in the A portion than in the B portion. As a result, the average recess depth in the A portion (expanded region) is shallower than the average recess depth in the B portion (elongated region). (See the work stress generation mode (substantially equally distributed load) in FIG. 2B, the stress variation shown in FIG. 7, the work deformation mode shown in FIG. 9).

すなわち、ワーク全体に負荷される荷重を全パンチの総面積で除した値は、1640MPaであるが、実際にはA部の外周部と内側部分では前述の理由により、A部内で異なるパンチ面圧が生じていたためにA部内の深さばらつきが生じ、A部の内側部分のパンチ面圧が低い分B部には1640MPa以上の面圧が負荷されているものと考えられ、これにより、A部に成形された凹部と、B部に成形された凹部と、の間で、凹部深さのバラツキが生じたものと考えられる。   In other words, the value obtained by dividing the load applied to the entire workpiece by the total area of all punches is 1640 MPa, but actually, the punch surface pressures different in the A portion at the outer peripheral portion and the inner portion of the A portion due to the reasons described above. Therefore, it is considered that the surface pressure of 1640 MPa or more is applied to the portion B because the punch surface pressure of the inner portion of the portion A is low. It is considered that a variation in the depth of the concave portion was generated between the concave portion formed into the concave portion and the concave portion formed into the B portion.

(4)上述した(1)〜(3)の結果から、本発明者は、ワーク2のA部に対応してパンチ21に配設される複数のコイニングパンチ22のその配設面積(配設領域:ダイ受圧面積)を、ワーク2のB部に対応して配設される複数のコイニングパンチ22のその配設面積(配設領域:ダイ受圧面積)と同等の面積(領域)に分割して成形することを試みた。
その結果、A部の凹部とB部の凹部が、共に深さ0.01mm±0.002mmで成形可能であることを確認した。
(4) From the results of (1) to (3) described above, the present inventor has arranged the arrangement area (arrangement) of the plurality of coining punches 22 arranged on the punch 21 corresponding to the A portion of the workpiece 2. (Region: die pressure receiving area) is divided into an area (region) equivalent to the arrangement area (arrangement region: die pressure receiving area) of the plurality of coining punches 22 arranged corresponding to the part B of the work 2. I tried to mold it.
As a result, it was confirmed that the concave part of the A part and the concave part of the B part can be molded at a depth of 0.01 mm ± 0.002 mm.

これは、ワーク2のA部に対応したパンチ21の複数のコイニングパンチ22の配設面積(配設領域)を、ワーク2のB部に対応した複数のコイニングパンチ22の配設面積(配設領域)と同等にしたことにより(例えば、図9(B)から図9(A)へとコイニングパンチ22の配設面積を縮小したことにより)、図9(A)に示したように、図9(B)に比べて拡張領域に生じる曲げ変形による内側部分のたわみ量を減少させたことでワーク2の弾性変形量をA部とB部とでほぼ同等とすることができ、ワーク全体としてパンチ面圧σ=1640MPaを負荷したときに、B部に1640MPaの面圧が負荷され、A部にも均等に1640MPaの面圧が負荷され、以ってA部とB部とにおける凹部深さのバラツキが抑制され、A部及びB部共に深さ0.01mm±0.002mmで微小凹部を精度良く成形することができたものと考えられる。   This is because the arrangement area (arrangement region) of the plurality of coining punches 22 corresponding to the A portion of the workpiece 2 is changed to the arrangement area (arrangement region) of the plurality of coining punches 22 corresponding to the B portion of the workpiece 2. 9A (for example, by reducing the arrangement area of the coining punch 22 from FIG. 9B to FIG. 9A), as shown in FIG. Compared to 9 (B), the amount of elastic deformation of the work 2 can be made substantially equal between the A part and the B part by reducing the amount of deflection of the inner part due to the bending deformation that occurs in the expansion region. When a punch surface pressure σ = 1640 MPa is applied, a surface pressure of 1640 MPa is applied to the B portion, and a surface pressure of 1640 MPa is equally applied to the A portion. Variation is suppressed, part A and B It is believed that it was possible to accurately shape the minute recesses in both depth 0.01 mm ± 0.002 mm.

このように、本実験により、
B部(細長領域)については、成形工程を4回に分割し、各工程毎にB部の細長領域全体をカバーしつつパンチ密度は同一であるがコイニングパンチの位置を異ならせてB部全体に所望深さの凹部を所定数成形し、
A部(拡張領域)については、1回の成形で成形すべきA部の領域がB部の細長領域と同等の形状となるようA部(拡張領域)を複数に分割し(例えば、図5(A)、図5(B)、図6で模式的に示すように、4箇所に分割し)、分割された領域毎に、B部領域と同一面圧となるようにコイニングパンチ数を設定したパンチ21を用いて、各工程毎に異なる領域に対して成形を行うことにより、A部全体に所望深さの凹部を所定数成形することが可能であることを確認することができた。
Thus, this experiment
For part B (elongated area), the molding process is divided into four times, and the entire part B is covered with the same density, but the coining punch position is different while covering the entire elongate area of part B. A predetermined number of recesses having a desired depth are formed in
As for the A part (expanded area), the A part (expanded area) is divided into a plurality of parts so that the area of the A part to be formed in one molding is equivalent to the elongated area of the B part (for example, FIG. 5). (A), as shown schematically in FIG. 5 (B) and FIG. 6, the number of coining punches is set so that each divided area has the same surface pressure as the area B. It was confirmed that it was possible to form a predetermined number of recesses having a desired depth in the entire portion A by performing molding on different regions for each process using the punch 21 thus prepared.

ここで、A部やB部の面積、微小凹凸数(コイニングパンチ数)や凹部深さなどの設定状況によっては、A部の領域の分割数と、B部の成形工程の分割数と、が一致せず、同じ成形回数でA部とB部の全領域を所望に成形することができない場合が想定されるが、かかる場合には、所望に成形できなかった部分に対して、ワーク2の厚みが減少しないようにコイニングパンチ本数やパンチ面積を設定して成形を行うことで、A部とB部の全領域を所望に成形することが可能である。   Here, depending on the setting conditions such as the area of the A part and the B part, the number of micro unevenness (coining punch number) and the depth of the concave part, the number of divisions of the area of A part and the number of divisions of the molding process of B part are It is assumed that the entire area of the A part and the B part cannot be molded as desired with the same number of moldings. By setting the number of coining punches and the punch area so as not to reduce the thickness, the entire area of the A part and the B part can be formed as desired.

なお、ワーク(被処理物)の所定領域に、比較的細長い領域と、比較的幅方向に拡張された領域と、が混在する場合において、比較的幅方向に拡張された領域を、比較的細長い領域と同等の幅寸法以下の領域に分割して複数回で成形する構成とすることもできるものである。   When a relatively elongated area and a relatively expanded area are mixed in a predetermined area of the workpiece (workpiece), the relatively expanded area is relatively elongated. It can also be set as the structure divided | segmented into the area | region below the width dimension equivalent to an area | region, and shape | molding in multiple times.

例えば、B部と同じ成形回数ではA部に凹部の未成形な領域が存在するような場合には、ワーク2の厚みが減少しないコイニングパンチ数でA部の残りの領域に対して成形を行うことで、A部全体に所望深さの凹部を所定数成形することが可能となる。   For example, when there is an unformed region of a recess in the A portion with the same number of moldings as the B portion, the remaining region of the A portion is formed with the number of coining punches that does not reduce the thickness of the work 2. Thus, a predetermined number of recesses having a desired depth can be formed on the entire A portion.

ところで、本発明者等は、上項(3)で述べたように、A部(拡張領域)の外周部と内側部分において凹部の深さばらつきが生じる現象の存在を確認したが、本発明者等はFEM計算や実機での実験等により、かかる現象のより詳細な解析を試みた結果、次のような知見を得た。   By the way, as described in the above item (3), the present inventors have confirmed the existence of a phenomenon in which the depth variation of the recesses occurs in the outer peripheral portion and the inner portion of the portion A (expanded region). Etc. obtained the following knowledge as a result of attempting a more detailed analysis of this phenomenon by FEM calculations, experiments with actual machines, and the like.

すなわち、例えば、図5(A)及び(B)、図6に示したような同じ凸密度を持ったパンチ21を用いて同じ荷重を負荷してもワーク2側の負荷領域によって、パンチ21の凸部(コイニングパンチ22)により押圧される部分に生じる応力が異なることを解明した(図7(A)、図7(B)参照)。   That is, for example, even if the same load is applied using the punch 21 having the same convex density as shown in FIGS. 5A and 5B and FIG. It was clarified that the stress generated in the portion pressed by the convex portion (coining punch 22) is different (see FIGS. 7A and 7B).

図5(B)の場合は、細長領域全てに荷重が負荷されるので、成形領域全体が均一な弾性変形を生じた後に塑性変形するので、図7(B)に示すように、各凸部(コイニングパンチ22)に加わる応力はほぼ均一となる。   In the case of FIG. 5B, since the load is applied to all of the elongated regions, the entire molding region undergoes plastic deformation after causing uniform elastic deformation. Therefore, as shown in FIG. The stress applied to the (coining punch 22) is substantially uniform.

これに対し、図5(A)の場合は、成形領域の周囲に余肉があるため成形領域に曲げ変形が生じ、内側部分のたわみ量が外周部分より多いので、図7(A)に示すように内側部分の凸部にかかる応力は外周部に比較して小さくなる。   On the other hand, in the case of FIG. 5 (A), since there is a surplus around the molding region, bending deformation occurs in the molding region, and the amount of deflection of the inner portion is larger than that of the outer peripheral portion. Thus, the stress applied to the convex part of the inner part is smaller than that of the outer peripheral part.

つまり、図8(A)や図8(B)に示したように、パンチ21の凸部(コイニングパンチ22)の周囲に余肉がない場合には、ワーク2延いては成形領域全体が均一に変形するため、成形される凹部の深さばらつきも少なく精度良く複数の凹部を成形することができるが、図9(A)や図9(B)に示したように、パンチ21の凸部(コイニングパンチ22)の周囲に余肉が比較的沢山ある場合(例えば、図4のA部(拡張領域)を、図5(A)のように成形領域を分割して成形する場合など)には、ワーク2に曲げ変形が生じて、パンチ21の内側部分のたわみ量が外周部分より大きくなるため、パンチ21の外側と内側部分では凹部の深さばらつきが生じることになる。   That is, as shown in FIGS. 8A and 8B, when there is no surplus around the convex portion (coining punch 22) of the punch 21, the work 2 is extended and the entire forming region is uniform. Therefore, it is possible to form a plurality of recesses with high accuracy with little variation in the depth of the recesses to be formed. However, as shown in FIG. 9A and FIG. When there is a relatively large amount of surplus around the (coining punch 22) (for example, when forming the portion A (extended region) in FIG. 4 by dividing the forming region as shown in FIG. 5A). In other words, bending deformation occurs in the work 2 and the amount of deflection of the inner portion of the punch 21 becomes larger than that of the outer peripheral portion.

このため、精度良く複数の凹部を成形するためには、パンチ21の外側と内側部分での凹部の深さばらつきを所定に抑制することが求められるが、図9(A)や図9(B)に示したように、パンチ21の幅Lを狭くするに従ってたわみ量(延いては外側と内側部分での凹部深さのばらつき)は小さくなるため、例えば、図9(B)に示したように、パンチ21の外側部分におけるワーク2のたわみ量が、凹部深さの製品公差の範囲内に収まるように、パンチ21の幅L(すなわち、縦方向サイズや横方向サイズ)を設定することが望ましい。   For this reason, in order to form a plurality of concave portions with high accuracy, it is required to suppress variation in the depth of the concave portions between the outer side and the inner side portion of the punch 21. However, FIG. 9A and FIG. As shown in FIG. 9B, for example, as shown in FIG. 9B, the amount of deflection (and thus the variation in the depth of the recesses in the outer and inner portions) decreases as the width L of the punch 21 is reduced. In addition, the width L (that is, the vertical size or the horizontal size) of the punch 21 may be set so that the deflection amount of the work 2 in the outer portion of the punch 21 is within the range of the product tolerance of the recess depth. desirable.

これにより、パンチ21の凸部(コイニングパンチ22)の周囲に余肉が比較的沢山ある場合(例えば、図4のA部(拡張領域)を、図5(A)のように成形領域を分割して成形する場合など)であっても、パンチ21の外側と内側部分とで内側のたわみ量が外周部分より大きくなってパンチ21の外側と内側部分とで凹部の深さばらつきが大きくなるといった現象の発生を抑制することができ、以って精度良く複数の凹部を成形することが可能となる。   As a result, when there is a relatively large amount of surplus around the convex portion (coining punch 22) of the punch 21 (for example, the portion A (extended region) in FIG. 4 is divided into the forming region as shown in FIG. 5A). Even in the case of molding, the amount of internal deflection between the outer and inner portions of the punch 21 is larger than that of the outer peripheral portion, and the depth variation of the recesses between the outer and inner portions of the punch 21 increases. Occurrence of the phenomenon can be suppressed, so that a plurality of concave portions can be formed with high accuracy.

なお、本発明によれば、被処理物(ワーク)の所定領域に、面積が比較的広い拡張領域と、面積が比較的小さい領域と、が混在するような場合でも、所定深さの複数の微小凹凸を精度良く成形することができるが、面積が比較的小さい領域として、本実施の形態では細長領域を代表的に説明してきたが、これに限定されるものではなく、例えば、縦横方向に小さいサイズの狭小領域にも適用可能である。   In addition, according to the present invention, even in a case where an extended region having a relatively large area and a region having a relatively small area are mixed in a predetermined region of the workpiece (workpiece), a plurality of predetermined depths are provided. Although minute irregularities can be accurately formed, the elongated region has been described as a representative example in this embodiment as a region having a relatively small area. However, the present invention is not limited to this, for example, in the vertical and horizontal directions. The present invention can also be applied to a narrow region having a small size.

その他、本発明の要旨を逸脱しない範囲内において、種々変更を加え得ることは可能である。   In addition, various modifications can be made without departing from the scope of the present invention.

本発明に係る微小凹凸成形方法及び装置によれば、簡単かつ安価な構成でありながら、複数の微小凹凸を精度良く成形することができ有益である。   According to the method and apparatus for forming micro unevenness according to the present invention, it is advantageous that a plurality of micro unevenness can be accurately formed while having a simple and inexpensive configuration.

1 プレス装置(微小凹凸成形装置)
2 ワーク(被処理物)
10 スライド
20 上型(金型)
21 パンチ
22 コイニングパンチ(微小凸部)
30 下型
40 クッション装置
50 ボルスタ
1 Press device (micro uneven forming device)
2 Workpiece (processed object)
10 Slide 20 Upper mold (mold)
21 Punch 22 Coining punch (small convex part)
30 Lower mold 40 Cushion device 50 Bolster

Claims (6)

プレス装置を用いて被処理物の所定領域に微小凹部を所定数成形する際の微小凹凸成形方法であって、
1回で成形する微小凹部の数を前記所定数より小さくして複数回に分けて所定数の微小凹部を成形すると共に、
前記1回で成形する微小凹部の数は、被処理物のせん断強さの2倍と、微小凹部を成形する際のダイの受圧面積と、の積を、微小凹部の所望の凹部深さに応じて決定されるダイ側の凸部1箇所あたりの成形圧力で除して得られる値以下の数であることを特徴とする微小凹凸成形方法。
A method for forming a micro unevenness when forming a predetermined number of micro concave portions in a predetermined area of a workpiece using a press device,
While forming the predetermined number of micro concave portions by dividing the number of micro concave portions to be formed at a time smaller than the predetermined number into a plurality of times ,
The number of micro-recesses formed at one time is the product of twice the shear strength of the workpiece and the pressure-receiving area of the die when forming the micro-recesses to the desired recess depth of the micro-recesses. A method for forming fine irregularities, wherein the number is equal to or less than a value obtained by dividing by a forming pressure per one convex portion on the die side determined accordingly .
被処理物の所定領域を複数に分割して成形することを特徴とする請求項1に記載の微小凹凸成形方法。 2. The method for forming fine irregularities according to claim 1, wherein the predetermined region of the object to be processed is formed by being divided into a plurality of parts. 被処理物の所定領域に、比較的細長い領域と、比較的幅方向に拡張された領域と、が混在する場合において、比較的幅方向に拡張された領域を、比較的細長い領域と同等の幅寸法以下の領域に分割して複数回で成形することを特徴とする請求項に記載の微小凹凸成形方法。 When a relatively elongated area and an area expanded in the width direction coexist in a predetermined area of the workpiece, the area expanded in the width direction is equal in width to the relatively elongated area. The method according to claim 2 , wherein the fine unevenness forming method according to claim 2 , wherein the fine unevenness forming method is performed in a plurality of times by dividing into regions having dimensions or less. 被処理物の所定領域に微小凹部を所定数成形する際に、
1回で成形する微小凹部の数を前記所定数より小さくして複数回に分けて所定数の微小凹部を成形すると共に、
前記1回で成形する微小凹部の数は、被処理物のせん断強さの2倍と、微小凹部を成形する際のダイの受圧面積と、の積を、微小凹部の所望の凹部深さに応じて決定されるダイ側の凸部1箇所あたりの成形圧力で除して得られる値以下の数であることを特徴とする微小凹凸成形装置。
When forming a predetermined number of minute recesses in a predetermined area of the workpiece,
While forming the predetermined number of micro concave portions by dividing the number of micro concave portions to be formed at a time smaller than the predetermined number into a plurality of times ,
The number of micro-recesses formed at one time is the product of twice the shear strength of the workpiece and the pressure-receiving area of the die when forming the micro-recesses to the desired recess depth of the micro-recesses. A micro uneven forming apparatus characterized in that the number is equal to or less than a value obtained by dividing by a forming pressure per one convex portion on the die side determined accordingly .
被処理物の所定領域を複数に分割して成形することを特徴とする請求項4に記載の微小凹凸成形装置。 The micro uneven | corrugated shaping | molding apparatus of Claim 4 which divides | segments and shape | molds the predetermined area | region of a to-be-processed object into plurality. 被処理物の所定領域に、比較的細長い領域と、比較的幅方向に拡張された領域と、が混在する場合において、比較的幅方向に拡張された領域を、比較的細長い領域と同等の幅寸法以下の領域に分割して複数回で成形することを特徴とする請求項に記載の微小凹凸成形装置。
When a relatively elongated area and an area expanded in the width direction coexist in a predetermined area of the workpiece, the area expanded in the width direction is equal in width to the relatively elongated area. 6. The micro uneven forming apparatus according to claim 5 , wherein the micro uneven forming apparatus according to claim 5 , wherein the micro uneven forming apparatus is divided into regions having dimensions or less and is formed a plurality of times.
JP2010019924A 2010-02-01 2010-02-01 Method and apparatus for forming minute unevenness Expired - Fee Related JP5391099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010019924A JP5391099B2 (en) 2010-02-01 2010-02-01 Method and apparatus for forming minute unevenness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019924A JP5391099B2 (en) 2010-02-01 2010-02-01 Method and apparatus for forming minute unevenness

Publications (2)

Publication Number Publication Date
JP2011156559A JP2011156559A (en) 2011-08-18
JP5391099B2 true JP5391099B2 (en) 2014-01-15

Family

ID=44589004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019924A Expired - Fee Related JP5391099B2 (en) 2010-02-01 2010-02-01 Method and apparatus for forming minute unevenness

Country Status (1)

Country Link
JP (1) JP5391099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7140132B2 (en) * 2017-10-12 2022-09-22 日本製鉄株式会社 Manufacturing method and manufacturing apparatus for skin panel having character lines

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024291A (en) * 1983-07-19 1985-02-06 Tomoegumi Giken:Kk Treatment of friction joint surface

Also Published As

Publication number Publication date
JP2011156559A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
KR100810102B1 (en) Forging die for enlarging head diameter type parts and forging product thereof
US8413480B2 (en) Method and apparatus for bending a metal member
CN104511529A (en) Bending die with surface micro-structure and bending punch thereof
CN1231315C (en) Method for manufacturing of plate involving intermediate proforming and final shaping
CN1191147C (en) Method for forming a hollow cavity by using a thin substrate board
JP5300275B2 (en) Method for manufacturing metal member having a plurality of protrusions
JP5391099B2 (en) Method and apparatus for forming minute unevenness
KR20140114591A (en) Press die
JP2009262229A (en) Press working apparatus
JP6846274B2 (en) Forging method
JP6136280B2 (en) Press apparatus, press mold used for the press apparatus, and press method
JP4204601B2 (en) Press machine and press method
JP4353696B2 (en) Fluid bearing member manufacturing method, fluid bearing member, and hard disk drive
JP5651353B2 (en) Shaving mold
CN106001360B (en) The progressive upsetting shaping dies of thin-wall part and manufacturing process
Çavuşoğlu An investigation of punch radius and clearance effects on the sheet metal blanking process
US11931787B2 (en) Method and system for forming protrusions, and method for manufacturing metal component having protrusions
JP6812879B2 (en) Press equipment
JP2000312946A (en) Various kinds of shafts and its plasticity processing method
JPH0560127A (en) Coining machining for dynamic pressure bearing
JP2022001373A (en) Mold tool for press working
US8037731B2 (en) Forging method and forging apparatus
RU2223835C1 (en) Method of multi-pass drawing by elastic medium
JP2004034033A (en) Method and tool for forming recessed groove with press working
JP4894606B2 (en) Method and apparatus for manufacturing tire mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5391099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees