JP5389875B2 - Low wind piezoelectric wire with fins - Google Patents

Low wind piezoelectric wire with fins Download PDF

Info

Publication number
JP5389875B2
JP5389875B2 JP2011190509A JP2011190509A JP5389875B2 JP 5389875 B2 JP5389875 B2 JP 5389875B2 JP 2011190509 A JP2011190509 A JP 2011190509A JP 2011190509 A JP2011190509 A JP 2011190509A JP 5389875 B2 JP5389875 B2 JP 5389875B2
Authority
JP
Japan
Prior art keywords
fin
equation
fins
insulator
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011190509A
Other languages
Japanese (ja)
Other versions
JP2013054839A (en
Inventor
秀樹 本田
和雄 荒木
絹二 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kitanihon Electric Cable Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Kitanihon Electric Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kitanihon Electric Cable Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2011190509A priority Critical patent/JP5389875B2/en
Publication of JP2013054839A publication Critical patent/JP2013054839A/en
Application granted granted Critical
Publication of JP5389875B2 publication Critical patent/JP5389875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Insulated Conductors (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Description

本発明は、架空布設されるヒレ付低風圧電線に関し、さらに詳しくは、風圧に対する空気抵抗の低減を図り、それによって架空布設される電線の風圧荷重を低減することにより電線を支持する鉄塔や電柱等の支持物が受ける負担を軽減するヒレ付低風圧電線に関する。   More particularly, the present invention relates to a low-winding piezoelectric wire with fins that is installed in an aerial space. More specifically, the air resistance against wind pressure is reduced, thereby reducing the wind pressure load of the electric wire that is installed in the aerial space. The present invention relates to a low-winding piezoelectric wire with a fin that reduces a burden received by a support such as a fin.

鉄塔や電柱等に架空布設される架空電線は風圧によって大きな風圧荷重を受けることから架空電線を支持する鉄塔や電柱等の支持物は架空電線が受ける風圧を考慮して設計が行われている。しかし、大きな風圧荷重に耐えるように支持物の設計を行うことになれば設備コストの増大が避けられない。特に、架空電線は増容量化による太物化のために風圧の影響が大きくなっている。そのため、架空電線は風圧荷重の低減が求められている。風圧荷重の低減を図った低風圧電線としては、例えば、特許文献1に示す「低風圧絶縁電線」がある。この低風圧絶縁電線200は、図7に示すように、導体201を被覆する絶縁体202の外周面に山部203と谷部204が滑らかに連なった所定の条件を満たす多数のウェーブ状の凹凸を設けて構成されている。そして、この構成により低風圧絶縁電線200に風が吹きつけられると凹凸の下流側に生じるいわゆるカルマン渦を縮小化させることによって風圧荷重の低減を図るというものである。 Since an overhead electric wire installed on a steel tower or a power pole receives a large wind pressure load due to the wind pressure, a support such as a steel tower or a power pole supporting the overhead electric cable is designed in consideration of the wind pressure received by the overhead electric wire. However, if the support is designed to withstand a large wind pressure load, an increase in equipment cost is inevitable. In particular, overhead wires are affected by wind pressure due to the increase in capacity due to the increased capacity. For this reason, overhead electric wires are required to reduce wind pressure loads. As a low wind piezoelectric wire that aims to reduce the wind pressure load, for example, there is a “low wind pressure insulated wire” shown in Patent Document 1. As shown in FIG. 7 , the low wind pressure insulated electric wire 200 has a large number of wave-shaped irregularities that satisfy a predetermined condition in which a crest 203 and a trough 204 are smoothly connected to the outer peripheral surface of an insulator 202 covering the conductor 201. Is provided. With this configuration, when wind is blown onto the low wind pressure insulated electric wire 200, the so-called Karman vortex generated on the downstream side of the unevenness is reduced to reduce the wind pressure load.

また、特許文献2に示す「低風圧電線」も同様に、被覆表面に長さ方向と平行に所定の条件が満たされると共にその横断面の縁線形状が円弧状になるような溝を所要間隔をおいて複数本設けて構成されたものである。   Similarly, in the “low wind piezoelectric wire” shown in Patent Document 2, grooves on the coated surface satisfying predetermined conditions in parallel with the length direction and having an edge line shape in the cross section in an arc shape are provided with a predetermined interval. A plurality of them are provided.

一方、カルマン渦の発生を抑制するものとしては特許文献3に示される「ヒレ付き電線」も知られている。このヒレ付き電線300は、図8,9に示すように、導体301に絶縁体302を被覆した電線において、絶縁体302の外周面に突堤状の一対のヒレ303を導体301の長手方向に沿って設けることにより風による騒音や、電線の表面への着雪の抑制をも図るというものである。 On the other hand, as a device that suppresses the generation of Karman vortices, a “wire with fins” shown in Patent Document 3 is also known. As shown in FIGS. 8 and 9 , this finned wire 300 is a wire in which a conductor 301 is covered with an insulator 302, and a pair of jetty fins 303 are formed along the longitudinal direction of the conductor 301 on the outer peripheral surface of the insulator 302. It is intended to suppress noise caused by wind and snow on the surface of the electric wire.

特許第3725408号公報Japanese Patent No. 3725408 特許第2952480号公報Japanese Patent No. 2952480 特開平5−138710号公報JP-A-5-138710

電気設備に関する技術基準によれば、架空電線路の支持物の材料及び構造は風速40m/secの風圧荷重及び当該設置場所において通常想定される気象の変化、振動、衝撃その他の外部環境の影響を考慮し、倒壊のおそれがないよう、安全なものでなければならないと規定されている。そのため、上述した特許文献1の低風圧電線の場合、風速40m/secにおいてその効果が発揮されるものであり、また、特許文献2の低風圧電線の場合は、風速40〜50m/secにおいてその効果が発揮されるように形成されたものである。   According to the technical standards for electrical installations, the material and structure of the support for the overhead electric lines are subject to wind pressure load of 40m / sec and the influence of weather changes, vibrations, shocks and other external environments normally assumed at the installation location. It is specified that it must be safe so that there is no risk of collapse. Therefore, in the case of the low wind piezoelectric wire of Patent Document 1 described above, the effect is exhibited at a wind speed of 40 m / sec. In the case of the low wind piezoelectric wire of Patent Document 2, the effect is obtained at a wind speed of 40 to 50 m / sec. It is formed so that an effect is exhibited.

もちろん、そのような強風時における風圧荷重を効果的に低減することは鉄塔や電柱等の支持物に与える影響が軽減されるので好ましいことであるが、電線は常時そのような強風に晒されているわけではなく、むしろ頻繁に発生しやすく、電線が常に晒される可能性が高い風速、例えば、40m/secを超えない、例えば、風速30〜40m/secの範囲において風圧荷重低減の効果が発揮されるような低風圧電線の方が実用的である。もちろん、電気設備に関する技術基準に従い、架空電線路の支持物の材料及び構造は風速40m/secにおいて倒壊のおそれがないよう、安全なものでなければならないことはいうまでもない。   Of course, it is preferable to effectively reduce the wind pressure load in such a strong wind because the influence on the support such as a steel tower or a utility pole is reduced, but the electric wire is always exposed to such a strong wind. Rather, it is more likely to occur frequently, and it is more likely that the electric wire will always be exposed. For example, it does not exceed 40 m / sec. Such a low wind piezoelectric wire is more practical. Of course, it goes without saying that the material and structure of the support for the overhead electric line must be safe in accordance with the technical standards for electrical equipment so that there is no risk of collapse at a wind speed of 40 m / sec.

また、降雪地に架設するためには風圧荷重の低減と共に、少なくとも従来と同等以上の難着雪性能を備えていることが好ましい。   In addition, in order to install in a snowy area, it is preferable that the wind pressure load is reduced, and at least a snowfall performance equal to or higher than the conventional one is provided.

そこで、本発明の目的は、頻繁に発生しやすく、電線が常に晒される可能性のある風速、例えば、風速30〜40m/secの風圧に対する風圧荷重の低減を図り、それによって架空布設される電線を支持する鉄塔や電柱等の支持物が受ける負担を軽減することを可能とすると共に、電線の表面に付着する雪の着雪防止性能を少なくとも従来の電線と同等以上にすることが可能なヒレ付低風圧電線を提供することにある。   Accordingly, an object of the present invention is to reduce a wind pressure load with respect to a wind speed that is likely to occur frequently and to which the electric wire is always exposed, for example, a wind pressure of 30 to 40 m / sec. It is possible to reduce the burden received by the support such as a steel tower or a power pole that supports the wire, and at the same time, the fins can prevent the snow from adhering to the surface of the electric wires from being at least equivalent to the conventional electric wires. It is to provide an attached low wind piezoelectric wire.

上記目的を達成するため、請求項1に記載の本発明は、導体の外周を絶縁体で被覆した断面円形状の電線の絶縁体の表面にヒレを配置してなるヒレ付低風圧電線において、絶縁体の外周面に長手方向に沿って配置され、頂部が平面状で、基部側に円弧状に広がった裾部を備えた略方形状の断面形状を有し、絶縁体表面からの前記ヒレの高さ(H)が0.5〜1.0mmであるヒレを絶縁体の円周方向に一定間隔に16〜32本配置したことを特徴とする。 In order to achieve the above object, the present invention according to claim 1 is directed to a low wind piezoelectric wire with fins in which fins are arranged on the surface of an insulator of a circular electric wire whose outer periphery is covered with an insulator. are arranged along the longitudinal direction on the outer peripheral surface of the insulator, apex with flat, it has a cross-sectional shape of Ryakukata shape with skirt spread proximally into an arc shape, and the fin from the insulator surface 16 to 32 fins having a height (H) of 0.5 to 1.0 mm are arranged at regular intervals in the circumferential direction of the insulator.

上記目的を達成するため、請求項に載の本発明は、請求項に記載のヒレ付低風圧電線において、絶縁体の外径をDとした場合、ヒレの高さ(H)の1/2の高さ位置におけるヒレ幅(W)は、以下の式[数1]によって算出されることを特徴とするヒレ付低風圧電線。
[数1]
W=2×D×tan(θ/2)
但し、
=(D/2)+(H/2)
θは、ヒレの高さ(H)の1/2の高さ位置における絶縁体の中心に対するヒレ幅の角度であり、その範囲は3〜7°である。
In order to achieve the above object, the present invention according to claim 2 is directed to the low wind piezoelectric wire with fin according to claim 1 , in which the height of the fin (H) is set when the outer diameter of the insulator is D 0 . A finned low wind piezoelectric wire characterized in that a fin width (W) at a height position of ½ is calculated by the following equation [Equation 1].
[Equation 1]
W = 2 × D 1 × tan (θ 1/2)
However,
D 1 = (D 0/2 ) + (H / 2)
θ 1 is an angle of the fin width with respect to the center of the insulator at a height position that is ½ of the height (H) of the fin, and its range is 3 to 7 °.

上記目的を達成するため、請求項記載の本発明は、請求項1又は2に記載のヒレ付低風圧電線において、ヒレの本数(N(但し、Nは自然数))は、以下の式[数2]で算出されるnを小数点以下の端数を切り上げ、切り捨て或いは四捨五入することにより算出することを特徴とするヒレ付低風圧電線。
[数2]
n=360/(θ+θ
但し、
θは、隣り合うヒレ同士の間隔内の角度
θは、ヒレ底部の裾部の曲率半径を含むヒレ幅角度であり、以下の式[数3]によって算出される。
[数3]
θ=2×tan−1(K/K
は[数4]により、Kは[数5]によってそれぞれ算出される。
[数4]
=(D/2)+K
[数5]
=(W/2)+K
は[数6]によって算出される。

Figure 0005389875

θは、ヒレの裾部の曲率半径の中心角度である。 In order to achieve the above object, the present invention described in claim 3 is directed to the low wind piezoelectric wire with fins according to claim 1 or 2 , wherein the number of fins (N (where N is a natural number)) is expressed by the following formula [ A finned low-winding piezoelectric wire, wherein n calculated in Formula 2 is calculated by rounding up the fractional part and rounding down or rounding off.
[Equation 2]
n = 360 / (θ 2 + θ 4 )
However,
θ 2 is an angle θ 4 within an interval between adjacent fins, and θ 4 is a fin width angle including the curvature radius of the bottom portion of the fin, and is calculated by the following equation [Equation 3].
[Equation 3]
θ 4 = 2 × tan −1 (K 2 / K 1 )
K 1 is calculated by [Equation 4], and K 2 is calculated by [Equation 5].
[Equation 4]
K 1 = (D 0/2 ) + K 3
[Equation 5]
K 2 = (W / 2) + K 3
K 3 is calculated by [Equation 6].
Figure 0005389875

θ 3 is the central angle of the radius of curvature of the bottom of the fin.

上記目的を達成するため、請求項記載の本発明は、請求項1からのいずれか1項に記載のヒレ付低風圧電線において、ヒレは、頂面の角部が面取りされていることを特徴とする。
In order to achieve the above object, according to a fourth aspect of the present invention, in the finned low wind piezoelectric wire according to any one of the first to third aspects, the corners of the top surface of the fin are chamfered. It is characterized by.

本発明に係るヒレ付低風圧電線によれば、絶縁体の外周面に長手方向に沿って配置され、頂部が平面状で、基部側に円弧状に広がった裾部を備えた略方形状の断面形状を有するヒレを絶縁体の円周方向に一定間隔に複数配置したので、隣接するヒレ同士の間隔内で風を巻き込み易くなるとともにヒレに沿って風が流れ易くなるため風圧荷重の低減を図ることができるという効果がある。   According to the finned low-winding piezoelectric wire according to the present invention, the insulator is arranged along the longitudinal direction on the outer peripheral surface of the insulator, and has a substantially rectangular shape with a flat top portion and a skirt extending in an arc shape on the base side. Since a plurality of fins having a cross-sectional shape are arranged at regular intervals in the circumferential direction of the insulator, the wind pressure can be easily entangled between the adjacent fins and the wind can easily flow along the fins, thereby reducing the wind pressure load. There is an effect that it can be planned.

また、本発明に係るヒレ付低風圧電線によれば、低風圧を図りつつも、従来の電線と同等の難着雪性能を得ることができるという効果がある。   Moreover, according to the low wind piezoelectric wire with fins according to the present invention, there is an effect that it is possible to obtain a snowfall performance equivalent to that of a conventional electric wire while achieving a low wind pressure.

(a)は本発明に係るヒレ付低風圧電線の実施形態の正面図、(b)は(a)に示すヒレ付低風圧電線のA−A線断面図である。(A) is a front view of embodiment of the low wind piezoelectric wire with a fin based on this invention, (b) is the sectional view on the AA line of the low wind piezoelectric wire with a fin shown to (a). 図1(b)に示すヒレ付低風圧電線の部分拡大断面図である。It is a partial expanded sectional view of the low wind piezoelectric wire with a fin shown in FIG.1 (b). ヒレ幅及びヒレ本数の算出に必要な各定数の定義を示す説明図である。It is explanatory drawing which shows the definition of each constant required for calculation of a fin width and a fin number. ヒレ幅を測定する際の基準位置を示す図である。It is a figure which shows the reference position at the time of measuring fin width. 隣り合うヒレ同士の間隔内の角度及びヒレ底部の裾部の曲率半径を含むヒレ幅角度を示す図である。It is a figure which shows the fin width angle containing the angle in the space | interval of adjacent fins, and the curvature radius of the bottom part of a fin bottom part. ヒレの裾部の曲率半径の説明図である。It is explanatory drawing of the curvature radius of the skirt part of a fin. 従来の電線を示す断面図である。It is sectional drawing which shows the conventional electric wire. 従来の他の電線を示す斜視図である。It is a perspective view which shows the other conventional electric wire. 図8における従来の低風圧電線のヒレに着雪した状態を示す図である。It is a figure which shows the state which snowed on the fin of the conventional low wind piezoelectric wire in FIG.

本発明に係るヒレ付低風圧電線の好ましい一実施形態について図面を参照しつつ以下詳細に説明する。図1は本発明に係るヒレ付低風圧電線の一実施形態を示す図であり、(a)は正面図、(b)は(a)に示したヒレ付低風圧電線のA−A線断面図である。また、図2は図1(b)に示したヒレ付低風圧電線の部分拡大断面図である。図示されたヒレ付低風圧電線100は、導電性に優れる銅、アルミニウム等の金属を主体にした導体1と、この導体1を所定の厚みに被覆している断面円形状の絶縁体2と、絶縁体2の外周面の円周方向に沿って一定間隔に長手方向に平行させて設けられた複数(ここでは16本)のヒレ3A〜3P(以下、単に「ヒレ3」とも言う)と、を備えて構成されている。尚、ヒレ3の数は、16本に限定されるものではなく、空気抵抗を低減して所望の風圧荷重とすることが可能な範囲で任意の数を形成することができる。具体的には、概ね、32本までであれば風圧低減効果が期待できる。   A preferred embodiment of a finned low wind piezoelectric wire according to the present invention will be described below in detail with reference to the drawings. 1A and 1B are diagrams showing an embodiment of a finned low wind piezoelectric wire according to the present invention, wherein FIG. 1A is a front view, and FIG. 1B is a cross-sectional view taken along line AA of the finned low wind piezoelectric wire shown in FIG. FIG. FIG. 2 is a partially enlarged sectional view of the finned low wind piezoelectric wire shown in FIG. The illustrated low wind piezoelectric wire 100 with fins includes a conductor 1 mainly composed of a metal such as copper or aluminum having excellent conductivity, and an insulator 2 having a circular cross section covering the conductor 1 with a predetermined thickness, A plurality (16 in this case) of fins 3A to 3P (hereinafter simply referred to as “fins 3”) provided in parallel with the longitudinal direction at regular intervals along the circumferential direction of the outer peripheral surface of the insulator 2; It is configured with. The number of fins 3 is not limited to 16, but any number can be formed as long as the air resistance can be reduced to obtain a desired wind pressure load. Specifically, the effect of reducing the wind pressure can be expected if the number is approximately 32.

絶縁体2は、ポリ塩化ビニル、ポリエチレン、架橋ポリエチレン等の合成樹脂製材料によって形成されている。ヒレ3A〜3Pは、例えば、図示しない樹脂押出成形機のダイスに導体1を通して絶縁体2を導体1に被覆する際、上記ダイスによる樹脂成形によって絶縁体2と一体に成形することで製造することができる。ヒレ3A〜3Pは、同一形状同一サイズに形成され、それぞれの断面形状は、図2に示すように、略方形(四角形又は台形)をなしている。また、ヒレ3A〜3Pの基部側は絶縁体2に近づくに従って円弧状に広がった裾部11となっている。ヒレ3A〜3Pの断面の具体的なサイズとしては、高さHが0.5mm〜1.0mmで、円周方向における幅(W)サイズが0.5mm〜2.0mmである。一例を示せば、高さ(H)×幅(W)が、0.5mm×1.5mmなどである。さらに、図2に示すように、ヒレ3A〜3Pは、それぞれの頂面の角部10がアール状に面取りされている。尚、本発明においては、ヒレ3の基部側は円弧状の裾部11となっているので、ヒレ幅(W)はヒレの高さ(H)の1/2の高さにおける幅としている。   The insulator 2 is made of a synthetic resin material such as polyvinyl chloride, polyethylene, or crosslinked polyethylene. The fins 3 </ b> A to 3 </ b> P are manufactured, for example, by integrally forming the insulator 2 by resin molding using the die when the conductor 1 is coated on the conductor 1 through a conductor 1 on a die of a resin extrusion molding machine (not shown). Can do. The fins 3A to 3P are formed in the same shape and the same size, and their cross-sectional shapes are substantially square (square or trapezoidal) as shown in FIG. Further, the base side of the fins 3 </ b> A to 3 </ b> P has a skirt portion 11 that expands in an arc as it approaches the insulator 2. As specific sizes of the cross-sections of the fins 3A to 3P, the height H is 0.5 mm to 1.0 mm, and the width (W) size in the circumferential direction is 0.5 mm to 2.0 mm. For example, the height (H) × width (W) is 0.5 mm × 1.5 mm or the like. Furthermore, as shown in FIG. 2, the corners 10 of the top surfaces of the fins 3A to 3P are chamfered in a round shape. In the present invention, since the base side of the fin 3 is an arc-shaped skirt 11, the fin width (W) is set to a width at half the height of the fin (H).

上述のように、複数のヒレ3A〜3Pは、絶縁体2の長手方向に沿って直線状に形成されていると共に、図1(b)に示すように、絶縁体2の円周に沿って一定間隔に配設されており、隣り合うヒレ3A〜3P同士が互いに近接して配置されているため、隣接するヒレ3同士の間で風を巻き込み易くなり、ヒレ3A〜3Pに沿って風が流れ易くなる。この結果、風の剥離位置を後方にすることが可能になり、後方に生じるカルマン渦を縮小させることが可能になる。この結果、電線にかかる風圧が軽減されることになる。   As described above, the plurality of fins 3 </ b> A to 3 </ b> P are linearly formed along the longitudinal direction of the insulator 2, and along the circumference of the insulator 2 as shown in FIG. Since the adjacent fins 3 </ b> A to 3 </ b> P are arranged in close proximity to each other, the wind is easy to be caught between the adjacent fins 3, and the wind flows along the fins 3 </ b> A to 3 </ b> P. It becomes easy to flow. As a result, the wind separation position can be rearward, and the Karman vortex generated behind can be reduced. As a result, the wind pressure applied to the electric wire is reduced.

次に、上記実施形態においては、ヒレの幅(W)0.5mm〜2.0mmであり、またヒレの本数(N)は3A〜3Pの16であるとしたが、ヒレの幅(W)及びヒレの本数(N)は、以下に説明するように絶縁体2の直径に関係なく以下の式[数1]〜[数6]によって算出することができる。ここで、絶縁体2の外径(直径)をD、絶縁体2の表面からのヒレ高さをH、ヒレの高さHの1/2の高さ位置における絶縁体2の中心、すなわち、導体1の中心CEにおけるヒレ3Bの幅の角度をθ、とすると、図3に示すようにヒレの幅(W)は[数1]によって算出することができる。
[数1]
W=2×D×tan(θ/2)

但し、D=(D/2)+(H/2)であり、θは、ヒレの高さ(H)の1/2の高さ位置における絶縁体の中心に対するヒレ幅の角度であり、その範囲は3〜7°である。θを3〜7°とするのは、それよりも大きくても小さくても隣接するヒレ3同士の間に巻き込まれる風が少なくなると共に、ヒレ3に沿って風が流れ難くなるからである。
Next, in the above embodiment, the fin width (W) is 0.5 mm to 2.0 mm, and the number of fins (N) is 16 of 3A to 3P, but the fin width (W) The number of fins (N) can be calculated by the following equations [Equation 1] to [Equation 6] regardless of the diameter of the insulator 2 as described below. Here, the outer diameter (diameter) of the insulator 2 is D 0 , the height of the fin from the surface of the insulator 2 is H, and the center of the insulator 2 at the half height position of the fin height H, ie, If the angle of the width of the fin 3B at the center CE of the conductor 1 is θ 1 , the width (W) of the fin can be calculated by [Equation 1] as shown in FIG.
[Equation 1]
W = 2 × D 1 × tan (θ 1/2)

However, D 1 = (D 0/2 ) + (H / 2), and θ 1 is the angle of the fin width with respect to the center of the insulator at the height position of ½ of the fin height (H). Yes, the range is 3-7 degrees. The reason why θ 1 is set to 3 to 7 ° is that, even if it is larger or smaller than that, the amount of wind caught between adjacent fins 3 is reduced, and the wind does not easily flow along the fins 3. .

また、図5に示すように、ヒレの本数(N(但し、Nは自然数))は、以下の式[数2]で算出されるnを小数点以下の端数を切り上げ、切り捨て或いは四捨五入することにより算出することができる。
[数2]
n=360/(θ+θ
但し、
θは、隣り合うヒレ同士の間隔内の角度
θは、ヒレ底部の裾部の曲率半径を含むヒレ幅角度であり、以下の式[数3]によって算出される。
[数3]
θ=2×tan−1(K/K
は[数4]により、Kは[数5]によってそれぞれ算出される。
[数4]
=(D/2)+K
[数5]
=(W/2)+K
は[数6]によって算出される。

Figure 0005389875

θは、ヒレの裾部の曲率半径の中心角度である。尚、θは80°〜90°であることが好ましい。
すなわち、絶縁体2の表面に配置すべきヒレ3のヒレ幅(W)、ヒレ高さ(H)、形状が特定されればあとはヒレ3を配置すべきおおよその位置関係を特定することによって絶縁体2の表面に配置すべきヒレ3の数を算出することができる。尚、上述の手順によってヒレ3の数が算出された後はその数のヒレ3を絶縁体2の表面に均等に配置することになる。そのため、ヒレ3を配置する前(ヒレ3の数を決める前)のθ及びθとヒレ3を配置した後のθ及びθとでは、数値が異なる場合がある。 In addition, as shown in FIG. 5, the number of fins (N (where N is a natural number)) is calculated by rounding up or rounding off the fractional part of n calculated by the following formula [Equation 2]. Can be calculated.
[Equation 2]
n = 360 / (θ 2 + θ 4 )
However,
θ 2 is an angle θ 4 within an interval between adjacent fins, and θ 4 is a fin width angle including the curvature radius of the bottom portion of the fin, and is calculated by the following equation [Equation 3].
[Equation 3]
θ 4 = 2 × tan −1 (K 2 / K 1 )
K 1 is calculated by [Equation 4], and K 2 is calculated by [Equation 5].
[Equation 4]
K 1 = (D 0/2 ) + K 3
[Equation 5]
K 2 = (W / 2) + K 3
K 3 is calculated by [Equation 6].
Figure 0005389875

θ 3 is the central angle of the radius of curvature of the bottom of the fin. In addition, it is preferable that (theta) 3 is 80 degrees-90 degrees.
That is, when the fin width (W), fin height (H), and shape of the fin 3 to be arranged on the surface of the insulator 2 are specified, the approximate positional relationship where the fin 3 is to be arranged is specified. The number of fins 3 to be arranged on the surface of the insulator 2 can be calculated. In addition, after the number of fins 3 is calculated by the above-described procedure, the number of fins 3 is evenly arranged on the surface of the insulator 2. Therefore, the numerical values may be different between θ 2 and θ 4 before arranging fins 3 (before determining the number of fins 3) and θ 2 and θ 4 after arranging fins 3.

本実施形態のヒレ付低風圧電線100によれば、絶縁体2の外周面に多数のヒレ3を設けたことによりカルマン渦の縮小化が図られ、それによって風圧荷重を低減することができるという効果がある。   According to the finned low wind piezoelectric wire 100 of the present embodiment, the Karman vortex can be reduced by providing a large number of fins 3 on the outer peripheral surface of the insulator 2, whereby the wind pressure load can be reduced. effective.

また、ヒレ3の数を従来のものに比べて多くすると共に、ヒレ3の上縁10にはアール状の面取りを行い、裾部11は円弧状としたので降雪時における水滴又は雪等の流れが円滑となって難着雪効果が発揮されるという効果がある。降雪地域においては着雪による電線の荷重の増加に伴い風圧荷重が増加させる要因になっているが、本実施形態のヒレ付低風圧電線100によれば、寒冷地などの降雪地域での難着雪効果も期待できるという効果がある。   In addition, the number of fins 3 is increased compared to the conventional one, and the upper edge 10 of the fins 3 is rounded and the hem 11 has an arc shape. Has the effect of smoothing out the effect of difficult snowfall. In the snowfall area, the wind pressure load increases as the load of the electric wire increases due to snowfall. However, according to the finned low wind piezoelectric wire 100 of this embodiment, it is difficult to reach the snowfall area such as a cold region. There is an effect that the snow effect can also be expected.

次に、本発明に係るヒレ付低風圧電線の具体的な実施例について説明する。本発明者らは、ヒレ3の数をそれぞれ16,18,20,22,26,32としたヒレ付低風圧電線100について試作を行うと共に、風洞実験を実施した。実験に用いたヒレ付低風圧電線100は、いずれも導体1の直径が18.6mm、絶縁体2の外径(ヒレが設けられていない部分の直径)が24.6mm、ヒレ3の頂部から頂部の外径が26.6mm、ヒレ幅角度が6.71°、とした。また、ヒレ3の高さ、幅及び長さは、いずれの実施例も1.0mm(高さ)×1.5(幅)mmとした。一方、ヒレの数を8,4とした比較例についても同様の風洞実験を行った。その結果を表1に示す。尚、低減率については外径が24.6mmの断面円形の電線を基準とした。   Next, specific examples of the finned low wind piezoelectric wire according to the present invention will be described. The inventors made a prototype of the low-winding piezoelectric wire 100 with fins with the number of fins 16, 18, 20, 22, 26, and 32, respectively, and conducted a wind tunnel experiment. In the low wind piezoelectric wire 100 with fins used in the experiment, the diameter of the conductor 1 is 18.6 mm, the outer diameter of the insulator 2 (the diameter of the portion where no fin is provided) is 24.6 mm, and the top of the fin 3 The outer diameter of the top was 26.6 mm, and the fin width angle was 6.71 °. Further, the height, width, and length of the fins 3 were set to 1.0 mm (height) × 1.5 (width) mm in any of the examples. On the other hand, the same wind tunnel experiment was conducted for the comparative example in which the number of fins was 8 or 4. The results are shown in Table 1. In addition, about the reduction | decrease rate, it was based on the cross-sectional electric wire whose outer diameter is 24.6 mm.

Figure 0005389875
Figure 0005389875

表1から明らかなように、実施例1から6については10%を超える風圧荷重の低減効果が確認された。特に、ヒレ数が32本のときには最良の結果が得られた。一方、比較例1(ヒレ数が4本)では風圧荷重の低減効果は認められるもののあまり大きな効果は認められなかった。また、比較例2(ヒレ数が8本)では逆に風圧荷重が増加する結果となり効果は認められなかった。   As is clear from Table 1, in Examples 1 to 6, the effect of reducing the wind pressure load exceeding 10% was confirmed. In particular, the best results were obtained when the number of fins was 32. On the other hand, in Comparative Example 1 (the number of fins is 4), an effect of reducing the wind pressure load was recognized, but a very large effect was not recognized. In Comparative Example 2 (the number of fins was 8), the wind load increased on the contrary, and no effect was observed.

[他の実施の形態]
尚、本発明は、上記した各実施形態に限定されず、本発明の技術思想を逸脱あるいは変更しない範囲内で種々な変形が可能である。例えば、上記した各実施形態においては、導体1が単線であるとしたが、複合導体であってもよい。また、導体1及び絶縁体2の太さは、自由に選ぶことが可能である。
[Other embodiments]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from or changing the technical idea of the present invention. For example, in each of the embodiments described above, the conductor 1 is a single wire, but may be a composite conductor. Moreover, the thickness of the conductor 1 and the insulator 2 can be freely selected.

1 導体
2 絶縁体
3A〜3P ヒレ
10 上縁
11 付け根部
100 ヒレ付低風圧電線
DESCRIPTION OF SYMBOLS 1 Conductor 2 Insulator 3A-3P Fin 10 Upper edge 11 Base part 100 Low wind piezoelectric wire with fin

Claims (4)

導体の外周を絶縁体で被覆した断面円形状の電線の前記絶縁体の表面にヒレを配置してなるヒレ付低風圧電線において、
前記絶縁体の外周面に長手方向に沿って配置され、頂部が平面状で、基部側に円弧状に広がった裾部を備えた略方形状の断面形状を有し、前記絶縁体表面からの前記ヒレの高さ(H)が0.5〜1.0mmであるヒレを前記絶縁体の円周方向に一定間隔に16〜32本配置したことを特徴とするヒレ付低風圧電線。
In a low-winding piezoelectric wire with fins, in which fins are arranged on the surface of the insulator of a circular electric wire whose outer periphery is covered with an insulator,
Said insulator being disposed along a longitudinal direction on the outer peripheral surface of the top portion is in planar, have a cross-sectional shape of Ryakukata shape with skirt spread proximally in an arc shape, from the insulator surface A finned low wind piezoelectric wire, wherein 16 to 32 fins having a fin height (H) of 0.5 to 1.0 mm are arranged at regular intervals in the circumferential direction of the insulator.
請求項に記載のヒレ付低風圧電線において、
前記絶縁体の外径をDとした場合、前記ヒレの高さ(H)の1/2の高さ位置におけるヒレ幅(W)は、以下の式[数1]によって算出されることを特徴とするヒレ付低風圧電線。
[数1]
W=2×D×tan(θ/2)
但し、
=(D/2)+(H/2)
θは、ヒレの高さ(H)の1/2の高さ位置における絶縁体の中心に対するヒレ幅の角度であり、その範囲は3〜7°である。
In the low wind piezoelectric wire with a fin according to claim 1 ,
When the outer diameter of the insulator is D 0 , the fin width (W) at a height position ½ of the height (H) of the fin is calculated by the following equation [Equation 1]. A low-winding piezoelectric wire with fins.
[Equation 1]
W = 2 × D 1 × tan (θ 1/2)
However,
D 1 = (D 0/2 ) + (H / 2)
θ 1 is an angle of the fin width with respect to the center of the insulator at a height position that is ½ of the height (H) of the fin, and its range is 3 to 7 °.
請求項1又は2に記載のヒレ付低風圧電線において、
前記ヒレの本数(N(但し、Nは自然数))は、以下の式[数2]で算出されるnを小数点以下の端数を切り上げ、切り捨て或いは四捨五入することにより算出することを特徴とするヒレ付低風圧電線。
[数2]
n=360/(θ+θ
但し、
θは、隣り合うヒレ同士の間隔内の角度
θは、ヒレ底部の裾部の曲率半径を含むヒレ幅角度であり、以下の式[数3]によって算出される。
[数3]
θ=2×tan−1(K/K
は[数4]により、Kは[数5]によってそれぞれ算出される。
[数4]
=(D/2)+K
[数5]
=(W/2)+K
は[数6]によって算出される。
Figure 0005389875

θは、ヒレの裾部の曲率半径の中心角度である。
In the low wind piezoelectric wire with a fin according to claim 1 or 2 ,
The number of fins (N (where N is a natural number)) is calculated by rounding up or rounding off the fractional part of n calculated by the following formula [Equation 2]. Low wind piezoelectric wire with.
[Equation 2]
n = 360 / (θ 2 + θ 4 )
However,
θ 2 is an angle θ 4 within an interval between adjacent fins, and θ 4 is a fin width angle including the curvature radius of the bottom portion of the fin, and is calculated by the following equation [Equation 3].
[Equation 3]
θ 4 = 2 × tan −1 (K 2 / K 1 )
K 1 is calculated by [Equation 4], and K 2 is calculated by [Equation 5].
[Equation 4]
K 1 = (D 0/2 ) + K 3
[Equation 5]
K 2 = (W / 2) + K 3
K 3 is calculated by [Equation 6].
Figure 0005389875

θ 3 is the central angle of the radius of curvature of the bottom of the fin.
請求項1からのいずれか1項に記載のヒレ付低風圧電線において、
前記ヒレは、前記頂面の角部が面取りされていることを特徴とするヒレ付低風圧電線。
In the low wind piezoelectric wire with a fin according to any one of claims 1 to 3 ,
The fin is a finned low wind piezoelectric wire characterized in that a corner portion of the top surface is chamfered.
JP2011190509A 2011-09-01 2011-09-01 Low wind piezoelectric wire with fins Active JP5389875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190509A JP5389875B2 (en) 2011-09-01 2011-09-01 Low wind piezoelectric wire with fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190509A JP5389875B2 (en) 2011-09-01 2011-09-01 Low wind piezoelectric wire with fins

Publications (2)

Publication Number Publication Date
JP2013054839A JP2013054839A (en) 2013-03-21
JP5389875B2 true JP5389875B2 (en) 2014-01-15

Family

ID=48131673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190509A Active JP5389875B2 (en) 2011-09-01 2011-09-01 Low wind piezoelectric wire with fins

Country Status (1)

Country Link
JP (1) JP5389875B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653390B (en) * 2020-06-22 2021-11-12 杭州富通通信技术股份有限公司 Photoelectric hybrid cable
CN115681380A (en) * 2022-10-27 2023-02-03 天津大学 V-shaped fin for tower vibration reduction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144706U (en) * 1984-08-27 1986-03-25 株式会社フジクラ aerial bare stranded wire
JPH0487120U (en) * 1990-11-30 1992-07-29
JP4981633B2 (en) * 2007-11-16 2012-07-25 株式会社ビスキャス Long covering
JP2012005196A (en) * 2010-06-15 2012-01-05 Sumitomo Wiring Syst Ltd Electric wire protection member

Also Published As

Publication number Publication date
JP2013054839A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JPWO2019093310A1 (en) Wire conductors, covered wires, wire harnesses
JP5389875B2 (en) Low wind piezoelectric wire with fins
US20190263338A1 (en) Automotive vehicle
CN104836184A (en) Device inhibiting transmission lines from wind-rain induced vibration and galloping
JP2014116094A (en) Electric wire
JP6052359B2 (en) Insulated wire
JP6236339B2 (en) Thimble
CN205810528U (en) A kind of amorphous transformer oil duct stay, oil duct finished product and winding
CN209912600U (en) Power cable with rotating structure
JP5784799B2 (en) Damping cable
CN209267074U (en) A kind of novel busbar side board
JP3949625B2 (en) Overhead insulated wire
JP3954536B2 (en) Low wind pressure insulated wire that is connected to a power pole and supplies power
JP4128984B2 (en) Overhead insulated wire
JP4279323B2 (en) Optical cable
JP2011014448A (en) Flat cable
JP5537229B2 (en) Wind noise prevention
CN203882638U (en) Aluminium-clad aluminium conductor steel reinforced cable
JPWO2019163157A1 (en) Bird damage control device
JP5170871B2 (en) Method of winding snow melting spiral and low wind noise type snow melting wire
JP2000243143A (en) Overhead electric wire
JP4851303B2 (en) Aerial covering long object
JP2010267485A (en) Insulated wire
JPS61245409A (en) Low noise wire
CN206021988U (en) A kind of chain armouring crotch mould

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130604

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5389875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250