JP5389335B2 - Gasifier - Google Patents
Gasifier Download PDFInfo
- Publication number
- JP5389335B2 JP5389335B2 JP2007074288A JP2007074288A JP5389335B2 JP 5389335 B2 JP5389335 B2 JP 5389335B2 JP 2007074288 A JP2007074288 A JP 2007074288A JP 2007074288 A JP2007074288 A JP 2007074288A JP 5389335 B2 JP5389335 B2 JP 5389335B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace body
- furnace
- diameter
- dout
- burner group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002893 slag Substances 0.000 claims description 45
- 238000002309 gasification Methods 0.000 claims description 20
- 239000004215 Carbon black (E152) Substances 0.000 claims description 19
- 239000000446 fuel Substances 0.000 claims description 19
- 229930195733 hydrocarbon Natural products 0.000 claims description 19
- 150000002430 hydrocarbons Chemical class 0.000 claims description 19
- 239000007787 solid Substances 0.000 claims description 19
- 239000007800 oxidant agent Substances 0.000 claims description 14
- 230000001590 oxidative effect Effects 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 59
- 238000007796 conventional method Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000003245 coal Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001125929 Trisopterus luscus Species 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Gasification And Melting Of Waste (AREA)
Description
この発明は、石炭等の固形炭化水素燃料から一酸化炭素、水素、メタンなどの燃料ガスを製造する石炭ガス化プロセスに用いられるガス化炉に関する。 The present invention relates to a gasification furnace used in a coal gasification process for producing a fuel gas such as carbon monoxide, hydrogen, methane from a solid hydrocarbon fuel such as coal.
石炭ガス化に用いられるプロセスとして、二段ガス化法がある。この二段ガス化法に関して、例えば特公平5−47595号公報(以下、先行発明と言うことがある。)にこのプロセスに用いられる二段ガス化炉が開示されている。 As a process used for coal gasification, there is a two-stage gasification method. With regard to this two-stage gasification method, for example, Japanese Patent Publication No. 5-47595 (hereinafter sometimes referred to as a prior invention) discloses a two-stage gasification furnace.
図1は、このような二段ガス化炉の一例を示すものである。この二段ガス化炉1は、図1(a)に示すように、炉本体2と、この炉本体2の上部に設けられた上部バーナ群3と、炉本体2の下部に設けられた下部バーナ群4とから概略構成されている。
炉本体2は、ほぼ一定の断面積を有する円筒状となっており、その頂部には炉本体2内で生成した一酸化炭素、水素、メタンなどの製品ガスを導出するガス出口5が開口している。このガス出口5の直径(Dout)は、炉本体2の直径(D)よりも小さくされ、後段の機器に接続されるようになっている。
FIG. 1 shows an example of such a two-stage gasifier. As shown in FIG. 1A, the two-stage gasification furnace 1 includes a
The furnace
炉本体2に下部の内面には、円環状のスラグスタック6が取り付けられており、このスラグスタック6の中心開口部は、溶融スラグが流下する溶融スラグ出口7となっている。この溶融スラグ出口7の直径も炉本体2の直径よりも小さくされ、この溶融スラグ出口7からの放熱を少なくするように構成されている。
An annular slag stack 6 is attached to the inner surface of the lower part of the
上部バーナ群3は、炉本体2の上部に配置され、図1(b)に示すように4本のバーナ31、32、33、34がそれぞれ炉本体2の周壁に均等に配されて取り付けられている。これらバーナ31・・・は、それぞれの噴射口が炉本体2の中心軸に向けられておらず、図示のように、中心軸よりも外側に向けられており、それぞれの噴射口から噴射される燃焼ガスが炉本体2の円周方向に流れ、炉本体2内で旋回流を形成するようになっている。
The
この上部バーナ群3により形成される旋回流の仮想的な円の直径は「仮想旋回流円径」と呼ばれ、これの直径を以下、Duと呼ぶ。
なお、本発明での「仮想旋回流円径」とは、現実のガスの流れによる旋回流についてのものではなく、各バーナ31、32・・のノズルの噴射方向軸を延長した4本の仮想線に内接する円の直径を言うものと定義する。これにより、「仮想旋回流円径」を定めることにより、各バーナ31、32・・の配置が定まることになる。
The diameter of the virtual circle of the swirl flow formed by the
In the present invention, the “virtual swirl flow circle diameter” does not refer to a swirl flow caused by an actual gas flow, but four virtual lines in which the nozzles of the
上部バーナ群3を構成する個々のバーナには、石炭などの固形炭化水素燃料の微粉末と空気、酸素ガスなどの酸素含有気体からなる酸化剤が供給され、これがそれぞれの噴射口から噴射されるようになっている。以下、酸化剤と固形炭化水素燃料との混合比(酸化剤供給量/固形炭化水素燃料供給量:重量比)を酸化剤量比とする。
The individual burners constituting the
下部バーナ群4は、炉本体2の下部のスラグスタック6の上方に配置され、図1(c)に示すように4本のバーナ41、42、43、44がそれぞれ炉本体2の周壁に均等に配されて取り付けられている。これらバーナ41・・・も、それぞれの噴射口が炉本体2の中心軸に向けられておらず、図示のように、中心軸よりも外側に向けられており、それぞれの噴射口から噴射される燃焼ガスが同様にして炉本体2内で旋回流を形成するようになっている。
この下部バーナ群4により形成される旋回流の仮想的な円の直径は、やはり「仮想旋回流円径」と呼ばれ、この直径を以下、Dlと呼ぶ。ここでの「仮想旋回流円径」の定義は、上部バーナ群3におけるものと同様である。
The
The diameter of the virtual circle of the swirl flow formed by the
下部バーナ群4を構成する個々のバーナには、上部バーナ群3と同様に、固形炭化水素燃料の微粉末と空気、酸素ガスなどの酸素含有気体からなる酸化剤が供給され、これがそれぞれの噴射口から噴射されるようになっている。
そして、上部バーナ群3による仮想旋回流円径Duが下部バーナ群4による仮想旋回流円径Dlよりも大きくなるように、かつ下部バーナ群4による仮想旋回流円径Dlがガス出口5の直径Doutよりも大きくなるように構成されている(Du>Dl>Dout)。
As with the
The virtual swirl flow circle diameter Du by the
また、炉本体2のスラグスタック6の下方には、溶融スラグ冷却室8が設けられている。この溶融スラグ冷却室8は、炉本体2と一体に連続して形成され炉本体2とほぼ同径の円筒状となっており、溶融スラグ出口7から落下した溶融スラグを冷却し、固化するようになっている。
A molten
このように構成された二段ガス化炉1では、上部バーナ群3での酸化剤量比を低くし、下部バーナ群4での酸化剤量比を高くして、燃焼させることにより燃焼ガスの旋回流が形成されると同時に、図2に示すような炉本体2内での温度分布が形成され、上部領域では固形炭化水素燃料中の灰分が溶融しない温度で、下部領域では灰分が溶融する温度で運転される。
In the two-stage gasification furnace 1 configured as described above, combustion is performed by reducing the oxidant amount ratio in the
これにより、上部バーナ群3付近の領域では、高温の旋回流内での化学反応により、水素、一酸化炭素、メタンなどのガスが生成し、上部のガス出口5から高温の製品ガスとして導出される。この製品ガスの温度は、固形炭化水素燃料中の灰分の溶融温度よりも低い温度となっている。
一方、下部バーナ群4付近の領域では二酸化炭素、水分などのガスが生成し、このガスは上部バーナ群3の領域に上昇し、ここでの反応に供される。また、固形炭化水素燃料中の灰分は、上部バーナ群3で生成して降下する灰分ととも溶融し、この溶融した灰分は溶融スラグとして、旋回流に乗って炉本体2の壁面に付着し、ここを伝わって下部の溶融スラグ出口7から流下し、溶融スラグ冷却室8に排出される。
Thereby, in a region near the
On the other hand, in the area near the
そして、上記先行発明では、炉本体2の直径(D)をガス出口5の直径(Dout)よりも大きく、Dout/Dを0.2〜0.35程度とし、かつ上部バーナ群3による仮想旋回流円径Duが下部バーナ群4による仮想旋回流円径Dlよりも大きくなるように、かつ下部バーナ群4による仮想旋回流円径Dlがガス出口5の直径Doutよりも大きく(Du>Dl>Dout)することで、ガス化効率の向上が可能であるとされている。
And in the said prior invention, the diameter (D) of the furnace
ところで、この先行発明におけるガス炉の運転条件等を保ちつつ、ガス化炉をスケールアップ(処理能力増強)する場合、炉本体2自体の寸法の増大を最小限に抑えることが、設備費低減、熱損失量低減などの観点から重要となる。
このため、炉本体2の直径を増大する際にも、その増大量をできるだけ小さくする必要がある。炉本体2の直径の増大を抑えつつ、処理能力を高める方策として、炉本体2内でのガス流速を高める方法がある。
By the way, when the gasification furnace is scaled up (increasing the processing capacity) while maintaining the operating conditions of the gas furnace in this prior invention, minimizing the increase in the dimensions of the
For this reason, when the diameter of the
しかしながら、炉本体2内でのガス流速を高めると、溶融スラグの一部がガス出口5から製品ガスに同伴されて飛散し、この溶融スラグが後段の熱回収ボイラなどの機器内壁に付着し、種々の不具合を発生するファウリング障害を起こすことが判明した。
図3は、このファウリング障害について説明するためのもので、炉本体2内でのガスの流れを示す模式図で、図1と同一構成部分には同一符号を付してある。
However, when the gas flow rate in the
FIG. 3 is a diagram for explaining the fouling failure, and is a schematic diagram showing a gas flow in the furnace
ガス化炉の運転に伴い、溶融スラグは炉本体2の炉壁を伝わって溶融スラグ出口7からスラグ冷却室8に落下する。一方、ガスの流れとして、炉壁側には旋回しながら下降する旋回下降流20が存在する。この旋回下降流の一部は溶融スラグ出口7を通してスラグ冷却室8に流れ込み、ここで反転して再び溶融スラグ出口7を通過して炉本体2内に戻る溶融スラグ出口反転流21を形成する。
炉本体2の中心部のガスの流れは基本的に上昇流22である。この時、溶融スラグ出口7を流下する溶融スラグ13の一部が上記反転流21に吹き千切られ、炉本体2に再び運ばれる現象が起こる。
With the operation of the gasification furnace, the molten slag travels along the furnace wall of the
The gas flow in the center of the
さらに、吹き千切られた溶融スラグは、上記上昇流22に乗り飛散スラグとして炉本体2のガス出口5に向って飛散する場合がある。こうして、溶融スラグはガス出口5の後段に設置された熱回収ボイラなどの機器の内壁に付着し、ファウリング障害を起こす。
かくして、炉本体2内のガス流速を速くすることはファウリング障害の原因となる溶融スラグの飛散を増長するのである。
Thus, increasing the gas flow rate in the
よって、本発明における課題は、二段ガス化炉のスケールアップを図る目的を前提とし、炉本体の直径の増大を最小限に抑えつつかかる目的達成のため、炉本体内での平均ガス流速を大きくした際、炉本体のガス出口から溶融スラグが飛散し、ファウリング障害を起こすことがないようにすることにある。 Therefore, the object of the present invention is based on the premise of scaling up the two-stage gasification furnace, and in order to achieve this object while minimizing the increase in the diameter of the furnace body, the average gas flow rate in the furnace body is set. When the size is increased, molten slag is scattered from the gas outlet of the furnace body to prevent fouling failure.
かかる課題を解決するため、
請求項1にかかる発明は、固形炭化水素燃料粉末と酸化剤との反応によりガスを生成する円筒状の炉本体と、この炉本体の上部に配され、固形炭化水素燃料粉末と酸化剤との混合流体を炉本体内に噴射する上部バーナ群と、炉本体の下部に配され、固形炭化水素燃料粉末と酸化剤との混合流体を炉本体内に噴射する下部バーナ群を備え、
炉本体の上端部には、製品ガスが排出されるガス出口が形成され、炉本体の下端部には溶融スラグが排出される溶融スラグ出口が形成され、
ガス出口の直径(Dout)と炉本体の直径(D)との比率Dout/Dを1>Dout/D≧0.4とし、
上部バーナ群および下部バーナ群は、いずれも3以上のバーナから構成され、これらバーナは炉本体の周壁に配置され、
上部バーナ群の各バーナによって形成される仮想的な旋回流の直径をDuとし、下部バーナ群の各バーナによって形成される仮想的な旋回流の直径をDlとした時、D>Du≧Dout>Dlとなるように両バーナ群を配置するとともに、
炉内圧力が、2.5〜3.0MPaで、年間8000時間の運転を行った場合、ガス出口の圧力損失(ΔPout)を炉内圧力(Pg)で徐した値である、年間の差圧上昇の積算値(ΔPout/Pg)が炉内圧力の1%以下であることを特徴とするガス化炉である。
To solve this problem,
According to the first aspect of the present invention, a cylindrical furnace body that generates gas by a reaction between a solid hydrocarbon fuel powder and an oxidant, and an upper part of the furnace body, the solid hydrocarbon fuel powder and the oxidant are provided. An upper burner group for injecting a mixed fluid into the furnace body, and a lower burner group disposed in the lower part of the furnace body and injecting a mixed fluid of solid hydrocarbon fuel powder and oxidant into the furnace body;
A gas outlet from which product gas is discharged is formed at the upper end of the furnace body, and a molten slag outlet from which molten slag is discharged is formed at the lower end of the furnace body,
The ratio Dout / D between the diameter (Dout) of the gas outlet and the diameter (D) of the furnace body is 1> Dout / D ≧ 0.4 ,
The upper burner group and the lower burner group are each composed of three or more burners, and these burners are arranged on the peripheral wall of the furnace body,
When the diameter of the virtual swirl flow formed by each burner of the upper burner group is Du and the diameter of the virtual swirl flow formed by each burner of the lower burner group is D1, D> Du ≧ Dout> Both burner groups are arranged to be Dl,
When the pressure in the furnace is 2.5 to 3.0 MPa and the operation is performed for 8000 hours per year, the pressure difference (ΔPout) at the gas outlet is a value obtained by gradually declining the pressure in the furnace (Pg). The gasification furnace is characterized in that the integrated value of increase (ΔPout / Pg) is 1% or less of the pressure in the furnace.
本発明によれば、ガス出口の直径(Dout)と炉本体の直径(D)との比率を1>Dout/D≧0.4とすることで、炉本体での平均ガス流速を大きくして、炉自体の処理能力を高めても、炉本体のガス出口から溶融スラグの一部が飛散してファウリング障害を生じることがない。
また、上部バーナ群により形成される旋回流の直径をDuとし、下部バーナ群により形成される旋回流の直径をDlとした時、D>Du≧Dout>Dlとなるように両バーナー群を配置したことにより、上部バーナ群から噴出した固形炭化水素燃料粉末の一部が直接ガス出口に向かって流れることがなく、ガス化効率が低下することもない。
According to the present invention, the ratio of the gas outlet diameter (Dout) to the furnace body diameter (D) is 1> Dout / D ≧ 0.4, thereby increasing the average gas flow velocity in the furnace body. Even if the processing capacity of the furnace itself is increased, a part of the molten slag does not scatter from the gas outlet of the furnace body to cause a fouling failure.
Further, when the diameter of the swirling flow formed by the upper burner group is Du and the diameter of the swirling flow formed by the lower burner group is D1, both burner groups are arranged so that D> Du ≧ Dout> Dl. As a result, part of the solid hydrocarbon fuel powder ejected from the upper burner group does not flow directly toward the gas outlet, and the gasification efficiency does not decrease.
以下、図1を利用して本発明を説明する。
本発明者の検討によれば、溶融スラグのガス出口5からの飛散は、ガス化炉中心部の上昇流速度に依存し、この速度は、ガス出口5の直径の影響を強く受けることがわかった。
この知見に基づいて、ガス出口5の直径とファウリングの関係についてさらに検討を行い、その結果を表1に示す。
Hereinafter, the present invention will be described with reference to FIG.
According to the study by the present inventor, it is found that the scattering of molten slag from the gas outlet 5 depends on the upward flow velocity at the center of the gasifier, and this velocity is strongly influenced by the diameter of the gas outlet 5. It was.
Based on this finding, the relationship between the diameter of the gas outlet 5 and fouling was further examined, and the results are shown in Table 1.
ファウリング障害の度合は、ガス出口5における圧力損失(図3でのΔPout)の時間経過による増加割合ΔPout/Δt(kPa/h)で評価した。
炉本体2内のガス平均速度(Ugas)は、単位時間当たりの生成ガス量を炉本体2の断面積で割った値で、試験No=1での値を1とした相対値で示している。
なお、表1の検討例は、固形炭化水素燃料の処理能力が50〜150トン/日で、炉内圧力が2.5〜3.0MPaの規模のガス化炉におけるものである。
The degree of fouling failure was evaluated by the rate of increase ΔPout / Δt (kPa / h) of the pressure loss at the gas outlet 5 (ΔPout in FIG. 3) over time.
The average gas velocity (Ugas) in the furnace
In addition, the examination example of Table 1 is in a gasification furnace having a processing capacity of solid hydrocarbon fuel of 50 to 150 tons / day and a furnace pressure of 2.5 to 3.0 MPa.
表1での「従来法」とは、上述の特公平5−47595号公報に開示された先行発明によるものである。
従来法の〔試験1〕は、ガス出口径/炉本体直径(Dout/D)が小さいため、炉本体2の中心部でのガスの上昇速度が速く、溶融スラグの飛散量が多くなってΔPout/Δt=0.166kPa/hとなり、ガス出口5での溶融スラグの付着と成長が認められた。
同じく、従来法の〔試験2〕では、Dout/Dを〔試験1〕より大きくした結果、ΔPout/Δtは小さくなり、溶融スラグの飛散防止に有効であった。
The “conventional method” in Table 1 is based on the prior invention disclosed in the above-mentioned Japanese Patent Publication No. 5-47595.
[Test 1] of the conventional method has a small gas outlet diameter / furnace body diameter (Dout / D), so the gas rising speed at the center of the
Similarly, in [Test 2] of the conventional method, as a result of increasing Dout / D from [Test 1], [Delta] Pout / [Delta] t was reduced, which was effective in preventing the molten slag from scattering.
本発明の〔試験3〕は、ガス平均速度Ugasを従来法より1.43倍に大きくしたケースであるが、ΔPout/Δtは一層小さくなった。これはDout/Dを従来法試験No.2より更に大きくした効果によりスラグ飛散が飛躍的に抑制されたためである。
〔試験4〕は、〔試験3〕より更にガス平均速度Ugasを大きくしたが、ΔPout/Δtは同程度であった。
以上により、ガス平均速度Ugasを従来法の2倍に増やしても、Dout/Dをある程度大きくすることにより、ファウリング障害が防止できることを見出した。
表1より、適切なDout/Dは0.4以上となる。
[Test 3] of the present invention is a case where the gas average velocity Ugas is increased 1.43 times that of the conventional method, but ΔPout / Δt is further reduced. This is because Dout / D is a conventional method test no. This is because the slag scattering is remarkably suppressed by the effect larger than 2.
In [Test 4], the average gas velocity Ugas was increased more than in [Test 3], but ΔPout / Δt was comparable.
From the above, it was found that fouling failure can be prevented by increasing Dout / D to some extent even if the gas average velocity Ugas is increased to twice that of the conventional method.
From Table 1, the appropriate Dout / D is 0.4 or more.
一方、ガス出口径Doutは、炉本体2直径Dよりも大きくなることは装置構成上あり得ず、よってDout/Dは1未満となる。したがって、1>Dout/D≧0.4となり、実用上は、0.7≧Dout/D≧0.4が好ましくは、さらには0.6≧Dout/D≧0.5が最も好ましい値となる。
On the other hand, the gas outlet diameter Dout cannot be larger than the
図4に、ガス化炉の実用化を考慮して、年間8000時間の運転を行った場合の表1での圧力損失ΔPout/Δtの積算値とDout/Dとの関係を示した。図4のグラフにおいて、横軸にDout/Dを、縦軸に8000時間後のΔPout(ΔPout/Δt×8000)を炉内圧力Pgで除した値を取っている。
実用ガス化炉では、できるだけ運転障害がないことが必要であり、年間の差圧上昇程度(ΔPout/Pg)は、炉内圧力の1%以下が望ましい。よって、図4のグラフから、Dout/Dは、0.4以上となる。
FIG. 4 shows the relationship between the integrated value of pressure loss ΔPout / Δt and Dout / D in Table 1 when the operation is performed for 8000 hours per year in consideration of the practical use of the gasifier. In the graph of FIG. 4, Dout / D is taken on the horizontal axis, and ΔPout (ΔPout / Δt × 8000) after 8000 hours is taken on the vertical axis by the furnace pressure Pg.
In practical gasification furnaces, it is necessary that there be as few operational obstacles as possible, and the annual differential pressure increase (ΔPout / Pg) is preferably 1% or less of the pressure in the furnace. Therefore, from the graph of FIG. 4, Dout / D is 0.4 or more.
また、Doutの上限については、上部バーナ群2での仮想旋回流円径Duを超えないこと、即ちDu≧Doutがよい。これを超えると、生成ガス出口側バーナから噴出した固形炭化水素燃料粉末が直接生成ガス出口に向って流れるようになり、ガス化率の低下を招くからである。
したがって、D>Du≧Dout>Dlという関係が好適である。この関係は、すなわち、1>Du/D≧Dout/D>Dl/Dとなる。Du/Dは、図1に示したように上部バーナ群3の配置位置によって定まる。この比が1に近いとバーナ火炎が炉壁に直接当たり損傷をもたらす。この点を考慮すると0.9>Du/Dとなる。
As for the upper limit of Dout, it is preferable not to exceed the virtual swirl flow circle diameter Du in the
Therefore, the relationship D> Du ≧ Dout> Dl is preferable. This relationship is 1> Du / D ≧ Dout / D> Dl / D. Du / D is determined by the arrangement position of the
以上の結果、従来法(前記先行発明)ではDl>Doutであった下部バーナ群3での仮想旋回流円径は、本発明では逆にDout>Dlが優れることとなった。
そして、D>Du≧Dout>Dlという関係が満たされるように、上部バーナ群3と下部バーナ群4とのそれぞれのバーナ31、32・・、41、42・・の配置を設定することが好適である。
As a result, the virtual swirl flow circle diameter in the
And it is preferable to set the arrangement of the
このような構成を採用することにより、炉本体2内でのガス速度を2倍に増大してもスラグ飛散が抑制できる。表1に示したように、これにより、炉本体2の直径Dは従来法に記載の条件を満たしてスケールアップしたものの少なくとも1/√2≒0.7に縮小でき、コンパクト化に役立つ。すなわち、表1から、ガス平均流速Ugasを従来のものの少なくとも2倍とすることができ、ガス平均流速Ugasは、生成ガス量を炉本体2の断面積で除したたもの、換言すれば、炉本体2直径の二乗で除したものに相当するから、1/√2となるのである。
例えば、500MW用発電設備に用いるガス化炉の直径は従来法では5mだったものが、本発明法では約3.5mにでき、設備費及び炉壁からの伝熱損失が低減できる。
By adopting such a configuration, slag scattering can be suppressed even if the gas velocity in the
For example, the diameter of a gasification furnace used for a 500 MW power generation facility is 5 m in the conventional method, but can be reduced to about 3.5 m in the method of the present invention, thereby reducing facility costs and heat transfer loss from the furnace wall.
なお、以上の説明において、各バーナ群3、4を構成するバーナは、4本の例を示したが、これに限定されず、2本以上であればよい。
また、本発明での固形炭化水素燃料としては、石炭以外にオイルコークスなどの灰分となる無機物を含む固形炭化水素燃料が用いられ、さらには灰分となる無機物を添加したプラスチックなども使用できる。
さらに、酸化剤には、空気、純酸素ガス、酸素含有ガス、水、水蒸気などが用いられる。
In the above description, four examples of the burners constituting each of the
Further, as the solid hydrocarbon fuel in the present invention, a solid hydrocarbon fuel containing an inorganic substance that becomes ash such as oil coke in addition to coal is used, and further, a plastic to which an inorganic substance that becomes ash is added can be used.
Furthermore, air, pure oxygen gas, oxygen-containing gas, water, water vapor or the like is used as the oxidant.
1…二段ガス化炉、2…炉本体、3…上部バーナ群、4…下部バーナ群、5…ガス出口、7…溶融スラグ出口、8…溶融スラグ冷却室、20…旋回下降流、21…溶融スラグ出口反転流、22…上昇流 DESCRIPTION OF SYMBOLS 1 ... Two-stage gasification furnace, 2 ... Furnace main body, 3 ... Upper burner group, 4 ... Lower burner group, 5 ... Gas outlet, 7 ... Molten slag outlet, 8 ... Molten slag cooling room, 20 ... Swirling downward flow, 21 ... Reverse flow of molten slag outlet, 22 ... Upflow
Claims (1)
炉本体の上端部には、製品ガスが排出されるガス出口が形成され、炉本体の下端部には溶融スラグが排出される溶融スラグ出口が形成され、
ガス出口の直径(Dout)と炉本体の直径(D)との比率Dout/Dを1>Dout/D≧0.4とし、
上部バーナ群および下部バーナ群は、いずれも3以上のバーナから構成され、これらバーナは炉本体の周壁に配置され、
上部バーナ群の各バーナによって形成される仮想的な旋回流の直径をDuとし、下部バーナ群の各バーナによって形成される仮想的な旋回流の直径をDlとした時、D>Du≧Dout>Dlとなるように両バーナ群を配置するとともに、
炉内圧力が、2.5〜3.0MPaで、年間8000時間の運転を行った場合、ガス出口の圧力損失(ΔPout)を炉内圧力(Pg)で徐した値である、年間の差圧上昇の積算値(ΔPout/Pg)が炉内圧力の1%以下であることを特徴とするガス化炉。 A cylindrical furnace body that generates gas by the reaction of the solid hydrocarbon fuel powder and the oxidant, and a fluid mixture of the solid hydrocarbon fuel powder and the oxidant that is disposed in the upper part of the furnace body is injected into the furnace body. An upper burner group, and a lower burner group disposed in the lower part of the furnace body and injecting a mixed fluid of solid hydrocarbon fuel powder and oxidant into the furnace body,
A gas outlet from which product gas is discharged is formed at the upper end of the furnace body, and a molten slag outlet from which molten slag is discharged is formed at the lower end of the furnace body,
The ratio Dout / D between the diameter (Dout) of the gas outlet and the diameter (D) of the furnace body is 1> Dout / D ≧ 0.4 ,
The upper burner group and the lower burner group are each composed of three or more burners, and these burners are arranged on the peripheral wall of the furnace body,
When the diameter of the virtual swirl flow formed by each burner of the upper burner group is Du and the diameter of the virtual swirl flow formed by each burner of the lower burner group is D1, D> Du ≧ Dout> Both burner groups are arranged to be Dl,
When the pressure in the furnace is 2.5 to 3.0 MPa and the operation is performed for 8000 hours per year, the pressure difference (ΔPout) at the gas outlet is a value obtained by gradually declining the pressure in the furnace (Pg). A gasification furnace characterized in that an integrated value of increase (ΔPout / Pg) is 1% or less of the pressure in the furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007074288A JP5389335B2 (en) | 2007-03-22 | 2007-03-22 | Gasifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007074288A JP5389335B2 (en) | 2007-03-22 | 2007-03-22 | Gasifier |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012209838A Division JP2012251169A (en) | 2012-09-24 | 2012-09-24 | Gasification furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008231295A JP2008231295A (en) | 2008-10-02 |
JP5389335B2 true JP5389335B2 (en) | 2014-01-15 |
Family
ID=39904492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007074288A Active JP5389335B2 (en) | 2007-03-22 | 2007-03-22 | Gasifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5389335B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012251169A (en) * | 2012-09-24 | 2012-12-20 | Electric Power Dev Co Ltd | Gasification furnace |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59176391A (en) * | 1983-03-28 | 1984-10-05 | Hitachi Ltd | Coal gasifying oven |
JPS60173092A (en) * | 1984-02-20 | 1985-09-06 | Hitachi Ltd | Coal gasifying oven |
JPS60208396A (en) * | 1984-04-02 | 1985-10-19 | Hitachi Ltd | Method of gasification of coal |
KR20000015802A (en) * | 1996-05-20 | 2000-03-15 | 가나이 쓰도무 | Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system |
JP2001139303A (en) * | 1999-11-04 | 2001-05-22 | Hitachi Ltd | Method and device for producing hydrogen/carbon monoxide mixed gas, and fuel/power combination plant provided with the device |
-
2007
- 2007-03-22 JP JP2007074288A patent/JP5389335B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008231295A (en) | 2008-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522689B2 (en) | burner | |
US10005973B2 (en) | Pulverized coal gasification furnace with multi-level feeding of high speed circulating gasification agent and gasification method | |
GB2138841A (en) | Coal gasifier and process for gasifying coal | |
CN1011617B (en) | Partial combustion burner with spiral-flow cooled face | |
AU2010246510B2 (en) | Gasifier, thermal power plant using gasifier, operating procedure of gasifier, and operating procedure of thermal power plant using gasifier | |
JP5617531B2 (en) | Combustion method of low calorific value gas by combustion burner and blast furnace operation method | |
JP2008231294A (en) | Two-stage gasification furnace | |
US8545726B2 (en) | Burner for the gasification of a solid fuel | |
JP5389335B2 (en) | Gasifier | |
CN104204155B (en) | For making the burner of solid fuel gasification | |
JP2011106803A (en) | Method of burning blast furnace gas by combustion burner, and method of operating blast furnace | |
JP2012251169A (en) | Gasification furnace | |
CN104119957B (en) | Solid slag discharging gasifying furnace | |
JPH0472877B2 (en) | ||
CN208814958U (en) | A kind of dry coal powder airflow bed gasification system of low pressure | |
CN104736681B (en) | Partial oxidation feed system and method | |
JP2009019125A (en) | Gasification method and apparatus | |
JPH0472879B2 (en) | ||
CN215049953U (en) | Ash and slag discharging structure of fixed bed gasification furnace | |
JP2010163499A (en) | Method for operating entrained-bed gasification furnace | |
JPH0238904Y2 (en) | ||
CN115960631A (en) | Conversion reforming process for carbon-containing substance | |
JPH0854106A (en) | Coal gasification furnace | |
JPH0718266A (en) | Gasification oven | |
JPH0331757B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120606 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120924 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20121002 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20121019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131009 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5389335 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |