JP5388879B2 - Uninterruptible testing device and uninterruptible testing method for circuit breaker for wiring - Google Patents

Uninterruptible testing device and uninterruptible testing method for circuit breaker for wiring Download PDF

Info

Publication number
JP5388879B2
JP5388879B2 JP2010015466A JP2010015466A JP5388879B2 JP 5388879 B2 JP5388879 B2 JP 5388879B2 JP 2010015466 A JP2010015466 A JP 2010015466A JP 2010015466 A JP2010015466 A JP 2010015466A JP 5388879 B2 JP5388879 B2 JP 5388879B2
Authority
JP
Japan
Prior art keywords
circuit breaker
test
wiring
load
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010015466A
Other languages
Japanese (ja)
Other versions
JP2011154875A (en
Inventor
宜昭 長尾
満洋 野々上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010015466A priority Critical patent/JP5388879B2/en
Publication of JP2011154875A publication Critical patent/JP2011154875A/en
Application granted granted Critical
Publication of JP5388879B2 publication Critical patent/JP5388879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、電線と負荷との間に設置される配線用遮断器の過電流遮断機能試験を実施する配線用遮断器の無停電試験装置および無停電試験方法に関する。   The present invention relates to an uninterruptible testing apparatus and an uninterruptible testing method for a circuit breaker for performing an overcurrent breaking function test of a circuit breaker installed between an electric wire and a load.

配線用遮断器(MCCB:Molded Case Circuit Breaker、NFB:No Fuse Breakerなど。)は、電線と負荷との間に設置され、短絡などにより負荷側に異常な電流が流れた時に、回路を遮断することで負荷や電線などを損傷から保護するものである。この配線用遮断器の遮断機能が正常であるか否かを判定するため、過電流遮断機能試験を実施する必要がある。過電流遮断機能試験は、配線用遮断器の主回路へ大電流を通電するので、配線用遮断機に接続されている電気機器などの負荷を損傷などの被害から保護するためには、配線用遮断器に接続されている負荷を切り離し、専用の試験装置を用いて実施しなければならない(例えば、特許文献1参照。)。   A circuit breaker for wiring (MCCB: Molded Case Circuit Breaker, NFB: No Fuse Breaker, etc.) is installed between the electric wire and the load, and breaks the circuit when an abnormal current flows to the load side due to a short circuit etc. This protects the load and electric wires from damage. In order to determine whether or not the breaking function of this circuit breaker is normal, it is necessary to perform an overcurrent breaking function test. The overcurrent cutoff function test applies a large current to the main circuit of the circuit breaker for wiring, so in order to protect loads such as electrical equipment connected to the circuit breaker for wiring from damage such as damage, It is necessary to disconnect the load connected to the circuit breaker and use a dedicated test device (see, for example, Patent Document 1).

特開2008−271682号公報JP 2008-271682 A

しかし、上記の試験を実施するために、配線用遮断器に接続されている負荷を切り離したり、取り付けしたりする際には、負荷側の回路全体を停電する必要がある。このため、防災設備などの停電が困難な回路に用いられる配線用遮断器の過電流遮断機能試験は、実施が困難な状況にある。その結果、配線用遮断器の遮断特性の劣化状態を把握することが困難になり、遮断特性が劣化している場合には、そのような配線用遮断器が継続して使用される状態となってしまう恐れがある。   However, when the load connected to the circuit breaker is disconnected or attached in order to perform the above test, it is necessary to power out the entire circuit on the load side. For this reason, the overcurrent cutoff function test of the circuit breaker for wiring used for a circuit where a power failure is difficult such as a disaster prevention facility is in a difficult situation. As a result, it becomes difficult to grasp the deterioration state of the breaking characteristics of the circuit breaker for wiring, and when the breaking characteristics are deteriorated, such a circuit breaker is continuously used. There is a risk that.

また、配線用遮断機を主回路に接続した状態で配線用遮断器の過電流遮断機能試験を実施可能な場合であっても、配線用遮断器が試験電流により遮断した場合には、配線用遮断器に接続された負荷側の回路全体が停電してしまう。   In addition, even if the over-current breaker function test of the circuit breaker can be performed with the circuit breaker connected to the main circuit, if the circuit breaker is interrupted by the test current, The entire circuit on the load side connected to the circuit breaker fails.

そこでこの発明は、配線用遮断器に接続された負荷への負荷電流の供給を維持した状態で、過電流遮断機能試験が実施可能な配線用遮断器の無停電試験装置および無停電試験方法を提供することを目的とする。   Therefore, the present invention provides an uninterruptible testing apparatus and an uninterruptible testing method for a circuit breaker capable of performing an overcurrent breaking function test in a state in which supply of load current to a load connected to the circuit breaker is maintained. The purpose is to provide.

前記の課題を解決するために、請求項1の発明は、電線と負荷との間に設置される配線用遮断器の過電流遮断機能試験を実施する無停電試験装置であって、前記配線用遮断器に試験電流を供給する試験電源供給手段と、前記試験電源供給手段による電圧を検出する電圧検出手段と、前記電圧検出手段で検出した電圧が所定の電圧以上になると、前記試験電源供給手段を遮断する電源遮断手段と、前記配線用遮断器と前記試験電源供給手段との接続を切り替える切替手段と、前記配線用遮断器が前記試験電流により遮断されると、前記配線用遮断器に接続された負荷に前記電線から負荷電流を供給するバイパス手段と、を備えることを特徴とする。   In order to solve the above-mentioned problem, the invention of claim 1 is an uninterruptible testing apparatus for performing an overcurrent cutoff function test of a circuit breaker installed between an electric wire and a load, A test power supply means for supplying a test current to the circuit breaker; a voltage detection means for detecting a voltage by the test power supply means; and when the voltage detected by the voltage detection means exceeds a predetermined voltage, the test power supply means Power disconnecting means for interrupting, switching means for switching connection between the circuit breaker for wiring and the test power supply means, and connection to the circuit breaker for wiring when the circuit breaker for wiring is interrupted by the test current And bypass means for supplying a load current from the electric wire to the loaded load.

請求項2の発明は、電線と負荷との間に設置される配線用遮断器の過電流遮断機能試験を実施する無停電試験方法であって、配線用遮断器に試験電流を供給し、配線用遮断器が試験電流により遮断されると、配線用遮断器に接続された負荷に前記電線から負荷電流をバイパスして供給し、前記試験電流が流れることで発生する電圧が所定値以上になると、試験電流の供給を遮断する、ことを特徴とする。   The invention of claim 2 is an uninterruptible test method for performing an overcurrent cutoff function test of a circuit breaker installed between a wire and a load, supplying a test current to the circuit breaker, When the circuit breaker is cut off by the test current, the load current is bypassed and supplied from the electric wire to the load connected to the wiring circuit breaker, and the voltage generated by the flow of the test current exceeds a predetermined value The test current supply is cut off.

これらの発明によれば、負荷が接続された配線用遮断器の過電流遮断機能試験を実施し、配線用遮断機が動作して負荷側の回路が遮断されると、配線用遮断器に接続された負荷に電線から負荷電流がバイパス供給される。   According to these inventions, an overcurrent cutoff function test of a circuit breaker connected to a load is performed, and when the circuit breaker operates and the load side circuit is interrupted, the circuit breaker is connected to the circuit breaker. The load current is bypass-supplied from the electric wire to the generated load.

請求項1および2に記載の発明によれば、前記試験電流が流れる回路において所定値以上の電圧が検出されると、前記試験電流の供給を遮断するので、配線用遮断器に接続されている負荷に大電流が流れる恐れがない。このため、配線用遮断器に接続されている負荷が損傷する恐れがないので、配線用遮断器に接続されている負荷を取り外さずに、配線用遮断器の過電流遮断機能試験を実施することができる。   According to the first and second aspects of the present invention, when a voltage of a predetermined value or more is detected in the circuit through which the test current flows, the supply of the test current is cut off, so that the circuit is connected to the circuit breaker for wiring. There is no risk of large current flowing through the load. For this reason, the load connected to the circuit breaker for wiring is not likely to be damaged, so the overcurrent blocking function test of the circuit breaker for wiring should be performed without removing the load connected to the circuit breaker for wiring. Can do.

また、過電流遮断機能試験の実施中に配線用遮断器が動作し遮断しても、配線用遮断器に接続された負荷に対して電線から負荷電流がバイパス供給されるため、負荷が停電することがない。このため、配線用遮断器の過電流遮断機能試験に伴う停電対策などが不要となり、防災設備に電力を供給している電気回路などの停電が困難で重要な回路に使用されている配線用遮断器についても、過電流遮断機能試験を容易に実施することができる。   Also, even if the breaker for wiring operates and breaks during the overcurrent breaker function test, the load will be cut off because the load current is bypassed from the wire to the load connected to the breaker for wiring. There is nothing. This eliminates the need for power failure measures associated with the overcurrent interrupt function test of the circuit breaker for wiring, and interrupts for wiring used in important circuits that are difficult to perform power outages such as electrical circuits that supply power to disaster prevention facilities. The overcurrent cutoff function test can be easily performed on the tester.

この発明の実施の形態に係る配線用遮断器の無停電試験装置の概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the uninterruptible testing apparatus of the circuit breaker for wiring which concerns on embodiment of this invention. 図1の無停電試験装置における正極側の過電流遮断機能試験の初期状態を示す回路図である。It is a circuit diagram which shows the initial state of the overcurrent interruption | blocking function test of the positive electrode side in the uninterruptible testing apparatus of FIG. 図2の状態に続く過電流遮断機能試験における配線用遮断器の正極側が先行して遮断した時点の状態を示す回路図である。It is a circuit diagram which shows the state at the time of the positive electrode side of the circuit breaker for wiring in the overcurrent interruption | blocking function test following the state of FIG. 2 interrupting | blocking previously. 図3の状態に続く過電流遮断機能試験における配線用遮断器が完全に遮断した時点の状態を示す回路図である。It is a circuit diagram which shows the state at the time of the circuit breaker for wiring in the overcurrent interruption | blocking function test following the state of FIG. 3 having completely interrupted | blocked. 図4の状態に続く過電流遮断機能試験における試験電流遮断の状況を説明する回路図である。FIG. 5 is a circuit diagram illustrating a test current interruption state in an overcurrent interruption function test following the state of FIG. 4. 図1の無停電試験装置における負極側の過電流遮断機能試験の初期状態を示す回路図である。It is a circuit diagram which shows the initial state of the overcurrent interruption | blocking function test of the negative electrode side in the uninterruptible testing apparatus of FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1は、この実施の形態に係る配線用遮断器の無停電試験装置1の概略構成図であり、図2〜6は、この無停電試験装置1による試験方法を示す図である。   FIG. 1 is a schematic configuration diagram of an uninterruptible testing apparatus 1 for a circuit breaker according to this embodiment, and FIGS. 2 to 6 are diagrams showing a test method by the uninterruptible testing apparatus 1.

無停電試験装置1は、配電線(電線)PLと負荷3との間に設置された配線用遮断器2の過電流遮断機能試験を行う装置であり、主として、試験電流dtを供給する低電圧大電流絶縁式電源(試験電源供給手段)11と、低電圧大電流絶縁式電源11の電圧を検出する電圧検出手段12と、所定値以上の電圧が検出された場合に低電圧大電流絶縁式電源11を遮断する電源遮断手段13と、配線用遮断器2の試験極(正極、負極)と低電圧大電流絶縁式電源11との接続を切り替える切替手段14と、配電線PLからの負荷電流dを負荷3に供給するバイパス回路(バイパス手段)15とを備えている。ここで、この実施の形態では、配線用遮断器2の定格電流として例えば5A、接点インピーダンスとして例えば50mΩを想定している。   The uninterruptible testing device 1 is a device that performs an overcurrent cutoff function test of the circuit breaker 2 installed between the distribution line (electric wire) PL and the load 3, and is mainly a low voltage that supplies the test current dt. A large current insulated power supply (test power supply means) 11, a voltage detection means 12 for detecting the voltage of the low voltage large current insulated power supply 11, and a low voltage large current insulated type when a voltage exceeding a predetermined value is detected. Power supply cutoff means 13 for cutting off the power supply 11, switching means 14 for switching the connection between the test electrode (positive electrode and negative electrode) of the circuit breaker 2 and the low-voltage high-current insulated power supply 11, and load current from the distribution line PL and a bypass circuit (bypass means) 15 for supplying d to the load 3. Here, in this embodiment, 5 A is assumed as the rated current of the circuit breaker 2 for wiring, and 50 mΩ is assumed as the contact impedance, for example.

無停電試験装置1は、電源端子T1、T2を介して商用電源(電力供給源)に接続され、商用電源からの電力が第1の開閉器CB1を介して低電圧大電流絶縁式電源11に供給されるようになっている。この低電圧大電流絶縁式電源11は、商用電源からの電力を過電流遮断機能試験に適合した電圧、電流に変換して、試験電流dtを出力するものであり、この実施の形態では、例えば定格電圧を略5V以下、定格電流を略100Aと想定している。また、装置1への逆電流防止回路を備えている。   The uninterruptible testing apparatus 1 is connected to a commercial power source (power supply source) via power terminals T1 and T2, and power from the commercial power source is supplied to a low-voltage high-current insulated power source 11 via a first switch CB1. It comes to be supplied. The low-voltage, high-current insulated power supply 11 converts power from a commercial power supply into a voltage and current suitable for an overcurrent interruption function test, and outputs a test current dt. In this embodiment, for example, It is assumed that the rated voltage is about 5V or less and the rated current is about 100A. Further, a reverse current prevention circuit for the device 1 is provided.

このような低電圧大電流絶縁式電源11が、第2の開閉器CB2と第3の開閉器CB3を介して切替手段14に接続されている。また、低電圧大電流絶縁式電源11と並列に、かつ、第2の開閉器CB2と第3の開閉器CB3との間に、電圧検出手段12が接続されている。この電圧検出手段12は、低電圧大電流絶縁式電源11の電圧を検出するための低抵抗素子であり、この実施の形態では、例えば略1Ωに設定されている。このようにして、低電圧大電流絶縁式電源11と、電圧検出手段12と、切替手段14とが並列に接続されている。   Such a low-voltage, large-current insulated power source 11 is connected to the switching means 14 via the second switch CB2 and the third switch CB3. In addition, the voltage detection means 12 is connected in parallel with the low-voltage large-current insulated power supply 11 and between the second switch CB2 and the third switch CB3. This voltage detection means 12 is a low resistance element for detecting the voltage of the low voltage large current insulation type power supply 11, and is set to, for example, approximately 1Ω in this embodiment. In this way, the low-voltage, large-current insulated power supply 11, the voltage detection means 12, and the switching means 14 are connected in parallel.

電源遮断手段13は、電圧検出手段12に並列に接続され、変換回路(A/D:Analog/Digital)と、演算装置であるマイクロプロセッサ(MPU:Microprocessor)とから構成されている。この電源遮断手段13は、電圧検出手段12において所定値(例えば上記の想定で3V)以上の電圧が検出された場合に、後述するようにして、開閉器CB1〜CB3を遮断するよう制御信号を送信するものである。   The power shut-off means 13 is connected in parallel to the voltage detection means 12 and is composed of a conversion circuit (A / D: Analog / Digital) and a microprocessor (MPU: Microprocessor) as an arithmetic unit. When the voltage detecting means 12 detects a voltage of a predetermined value (for example, 3V in the above assumption) or more, the power shutoff means 13 sends a control signal to shut off the switches CB1 to CB3 as will be described later. To be sent.

切替手段14は、第1の切替スイッチSW1と第2の切替スイッチSW2とからなり、切替スイッチSW1およびSW2を切り替えることで、試験電流dtの方向、つまり試験回路を正極側または負極側に切り替えられるようになっている。具体的には、第1の切替スイッチSW1は、負荷側正極端子P2に接続された正極側端子SW11と、電線側負極端子N1に接続された負極側端子SW12と、ニュートラル端子SW13とを備えている。同様に、第2の切替スイッチSW2は、電線側正極端子P1に接続された正極側端子SW21と、負荷側負極端子N2に接続された負極側端子SW22と、ニュートラル端子SW23とを備えている。   The switching unit 14 includes a first changeover switch SW1 and a second changeover switch SW2. By switching the changeover switches SW1 and SW2, the direction of the test current dt, that is, the test circuit can be switched to the positive electrode side or the negative electrode side. It is like that. Specifically, the first changeover switch SW1 includes a positive electrode side terminal SW11 connected to the load side positive electrode terminal P2, a negative electrode side terminal SW12 connected to the electric wire side negative electrode terminal N1, and a neutral terminal SW13. Yes. Similarly, the second changeover switch SW2 includes a positive electrode side terminal SW21 connected to the electric wire side positive electrode terminal P1, a negative electrode side terminal SW22 connected to the load side negative electrode terminal N2, and a neutral terminal SW23.

さらに、この切替手段14と端子P1、N1、P2、N2との間に、バイパス回路15が接続されている。すなわち、このバイパス回路15は、第4の遮断器CB4と、電線側正極端子P1側から負荷側正極端子P2側への電流の流れのみを許容する正極側ショットキーバリアダイオードSBDPと、負荷側負極端子N2側から電線側負極端子N1側への電流の流れのみを許容する負極側ショットキーバリアダイオードSBDNとを備えている。そして、ダイオードSBDPと第4の遮断器CB4とを介して、電線側正極端子P1と負荷側正極端子P2とが接続され、ダイオードSBDNと第4の遮断器CB4とを介して、電線側負極端子N1と負荷側負極端子N2とが接続されている。ここで、第4の遮断器CB4は、配線用遮断器2の定格遮断容量に適合するものが選択されている。   Further, a bypass circuit 15 is connected between the switching means 14 and the terminals P1, N1, P2, and N2. That is, the bypass circuit 15 includes a fourth circuit breaker CB4, a positive-side Schottky barrier diode SBDP that allows only a current flow from the wire-side positive terminal P1 side to the load-side positive terminal P2 side, and a load-side negative electrode A negative-side Schottky barrier diode SBDN that allows only a current flow from the terminal N2 side to the electric-wire-side negative terminal N1 side. The wire side positive terminal P1 and the load side positive terminal P2 are connected via the diode SBDP and the fourth circuit breaker CB4, and the wire side negative terminal is connected via the diode SBDN and the fourth circuit breaker CB4. N1 and the load side negative terminal N2 are connected. Here, as the fourth circuit breaker CB4, one that matches the rated breaking capacity of the wiring circuit breaker 2 is selected.

次に、このような構成の配線用遮断器の無停電試験装置1の作用および、この実施の形態に係る配線用遮断器の無停電試験方法について説明する。まず、配線用遮断器2の正極側接点の過電流遮断機能試験について説明する。ここで、配電線PLと配線用遮断器2、および配線用遮断器2と負荷3とは、正極側電線LPと負極側電線LNとによって接続されているものとする。   Next, the operation of the uninterruptible testing apparatus 1 for a circuit breaker having such a configuration and the uninterruptible testing method for a circuit breaker according to this embodiment will be described. First, the overcurrent interruption function test of the positive side contact of the circuit breaker 2 for wiring will be described. Here, it is assumed that the distribution line PL and the circuit breaker 2 for wiring, and the circuit breaker 2 for wiring and the load 3 are connected by the positive electrode side electric wire LP and the negative electrode side electric wire LN.

最初に、配線用遮断器2に接続されている負荷3を可能な範囲で停止し、過電流遮断機能試験の実施中に配線用遮断器2へ流れる負荷電流dが最小になるようにする。次に、無停電試験装置1のすべての開閉器CB1〜CB4を開放した状態で、切替手段14の第1の切替スイッチSW1および第2の切替スイッチSW2を正極側端子SW11、SW21に切り替える。そして、低電圧大電流絶縁式電源11の出力を10Aに設定する。次に、試験装置1の電線側正極端子P1と、配線用遮断器2の正極側電線LP側の配電線PL側とを試験線4で接続し、電線側負極端子N1と配線用遮断器2の負極側電線LN側の配電線PL側とを試験線4で接続する。同様に、試験装置1の負荷側正極端子P2と、配線用遮断器2の正極側電線LP側の負荷3側とを試験線4で接続し、負荷側負極端子N2と配線用遮断器2の負極側電線LN側の負荷3側とを試験線4で接続する。   First, the load 3 connected to the circuit breaker 2 is stopped as much as possible so that the load current d flowing to the circuit breaker 2 during the overcurrent circuit breaker test is minimized. Next, in a state where all the switches CB1 to CB4 of the uninterruptible testing apparatus 1 are opened, the first changeover switch SW1 and the second changeover switch SW2 of the switching unit 14 are switched to the positive terminal SW11 and SW21. Then, the output of the low-voltage large-current insulated power supply 11 is set to 10A. Next, the electric wire side positive electrode terminal P1 of the test apparatus 1 and the distribution line PL side of the positive electrode side electric wire LP side of the wiring breaker 2 are connected by the test line 4, and the electric wire side negative electrode terminal N1 and the electric circuit breaker 2 are connected. The test wire 4 connects the negative electrode side wire LN side to the distribution line PL side. Similarly, the load side positive terminal P2 of the test apparatus 1 and the load 3 side on the positive side wire LP side of the circuit breaker 2 are connected by the test line 4, and the load side negative terminal N2 and the circuit breaker 2 are connected. The load 3 side on the negative electrode side electric wire LN side is connected by the test line 4.

このような状態で、第1の開閉器CB1を投入して低電圧大電流絶縁式電源11を充電し、第3の開閉器CB3および第4の開閉器CB4を投入する。このときバイパス回路15にはダイオードSBDP、SBDNが直列に接続されていて、配線用遮断器2よりインピーダンスが高いため、負荷電流dの大部分は配線用遮断器2に流れる。   In such a state, the first switch CB1 is turned on to charge the low-voltage, high-current insulated power supply 11, and the third switch CB3 and the fourth switch CB4 are turned on. At this time, since the diodes SBDP and SBDN are connected in series to the bypass circuit 15 and the impedance is higher than that of the circuit breaker 2 for wiring, most of the load current d flows to the circuit breaker 2 for wiring.

続いて、図2に示すように、第2の開閉器CB2を投入し、配線用遮断器2の正極側接点に試験電流dtを通電する。このとき、上記のような想定例の場合、試験回路の抵抗値は、電圧検出手段12の抵抗値である1Ωと、配線用遮断器2の接点インピーダンスである50mΩとの並列抵抗値である0.0476Ωとなる。このため、設定した電流である10Aを流すために、低電圧大電流絶縁式電源11の出力電圧は0.476Vとなる。また、電圧検出手段12の両端にかかる電圧は0.476Vとなり、電源遮断手段13のMPUで設定した遮断電圧である3V未満であるため、遮断器CB1〜CB3の不要な遮断動作は発生しない。また、パイパス回路15に直列に接続されたダイオードSBDP、SBDNの整流作用により、試験電流dtはバイパス回路15には流れない。   Subsequently, as shown in FIG. 2, the second switch CB <b> 2 is turned on, and a test current dt is applied to the positive contact of the circuit breaker 2 for wiring. At this time, in the case of the above-described assumption example, the resistance value of the test circuit is 0, which is a parallel resistance value of 1Ω which is the resistance value of the voltage detecting means 12 and 50 mΩ which is the contact impedance of the circuit breaker 2 for wiring. .0476Ω. For this reason, in order to flow 10 A which is the set electric current, the output voltage of the low voltage large current insulated power supply 11 becomes 0.476V. Further, the voltage applied to both ends of the voltage detection means 12 is 0.476V, which is less than 3V, which is the cutoff voltage set by the MPU of the power cutoff means 13, so that unnecessary breaking operations of the breakers CB1 to CB3 do not occur. Further, the test current dt does not flow to the bypass circuit 15 due to the rectification action of the diodes SBDP and SBDN connected in series to the bypass circuit 15.

次に、低電圧大電流絶縁式電源11より出力された試験電流dt(10A)は、配線用遮断器2の正極側接点へ略9.5A(={1Ω/(1Ω+0.05Ω)}×10A)通電され、定格電流である5Aを大きく上回るため、図3に示すように、配線用遮断器2の正極側接点が遮断する。この実施の形態では正極側接点が先行して遮断した例で説明するが、機械的な構造により負極側接点が先行して遮断した場合であっても同様である。   Next, the test current dt (10 A) output from the low-voltage, high-current insulated power supply 11 is approximately 9.5 A (= {1Ω / (1Ω + 0.05Ω)} × 10 A to the positive contact of the circuit breaker 2 for wiring. ) Since it is energized and greatly exceeds the rated current of 5A, the positive contact of the circuit breaker 2 is interrupted as shown in FIG. In this embodiment, an example in which the positive electrode side contact is interrupted in advance will be described. However, the same applies to the case where the negative electrode side contact is interrupted in advance due to a mechanical structure.

図3は、配線用遮断器2の正極側接点が先行して遮断した時点を示した図である。このとき、正極側の負荷電流dは、正極側電線LPより正極側ショットキーバリアダイオードSBDPからCB4を介して負荷3へ流れる。一方、負極側の負荷電流dは、配線用遮断器2の負極側接点は遮断していないため、負荷3から配線用遮断器2を介して負極側電線LNに流れる。このようにして、配線用遮断器2の正極側接点が先行して遮断した場合であっても、負荷電流dの供給が維持される。また、正極側接点が先行して遮断されると、配線用遮断器2は一瞬不揃い状態になるが、機械的なラッチが外れているため負極側接点も時間を置くことなく遮断され、配線用遮断器2は完全に遮断される。   FIG. 3 is a diagram illustrating a point in time when the positive contact of the circuit breaker 2 for wiring is interrupted in advance. At this time, the positive-side load current d flows from the positive-side electric wire LP to the load 3 from the positive-side Schottky barrier diode SBDP via CB4. On the other hand, the negative-side load current d flows from the load 3 through the wiring breaker 2 to the negative-side electric wire LN because the negative-side contact of the wiring breaker 2 is not cut off. In this way, even when the positive electrode side contact of the circuit breaker 2 for wiring is interrupted in advance, the supply of the load current d is maintained. Moreover, if the positive side contact is interrupted in advance, the circuit breaker 2 for wiring will be in an irregular state for a moment, but since the mechanical latch is released, the negative side contact will also be disconnected without taking time, The circuit breaker 2 is completely interrupted.

そして、配線用遮断器2が完全に遮断した後は、図4に示すように、負荷電流dは、正極側電線LPより正極側ショットキーバリアダイオードSBDPからCB4を介して負荷3へ流れ、さらに、負荷3よりCB4から負極側ショットキーバリアダイオードSBDNを介して負極側電線LNへ流れる。このようにして、配線用遮断器2が完全に遮断した場合であっても、負荷3側への負荷電流dの供給が維持される。   After the circuit breaker 2 for wiring is completely cut off, as shown in FIG. 4, the load current d flows from the positive-side electric wire LP to the load 3 via the CB4 from the positive-side Schottky barrier diode SBDP. The load 3 flows from CB4 to the negative electrode side electric wire LN through the negative electrode side Schottky barrier diode SBDN. In this way, even when the circuit breaker 2 for wiring is completely interrupted, the supply of the load current d to the load 3 side is maintained.

さらに、配線用遮断器2が完全に遮断した後は、図5に示すように、低電圧大電流絶縁式電源11から出力される電流10Aはすべて電圧検出手段12を流れることになり、低電圧大電流絶縁式電源11に係る電圧(電源遮断手段13へ入力される電圧)は、電源遮断手段13のMPUに設定されている遮断電圧3Vより大きくなるため、電源遮断手段13のMPUから第3の開閉器CB3へ遮断信号が出力される。続いて、電源遮断手段13のMPUから第1の開閉器CB1へ遮断信号が出力された後に、電源遮断手段13のMPUから第2の開閉器CB2へ遮断信号が出力され、試験電流dtの通電が停止される。   Furthermore, after the circuit breaker 2 for wiring is completely cut off, as shown in FIG. 5, all the current 10A output from the low voltage large current insulated power supply 11 flows through the voltage detecting means 12, and the low voltage Since the voltage related to the large current insulated power supply 11 (the voltage input to the power shut-off means 13) is larger than the cut-off voltage 3V set in the MPU of the power shut-off means 13, the third voltage from the MPU of the power shut-off means 13 is increased. A cut-off signal is output to the switch CB3. Subsequently, after an interruption signal is output from the MPU of the power interruption means 13 to the first switch CB1, an interruption signal is output from the MPU of the power interruption means 13 to the second switch CB2, and the test current dt is energized. Is stopped.

一方、配線用遮断器2の負極側接点を過電流遮断機能試験する場合には、無停電試験装置1のすべての開閉器CB1〜CB4を開放した状態で、切替手段14の第1の切替スイッチSW1および第2の切替スイッチSW2を負極側端子SW12、SW22に切り替える。そして、上記正極側の場合と同様の手順によって(図6参照)、過電流遮断機能試験を行うものである。図6は、開閉器CB1〜CB4が順次投入され、配線用遮断器2の負極側接点に試験電流dtを通電した初期状態を示している。   On the other hand, when the overcurrent interruption function test is performed on the negative electrode side contact of the circuit breaker 2 for wiring, the first changeover switch 14 of the switching means 14 is opened with all the switches CB1 to CB4 being opened. The switch SW1 and the second switch SW2 are switched to the negative terminals SW12 and SW22. Then, an overcurrent interruption function test is performed by the same procedure as that for the positive electrode side (see FIG. 6). FIG. 6 shows an initial state in which the switches CB <b> 1 to CB <b> 4 are sequentially turned on and the test current dt is supplied to the negative contact of the circuit breaker 2 for wiring.

以上のように、この配線用遮断器2の無停電試験装置1および無停電試験方法によれば、配線用遮断器2が通電された状態で、過電流遮断機能試験を実施することが可能となる。   As described above, according to the uninterruptible testing device 1 and the uninterruptible testing method for the wiring breaker 2, it is possible to perform an overcurrent breaking function test in a state where the wiring breaker 2 is energized. Become.

また、配線用遮断器2が動作し遮断しても、負荷3へ負荷電流dを継続して供給することができるので、配線用遮断器2に接続されている負荷3が停電することがない。このため、配線用遮断器2の過電流遮断機能試験に伴う停電対策などが不要となり、防災設備に供給している電気回路など停電が困難で重要な回路に使用されている配線用遮断器2についても、過電流遮断機能試験を容易に実施することができる。この結果、配線用遮断器2の劣化状態を把握することができるようになり、配線用遮断器2を含む電気設備の安全性をより高めることが可能となる。   Further, even if the circuit breaker 2 is operated and interrupted, the load current d can be continuously supplied to the load 3, so that the load 3 connected to the circuit breaker 2 does not fail. . This eliminates the need for power failure countermeasures associated with the overcurrent interrupt function test of the circuit breaker 2 for wiring, and the circuit breaker 2 used for important circuits such as electrical circuits that are supplied to disaster prevention facilities is difficult. Also, the overcurrent interruption function test can be easily performed. As a result, the deterioration state of the circuit breaker 2 can be grasped, and the safety of the electrical equipment including the circuit breaker 2 can be further increased.

さらに、配線用遮断器3の試験極を切替手段14のスイッチ操作のみで切り替えることができるので、試験極の切替時に、作業員が配電線PLなどの活線で試験線4の接続を切り替える作業が不要になる。このため、危険を伴う作業を低減できるので、作業者の熟練度に関わらず試験を実施することができ、また、試験時間を短縮することもできる。   Furthermore, since the test pole of the circuit breaker 3 for wiring can be switched only by the switch operation of the switching means 14, the operator switches the connection of the test line 4 with a live line such as the distribution line PL when switching the test pole. Is no longer necessary. For this reason, since work with danger can be reduced, the test can be performed regardless of the skill level of the operator, and the test time can be shortened.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の趣旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態1では、バイパス回路15の整流素子としてショットキーバリアダイオードとして説明したが、ダイオードなどの整流作用をもつ電子素子であればよい。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the spirit of the present invention, Included in the invention. For example, in Embodiment 1 described above, the Schottky barrier diode is described as the rectifying element of the bypass circuit 15, but an electronic element having a rectifying action such as a diode may be used.

1 無停電試験装置
2 配線用遮断器
3 負荷
4 試験線
11 低電圧大電流絶縁式電源(試験電源供給手段)
12 電圧検出手段
13 電源遮断手段
14 切替手段
15 バイパス回路(バイパス手段)
CB1 第1の開閉器
CB2 第2の開閉器
CB3 第3の開閉器
CB4 第4の開閉器
SW1 第1の切替スイッチ
SW2 第2の切替スイッチ
T1 試験電源側端子
T2 試験電源側端子
P1 電線側正極端子
N1 電線側負極端子
P2 負荷側正極端子
N2 負荷側負極端子
PL 配電線(電線)
LP 正極側電線
LN 負極側電線
DESCRIPTION OF SYMBOLS 1 Uninterruptible testing equipment 2 Circuit breaker for wiring 3 Load 4 Test line 11 Low voltage large current insulation type power supply (test power supply means)
12 Voltage detection means 13 Power supply cutoff means 14 Switching means 15 Bypass circuit (bypass means)
CB1 1st switch CB2 2nd switch CB3 3rd switch CB4 4th switch SW1 1st changeover switch SW2 2nd changeover switch T1 Test power supply side terminal T2 Test power supply side terminal P1 Electric wire side positive electrode Terminal N1 Electric wire side negative terminal P2 Load side positive terminal N2 Load side negative terminal PL Distribution line (electric wire)
LP Positive side wire LN Negative side wire

Claims (2)

電線と負荷との間に設置される配線用遮断器の過電流遮断機能試験を実施する無停電試験装置であって、
前記配線用遮断器に試験電流を供給する試験電源供給手段と、
前記試験電源供給手段による電圧を検出する電圧検出手段と、
前記電圧検出手段で検出した電圧が所定の電圧以上になると、前記試験電源供給手段を遮断する電源遮断手段と、
前記配線用遮断器と前記試験電源供給手段との接続を切り替える切替手段と、
前記配線用遮断器が前記試験電流により遮断されると、前記配線用遮断器に接続された負荷に前記電線から負荷電流を供給するバイパス手段と、を備えることを特徴とする配線用遮断器の無停電試験装置。
An uninterruptible testing device that performs an overcurrent cutoff function test of a circuit breaker installed between an electric wire and a load,
Test power supply means for supplying a test current to the circuit breaker for wiring;
Voltage detection means for detecting a voltage by the test power supply means;
When the voltage detected by the voltage detection means is equal to or higher than a predetermined voltage, a power cutoff means that shuts off the test power supply means;
Switching means for switching the connection between the circuit breaker for wiring and the test power supply means;
Bypass means for supplying a load current from the electric wire to a load connected to the circuit breaker when the circuit breaker is interrupted by the test current, Uninterruptible testing equipment.
電線と負荷との間に設置される配線用遮断器の過電流遮断機能試験を実施する無停電試験方法であって、
前記配線用遮断器に試験電流を供給し、
前記配線用遮断器が前記試験電流により遮断されると、前記配線用遮断器に接続された負荷に前記電線から負荷電流をバイパスして供給し、
前記試験電流が流れることで発生する電圧が所定値以上になると、前記試験電流の供給を遮断する、ことを特徴とする配線用遮断器の無停電試験方法。
An uninterruptible test method for conducting an overcurrent cutoff function test of a circuit breaker installed between an electric wire and a load,
Supplying a test current to the circuit breaker;
When the circuit breaker for wiring is interrupted by the test current, the load current connected to the circuit breaker for wiring is bypassed and supplied from the electric wire,
An uninterruptible testing method for a circuit breaker for wiring, characterized in that the supply of the test current is cut off when a voltage generated by the flow of the test current exceeds a predetermined value.
JP2010015466A 2010-01-27 2010-01-27 Uninterruptible testing device and uninterruptible testing method for circuit breaker for wiring Expired - Fee Related JP5388879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015466A JP5388879B2 (en) 2010-01-27 2010-01-27 Uninterruptible testing device and uninterruptible testing method for circuit breaker for wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015466A JP5388879B2 (en) 2010-01-27 2010-01-27 Uninterruptible testing device and uninterruptible testing method for circuit breaker for wiring

Publications (2)

Publication Number Publication Date
JP2011154875A JP2011154875A (en) 2011-08-11
JP5388879B2 true JP5388879B2 (en) 2014-01-15

Family

ID=44540704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015466A Expired - Fee Related JP5388879B2 (en) 2010-01-27 2010-01-27 Uninterruptible testing device and uninterruptible testing method for circuit breaker for wiring

Country Status (1)

Country Link
JP (1) JP5388879B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101237286B1 (en) 2011-11-07 2013-02-27 진명제 Operating test apparatus for automatic transfer switch without electric power interruption
JP7122678B2 (en) * 2018-10-02 2022-08-22 パナソニックIpマネジメント株式会社 Switches and test methods for switches
KR102030667B1 (en) * 2019-05-27 2019-10-10 구영재 Automatic test equipment of breaker
CN110187269B (en) * 2019-06-21 2024-03-29 江苏伊施德创新科技有限公司 Method and device for reducing energy consumption in relay full-load test

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735282Y2 (en) * 1987-04-14 1995-08-09 テンパ−ル工業株式会社 Leakage relay test circuit
JPH0451679U (en) * 1990-09-05 1992-04-30
JP3097368B2 (en) * 1991-12-27 2000-10-10 富士電機株式会社 Circuit breaker
JP2000276997A (en) * 1999-03-29 2000-10-06 Fuji Electric Co Ltd Earth leakage circuit breaker for single phase
JP5255923B2 (en) * 2008-06-24 2013-08-07 パナソニック株式会社 Power distribution equipment

Also Published As

Publication number Publication date
JP2011154875A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
US11271394B2 (en) Disconnection of a string carrying direct current power
US10483750B2 (en) Selective circuit breaker
CN114365255A (en) Protection switch device, protection switch system and method
US8400740B2 (en) Short-circuit limiting device in a low-voltage installation
US20170004948A1 (en) Electrical circuit protector
WO2017220443A1 (en) Hybrid dc circuit breaker
US8503137B2 (en) Arc fault protection circuit and method
CN104137268B (en) The overvoltage to earth protection of the photovoltaic module of photovoltaic generator
JP2016213179A (en) DC circuit breaker and method of use
WO2005086310A1 (en) Automatic reset device particularly for residual current-operated circuit breakers and the like
JP5388879B2 (en) Uninterruptible testing device and uninterruptible testing method for circuit breaker for wiring
CN112514192A (en) AC/DC converter
US10411457B2 (en) Power distribution system for connection to an AC voltage network
CN111293005B (en) Circuit breaker
KR100437446B1 (en) Sub-system connecting device in power supply system
CN106463949B (en) Circuit breaker is arranged
EP3301771B1 (en) Fault current handling in an electrical plant
TW201914145A (en) Three-phase low-voltage AC load power supply protection circuit capable of achieving a safe operation by preventing the load rotor from being damaged by the imbalance of the relative phase voltage in the three phases
TWM521834U (en) Power distribution system with grounding fault diagnosis and protection
JP2006094658A (en) Interconnection system
KR20080087461A (en) Uninterruptable changing machine for eletric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5388879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees