JP5388193B2 - Suction force generator and vacuum consolidation ground improvement method - Google Patents

Suction force generator and vacuum consolidation ground improvement method Download PDF

Info

Publication number
JP5388193B2
JP5388193B2 JP2009150940A JP2009150940A JP5388193B2 JP 5388193 B2 JP5388193 B2 JP 5388193B2 JP 2009150940 A JP2009150940 A JP 2009150940A JP 2009150940 A JP2009150940 A JP 2009150940A JP 5388193 B2 JP5388193 B2 JP 5388193B2
Authority
JP
Japan
Prior art keywords
pipe
suction force
water
vertical
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009150940A
Other languages
Japanese (ja)
Other versions
JP2010090688A (en
Inventor
大和 小野
隆宏 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2009150940A priority Critical patent/JP5388193B2/en
Publication of JP2010090688A publication Critical patent/JP2010090688A/en
Application granted granted Critical
Publication of JP5388193B2 publication Critical patent/JP5388193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、サイフォン機能による吸引力発生装置及びこの吸引力発生装置を用いた真空圧密地盤改良工法に関する。   The present invention relates to a suction force generation device using a siphon function and a vacuum consolidation ground improvement method using the suction force generation device.

吸引力を発生させて水を吸引・排水する装置として、真空ポンプを用いた吸引装置が知られている。従来の技術では、例えば、軟弱地盤内に鉛直ドレーンを打設後、真空ポンプによる吸引装置を用いて、負圧を作用させて地盤内を減圧することによって、地盤の圧密を促進する方法(真空圧密地盤改良工法)が用いられている(例えば、特許文献1〜4参照)。   2. Description of the Related Art A suction device using a vacuum pump is known as a device that generates a suction force to suck and drain water. In the conventional technology, for example, a method of promoting the consolidation of the ground by placing a vertical drain in soft ground and then depressurizing the ground by applying a negative pressure using a vacuum pump suction device (vacuum) The consolidation ground improvement method) is used (for example, refer to Patent Documents 1 to 4).

特開2001−226951号公報JP 2001-226951 A 特開2002−138456号公報JP 2002-138456 A 特開2003−261929号公報JP 2003-261929 A 特開2000−328550号公報JP 2000-328550 A

従来の真空ポンプによる吸引装置は真空ポンプの能力のみに頼って吸引を行っている。このため、従来の吸引装置によれば、真空ポンプの能力以上に圧密を促進する吸引力を作用させることができない。この理由から、従来の軟弱地盤の真空圧密地盤改良工法において真空ポンプのみでは吸引力が不足する場合は、盛土による載荷を併用しなければならなかった。   A conventional vacuum pump suction device relies only on the capacity of the vacuum pump to perform suction. For this reason, according to the conventional suction device, the suction force which promotes compaction beyond the capability of the vacuum pump cannot be applied. For this reason, when the suction force is insufficient with the vacuum pump alone in the conventional vacuum consolidation method for soft ground, it is necessary to use loading with embankment in combination.

また、真空ポンプの力と水面位置の差による力とを利用した吸引装置に関し、水面下の地盤の間隙水の吸引を目的にした水底軟弱地盤の減容化工法が提案されている(特許文献3参照)。この従来技術は、水面が、間隙水を吸引したい地盤よりも高い位置にあることにより、水圧による圧縮力が作用して、間隙水を搾り出すものであり、改良したい地盤が水中にあるとともに、地盤面位置が、排水部(減圧室)の水位よりも低い位置にあるという条件の下でのみ適用できるものである。この従来方法は、改良したい地盤が陸上にあることを想定するものでなく、改良地盤面の天端位置から導かれるホースは、減圧室の側面に結合される形態としている。   In addition, regarding a suction device that uses the force of the vacuum pump and the force due to the difference in the water surface position, a method for reducing the volume of the soft bottom has been proposed for the purpose of suctioning pore water in the ground below the water surface (Patent Document). 3). In this conventional technology, since the water surface is higher than the ground where the pore water is to be sucked, the compressive force due to the water pressure acts to squeeze the pore water, and the ground to be improved is in the water. It is applicable only under the condition that the ground surface position is lower than the water level of the drainage section (decompression chamber). This conventional method does not assume that the ground to be improved is on land, and the hose guided from the top end position of the improved ground surface is coupled to the side surface of the decompression chamber.

大きな吸引力を作用させる条件では、溶存酸素等の気化や通水管の気密漏れ部から流入する気体の存在を考慮しなければならないが、陸上の地盤の間隙水を吸引するために、この従来方法の形態を単純に変更して、上部から鉛直に管をつなげるだけでは、水と気体の流れが分離してしまうため、サイフォンの原理に従う吸引力は働かない。すなわち、陸上域の地盤を対象にした場合には、従来技術によれば、真空ポンプの能力以上の吸引力を発揮させることはできなかった。   Under conditions that apply a large suction force, it is necessary to consider the vaporization of dissolved oxygen, etc., and the presence of gas flowing in from the airtight leak of the water pipe. By simply changing the shape of the pipe and connecting the pipe vertically from the top, the water and gas flows are separated, so the suction force according to the siphon principle does not work. That is, when the land on the ground is targeted, according to the prior art, it has not been possible to exert a suction force exceeding the capacity of the vacuum pump.

本発明は、水に気体が含まれる場合でもサイフォンの原理に従う吸引力を発生可能な吸引力発生装置を提供することを目的とする。また、地盤改良における真空圧密を促進させ盛土による載荷の縮小や省略及び地盤改良期間の短縮を実現可能な真空圧密地盤改良工法を提供することを目的とする。   An object of this invention is to provide the attraction | suction force generator which can generate | occur | produce the attraction | suction force according to the principle of siphon even when gas is contained in water. It is another object of the present invention to provide a vacuum consolidation ground improvement method capable of promoting vacuum consolidation in ground improvement and realizing reduction or omission of loading due to embankment and shortening of the ground improvement period.

上記目的を達成するために、本実施形態による吸引力発生装置は、上部から下部に向けて延びる第1の管と、前記第1の管と前記上部で接続し水平方向に延びる第2の管と、を有し、前記第1の管の下端側と、前記第2の管の先端側との間の水位差により、前記第2の管の先端から前記第1の管の下端に向けてサイフォン機能により吸引力を作用させて真空圧密による地盤改良を行うための吸引力発生装置であって、前記第1の管の径が前記第2の管の径よりも小さく、前記第2の管と前記第1の管とを径が漸減する漸縮接続管を介して接続し、前記第2の管内に水と分離して存在する空気が前記漸縮接続管内で気泡となって前記第1の管内で気液2相流として流下することでサイフォン機能により吸引力を発生させ、前記第1の管の下端を収納する密閉室と、前記密閉室内を減圧する真空ポンプと、前記密閉室内の貯留水を外部に排水する排水設備と、を備え、前記密閉室内を前記真空ポンプにより減圧することで前記真空ポンプによる吸引力に前記サイフォン機能による吸引力を加えるとともに、前記排水設備により前記密閉室内の貯留水を排水し、前記第1の管の下端が前記密閉室内の貯留水の水面よりも下に位置することを特徴とする。
In order to achieve the above object, the suction force generator according to the present embodiment includes a first pipe extending from the upper part toward the lower part, and a second pipe connected to the first pipe at the upper part and extending in the horizontal direction. And a difference in water level between the lower end side of the first tube and the front end side of the second tube, from the front end of the second tube toward the lower end of the first tube. A suction force generating device for applying a suction force by a siphon function to improve the ground by vacuum consolidation , wherein a diameter of the first tube is smaller than a diameter of the second tube, and the second tube And the first pipe are connected via a gradually reducing connection pipe having a diameter that gradually decreases, and air existing separately from water in the second pipe becomes bubbles in the gradually reducing connection pipe. of to generate a suction force by siphon function by flowing down as a gas-liquid two-phase flow within the tube, the lower end of the first tube A sealed chamber for storing, a vacuum pump for depressurizing the sealed chamber, and a drainage facility for draining stored water in the sealed chamber to the outside, and by depressurizing the sealed chamber by the vacuum pump, The suction force by the siphon function is added to the suction force, the stored water in the sealed chamber is drained by the drainage facility, and the lower end of the first pipe is positioned below the water level of the stored water in the sealed chamber. It is characterized by.

この吸引力発生装置によれば、上部から下部に向けて延びる第1の管の径を水平方向に延びる第2の管の径よりも小さくし、第2の管と第1の管とを径が漸減する漸縮接続管を介して接続することで、第2の管内に水と分離して存在する空気が漸縮接続管内で水中の気泡となって第1の管内で気液2相流として安定して流れてサイフォン機能により吸引力を発生させることができ、第2の管の先端から空気を含む水を吸引し第1の管の下端から排水できる。このため、水に気体が含まれる場合でもサイフォンの原理に従う吸引力を安定して発生させることができる。   According to this suction force generating device, the diameter of the first pipe extending from the upper part toward the lower part is made smaller than the diameter of the second pipe extending in the horizontal direction, and the diameters of the second pipe and the first pipe are reduced. By connecting through the gradually reducing connection pipe where the pressure gradually decreases, the air that is separated from the water in the second pipe becomes bubbles in the water in the gradually reducing connection pipe, and the gas-liquid two-phase flow in the first pipe It can flow stably and can generate a suction force by the siphon function, and can suck water containing air from the tip of the second tube and drain it from the lower end of the first tube. For this reason, even when gas is contained in water, the suction force according to the siphon principle can be stably generated.

上記吸引力発生装置において前記第1の管の下端から流れ出した気液2相流の気泡が前記第1の管内に再浮上し逆流することを防止するための空気逆流防止装置を備えることで、第1の管への気泡の逆流を防止でき、水と空気の気液2相流が安定して流れ、安定したサイフォン機能の維持に寄与できる。   A gas-liquid two-phase flow bubble flowing out from the lower end of the first pipe in the suction force generating apparatus includes an air backflow prevention device for preventing the bubbles from rising again and flowing back into the first pipe; The backflow of bubbles to the first tube can be prevented, and the gas-liquid two-phase flow of water and air flows stably, contributing to the maintenance of a stable siphon function.

また、前記漸縮接続管は直線的に傾斜して内径が漸減し、その傾斜線を下方に延長した延長線が交叉したときの漸縮角度θが45°以下であることが好ましい。漸縮角度θが45°以下であることで、流れのエネルギの損失が小さくなり、流れがスムーズになる。   Further, it is preferable that the gradually reducing connecting pipe is linearly inclined and the inner diameter is gradually reduced, and the gradually reducing angle θ is 45 ° or less when an extension line extending downward from the inclined line intersects. When the taper angle θ is 45 ° or less, the loss of flow energy is reduced, and the flow becomes smooth.

上記吸引力発生装置は真空ポンプによる動力装置を併用することが好ましい。これにより、サイフォン機能が停止した場合に、その再開を容易に行うことができる。   The suction force generator is preferably used in combination with a power device using a vacuum pump. Thereby, when a siphon function stops, the restart can be performed easily.

本実施形態による真空圧密地盤改良工法は、上述の吸引力発生装置を用いて軟弱地盤において真空圧密による地盤改良を行うことを特徴とする。   The vacuum consolidation ground improvement method according to the present embodiment is characterized in that ground improvement by vacuum consolidation is performed on soft ground using the above-described suction force generator.

この真空圧密地盤改良工法によれば、上述の吸引力発生装置によるサイフォン機能の吸引を併用することで地盤改良における真空圧密を促進させることができ、盛土による載荷の縮小や省略を図ることができるため、使用資材・機材の節減や作業工期の短縮を実現でき、また、従来の真空圧密工法に比べて吸引力が増加するため、軟弱地盤が所定の強度に達するまでに要する地盤改良期間を短縮することができる。   According to this vacuum consolidation ground improvement method, the vacuum consolidation in the ground improvement can be promoted by using the suction of the siphon function by the above-described suction force generator together, and the load due to the embankment can be reduced or omitted. Therefore, it is possible to reduce the amount of materials and equipment used and shorten the work period, and the suction force increases compared with the conventional vacuum consolidation method, so the ground improvement period required for the soft ground to reach the specified strength is shortened. can do.

なお、上記吸引力発生装置において第1の管は、鉛直方向に延びるように設置されてよいが、鉛直方向に設置されるものに限定されず、傾斜して設置されてもよい。   In the suction force generating device, the first tube may be installed so as to extend in the vertical direction, but is not limited to the one installed in the vertical direction, and may be installed at an inclination.

本発明の吸引力発生装置によれば、水に気体が含まれる場合でもサイフォンの原理に従う吸引力を安定して発生させることができる。   According to the suction force generator of the present invention, suction force according to the siphon principle can be stably generated even when gas is contained in water.

本発明の真空圧密地盤改良工法によれば、上述の吸引力発生装置を真空ポンプと併用することにより、地盤改良における真空圧密を促進させることができ、盛土による載荷の縮小や省略及び地盤改良期間の短縮を実現できる。   According to the vacuum consolidation ground improvement method of the present invention, by using the above suction force generator together with a vacuum pump, vacuum consolidation in ground improvement can be promoted, load reduction or omission due to embankment and ground improvement period Can be shortened.

第1の実施形態による吸引力発生装置の構成を概略的に示す図(a)および要部拡大図(b)である。It is the figure (a) which shows schematically the structure of the attraction | suction force generator by 1st Embodiment, and a principal part enlarged view (b). 図1の吸引力発生装置の漸縮接続管における水と空気との流れを説明するための模式図である。It is a schematic diagram for demonstrating the flow of the water and air in the taper connection pipe | tube of the attraction | suction force generator of FIG. サイフォン機能による水と空気との流れを実現できない状態を説明するための模式図である。It is a schematic diagram for demonstrating the state which cannot implement | achieve the flow of the water and air by a siphon function. 図3,図4はサイフォン機能による水と空気との流れを実現できないもう1つの状態を説明するための模式図である。3 and 4 are schematic diagrams for explaining another state in which the flow of water and air by the siphon function cannot be realized. 内径30mmの管内旋回気液二相流(空気量が左側で少なく、右側で多い)を示す図である(神戸市立工業高等専門学校 教育研究シーズ(http://www.kobe-kosen.ac.jp/kyoudou/seeds/pdf/M/M_shakutui.pdf)[気泡を含む水の流れ(気液二相流)に関する研究])。It is a figure which shows the swirling gas-liquid two-phase flow (the amount of air is small on the left side and large on the right side) with an inner diameter of 30 mm (Kobe City National College of Technology Education Research Seeds (http://www.kobe-kosen.ac. jp / kyoudou / seeds / pdf / M / M_shakutui.pdf) [Study on water flow including bubbles (gas-liquid two-phase flow)]). 第2の実施形態による真空圧密地盤改良工法を行う真空圧密地盤改良システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the vacuum consolidation ground improvement system which performs the vacuum consolidation ground improvement construction method by 2nd Embodiment. 図6の鉛直通水管の下端に設けた空気逆流防止装置の作用効果を説明するための要部を示す図(a)及び鉛直通水管の下端において生じる問題を説明するための図(b)である。FIG. 6A is a diagram showing a main part for explaining the function and effect of the air backflow prevention device provided at the lower end of the vertical water pipe of FIG. 6 and FIG. 6B is a diagram for explaining a problem occurring at the lower end of the vertical water pipe. is there. 第3の実施形態による真空圧密地盤改良工法を行う真空圧密地盤改良システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the vacuum consolidation ground improvement system which performs the vacuum consolidation ground improvement construction method by 3rd Embodiment. 本実施例で用いた実験装置を概略的に示す図である。It is a figure which shows roughly the experimental apparatus used in the present Example. 比較例1において流速0.7m/秒、空気混入率0%の条件で測定した各位置St.A〜St.Eにおける作用負圧の経過時間による変化を示すグラフである。In Comparative Example 1, each position St. was measured under the conditions of a flow rate of 0.7 m / sec and an air mixing rate of 0%. A to St. 6 is a graph showing a change in the working negative pressure according to E with time. 比較例2において流速0.7m/秒、空気混入率5%の条件で測定した最下部にあるSt.Aの圧力を基準とした各位置St.B〜St.Eにおける圧力偏差の経過時間による変化を示すグラフである。In Comparative Example 2, St. at the lowermost portion measured under conditions of a flow rate of 0.7 m / second and an air mixing rate of 5%. Each position St. with reference to the pressure of A. B to St. 6 is a graph showing a change in elapsed time of a pressure deviation in E. 実施例において流速0.7m/秒、空気混入率10%の条件で測定した最下部にあるSt.Aの圧力を基準とした各位置St.B〜St.Eにおける圧力偏差の経過時間による変化を示すグラフである。In the examples, the St. at the bottom was measured under conditions of a flow rate of 0.7 m / sec and an air mixing rate of 10%. Each position St. with reference to the pressure of A. B to St. 6 is a graph showing a change in elapsed time of a pressure deviation in E. 比較例3において流速0.7m/秒、空気混入率10%の条件で測定した最下部にあるSt.Aの圧力を基準とした各位置St.B〜St.Eにおける圧力偏差の経過時間による変化を示すグラフである。In Comparative Example 3, the St. at the bottom was measured under the conditions of a flow rate of 0.7 m / sec and an air mixing rate of 10%. Each position St. with reference to the pressure of A. B to St. 6 is a graph showing a change in elapsed time of a pressure deviation in E. 実施例、比較例1〜3において、流速を0.4m/秒としたときの空気混入率と圧力偏差との関係を示すグラフである。In an Example and Comparative Examples 1-3, it is a graph which shows the relationship between an air mixing rate when a flow velocity is 0.4 m / sec, and a pressure deviation. 実施例、比較例1〜3において、流速を0.7m/秒としたときの空気混入率と圧力偏差との関係を示すグラフである。In an Example and Comparative Examples 1-3, it is a graph which shows the relationship between an air mixing rate when a flow velocity is 0.7 m / sec, and a pressure deviation. 管の径が急減に縮小する急縮管の場合におけるエネルギ損失を説明するための図である。It is a figure for demonstrating the energy loss in the case of the rapid contraction pipe | tube in which the diameter of a pipe | tube reduces rapidly. 図16の急縮管の場合における損失係数fscを急拡前後の面積比A1/A2との関係で示す表である(「水理公式集」土木学会編(平成11年度)374頁参照)。FIG. 17 is a table showing the loss coefficient f sc in the case of the sudden contraction tube in FIG. 16 in relation to the area ratio A1 / A2 before and after the rapid expansion (see “The Hydraulics Official Collection” edited by the Japan Society of Civil Engineers (1999), page 374). . 管の径が漸減する漸縮管の場合、各面積比A1/A2について損失係数と角度θとの関係を示すグラフである(岩佐義朗 朝倉土木工学講座3 朝倉出版、268頁)。In the case of a gradually reduced tube with a gradually decreasing tube diameter, it is a graph showing the relationship between the loss factor and the angle θ for each area ratio A1 / A2 (Yoshiro Iwasa, Asakura Civil Engineering Course 3, Asakura Publishing, page 268).

以下、本発明を実施するための形態について図面を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

〈第1の実施形態〉
図1は第1の実施形態による吸引力発生装置の構成を概略的に示す図(a)および要部拡大図(b)である。図2は図1の吸引力発生装置の漸縮接続管における水と空気との流れを説明するための模式図である。図3,図4はサイフォン機能による水と空気との流れを実現できない状態を説明するための模式図である。なお、図1〜図4の縦方向が鉛直方向、横方向が水平方向である。
<First Embodiment>
FIG. 1A is a diagram schematically illustrating a configuration of a suction force generator according to the first embodiment, and FIG. FIG. 2 is a schematic diagram for explaining the flow of water and air in the gradually reducing connection pipe of the suction force generator of FIG. 3 and 4 are schematic views for explaining a state in which the flow of water and air by the siphon function cannot be realized. In addition, the vertical direction of FIGS. 1-4 is a vertical direction, and a horizontal direction is a horizontal direction.

図1(a)の吸引力発生装置は、上部から下部に向けて鉛直方向に延びる第1の管である鉛直管1と、鉛直管1の上部で水平方向に延びる第2の管である水平管2と、鉛直管1の上部に配置されて水平管2に接続する漸縮接続管3と、を備え、鉛直管1及び水平管2は円筒管からなる。鉛直管1の内径は水平管2の内径よりも小さく、鉛直管1の通水断面積が水平管2の通水断面積よりも小さくなっている。   The suction force generator of FIG. 1A is a vertical pipe 1 that is a first pipe extending in the vertical direction from the upper part toward the lower part, and a horizontal pipe that is a second pipe extending in the horizontal direction above the vertical pipe 1. The pipe 2 and the taper connecting pipe 3 disposed on the vertical pipe 1 and connected to the horizontal pipe 2 are provided. The vertical pipe 1 and the horizontal pipe 2 are formed of a cylindrical pipe. The inner diameter of the vertical pipe 1 is smaller than the inner diameter of the horizontal pipe 2, and the cross sectional area of the vertical pipe 1 is smaller than the cross sectional area of the horizontal pipe 2.

漸縮接続管3は、その内径が図1(a)(b)の上側で大きく下側に向けて漸減し縮径されて小さくなるように構成されており、水平管2とほぼ同じ内径の上部管3aを有し、上側で上部管3aが水平管2に接続し、下側で上部管3aよりも内径の小さい鉛直管1に接続されている。漸縮接続管3は、図1(b)のように内面が直線的に傾斜して内径が漸減し、その傾斜線を下方に延長した延長線1a,1bが交叉して挟角(角度θ)をなし、その角度(漸縮角度)θは45°以下(θ≦45°)が好ましい。   The gradually reducing connection pipe 3 is configured such that the inner diameter thereof gradually decreases toward the lower side on the upper side of FIGS. The upper pipe 3a is connected to the horizontal pipe 2 on the upper side, and is connected to the vertical pipe 1 having an inner diameter smaller than that of the upper pipe 3a on the lower side. As shown in FIG. 1B, the gradually reducing connecting pipe 3 has an inner surface linearly inclined and an inner diameter gradually decreasing, and extension lines 1a and 1b extending downward from the inclined line intersect to form an included angle (angle θ). The angle (gradual reduction angle) θ is preferably 45 ° or less (θ ≦ 45 °).

図1(a)(b)のように、本実施形態の吸引力発生装置は、鉛直管1の径を水平管2よりも小さく定め、45°以下の漸縮角度θで内径が漸縮する構造を有する漸縮接続管3を用いて水平管2と径の小さい鉛直管1とを接続することにより、鉛直管1内で水と気体が混合した気液2相流を安定して形成させ、サイフォンを機能させるものである。   As shown in FIGS. 1 (a) and 1 (b), the suction force generator of this embodiment determines the diameter of the vertical tube 1 to be smaller than that of the horizontal tube 2, and the inner diameter gradually contracts at a contraction angle θ of 45 ° or less. By connecting the horizontal pipe 2 and the vertical pipe 1 having a small diameter by using the gradually reducing connecting pipe 3 having a structure, a gas-liquid two-phase flow in which water and gas are mixed in the vertical pipe 1 is stably formed. , Make the siphon work.

図1(a)のように、鉛直管1の下端1aが水中にあるとき、その排水面と水平管2の先端2a側の水面との間の水位差ΔHに起因するサイフォン機能により鉛直管1の下端1a側に吸引力が発生することで、破線で示す方向fに水が流れる。なお、図1の排水面が鉛直管1の下端1aに達していないときは、鉛直管1の下端1aと水平管2の先端2a側の水面との間の水位差に起因するサイフォン機能により鉛直管1の下端1a側に吸引力が発生する。   As shown in FIG. 1 (a), when the lower end 1a of the vertical pipe 1 is in water, the vertical pipe 1 has a siphon function due to the water level difference ΔH between the drainage surface and the water surface on the tip 2a side of the horizontal pipe 2. When a suction force is generated on the lower end 1a side, water flows in the direction f indicated by the broken line. When the drainage surface of FIG. 1 does not reach the lower end 1a of the vertical pipe 1, the siphon function caused by the water level difference between the lower end 1a of the vertical pipe 1 and the water surface on the front end 2a side of the horizontal pipe 2 causes vertical A suction force is generated on the lower end 1 a side of the tube 1.

次に、本実施形態の吸引力発生装置の原理について説明する。浮力による気泡の上昇速度νaは、浮力と抗力のつりあいにより、次の式(1)によって評価できる。 Next, the principle of the suction force generator of this embodiment will be described. The bubble rising speed ν a due to buoyancy can be evaluated by the following equation (1) based on the balance between buoyancy and drag.

νa=[8gra/(3CD)]0.5 (1) ν a = [8 gr a / (3C D )] 0.5 (1)

ここで、raは気泡の半径であり、気泡の大きさは最大で管径の1/2となりえる。また、CDは抗力係数であり、0.5で与えられる。 Here, r a is the radius of the bubble, the size of the bubble can be a half of the pipe diameter at the maximum. Also, C D is the drag coefficient is given by 0.5.

また、管の通水断面積をAとすると、気泡の最大半径ra(max)は、次の式(2)で表すことができる。 When the water flow cross-sectional area of the pipe is A, the maximum bubble radius ra (max) can be expressed by the following equation (2).

a(max)=(A/π)0.5 (2) r a (max) = (A / π) 0.5 (2)

また、鉛直管に流入してくる水の流量がQのとき、鉛直管を流下する水の流速νwは、次の式(3)で評価できる。 When the flow rate of water flowing into the vertical pipe is Q, the flow velocity ν w of the water flowing down the vertical pipe can be evaluated by the following equation (3).

νw=Q/A (3) ν w = Q / A (3)

上記式(3)は、水平管から流入してくる流量に対して、鉛直管の内径を小さくし、通水断面積を小さくすると、流速が増加することを示している。   The above equation (3) indicates that the flow velocity increases when the inner diameter of the vertical pipe is reduced and the cross-sectional area of water flow is reduced with respect to the flow rate flowing from the horizontal pipe.

ここで、鉛直管内において、鉛直管を流下する水の流速νw>気泡の上昇速度νaとなるような鉛直管構造を設けることにより、気泡が水の流れに連行され、気液混相流(気液2相流)が形成されるためサイフォンが機能する。 Here, in the vertical pipe, by providing a vertical pipe structure such that the flow velocity of water flowing down the vertical pipe ν w > the rising speed ν a of the bubbles, the bubbles are entrained in the flow of water, and the gas-liquid mixed phase flow ( Since the gas-liquid two-phase flow) is formed, the siphon functions.

νw>νaの上記条件を成立させるために次の構成が考えられる。
(1)鉛直管の内径を小さくして、形成されうる気泡の最大径を小さくし、気泡の上昇速度を抑える(式(1),(2))。
(2)鉛直管の内径を小さくして、水の流下速度を上昇させる(式(3))。
(3)鉛直管構造を工夫して、気泡をマイクロ、ミリバブル化させて小さくする(気泡の半径raを小さくする)ことにより、気泡の上昇速度を抑える(式(1))。
In order to satisfy the above condition of ν w > ν a , the following configuration can be considered.
(1) The inner diameter of the vertical pipe is reduced, the maximum diameter of bubbles that can be formed is reduced, and the rising speed of the bubbles is suppressed (Equations (1) and (2)).
(2) Decreasing the inner diameter of the vertical pipe to increase the water flow rate (Formula (3)).
(3) by devising the vertical pipe structure, bubbles micro, reduced by Miribaburu by the (smaller radius r a of the bubble), suppress the rising speed of the bubbles (formula (1)).

本実施形態の吸引力発生装置は、上記(1)〜(3)の各効果を併せ持つ鉛直管構造を有するものである。本発明者等の実験及び検討によれば、特に(3)の効果を発揮する図1のような漸縮接続管3を有する鉛直管構造により、空気混入率が高い条件でもサイフォン機能を持続させることができるという知見を得た。   The suction force generator of the present embodiment has a vertical tube structure that has both the effects (1) to (3). According to the experiments and examinations by the present inventors, the siphon function is maintained even under a high air mixing rate by the vertical pipe structure having the gradually reducing connecting pipe 3 as shown in FIG. I got the knowledge that I can do it.

図5のように、円管の周方向から液体を流入させ、同時に気体を入れると渦を巻くように気液二相流が流れ、空気量が多くなるに従い、大きな空気の柱が形成される。すなわち、図3,図4のように、水平管から鉛直管に向けて水と空気が流下する際に、ある一定以上の空気が混入すると自然と鉛直管内に空気の柱ができてしまう。この現象は鉛直管の径を全体的に小さくしても同様に生じる。したがって、空気の柱によりサイフォンが途切れてしまうことから、空気の柱を細かい泡に変える必要がある。   As shown in FIG. 5, when a liquid is introduced from the circumferential direction of the circular tube and a gas is introduced at the same time, a gas-liquid two-phase flow flows like a vortex, and a large column of air is formed as the amount of air increases. . That is, as shown in FIGS. 3 and 4, when water and air flow down from the horizontal pipe toward the vertical pipe, if a certain amount of air is mixed in, a column of air is naturally formed in the vertical pipe. This phenomenon occurs similarly even if the diameter of the vertical pipe is reduced as a whole. Therefore, since the siphon is interrupted by the air column, it is necessary to change the air column to fine bubbles.

そこで、本実施形態では、図2のように鉛直管1の途中に設けた漸縮接続管3において空気の柱に上部管3aの内壁面に沿う水流をぶつけることで空気をマイクロ、ミリバブルに変化させ、気泡の半径raを小さくし、サイフォン機能を途切れないようにしている。 Therefore, in the present embodiment, the air is changed to micro and milli bubbles by hitting the water flow along the inner wall surface of the upper pipe 3a against the air column in the gradually reducing connection pipe 3 provided in the middle of the vertical pipe 1 as shown in FIG. is, to reduce the radius r a of the bubble, so that uninterrupted siphon function.

すなわち、図2のように水と空気の流れの界面には摩擦力(下記A)が働くため、内壁面に沿って中央に集まってくる水が細い管に流下する過程で、空気は摩擦力によりせん断されてマイクロ、ミリバブル化し、水と一体となって流下する。   That is, as shown in FIG. 2, a frictional force (A below) acts on the interface between the flow of water and air, so that in the process that the water gathering at the center along the inner wall flows down to the thin pipe, It is made into micro and milli bubbles by flowing through and flows down together with water.

τ=ρafu2 (A)
ただし、τは摩擦力、ρaは空気の密度、fは摩擦係数(1×10-3程度の大きさ)、uは空気と水の流れの相対速度である(堀川清司 「海岸工学」−海洋工学への序説−、東京大学出版会、317頁参照)。
τ = ρ a fu 2 (A)
Where τ is the frictional force, ρ a is the density of air, f is the coefficient of friction (a size of about 1 × 10 −3 ), and u is the relative velocity of the air and water flow (Keiji Horikawa “Coastal Engineering” − (Introduction to marine engineering-see the University of Tokyo Press, page 317).

上述のように、水平管2から鉛直管1に向けて水と空気が流れる際に、上部管3a内で空気の柱が略中心部に形成されるとともに内壁面に沿って水流が形成されても、径が漸減する漸縮接続管3で水流が1つになって空気の柱と衝突し、空気が摩擦力によりせん断されることでマイクロ、ミリバブル化し、鉛直管を流下する水の流速νw>気泡の上昇速度νaの上記条件を満足させ、マイクロ、ミリバブル化した気泡が水に混在した状態で気液2相流となって安定して流れることよりサイフォン機能を安定して維持することができる。 As described above, when water and air flow from the horizontal pipe 2 toward the vertical pipe 1, a column of air is formed at the substantially central portion in the upper pipe 3a and a water flow is formed along the inner wall surface. However, when the diameter of the connecting pipe 3 gradually decreases, the water flow becomes one, collides with an air column, and the air is sheared by a frictional force to form micro and millibubbles. w > Satisfies the siphon function by satisfying the above condition of the bubble rising speed ν a , and the micro- and milli-bubbled bubbles are mixed in water and stably flow as a gas-liquid two-phase flow. be able to.

本実施形態の吸引力発生装置によれば、水平管2から鉛直管1に空気を含んだ水をサイフォン機能により引き込む際に、水と空気の気液2相流を効率よく発生させることでき、サイフォンを機能させて吸引力を安定して発生させることができる。サイフォンを吸引力として用いる場合、水に対する空気混入量が多いときには、サイフォン機能が容易に低下してしまうが、本実施形態によれば、混入空気量が最大40%程度であってもサイフォン機能が途切れないようにできる。   According to the suction power generation device of the present embodiment, when water containing air is drawn from the horizontal pipe 2 to the vertical pipe 1 by the siphon function, a gas-liquid two-phase flow of water and air can be efficiently generated. The suction force can be generated stably by making the siphon function. When a siphon is used as a suction force, the siphon function is easily degraded when the amount of air mixed in with water is large. However, according to the present embodiment, the siphon function can be achieved even when the amount of mixed air is about 40% at the maximum. You can be uninterrupted.

なお、気泡は容易に互いに結合し、鉛直管1内に再浮上し、逆流しようとすることから、気泡を鉛直管1へ逆流させないような空気逆流防止装置(図6,図7(a)参照)を設けることが好ましい。   The air bubbles are easily coupled to each other, re-floating in the vertical pipe 1 and trying to flow backward, so that an air backflow prevention device that prevents the air bubbles from flowing back to the vertical pipe 1 (see FIGS. 6 and 7A). ) Is preferably provided.

また、図1の吸引力発生装置において、気液2相流が形成される領域は、漸縮接続管3を通過した後の内径の小さい鉛直管1内である。このため、限られた鉛直スペースの中でサイフォンの吸引力をより強く発揮させるためには、図1のように漸縮接続管3の長さmは、鉛直管1の長さnの1/3程度以下(鉛直管1と漸縮接続管3との全体長さ(m+n)の1/4程度以下)とすることが望ましい。   Further, in the suction power generation device of FIG. 1, the region where the gas-liquid two-phase flow is formed is in the vertical pipe 1 having a small inner diameter after passing through the gradually reducing connecting pipe 3. For this reason, in order to exert the siphon suction force more strongly in a limited vertical space, the length m of the gradually reducing connecting pipe 3 is 1 / of the length n of the vertical pipe 1 as shown in FIG. It is desirable to set it to about 3 or less (about 1/4 or less of the total length (m + n) of the vertical pipe 1 and the taper connecting pipe 3).

また、図1(a)の吸引力発生装置は、サイフォン機能がいったん停止した後に、サイフォンを再開させる場合などを考えると、真空ポンプの動力装置と併用することが好ましい。   In addition, the suction force generator of FIG. 1A is preferably used in combination with a vacuum pump power unit in consideration of a case where the siphon is restarted after the siphon function is temporarily stopped.

次に、漸縮接続管3を漸縮タイプに構成した理由について図16〜図18を参照して説明する。鉛直管内においてサイフォン機能により発生する負圧は、ベルヌーイの定理(エネルギー方程式)を用いて評価できる。すなわち、鉛直管内の下端を基準とした上端の負圧水頭hsuctionは次式(4)で表わすことができる。 Next, the reason why the gradually reducing connecting pipe 3 is configured as the gradually reducing type will be described with reference to FIGS. The negative pressure generated by the siphon function in the vertical pipe can be evaluated using Bernoulli's theorem (energy equation). That is, the negative pressure head h suction at the upper end relative to the lower end in the vertical pipe can be expressed by the following equation (4).

suction=(p1−p2)/(ρg)
=−(v1 2−v2 2)/(2g)−(z1−z2)+hloss (4)
h suction = (p 1 -p 2 ) / (ρg)
= − (V 1 2 −v 2 2 ) / (2 g) − (z 1 −z 2 ) + h loss (4)

ただし、ρは密度、gは重力加速度、pは水圧、vは流速、zは鉛直座標(上向きを正)、hlossはエネルギ損失水頭であり、添字1,2は、それぞれ上端位置および下端位置を示す。 Where ρ is density, g is gravitational acceleration, p is water pressure, v is flow velocity, z is vertical coordinates (upward is positive), h loss is energy loss head, and subscripts 1 and 2 are upper end position and lower end position, respectively. Indicates.

上式(4)において、上端と下端の距離が大きいほど(z1−z2)が大きくなり、負圧が大きくなることがわかる。また、鉛直下方に流れるときのエネルギ損失が大きいとき(hlossが大きいとき)、発生する負圧が小さくなることがわかる。すなわち、負圧を効果的に発生させるためには、流れをスムーズに導いてエネルギ損失をできるだけ低減させることが重要である。 In the above equation (4), it can be seen that (z 1 −z 2 ) increases as the distance between the upper end and the lower end increases, and the negative pressure increases. Further, it can be seen that when the energy loss when flowing vertically downward is large (when h loss is large), the generated negative pressure becomes small. That is, in order to effectively generate the negative pressure, it is important to guide the flow smoothly and reduce energy loss as much as possible.

ここで、管の径が急減に縮小する急縮管の場合、図16のように流線の剥離が起こるためエネルギの損失が生じる。このときのエネルギ損失水頭は次式(5)で表わすことができる。
loss=fsc×v2 2/(2g) (5)
Here, in the case of a rapidly contracting tube in which the diameter of the tube is suddenly reduced, energy loss occurs because streamline separation occurs as shown in FIG. The energy loss head at this time can be expressed by the following equation (5).
h loss = f sc × v 2 2 / (2 g) (5)

ただし、v2は縮小後の管を流れる流速、fscは損失係数であり、急拡前後の面積比A1/A2(図16)に応じて図17のような値をとる。 However, v 2 is a flow velocity flowing through the reduced tube, f sc is a loss coefficient, and takes values as shown in FIG. 17 according to the area ratio A1 / A2 (FIG. 16) before and after the rapid expansion.

一方、図1(b)のように管の径が漸減する漸縮管の場合、図16のような流線の剥離が生じないため損失係数は極めて小さい。既往の研究成果により漸縮管の損失係数fscは図18のように得られており、漸縮損失係数は図17の急縮管の場合と比べてかなり小さいことがわかる。 On the other hand, in the case of a gradually contracting tube in which the diameter of the tube gradually decreases as shown in FIG. According to past research results, the loss factor f sc of the gradually contracted tube is obtained as shown in FIG. 18, and it can be seen that the gradually reduced loss factor is considerably smaller than that of the rapidly contracted tube of FIG.

上述のように、エネルギの損失を抑えて効果的に負圧を発生させるためには、図1(a)(b)の接続管3を漸縮タイプ(漸縮接続管)にすることが望ましく、また、その漸縮角度θは、本発明者等の実験によれば、45°以下が望ましく、流れのエネルギの損失が小さく、流れがスムーズになり、負圧を効果的に発生させることができる。   As described above, in order to effectively generate a negative pressure while suppressing energy loss, it is desirable that the connecting pipe 3 in FIGS. 1A and 1B be a gradually contracting type (gradually contracting connecting pipe). In addition, according to the experiments by the present inventors, it is desirable that the taper angle θ is 45 ° or less, the flow energy loss is small, the flow becomes smooth, and the negative pressure is effectively generated. it can.

〈第2の実施形態〉
図6は第2の実施形態による真空圧密地盤改良工法を行う真空圧密地盤改良システムの構成を概略的に示す図である。図7は図6の鉛直通水管の下端に設けた空気逆流防止装置の作用効果を説明するための要部を示す図(a)及び鉛直通水管の下端において生じる問題を説明するための図(b)である。
<Second Embodiment>
FIG. 6 is a diagram schematically showing the configuration of a vacuum consolidation ground improvement system that performs the vacuum consolidation ground improvement method according to the second embodiment. FIG. 7 is a diagram (a) showing a main part for explaining the function and effect of the air backflow prevention device provided at the lower end of the vertical water pipe shown in FIG. 6 and a diagram for explaining a problem occurring at the lower end of the vertical water pipe ( b).

図6の真空圧密地盤改良システムS1は、鉛直通水管21と水平通水管22とを有する吸引力発生装置と、図の破線で示す真空減圧装置20と、を備え、真空圧密地盤改良のために軟弱地盤G中に打設される鉛直ドレーン材31が不透気部32と接続部33とを介して水平通水管22に連結され、水平通水管22は、鉛直通水管21と、鉛直通水管21の上端で接続されている。   The vacuum consolidation ground improvement system S1 of FIG. 6 includes a suction force generator having a vertical water pipe 21 and a horizontal water pipe 22, and a vacuum decompression device 20 indicated by a broken line in the figure, for improving the vacuum consolidation ground. A vertical drain 31 placed in the soft ground G is connected to the horizontal water pipe 22 through the air-impermeable portion 32 and the connection portion 33, and the horizontal water pipe 22 includes the vertical water pipe 21 and the vertical water pipe. 21 is connected at the upper end.

鉛直通水管21は鉛直方向に延びて地下部に設置された密閉室26の底面26aの近傍まで達し、鉛直通水管21の下端には屈曲管28が取り付けられ、屈曲管28の先端が密閉室26の底部の水位面H1下にある。また、鉛直通水管21及び水平通水管22は、それぞれ円筒管からなり、鉛直通水管21の内径は水平通水管22の内径よりも小さくなっている。   The vertical water pipe 21 extends in the vertical direction and reaches the vicinity of the bottom surface 26a of the sealed chamber 26 installed in the basement. A bent pipe 28 is attached to the lower end of the vertical water pipe 21, and the distal end of the bent pipe 28 is the sealed chamber. 26 is below the water level H1 at the bottom. Moreover, the vertical water pipe 21 and the horizontal water pipe 22 are each formed of a cylindrical pipe, and the inner diameter of the vertical water pipe 21 is smaller than the inner diameter of the horizontal water pipe 22.

真空減圧装置20は、真空ポンプ23と、排水設備である揚水ポンプ24・排水管25と、地中内部に設置された密閉室26と、を備える。密閉室26は、鉛直通水管21と揚水ポンプ24・排水管25とを収納し、真空ポンプ23により減圧されることで、真空減圧装置20は減圧発生源として機能するようになっている。   The vacuum decompression device 20 includes a vacuum pump 23, a pumping pump 24 and a drain pipe 25 which are drainage facilities, and a sealed chamber 26 installed in the underground. The sealed chamber 26 accommodates the vertical water pipe 21, the pumping pump 24, and the drain pipe 25, and is decompressed by the vacuum pump 23 so that the vacuum decompression device 20 functions as a decompression generation source.

鉛直ドレーン材31は、軟弱地盤G内の間隙水を吸引するために軟弱地盤G内に打設され、鉛直ドレーン材31の上端に接続される不透気部32は地下水位面H0に位置する。なお、鉛直ドレーン材31は、軟弱地盤G内に必要に応じて複数本打設され、不透気部32や接続部33とともに、例えば、特許文献1〜3に開示された構成とすることができる。   The vertical drain material 31 is placed in the soft ground G to suck pore water in the soft ground G, and the air-impermeable portion 32 connected to the upper end of the vertical drain material 31 is located on the groundwater level surface H0. . Note that a plurality of vertical drain members 31 are placed in the soft ground G as necessary, and the configurations disclosed in Patent Documents 1 to 3, for example, together with the air-impermeable portion 32 and the connection portion 33. it can.

真空圧密地盤改良システムS1は、図6のように、鉛直通水管21の下端に、鉛直方向から90°程度折れ曲がるようにして構成された屈曲管28からなる空気逆流防止装置を有する。図7(a)のように鉛直通水管21から鉛直方向b’に流れてきた気液2相流が屈曲管28内で図の横方向b”に流れて屈曲管28から排出され、気泡eが密閉室26の水面へと浮上する。   As shown in FIG. 6, the vacuum consolidation ground improvement system S <b> 1 has an air backflow prevention device including a bent pipe 28 configured to bend about 90 ° from the vertical direction at the lower end of the vertical water pipe 21. As shown in FIG. 7A, the gas-liquid two-phase flow flowing in the vertical direction b ′ from the vertical water flow pipe 21 flows in the bending pipe 28 in the horizontal direction b ″ in the drawing and is discharged from the bending pipe 28, and the bubble e Rises to the water surface of the sealed chamber 26.

上記空気逆流防止装置がない場合、図7(b)のように、鉛直通水管21の下端から鉛直方向b’に気液2相流が排出されると、密閉室26の底面26aに当たり反転方向bbに反転し、勢いがなくなり、気泡eが再浮上しようとし、鉛直方向b’から流れてきた気泡eと結合して鉛直通水管21内で逆流するおそれがあるのに対し、図7(a)のように空気逆流防止装置の屈曲管28により気液2相流の流れ方向を横方向b”に変えて気泡eを確実に密閉室26内へと排出することができ、水と空気の気液2相流が安定して流れ、サイフォン機能の安定維持に寄与できる。   Without the air backflow prevention device, as shown in FIG. 7B, when the gas-liquid two-phase flow is discharged from the lower end of the vertical water pipe 21 in the vertical direction b ′, it hits the bottom surface 26 a of the sealed chamber 26 and is reversed. In contrast to bb, the momentum disappears, the bubble e tries to re-float, and there is a possibility that it will combine with the bubble e flowing from the vertical direction b ′ and flow backward in the vertical water pipe 21. ) To change the flow direction of the gas-liquid two-phase flow to the lateral direction b ″ and to reliably discharge the bubbles e into the sealed chamber 26, as shown in FIG. The gas-liquid two-phase flow flows stably and can contribute to the stable maintenance of the siphon function.

図6の真空圧密地盤改良システムS1による真空圧密地盤改良工法を説明すると、真空減圧装置20の真空ポンプ23で密閉室26内を減圧することによる吸引力に加えて、地下水位面H0と密閉室26内の水位面H1との水位差ΔH(=H0−H1)に起因するサイフォン機能による吸引力が発生し、これらの吸引力により軟弱地盤G内の間隙水を吸引することで軟弱地盤Gを圧密する。この真空圧密を、真空ポンプ23のみで吸引する場合と比べて水位差ΔHに起因する吸引力が加わる分だけより大きな吸引力で行うことができる。   The vacuum consolidation ground improvement method by the vacuum consolidation ground improvement system S1 of FIG. 6 will be described. In addition to the suction force generated by reducing the pressure in the sealed chamber 26 by the vacuum pump 23 of the vacuum decompression device 20, the groundwater level surface H0 and the sealed chamber. The suction force by the siphon function due to the water level difference ΔH (= H0−H1) with the water level surface H1 in 26 is generated, and the soft ground G is sucked by sucking the pore water in the soft ground G by these suction forces. Consolidate. This vacuum compaction can be performed with a larger suction force as much as the suction force due to the water level difference ΔH is applied, compared with the case where suction is performed only by the vacuum pump 23.

従来の真空圧密地盤改良工法によれば真空ポンプのみでは吸引力が不足する場合は、盛土による載荷を併用していたのに対し、本実施形態のようにサイフォン機能による吸引力を併用することにより、盛土による載荷を縮小したり省略できるため、使用資材・機材の節減や作業工期の短縮を期待することができる。また、従来の工法に比べて吸引力が増加するため、軟弱地盤が所定の強度に達するまでに要する地盤改良期間を短縮することができる。   According to the conventional vacuum consolidation ground improvement method, when the suction force is insufficient with only the vacuum pump, loading by embankment was used together, but by using the suction force by siphon function as in this embodiment Because loading due to embankment can be reduced or omitted, it can be expected to save materials and equipment and shorten the work period. In addition, since the suction force is increased as compared with the conventional construction method, the ground improvement period required for the soft ground to reach a predetermined strength can be shortened.

本実施形態による吸引力発生装置は、鉛直通水管21と、鉛直通水管21と上部で接続し水平方向に延びる水平通水管22と、を有し、鉛直通水管21の下端側と、水平通水管22の先端側との間の水位差により、水平通水管22の先端から鉛直通水管21の下端に向けてサイフォン機能により吸引力が作用し、鉛直通水管21の通水断面積が水平通水管22の通水断面積よりも小さくなるように構成し、水平通水管22内に水と分離して存在する空気が鉛直通水管21内で気泡となって気液2相流として流下することでサイフォン機能により吸引力を発生させるものである。本実施形態においては、水平通水管22内に空気が含まれる条件においても、サイフォンを機能させるためには、鉛直通水管21内において水と気体が混合した気液2相流を形成させることが重要であり、好ましくは、鉛直通水管21の内径は水平通水管22の内径の50%以下(水平通水管22の内径が0.1mを超えるとき)または70%以下(水平通水管22の内径が0.1m以下のとき)である。また、鉛直通水管21の下端には図7(a)のような空気逆流防止装置を設けることが好ましい。   The suction power generation device according to the present embodiment includes a vertical water pipe 21 and a horizontal water pipe 22 that is connected to the vertical water pipe 21 at an upper portion and extends in the horizontal direction. Due to the water level difference from the front end side of the water pipe 22, a suction force acts by a siphon function from the front end of the horizontal water pipe 22 toward the lower end of the vertical water pipe 21, and the water flow cross-sectional area of the vertical water pipe 21 is horizontal. It is configured to be smaller than the cross-sectional area of the water pipe 22, and the air that is separated from the water in the horizontal water pipe 22 becomes bubbles in the vertical water pipe 21 and flows down as a gas-liquid two-phase flow. The suction force is generated by the siphon function. In the present embodiment, a gas-liquid two-phase flow in which water and gas are mixed in the vertical water pipe 21 is formed in order to make the siphon function even under conditions where the horizontal water pipe 22 includes air. Importantly, preferably, the inner diameter of the vertical water pipe 21 is 50% or less of the inner diameter of the horizontal water pipe 22 (when the inner diameter of the horizontal water pipe 22 exceeds 0.1 m) or 70% or less (the inner diameter of the horizontal water pipe 22). Is 0.1 m or less). Moreover, it is preferable to provide an air backflow prevention device as shown in FIG.

なお、揚水ポンプ24は、揚程差10m以上の高揚程タイプが好ましく、密閉室26を地中深く設置し、水位差ΔHの確保のため密閉室26内の水位面H1を地下水位面H0に対しより低くした場合でも、密閉室26内の貯留水を排水できる。   The lift pump 24 is preferably a high head type with a head difference of 10 m or more, the sealed chamber 26 is installed deep in the ground, and the water level surface H1 in the sealed chamber 26 with respect to the ground water level surface H0 is secured to ensure the water level difference ΔH. Even if it is made lower, the stored water in the sealed chamber 26 can be drained.

〈第3の実施形態〉
図8は第3の実施形態による真空圧密地盤改良工法を行う真空圧密地盤改良システムの構成を概略的に示す図である。
<Third Embodiment>
FIG. 8 is a diagram schematically showing the configuration of a vacuum consolidation ground improvement system that performs the vacuum consolidation ground improvement method according to the third embodiment.

図8の真空圧密地盤改良システムS2は、吸引力発生装置を図1のように構成したこと以外は、図6と基本的に同様の構成であるので、異なる点を主に説明する。すなわち、水平通水管22と水平通水管22よりも内径の小さい鉛直通水管21との間に図1と同様の漸縮接続管3を配置し、漸縮接続管3の上部管3aが水平通水管22に連結している。鉛直通水管21の下端には、図6,図7(a)と同様の屈曲管28からなる空気逆流防止装置が設けられることで、屈曲管28から気泡eを確実に外部に排出することができ、鉛直通水管21内で水と空気の気液2相流が安定して流れ、サイフォン機能の安定維持に寄与できる。   The vacuum consolidation ground improvement system S2 of FIG. 8 has basically the same configuration as that of FIG. 6 except that the suction force generator is configured as shown in FIG. That is, a gradually reducing connection pipe 3 similar to that shown in FIG. 1 is disposed between the horizontal water pipe 22 and the vertical water pipe 21 having an inner diameter smaller than that of the horizontal water pipe 22, and the upper pipe 3 a of the gradually reduced connection pipe 3 is connected horizontally. It is connected to the water pipe 22. An air backflow prevention device comprising a bent pipe 28 similar to that shown in FIGS. 6 and 7A is provided at the lower end of the vertical water pipe 21 so that the bubbles e can be reliably discharged to the outside from the bent pipe 28. In addition, a gas-liquid two-phase flow of water and air can stably flow in the vertical water pipe 21 and contribute to the stable maintenance of the siphon function.

図8の真空圧密地盤改良システムS2により、図6と同様に真空ポンプ23による吸引力に加えて、地下水位面H0と密閉室26内の水位面H1との水位差ΔH(=H0−H1)に起因するサイフォン機能により発生する吸引力を利用して真空圧密地盤改良工法を実行できるが、図8の吸引力発生装置によれば、水平通水管22内に空気が含まれる条件であっても、漸縮接続管3を鉛直通水管21に設けることで水と空気の気液2相流を効率よく発生させ、サイフォン機能を途切れさせずに吸引力を安定して発生させることができるので、吸引力を効率よく軟弱地盤に加えることができる。このため、真空圧密地盤改良工法を安定して実行でき、軟弱地盤が所定の強度に達するまでに要する地盤改良期間を短縮することができる。   8, in addition to the suction force by the vacuum pump 23, the water level difference ΔH (= H0−H1) between the ground water level surface H0 and the water level surface H1 in the sealed chamber 26, as in FIG. Although the vacuum consolidation ground improvement method can be executed by using the suction force generated by the siphon function caused by the above, the suction force generation device of FIG. Since the taper connection pipe 3 is provided in the vertical water pipe 21, the gas-liquid two-phase flow of water and air can be efficiently generated, and the suction force can be stably generated without interrupting the siphon function. Suction force can be efficiently applied to soft ground. For this reason, the vacuum consolidation ground improvement method can be stably executed, and the ground improvement period required until the soft ground reaches a predetermined strength can be shortened.

次に、本発明を実施例により具体的に説明するが、本発明は本実施例に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to a present Example.

実験概要
鉛直通水管に設けた漸縮接続管がサイフォン機能の持続に及ぼす効果を検証するために実験を行った。実験装置を図9に示す。水平通水管の管径を50mm、鉛直通水管の管径を35mm(水平通水管の70%に縮径)とした。なお、漸縮接続管の長さは、接続する鉛直通水管の長さの1/3程度(鉛直通水管と漸縮接続管との全体長さの1/4程度)に相当する0.5mに設定するととともに、図1(b)の漸縮角度θを45°とした。水圧計A〜Eを図9のように配置し、水圧計A〜Eの各位置をSt.A〜St.Eとする。
Outline of the experiment An experiment was conducted to verify the effect of the taper connecting pipe provided in the vertical water pipe on the sustainability of the siphon function. The experimental apparatus is shown in FIG. The pipe diameter of the horizontal water pipe was 50 mm, and the pipe diameter of the vertical water pipe was 35 mm (reduced to 70% of the horizontal water pipe). The length of the gradually reducing connection pipe is 0.5 m corresponding to about 3 of the length of the vertical water pipe to be connected (about ¼ of the total length of the vertical water pipe and the gradually reducing pipe). And the reduction angle θ in FIG. 1B was set to 45 °. The water pressure gauges A to E are arranged as shown in FIG. A to St. E.

図9の実験装置を用いて以下の手順で実験を行った。
ステップ1:鉛直通水管に栓をして、水平通水管および鉛直通水管を水で飽和させ、水量調整バルブを締める。
ステップ2:鉛直通水管の栓をとり、水量調整バルブを開ける。
ステップ3:水の流量計の数値を基に所定の流量にする。
ステップ4:空気調整バルブを開け、空気を所定の量だけ混入する。この際、水の流量が変化するので再度調整する。
ステップ5:水の流量が安定したところで計測を行う。
Experiments were performed in the following procedure using the experimental apparatus of FIG.
Step 1: Plug the vertical water pipe, saturate the horizontal water pipe and the vertical water pipe with water, and tighten the water amount adjustment valve.
Step 2: Remove the plug of the vertical water pipe and open the water volume adjustment valve.
Step 3: A predetermined flow rate is set based on the numerical value of the water flow meter.
Step 4: Open the air adjustment valve and mix a predetermined amount of air. At this time, since the flow rate of water changes, it is adjusted again.
Step 5: Measure when the water flow rate is stable.

表1に示すように実施例以外に比較例1〜3についても同様に実験を行った。すなわち、図9の鉛直通水管の上側(大径)を鉛直通水管P1とし、下側(小径)を鉛直通水管P2とした場合、比較例1は、鉛直通水管P1,P2をともに内径50mmとしたものであり、比較例2は、比較例1と同様であるが、鉛直通水管P1,P2全体に内径30mmの不透水棒を挿入して鉛直通水管P1,P2全体の通水断面積を小さくしたものであり、比較例3は、鉛直通水管P1,P2をともに内径35mmとし、実施例の内径50mmの鉛直通水管P1の70%に縮小したものである。なお、図9のように鉛直通水管の下端には図7(a)のような屈曲管を取り付けた。   As shown in Table 1, in addition to Examples, Comparative Examples 1 to 3 were similarly tested. That is, in the case where the upper side (large diameter) of the vertical water pipe in FIG. 9 is the vertical water pipe P1, and the lower side (small diameter) is the vertical water pipe P2, Comparative Example 1 has both the vertical water pipes P1, P2 having an inner diameter of 50 mm. Comparative Example 2 is the same as Comparative Example 1, except that an impervious rod having an inner diameter of 30 mm is inserted into the entire vertical water pipes P1 and P2 and the water flow cross section of the entire vertical water pipes P1 and P2. In Comparative Example 3, both the vertical water pipes P1 and P2 have an inner diameter of 35 mm, and are reduced to 70% of the vertical water pipe P1 having an inner diameter of 50 mm in the example. In addition, the bent pipe like FIG. 7A was attached to the lower end of the vertical water pipe as shown in FIG.

上記実施例及び比較例1〜3について空気の混入率と流速を変化させて実験を行った。なお,鉛直通水管内の流速については水量調整バルブの調整により変化させ、空気量は空気量計にて計測しながら空気量調整バルブにて変化させた。   Experiments were performed on the above Examples and Comparative Examples 1 to 3 by changing the air mixing rate and the flow rate. The flow rate in the vertical water pipe was changed by adjusting the water amount adjusting valve, and the air amount was changed by the air amount adjusting valve while being measured by the air amount meter.

実験結果
比較例1で空気混入率0%時の管内の負圧計測結果を図10に示すが、水頭差に従って鉛直通水管内に働く吸引力により、最上部にあるSt.DとSt.Eでは、最下部にあるSt.Aに比べて、水頭差に相当する18kPa程度の負圧が作用することが確認できた。
Experimental results FIG. 10 shows the measurement result of the negative pressure in the pipe when the air mixing rate is 0% in Comparative Example 1, and the St. D and St. In E, St. Compared with A, it was confirmed that a negative pressure of about 18 kPa corresponding to the water head difference acts.

実施例、比較例2,3の実験開始後における管内の負圧計測結果について、最下部にあるSt.Aの圧力を基準とした各位置における圧力偏差の経過時間による変化の一例を図11〜図13に示す。また、実施例、比較例1〜3において、流速を0.4m/秒としたときの空気混入率と圧力偏差との関係を図14に示し、流速を0.7m/秒としたときの空気混入率と圧力偏差との関係を図15に示す。   Regarding the negative pressure measurement results in the tubes after the start of the experiments of Examples and Comparative Examples 2 and 3, St. An example of the change by the elapsed time of the pressure deviation in each position on the basis of the pressure of A is shown in FIGS. Further, in the examples and comparative examples 1 to 3, the relationship between the air mixing rate and the pressure deviation when the flow velocity is 0.4 m / second is shown in FIG. 14, and the air when the flow velocity is 0.7 m / second is shown. FIG. 15 shows the relationship between the mixing rate and the pressure deviation.

図14,図15から、鉛直通水管の通水断面積を変化させていない基本ケースの比較例1では、空気が混入するとサイフォンが機能しないことがわかる。一方、鉛直通水管の通水断面積を縮小させた比較例2,3では、(1)形成されうる気泡の最大径を小さくし、気泡の上昇速度を抑える効果、及び、(2)水の流下速度を増加させる効果により、サイフォンが機能するが、許容できる空気混入率は5%程度であることがわかる。   14 and 15, it can be seen that the siphon does not function when air is mixed in Comparative Example 1 of the basic case in which the water flow cross-sectional area of the vertical water pipe is not changed. On the other hand, in Comparative Examples 2 and 3 in which the water flow cross-sectional area of the vertical water pipe is reduced, (1) the effect that the maximum diameter of bubbles that can be formed is reduced and the rising speed of the bubbles is suppressed, and (2) It can be seen that the siphon functions due to the effect of increasing the flow speed, but the allowable air mixing rate is about 5%.

本実施例では、縮径接続管を併用した鉛直管構造にすることにより、気泡をマイクロ、ミリバブル化させて、気泡の上昇速度を大幅に抑える効果が発揮されたため、図14,図15のように、比較例2,3に比べて大幅に空気混入率を許容でき、最大40%程度の空気混入率を許容できることが確認できた。ただし、流速が速い方がサイフォン機能は維持されやすいことがわかる。   In this embodiment, the vertical tube structure combined with the reduced-diameter connecting pipe has the effect of significantly reducing the bubble rising speed by making the bubbles into micro and milli bubbles, as shown in FIGS. 14 and 15. In addition, it was confirmed that the air mixing rate can be significantly tolerated as compared with Comparative Examples 2 and 3, and an air mixing rate of about 40% at the maximum can be allowed. However, it can be seen that the siphon function is more easily maintained when the flow velocity is higher.

以上のように、比較例2,3のように鉛直通水管の断面積を全体的に小さくした場合よりも、本実施例のように漸縮接続部を途中で設け鉛直通水管の面積を小さくした方がサイフォン機能を効果的に維持できることが確認できた。   As described above, as compared with the case where the cross-sectional area of the vertical water pipe is reduced as a whole as in Comparative Examples 2 and 3, the area of the vertical water pipe is reduced by providing a gradually reducing connection portion in the middle as in this embodiment. It has been confirmed that the siphon function can be effectively maintained.

以上の実験によれば、溶存酸素等の気化や通水管の気密漏れ部から流入する気体の存在があるような条件においても確実にサイフォンの吸引力を作用させるためには、鉛直通水管の途中に漸縮接続管を配置し径の小さい鉛直通水管に接続する構成とすることで気液2相流を安定して形成させることが重要であることを確認できた。   According to the above experiment, in order to ensure that the suction force of the siphon acts even under conditions where there is vaporization of dissolved oxygen or the like and the presence of gas flowing in from the airtight leak portion of the water pipe, It was confirmed that it is important to stably form a gas-liquid two-phase flow by arranging a gradually reducing connection pipe and connecting it to a vertical water pipe having a small diameter.

以上のように本発明の実施形態及び実施例について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、本発明による吸引力発生装置を真空圧密地盤改良システムに適用したが、これに限定されず、他の装置・システム・他の工法に適宜適用してよく、同様の効果を得ることができる。また、鉛直管(鉛直通水管)、水平管(水平通水管)は、円筒管以外であってもよく、例えば角筒管でもよい。   As described above, the embodiments and examples of the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, the suction force generator according to the present invention is applied to the vacuum consolidation ground improvement system, but is not limited to this, and may be applied as appropriate to other devices, systems, and other construction methods, and similar effects can be obtained. . Further, the vertical pipe (vertical water pipe) and the horizontal pipe (horizontal water pipe) may be other than the cylindrical pipe, for example, a rectangular tube.

また、図6〜図8の空気逆流防止装置の屈曲管28は、約90°に曲げられた管を鉛直通水管21の下端に取り付けるように構成できるが、これに限定されず、鉛直通水管21の下端自体を折り曲げてもよい。   Further, the bent pipe 28 of the air backflow prevention device of FIGS. 6 to 8 can be configured to attach a pipe bent at about 90 ° to the lower end of the vertical water pipe 21, but is not limited thereto, and the vertical water pipe is not limited thereto. The lower end itself of 21 may be bent.

本発明による吸引力発生装置によれば、水に気体が含まれる場合でもサイフォンの原理による吸引力を安定して発生させることができるので、真空ポンプに頼らずにサイフォンの自然エネルギを極力使用可能となり、電力等のコストを削減可能となる。   According to the suction force generator according to the present invention, even when water contains gas, the suction force based on the principle of the siphon can be stably generated, so that the natural energy of the siphon can be used as much as possible without relying on a vacuum pump. Thus, the cost of electric power and the like can be reduced.

本発明による真空圧密地盤改良工法によれば、サイフォン機能による吸引力を併用することで盛土による載荷の縮小・省略が可能となり、使用資材・機材の節減や作業工期の短縮を実現でき、また、従来の工法に比べて吸引力が増加するため、軟弱地盤が所定の強度に達するまでに要する地盤改良期間を短縮できる。   According to the vacuum consolidation ground improvement method according to the present invention, it is possible to reduce or omit loading by embankment by using the suction force by the siphon function, and it is possible to reduce the use materials and equipment and shorten the work period. Since the suction force increases as compared with the conventional construction method, the ground improvement period required until the soft ground reaches a predetermined strength can be shortened.

1 鉛直管(第1の管)
2 水平管(第2の管)
3 漸縮接続管
20 真空減圧装置
21 鉛直通水管
22 水平通水管
23 真空ポンプ
26 密閉室
28 屈曲管
31 鉛直ドレーン材
b 鉛直方向
e 気泡
G 軟弱地盤
H0 地下水位面
H1 密閉室内の水位面
ΔH 水位差
S1,S2 真空圧密地盤改良システム
θ 漸縮角度
1 Vertical pipe (first pipe)
2 Horizontal pipe (second pipe)
3 Taper connection pipe 20 Vacuum decompression device 21 Vertical water pipe 22 Horizontal water pipe 23 Vacuum pump 26 Sealed chamber 28 Bent pipe 31 Vertical drain material b Vertical direction e Bubble G Soft ground H0 Ground water level surface H1 Water level surface ΔH Water level in the sealed chamber Difference S1, S2 Vacuum consolidation ground improvement system θ Decrease angle

Claims (5)

上部から下部に向けて延びる第1の管と、前記第1の管と前記上部で接続し水平方向に延びる第2の管と、を有し、前記第1の管の下端側と、前記第2の管の先端側との間の水位差により、前記第2の管の先端から前記第1の管の下端に向けてサイフォン機能により吸引力を作用させて真空圧密による地盤改良を行うための吸引力発生装置であって、
前記第1の管の径が前記第2の管の径よりも小さく、
前記第2の管と前記第1の管とを径が漸減する漸縮接続管を介して接続し、
前記第2の管内に水と分離して存在する空気が前記漸縮接続管内で気泡となって前記第1の管内で気液2相流として流下することでサイフォン機能により吸引力を発生させ
前記第1の管の下端を収納する密閉室と、
前記密閉室内を減圧する真空ポンプと、
前記密閉室内の貯留水を外部に排水する排水設備と、を備え、
前記密閉室内を前記真空ポンプにより減圧することで前記真空ポンプによる吸引力に前記サイフォン機能による吸引力を加えるとともに、前記排水設備により前記密閉室内の貯留水を排水し、
前記第1の管の下端が前記密閉室内の貯留水の水面よりも下に位置することを特徴とする吸引力発生装置。
A first pipe extending from the upper part toward the lower part; a second pipe connected to the first pipe at the upper part and extending in the horizontal direction; and a lower end side of the first pipe; For improving the ground by vacuum consolidation by applying a suction force by a siphon function from the tip of the second tube toward the lower end of the first tube due to a difference in water level between the tip of the two tubes A suction force generator,
The diameter of the first tube is smaller than the diameter of the second tube;
Connecting the second pipe and the first pipe via a gradually reducing connecting pipe whose diameter is gradually reduced;
Air that is present separately from water in the second pipe becomes bubbles in the gradually contracting connection pipe and flows down as a gas-liquid two-phase flow in the first pipe to generate a suction force by a siphon function ,
A sealed chamber that houses a lower end of the first tube;
A vacuum pump for depressurizing the sealed chamber;
A drainage facility for draining the stored water in the sealed chamber to the outside,
While applying a suction force by the siphon function to a suction force by the vacuum pump by reducing the pressure in the sealed chamber by the vacuum pump, draining the stored water in the sealed chamber by the drainage facility,
The suction force generator according to claim 1, wherein a lower end of the first pipe is located below a surface of the stored water in the sealed chamber .
前記第1の管の下端から流れ出した気液2相流の気泡が前記第1の管内に再浮上し逆流することを防止するための空気逆流防止装置を備える請求項1に記載の吸引力発生装置。   2. The suction force generation according to claim 1, further comprising an air backflow prevention device for preventing a gas-liquid two-phase flow bubble flowing out from a lower end of the first pipe from re-floating into the first pipe and flowing back. apparatus. 前記漸縮接続管は直線的に傾斜して内径が漸減し、その傾斜線を下方に延長した延長線が交叉したときの漸縮角度θが45°以下である請求項1または2に記載の吸引力発生装置。   3. The gradually reducing connection pipe according to claim 1 or 2, wherein the gradually reducing connecting pipe is linearly inclined to gradually decrease its inner diameter, and a gradually reducing angle θ is 45 ° or less when an extension line extending downward from the inclined line intersects. Suction force generator. 前記漸縮接続管は、その上側に前記第2の管とほぼ同じ内径の上部管を有する請求項1乃至3のいずれか1項に記載の吸引力発生装置。 4. The suction force generation device according to claim 1 , wherein the gradually reducing connection pipe has an upper pipe having an inner diameter substantially the same as that of the second pipe on an upper side thereof . 5. 請求項1乃至4のいずれか1項に記載の吸引力発生装置を用いて軟弱地盤において真空圧密による地盤改良を行うことを特徴とする真空圧密地盤改良工法。   A vacuum consolidation ground improvement method characterized by performing ground improvement by vacuum consolidation in soft ground using the suction force generator according to any one of claims 1 to 4.
JP2009150940A 2009-06-25 2009-06-25 Suction force generator and vacuum consolidation ground improvement method Active JP5388193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009150940A JP5388193B2 (en) 2009-06-25 2009-06-25 Suction force generator and vacuum consolidation ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150940A JP5388193B2 (en) 2009-06-25 2009-06-25 Suction force generator and vacuum consolidation ground improvement method

Publications (2)

Publication Number Publication Date
JP2010090688A JP2010090688A (en) 2010-04-22
JP5388193B2 true JP5388193B2 (en) 2014-01-15

Family

ID=42253661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150940A Active JP5388193B2 (en) 2009-06-25 2009-06-25 Suction force generator and vacuum consolidation ground improvement method

Country Status (1)

Country Link
JP (1) JP5388193B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3270968B2 (en) * 1990-06-17 2002-04-02 丸山工業株式会社 Improved construction method for soft ground and its improved construction equipment
JP5138993B2 (en) * 2006-08-28 2013-02-06 株式会社ブリヂストン Siphon drainage system
JP4851358B2 (en) * 2007-02-10 2012-01-11 テラル株式会社 厨 芥 Wastewater transfer system

Also Published As

Publication number Publication date
JP2010090688A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
CN103785311B (en) Micro-nano bubble generator
JP5578715B2 (en) Vacuum compaction system and vacuum compaction method
JP5505961B2 (en) Siphon suction force generator, suction force generation method and vacuum consolidation ground improvement method
JP5305957B2 (en) Suction force generator and vacuum consolidation ground improvement method
JP2006346638A (en) Discharging passage of pressure dissolution apparatus
CN103741705B (en) Two-layer barrel cover suction type bucket stake composite foundation and construction method
JP2010209633A (en) Method of improving ground
CN206859288U (en) Mud agitating device is used in a kind of municipal administration
JP5388193B2 (en) Suction force generator and vacuum consolidation ground improvement method
JP5918521B2 (en) Ground improvement method
CN106592534A (en) Small piping cramming device
JP5505964B2 (en) Siphon suction force generator, suction force generation method and vacuum consolidation ground improvement method
JP2013019405A (en) Pressure fluid energy converting device of jet pump
CN106436743A (en) Guide pipe for steel stand column guide insertion construction
CN100557145C (en) The PHC stake is interior towards interior row&#39;s auxiliary pile sinking job practices
JP5794707B2 (en) Suction force generator and vacuum consolidation ground improvement method
CN209704575U (en) A kind of pipe jacking equipment anti-collapse slip casting mouth structure
JP3138373U (en) Water cone body
CN102605800A (en) Underground continuous wall construction method
CN204715517U (en) A kind of prefabricated pumping plant base
JP5808008B2 (en) Suction force generator and vacuum consolidation ground improvement method
CN206368365U (en) Ring cutting pile tube under water under high pressure
CN207295511U (en) Pipe jacking equipment anti-collapse slip casting mouth structure
CN103437347B (en) Steel pipe branch pile and construction method
CN104912185A (en) Prefabricated pump station base

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131003

R150 Certificate of patent or registration of utility model

Ref document number: 5388193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250