JP5387946B2 - Method for producing surface smoothing toner in aqueous medium - Google Patents

Method for producing surface smoothing toner in aqueous medium Download PDF

Info

Publication number
JP5387946B2
JP5387946B2 JP2008317923A JP2008317923A JP5387946B2 JP 5387946 B2 JP5387946 B2 JP 5387946B2 JP 2008317923 A JP2008317923 A JP 2008317923A JP 2008317923 A JP2008317923 A JP 2008317923A JP 5387946 B2 JP5387946 B2 JP 5387946B2
Authority
JP
Japan
Prior art keywords
toner
transfer
dispersion
image
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008317923A
Other languages
Japanese (ja)
Other versions
JP2010139912A (en
Inventor
強 杉本
直人 霜田
裕士 山下
真弘 渡邊
庸泰 長友
政樹 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008317923A priority Critical patent/JP5387946B2/en
Publication of JP2010139912A publication Critical patent/JP2010139912A/en
Application granted granted Critical
Publication of JP5387946B2 publication Critical patent/JP5387946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、トナー並びにこれを用いた画像形成方法及びプロセスカートリッジに関する。   The present invention relates to a toner, an image forming method using the toner, and a process cartridge.

近年、電子写真方式の画像形成技術分野では、高速の画像形成が可能で、しかも画像品位の高いカラー画像形成装置(高品位カラー画像形成技術)の開発競争が激化している。このため、フルカラー画像を高速で得るために、画像形成方法において複数の電子写真感光体を直列に並べ、それぞれの電子写真感光体において各色成分ごとの画像を形成し、中間転写体上で重ね合わせ記録材上へ一括転写するいわゆるタンデム方式が多く採用されてきている(例えば、特許文献1、特許文献2)。中間転写体を用いた場合には、現像時に電子写真感光体上に地肌汚れが発生したときには、直接紙などの記録材に地肌汚れが転移することを防止する効果はあるが、中間転写体を用いる方式は、電子写真感光体から中間転写体への転写工程(一次転写)と、中間転写体から最終画像を得る記録材上への転写工程(二次転写)という2回にわたる転写工程を経るため転写効率が低下する。   In recent years, in the field of electrophotographic image forming technology, competition for development of a color image forming apparatus (high quality color image forming technology) capable of high-speed image formation and high image quality is intensifying. For this reason, in order to obtain a full-color image at a high speed, a plurality of electrophotographic photosensitive members are arranged in series in the image forming method, and an image for each color component is formed on each electrophotographic photosensitive member, and is superimposed on the intermediate transfer member. Many so-called tandem systems that collectively transfer onto a recording material have been adopted (for example, Patent Document 1 and Patent Document 2). When an intermediate transfer member is used, if background stains occur on the electrophotographic photosensitive member during development, there is an effect of preventing the background stains from being transferred directly to a recording material such as paper. The system to be used passes through two transfer processes: a transfer process from an electrophotographic photosensitive member to an intermediate transfer body (primary transfer) and a transfer process to obtain a final image from the intermediate transfer body (secondary transfer). Therefore, transfer efficiency is lowered.

一方、上記のような問題に加え、より高画質のフルカラー画像形成が要求されており、高画質化への現像剤設計がなされてきている。高画質化、特にフルカラー画質への要求に対応するために、トナーとしてはますます小粒径化が進み、潜像を忠実に再現することが検討されている。この小粒径化に対しては、トナーを所望のトナー形状及び表面構造に制御することを可能とする手段として、重合法によるトナー製造方法が提案されている。(例えば、特許文献3、特許文献4)。重合法トナーでは、トナー粒子の粒径制御に加えて形状制御も可能である。また、これと併せて粒径を小さくすることにより、ドットや細線の再現性がよくなり、パイルハイト(画像層厚)も低くすることが可能となり、より高画質化が期待できる。   On the other hand, in addition to the above problems, there is a demand for higher-quality full-color image formation, and developers have been designed for higher image quality. In order to meet the demand for higher image quality, particularly full-color image quality, toners are increasingly becoming smaller in particle size and are being studied to faithfully reproduce latent images. To reduce the particle size, a toner manufacturing method using a polymerization method has been proposed as a means for controlling the toner to have a desired toner shape and surface structure. (For example, Patent Document 3 and Patent Document 4). In the case of the polymerization toner, in addition to controlling the particle size of the toner particles, shape control is possible. In addition, by reducing the particle size together with this, the reproducibility of dots and fine lines can be improved, the pile height (image layer thickness) can be lowered, and higher image quality can be expected.

しかしながら、小粒径トナーを用いた場合には、トナー粒子と電子写真感光体、又はトナー粒子と中間転写体との非静電的付着力が増加するため、転写効率がさらに低下しやすい。このため、高速のフルカラー画像形成装置において小粒径トナーを使用した場合には、特に二次転写での転写効率の低下が顕著となる。その理由は、トナー小粒径化によりトナー1粒子あたりの中間転写体との非静電的付着力が増加している上に、二次転写では複数色のトナーが重ねあった状態で存在していることと、高速化に伴い二次転写のニップ部においてトナー粒子が転写電界を受ける時間が短くなるため、より転写されにくい条件となるためである。   However, when a small particle size toner is used, the non-electrostatic adhesion force between the toner particles and the electrophotographic photosensitive member or between the toner particles and the intermediate transfer member is increased, so that the transfer efficiency is likely to further decrease. For this reason, when a small-diameter toner is used in a high-speed full-color image forming apparatus, a decrease in transfer efficiency particularly in secondary transfer becomes significant. The reason for this is that non-electrostatic adhesion to the intermediate transfer member per toner particle is increasing due to the reduction in toner particle size, and in the secondary transfer, a plurality of color toners are superimposed. This is because the time during which the toner particles are subjected to the transfer electric field at the nip portion of the secondary transfer is shortened as the speed is increased, which makes it difficult to transfer the toner particles.

上記問題点に対処するためには、二次転写の転写電界をさらに強くすることが考えられるが、転写電界を強くしすぎると、中間転写体と記録材の剥離時に放電が生じる等によりかえって転写効率が低下してしまい限界がある。また、二次転写のニップ部の幅を広くすることでトナー粒子が転写電界を受ける時間を長くすることが考えられるが、バイアスローラ等による接触式の電圧印加方式の場合は、ニップ幅を広くするにはバイアスローラの当接圧力を高くするか、あるいは、バイアスローラのローラ径を大きくするかの何れかの方法しかない。当接圧力を高くするのは画像品質との関係から、ローラ径を大きくするのは装置の小型化との関係から、それぞれ限界がある。また、チャージャ等による非接触式の電圧印加方式の場合は、チャージャの数を増やすなどして二次転写のニップ幅を稼がなければならないため、やはり限界がある。そのため、特に高速機では、これ以上の転写効率を得るまでニップ幅を拡げることは実質的には不可能であると言える。   In order to address the above problems, it is conceivable to further increase the transfer electric field of the secondary transfer. However, if the transfer electric field is excessively increased, the transfer may be caused by the occurrence of discharge when the intermediate transfer member and the recording material are peeled off. There is a limit as efficiency decreases. In addition, it is conceivable to increase the time during which the toner particles are subjected to the transfer electric field by increasing the width of the nip portion of the secondary transfer. However, in the case of a contact-type voltage application method such as a bias roller, the nip width is increased. The only way to achieve this is to either increase the contact pressure of the bias roller or increase the roller diameter of the bias roller. Increasing the contact pressure has a limit due to the relationship with the image quality, and increasing the roller diameter has a limit due to the relationship with the downsizing of the apparatus. Further, in the case of a non-contact voltage application method using a charger or the like, there is a limit because the nip width of secondary transfer must be increased by increasing the number of chargers. For this reason, it can be said that it is practically impossible to increase the nip width until a transfer efficiency higher than this is obtained, particularly in a high-speed machine.

これに対し、トナー粒子と電子写真感光体、又はトナー粒子と中間転写体との非静電的付着力を低減する手段として、添加剤の種類や添加量を調整する(特に粒径の大きい添加剤を添加する)方法が提案されている。(例えば、特許文献5、特許文献6)。この方法により、トナー粒子は非静電的付着力低減効果を得て転写効率を向上させることが可能となるとともに、現像の安定性、クリーニングの向上といった効果も得ることが可能となる。   In contrast, as a means for reducing the non-electrostatic adhesion between the toner particles and the electrophotographic photosensitive member, or between the toner particles and the intermediate transfer member, the type and amount of the additive are adjusted (especially addition with a large particle size). Have been proposed. (For example, Patent Document 5 and Patent Document 6). By this method, the toner particles can obtain the effect of reducing the non-electrostatic adhesion force and improve the transfer efficiency, and also can obtain the effects of improving the development stability and cleaning.

上述のトナー粒子は、初期的には、画像形成装置の転写効率を向上させることが可能となる。しかしながら、画像形成装置の現像装置内でトナーが長期間攪拌等の機械的ストレスを受けていると、添加剤がトナー母体粒子中に埋没、またはトナー粒子表面に存在する微小な凹凸に進入してしまい、添加剤による付着力低減効果が発揮されなくなり、画像形成装置の転写効率が低下してしまう。特に高速機の場合、現像装置内での攪拌が激しいため、この機械的ストレスが大きく、添加剤のトナー母体中への埋没、進入が加速されやすい。このため、比較的早い段階で転写効率の低下に繋がることが想定される。   Initially, the toner particles described above can improve the transfer efficiency of the image forming apparatus. However, when the toner has been subjected to mechanical stress such as stirring for a long time in the developing device of the image forming apparatus, the additive is buried in the toner base particles or enters the minute unevenness present on the toner particle surface. As a result, the effect of reducing the adhesive force by the additive is not exhibited, and the transfer efficiency of the image forming apparatus is lowered. In particular, in the case of a high-speed machine, since the stirring in the developing device is intense, this mechanical stress is large, and the embedding and entering of the additive into the toner base are likely to be accelerated. For this reason, it is assumed that transfer efficiency is lowered at a relatively early stage.

このため、高速機において長期に渡り安定して高い転写効率を維持するためには、機械的ストレスを受けても添加剤がトナー母体粒子中に埋没、進入することなく表面に存在できるようにトナーの表面性を制御する必要がある。
特開平07−209952号公報 特開2000−075551号公報 特許第3640918号公報 特開平06−250439号公報 特開2001−066820号公報 特許第3692829号公報
For this reason, in order to maintain high transfer efficiency stably over a long period of time in a high-speed machine, the toner can be present on the surface without being embedded or entering the toner base particles even under mechanical stress. It is necessary to control the surface property.
Japanese Patent Application Laid-Open No. 07-209952 JP 2000-077551 Japanese Patent No. 3640918 Japanese Patent Laid-Open No. 06-250439 JP 2001-0666820 A Japanese Patent No. 3692929

本発明は従来技術の現状に鑑みてなされたものであり、高速のフルカラー画像形成方法において、転写効率を向上させ、各々の転写時に画像欠陥をなくし長期的に再現性のよい画像を出力するトナーの製造方法、及び前記トナーを用いたフルカラー画像形成方法、プロセスカートリッジを提供することを目的とする。   The present invention has been made in view of the current state of the art, and in a high-speed full-color image forming method, toner that improves transfer efficiency, eliminates image defects during each transfer, and outputs an image with good reproducibility in the long term. And a full-color image forming method using the toner, and a process cartridge.

本発明は、下記(1)〜(11)によって解決される。
(1)「着色粒子を表面処理してトナーを得るトナーの製造方法において、少なくとも界面活性剤を含む水系媒体中に着色粒子を分散して着色粒子分散液を調整する工程、及び、前記着色粒子分散液を加熱する表面処理工程を含むものであり、前記着色粒子分散液を調整する工程と着色粒子表面処理工程の間に、さらに着色粒子を洗浄する工程を含み、前記表面処理工程が、前記トナー母体粒子表面の凹凸を少なくする工程であり、前記表面処理工程における前記着色粒子分散液中の界面活性剤量が前記界面活性剤の臨界ミセル濃度の0.1倍以上2.0倍以下であり、かつ前記表面処理工程における加熱温度(T1)がトナーのガラス転移温度(Tg)に対して、−10℃以上10℃未満であることを特徴とするトナーの製造方法」、
(2)「界面活性剤を含む水系媒体中でトナー材料混合物を造粒することで着色粒子分散液を調整する工程、前記着色粒子分散液を加熱する着色粒子表面処理工程、該分散液から表面処理済み着色粒子をろ過し、乾燥してトナー母体粒子を得る工程、及び、トナー母体粒子へ外添剤を処理してトナーを得る工程を含むものであり、前記着色粒子分散液を調整する工程と着色粒子表面処理工程の間に、さらに着色粒子を洗浄する工程を含み、前記表面処理工程が、前記トナー母体粒子表面の凹凸を少なくする工程であり、前記着色粒子表面処理工程における着色粒子分散液中の界面活性剤量が界面活性剤の臨界ミセル濃度の0.1倍以上2.0倍以下であり、加熱温度(T1)がトナーのガラス転移温度(Tg)に対して、−10℃以上10℃未満であることを特徴とするトナーの製造方法」、
)「前記着色粒子分散液を調整する工程が、少なくとも樹脂、着色剤、離型剤、含むトナー材料を有機溶媒中へ溶解乃至分散させ、該溶解乃至分散物を界面活性剤を含む水系媒体中へ分散させることで、着色粒子分散液を調整する工程であることを特徴とする前記第(1)項または第(2)項に記載のトナー製造方法」、
)「前記着色粒子分散液を調整する工程が、少なくとも変性されていないポリエステル樹脂、ウレア又はウレタン結合し得る変性されたポリエステル樹脂、アミン、着色剤、離型剤を含むトナー材料を有機溶媒中へ溶解乃至分散させ、該溶解乃至分散物を界面活性剤を含む水系媒体中へ分散させ、前記変性されたポリエステル樹脂と前記アミンとを反応させることで得られるウレア又はウレタン結合を有するポリエステル樹脂を含む着色粒子分散液を調整する工程であることを特徴とする前記第()項乃至第()項のいずれかに記載のトナー製造方法」、
)「前記第(1)項乃至第()項に記載のトナー製造方法で得られるトナー」、
)「トナーのBET比表面積(Sbet)と前記トナーの体積平均粒径(Dv)の比Sbet/Dvが2.0×10m/g以上4.0×10m/g未満であることを特徴とする前記第()項に記載のトナー」、
)「トナーの平均円形度が0.940以上0.970未満であることを特徴とする前記第()項又は第()項のいずれかに記載のトナー」、
)「トナーの体積平均粒径が1.0μm以上6.0μm未満であることを特徴とする前記第()項乃至第()項のいずれかに記載のトナー」、
)「電子写真感光体を帯電手段により帯電させる帯電工程と、前記帯電された電子写真感光体上に露光手段により静電潜像を形成する露光工程と、前記静電潜像が形成された電子写真感光体上に現像手段によりトナーを用いてトナー像を形成する現像工程と、前記電子写真感光体上に形成されたトナー像を一次転写手段により中間転写体上に転写する一次転写工程と、前記中間転写体上に転写されたトナー像を二次転写手段により記録材上に転写する二次転写工程と、前記記録材上に転写されたトナー像を熱及び圧力定着部材を含む定着手段により記録材上に定着させる定着工程と、前記一次転写手段によりトナー像を中間転写体上に転写した電子写真感光体の表面に付着している転写残トナーをクリーニング手段によりクリーニングするクリーニング工程とを備え、前記現像工程におけるトナーが前記第()項乃至第()項のいずれかに記載のトナーであることを特徴とするフルカラー画像形成方法」、
10)「前記二次転写工程において、トナー像の記録材への転写の線速度は300〜1000mm/secであり、二次転写手段のニップ部での転写時間は0.5〜20msecであることを特徴とする前記第()項に記載のフルカラー画像形成方法」、
11)「タンデム方式の電子写真画像形成プロセスを採用したことを特徴とする前記第()項又は第(10)項に記載のフルカラー画像形成方法」。
The present invention is solved by the following (1) to ( 11 ).
(1) “In a method for producing a toner for obtaining a toner by surface-treating colored particles, a step of preparing a colored particle dispersion by dispersing colored particles in an aqueous medium containing at least a surfactant; and the colored particles a Dressings containing surface treatment step of heating the dispersion, between the colored particle dispersion step the colored particle surface treatment step of adjusting the includes the step of further washing the colored particles, the surface treatment step, the A step of reducing irregularities on the surface of the toner base particles, wherein the amount of the surfactant in the colored particle dispersion in the surface treatment step is 0.1 to 2.0 times the critical micelle concentration of the surfactant. And a heating method (T1) in the surface treatment step is −10 ° C. or more and less than 10 ° C. with respect to the glass transition temperature (Tg) of the toner ”,
(2) “a step of preparing a colored particle dispersion by granulating a toner material mixture in an aqueous medium containing a surfactant, a colored particle surface treatment step of heating the colored particle dispersion, a surface from the dispersion the treated colored particles were filtered, to obtain the toner base particles and dried, and treated with an external additive to toner base particles to obtain a toner is Dressings containing, the step of adjusting the colored particle dispersion And a step of washing the colored particles between the colored particle surface treatment step, and the surface treatment step is a step of reducing irregularities on the surface of the toner base particles, and the colored particle dispersion in the colored particle surface treatment step The amount of surfactant in the liquid is 0.1 to 2.0 times the critical micelle concentration of the surfactant, and the heating temperature (T1) is −10 ° C. with respect to the glass transition temperature (Tg) of the toner. 10 ℃ Method for producing a toner, which is a fully "
( 3 ) “The step of adjusting the colored particle dispersion is to dissolve or disperse at least a resin material, a colorant, a release agent, and a toner material in an organic solvent, and the dissolved or dispersed solution is an aqueous system containing a surfactant. The method for producing a toner according to (1) or (2) above, which is a step of adjusting a colored particle dispersion by dispersing in a medium ”,
( 4 ) “The step of preparing the colored particle dispersion is carried out by using an organic solvent as a toner material containing at least unmodified polyester resin, urea or urethane-modified polyester resin, amine, colorant, and release agent. Polyester resin having a urea or urethane bond obtained by dissolving or dispersing in, dispersing the dispersion or dispersion in an aqueous medium containing a surfactant, and reacting the modified polyester resin with the amine The method for producing a toner according to any one of ( 1 ) to ( 3 ), wherein the toner is a step of preparing a colored particle dispersion containing
( 5 ) "Toner obtained by the method for producing toner according to (1) to ( 4 )",
( 6 ) “The ratio Sbet / Dv between the BET specific surface area (Sbet) of the toner and the volume average particle diameter (Dv) of the toner is 2.0 × 10 5 m / g or more and less than 4.0 × 10 5 m / g. The toner according to item ( 5 ), wherein:
( 7 ) "The toner according to any one of ( 5 ) or ( 6 ), wherein the average circularity of the toner is 0.940 or more and less than 0.970",
( 8 ) "The toner according to any one of ( 5 ) to ( 7 ) above, wherein the volume average particle diameter of the toner is 1.0 µm or more and less than 6.0 µm",
( 9 ) “Charging step of charging the electrophotographic photosensitive member with a charging unit, an exposure step of forming an electrostatic latent image on the charged electrophotographic photosensitive member with an exposing unit, and the formation of the electrostatic latent image. A developing step of forming a toner image on the electrophotographic photosensitive member using toner by a developing unit, and a primary transfer step of transferring the toner image formed on the electrophotographic photosensitive member onto an intermediate transfer member by a primary transferring unit. A secondary transfer step of transferring the toner image transferred onto the intermediate transfer member onto a recording material by a secondary transfer means, and fixing the toner image transferred onto the recording material with a heat and pressure fixing member A fixing step for fixing the toner image on the recording material by the means, and cleaning residual toner adhering to the surface of the electrophotographic photosensitive member having the toner image transferred onto the intermediate transfer member by the primary transfer means by the cleaning means. And a cleaning step that a full-color image forming method, wherein the toner in the developing step is a toner according to any one of the first (5) section to the (8) term "
( 10 ) “In the secondary transfer step, the linear velocity of transfer of the toner image to the recording material is 300 to 1000 mm / sec, and the transfer time at the nip portion of the secondary transfer means is 0.5 to 20 msec. The full-color image forming method according to item ( 9 ), "
( 11 ) “The full color image forming method according to item ( 9 ) or ( 10 ), wherein the tandem electrophotographic image forming process is employed”.

以下の詳細かつ具体的な説明から明らかなように、本発明によれば、高速のフルカラー画像形成方法において、転写効率を向上させ、各々の転写時に画像欠陥をなくし長期的に再現性のよい画像を出力するトナーの製造方法、及び前記トナーを用いたフルカラー画像形成方法、プロセスカートリッジを提供することができるという極めて優れた効果が発揮される。   As will be apparent from the following detailed and specific description, according to the present invention, in a high-speed full-color image forming method, transfer efficiency is improved, image defects are eliminated at the time of each transfer, and long-term reproducible images. In particular, it is possible to provide a method for producing a toner that outputs toner, a full-color image forming method using the toner, and a process cartridge.

本発明を実施するための最良の形態を必要に応じて図面を参照にして説明する。なお、いわゆる当業者は特許請求の範囲内において本発明を変更・修正をして他の実施形態をなすことは容易であり、これらの変更・修正はこの特許請求の範囲に含まれるものであり、以下の説明はこの発明の好ましい実施形態における例であって、この特許請求の範囲を限定するものではない。   The best mode for carrying out the present invention will be described with reference to the drawings as necessary. Note that it is easy for a person skilled in the art to make other embodiments by changing or correcting the present invention within the scope of the claims, and these changes and modifications are included in the scope of the claims. The following description is an example of a preferred embodiment of the present invention and is not intended to limit the scope of the claims.

本発明のトナーの製造方法は、上記のように、少なくとも界面活性剤を含む水系媒体中に着色粒子を分散して着色粒子分散液を調整する工程、及び、前記着色粒子分散液を加熱する表面処理工程を含み、前記表面処理工程における前記着色粒子分散液中の界面活性剤量が前記界面活性剤の臨界ミセル濃度の0.1倍以上2.0倍以下であり、かつ前記表面処理工程における加熱温度(T1)がトナーのガラス転移温度(Tg)に対して、−10℃以上10℃未満である。このような本発明のトナーの製造方法は典型的には、少なくとも結着樹脂、着色剤を含むトナー用着色粒子が、界面活性剤を含む水系媒体中に分散されてなる着色粒子分散液を調製する工程、及び、前記着色粒子分散液が加熱される表面処理工程を含み、かつ該表面処理工程における着色粒子分散液中の界面活性剤量がその臨界ミセル濃度の0.1倍以上2倍以下であり、かつ表面処理工程における加熱温度(T1)がトナーのガラス転移温度(Tg)に対して、−10℃以上10℃未満である。ここで、本発明においては、「トナー母体」を表面処理が終わり外添処理する前の粒子と想定し、それ以前の表面処理を受けていない粒子を「着色粒子」とする。   As described above, the toner production method of the present invention includes a step of dispersing colored particles in an aqueous medium containing at least a surfactant to prepare a colored particle dispersion, and a surface for heating the colored particle dispersion. Including a treatment step, the amount of the surfactant in the colored particle dispersion in the surface treatment step is 0.1 to 2.0 times the critical micelle concentration of the surfactant, and in the surface treatment step The heating temperature (T1) is −10 ° C. or more and less than 10 ° C. with respect to the glass transition temperature (Tg) of the toner. Such a toner production method of the present invention typically prepares a colored particle dispersion in which colored particles for toner containing at least a binder resin and a colorant are dispersed in an aqueous medium containing a surfactant. And a surface treatment step in which the colored particle dispersion is heated, and the amount of the surfactant in the colored particle dispersion in the surface treatment step is 0.1 to 2 times the critical micelle concentration. And the heating temperature (T1) in the surface treatment step is −10 ° C. or more and less than 10 ° C. with respect to the glass transition temperature (Tg) of the toner. Here, in the present invention, the “toner base” is assumed to be a particle after the surface treatment is completed and before the external addition treatment, and a particle that has not been subjected to the previous surface treatment is referred to as a “colored particle”.

我々は既に、架橋反応性の低分子量の結着樹脂成分及び着色剤等のトナー材料を含む有機溶剤液を水系分散液中に液滴状に乳化分散してなるO/W型分散液から脱溶剤処理してトナー母体粒子を得ることを内容とする多くのトナー製造技術を提案してきたが、これら技術の中には、水系分散液として、微細な無機及び/又は樹脂微粒子を分散にしてなる水系分散液を用いるものも多く含まれており、また順序はともかくとして、トナー母体粒子の熟成工程、トナー母体粒子を洗浄して前記O/W型乳化分散液由来の界面活性剤を除去する洗浄工程、及び、トナー母体粒子の界面活性剤処理工程を有するトナー製造技術も幾つか含まれている。本発明者らは、これらについて検討をより深める過程で、熟成時の界面活性剤量をより少ない範囲に制御して熟成を行なうと微小な凹凸の生成が調節され表面平滑化に優れた結果を齎すこと、及び、このような結果は他のケミカルトナー製造技術の場合にも当て嵌まり、さらには、粉砕トナーを用いたトナー製造にも適用可能であること、を知見し、該知見に基いて更なる検討を進めて本発明のトナー製造方法を完成するに至った。   We have already removed an organic solvent liquid containing a crosslinkable low molecular weight binder resin component and a toner material such as a colorant from an O / W type dispersion obtained by emulsifying and dispersing it in an aqueous dispersion. Many toner manufacturing technologies have been proposed that contain toner base particles by solvent treatment. In these technologies, fine inorganic and / or resin fine particles are dispersed as an aqueous dispersion. A lot of those using an aqueous dispersion are also included. Regardless of the order, the aging step of the toner base particles, the cleaning to remove the surfactant derived from the O / W type emulsion dispersion by washing the toner base particles. Several toner manufacturing techniques including a process and a surfactant treatment process for toner base particles are also included. In the process of further studying these, the present inventors controlled the amount of surfactant during aging to a smaller range, and when aging was performed, the formation of minute irregularities was adjusted and the result was excellent in surface smoothing. Based on this knowledge, it has been discovered that such a result is applicable to other chemical toner manufacturing techniques, and that it is also applicable to toner manufacturing using pulverized toner. Further studies have been made and the toner production method of the present invention has been completed.

上記製造方法により得られたトナーは、界面活性剤が少量存在する水中でトナーのガラス転移温度に近い温度で加熱することにより、トナートナー用着色粒子中に含まれる結着樹脂成分が弱く軟化し、表面積を小さくするように極微小領域で流動するため、トナー母体粒子表面に存在する数nm〜数百nmの微小な凹凸を緩和して平滑にすることができる。通常、現像装置内の攪拌等によるトナーが機械的ストレスを受けた際に、外添剤がトナー粒子表面の微小な凹凸に進入することで、非静電的付着力が上昇し、転写効率が低下する。特に小粒径トナーを用いた場合には、トナー粒子と電子写真感光体、又はトナー粒子と中間転写体との非静電的付着力が増加するため、より転写効率が低下する。更に、高速機において小粒径トナーを使用した場合には、トナーの小粒径化により中間転写体との非静電的付着力が増加した上に、高速化に伴い転写のニップ部、特に二次転写のニップ部においてトナー粒子が転写電界を受ける時間が短くなるため、二次転写での転写効率の低下が顕著となることが知られている。   The toner obtained by the above production method is heated softly in water containing a small amount of surfactant at a temperature close to the glass transition temperature of the toner, so that the binder resin component contained in the toner toner colored particles is weakened and softened. Since it flows in a very small region so as to reduce the surface area, minute unevenness of several nm to several hundred nm existing on the surface of the toner base particle can be relaxed and smoothed. Normally, when the toner due to stirring in the developing device is subjected to mechanical stress, the external additive enters the minute irregularities on the surface of the toner particles, thereby increasing the non-electrostatic adhesion force and the transfer efficiency. descend. In particular, when a toner having a small particle diameter is used, the non-electrostatic adhesion force between the toner particles and the electrophotographic photosensitive member or between the toner particles and the intermediate transfer member is increased, so that the transfer efficiency is further lowered. Furthermore, when a small particle size toner is used in a high-speed machine, non-electrostatic adhesion to the intermediate transfer member is increased by reducing the particle size of the toner, and the transfer nip portion, It is known that the transfer efficiency in the secondary transfer is significantly reduced because the time during which the toner particles are subjected to the transfer electric field in the nip portion of the secondary transfer is shortened.

本発明の製造方法により得られるトナーでは、トナー粒子表面の微小凹凸が表面処理工程により緩和されているため、前述のような外添剤のトナー粒子の凹凸部への進入による機能低下を防止することが可能となり、トナーが機械的ストレスを受けた際にも、非静電的付着力の上昇を抑制でき、高い転写効率を得ることができる。また、トナー表面の微小凹凸が緩和されることにより、単位重量あたりのトナーの表面積は微小凹凸が存在するトナー表面に比べ小さくなるため、外添剤を一定量加えた場合のトナー表面に対する外添剤の実効被覆率が大きくなる。そのため外添剤による非静電付着力低減の効果が増大するため、トナーが機械的ストレスを受けた際にも、非静電的付着力の上昇を抑制でき、高い転写効率を得ることができる。   In the toner obtained by the production method of the present invention, since the fine irregularities on the surface of the toner particles are alleviated by the surface treatment process, the function deterioration due to the external additive entering the irregularities of the toner particles as described above is prevented. Thus, even when the toner is subjected to mechanical stress, the increase in non-electrostatic adhesion can be suppressed and high transfer efficiency can be obtained. In addition, since the surface area of the toner per unit weight becomes smaller than that of the toner surface where minute irregularities exist because the minute irregularities on the toner surface are alleviated, external addition to the toner surface when a certain amount of external additive is added. The effective coverage of the agent increases. As a result, the effect of reducing the non-electrostatic adhesion force by the external additive is increased, so that even when the toner is subjected to mechanical stress, an increase in the non-electrostatic adhesion force can be suppressed and high transfer efficiency can be obtained. .

本発明では水中で加熱処理を実施しているが、気相中で行なう場合、水中に比べ同一温度でもトナー粒子同士の融着が生じやすく、トナーの粒度分布を悪化させる恐れがある。また気相中で同様の処理を行った場合には、より高い加熱温度が必要となり、さらにトナー粒子の融着を進行させてしまう。界面活性剤濃度が臨界ミセル濃度の2倍より高い場合、加熱をした際に界面活性剤がトナー表面の微小凹凸を保護してしまうため、トナー表面の平滑化が生じず、高い転写効率が得られない。界面活性剤濃度が臨界ミセル濃度の0.1倍未満である場合は、トナー表面の数nm〜数百nmの凹凸のみならず、数μm程度の凹凸も緩和してしまうため、ブレードクリーニング性が悪化してしまう。また臨界ミセル濃度の0.1倍未満である場合には、表面処理工程における加熱によりトナー粒子同士が融着しやすくなり、トナーの粒度分布が悪化してしまう恐れがある。   In the present invention, the heat treatment is carried out in water. However, when it is carried out in the gas phase, the toner particles are likely to be fused even at the same temperature as in water, and the toner particle size distribution may be deteriorated. Further, when the same treatment is performed in the gas phase, a higher heating temperature is required, and the toner particles are further fused. When the surfactant concentration is higher than twice the critical micelle concentration, the surfactant protects minute irregularities on the toner surface when heated, so that the toner surface is not smoothed and high transfer efficiency is obtained. I can't. When the surfactant concentration is less than 0.1 times the critical micelle concentration, not only the unevenness of several nm to several hundred nm on the toner surface but also the unevenness of several μm is alleviated, so that the blade cleaning property is improved. It will get worse. On the other hand, when the concentration is less than 0.1 times the critical micelle concentration, the toner particles are likely to be fused with each other by heating in the surface treatment process, and the particle size distribution of the toner may be deteriorated.

表面処理工程における加熱温度がトナーのガラス転移温度に対して10℃未満である場合、トナー中の結着樹脂の軟化が生じないため、トナー表面の平滑化が生じず、高い転写効率が得られない。また加熱温度がガラス転移温度に対して10℃以上である場合、本発明のような低界面活性剤濃度では、トナー樹脂の軟化により、トナー粒子同士が融着してしまうため、トナーの粒度分布を悪化させてしまう。   When the heating temperature in the surface treatment step is less than 10 ° C. with respect to the glass transition temperature of the toner, since the binder resin in the toner does not soften, the toner surface is not smoothed and high transfer efficiency is obtained. Absent. Further, when the heating temperature is 10 ° C. or higher with respect to the glass transition temperature, the toner particle is fused with the softening of the toner resin at the low surfactant concentration as in the present invention. Will worsen.

また発明の製造方法は少なくとも結着樹脂、及び着色剤を含むトナー材料を、界面活性剤を含む水系媒体中で調整して得られ、かつ前記界面活性剤を除去する工程を含むことが好ましい。水系媒体中で得られるトナーの場合、トナー材料が分散溶媒である水との親和性を有するため、加熱によりトナー表面の平滑化をより達成しやすい。またそもそもの製造過程において、トナーが水系媒体に分散されている状態を含み、かつ界面活性剤を除去する工程を含むため、表面処理工程に伴う製造プロセスの増大を抑制することができる。   The production method of the present invention preferably includes a step of removing a surfactant obtained by adjusting a toner material containing at least a binder resin and a colorant in an aqueous medium containing a surfactant. In the case of a toner obtained in an aqueous medium, since the toner material has an affinity with water as a dispersion solvent, the toner surface can be more easily smoothed by heating. In addition, since the manufacturing process includes a state in which the toner is dispersed in the aqueous medium and a step of removing the surfactant, an increase in the manufacturing process associated with the surface treatment step can be suppressed.

また本発明に用いられる結着樹脂はポリエステル樹脂を含むことが好ましい。ポリエステル樹脂は、低温定着性向上のために低軟化点にした際にも、他の樹脂に比べ対衝撃性に優れるため、トナーの耐ストレスを向上させることができ、かつ分子構造中に親水基を有し、比較的極性が高いため、水系媒体との親和性に優れ、より表面平滑化を達成しやすい。   Moreover, it is preferable that the binder resin used for this invention contains a polyester resin. Polyester resin is superior in impact resistance compared to other resins even when a low softening point is used to improve low-temperature fixability, so it can improve the stress resistance of the toner and has a hydrophilic group in the molecular structure. Since it has a relatively high polarity, it has excellent affinity with an aqueous medium, and it is easier to achieve surface smoothing.

また本発明の製造方法で得られるトナーは、トナーのBET比表面積(Sbet)とトナーの体積平均粒径(Dv)の比Sbet/Dvが2.0×10m/g以上4.0×10m/g未満であることが好ましい。Sbet/Dvが2.0×10m/g未満である場合、トナー粒子の形状が真球に近くなり、感光体、中間転写体上の転写残トナーのクリーニング性に劣ることがある。また、Sbet/Dvが4.0×10m/g以上である場合、トナー表面の微小凹凸が充分緩和されておらず、高い転写効率が得られないことがある。 Further, the toner obtained by the production method of the present invention has a ratio Sbet / Dv between the BET specific surface area (Sbet) of the toner and the volume average particle diameter (Dv) of the toner of 2.0 × 10 5 m / g or more and 4.0 ×. It is preferably less than 10 5 m / g. When Sbet / Dv is less than 2.0 × 10 5 m / g, the shape of the toner particles becomes close to a true sphere, and the cleaning ability of the transfer residual toner on the photosensitive member and the intermediate transfer member may be inferior. When Sbet / Dv is 4.0 × 10 5 m / g or more, the fine irregularities on the toner surface are not sufficiently relaxed, and high transfer efficiency may not be obtained.

また本発明の製造方法で得られるトナーは平均円形度が0.940以上0.970未満であることが好ましい。0.970以上である場合、トナー粒子の形状が真球に近くなり、感光体、中間転写体上の転写残トナーのクリーニング性に劣ることがある。0.940未満である場合、トナー表面に数百nm程度の比較的大きい凹凸が多く存在しているため、本発明において数nm〜数百nmの微小凹凸が緩和されても、高い転写効率が得られないことがある。   The toner obtained by the production method of the present invention preferably has an average circularity of 0.940 or more and less than 0.970. When it is 0.970 or more, the shape of the toner particles is close to a true sphere, and the cleaning ability of the transfer residual toner on the photosensitive member and the intermediate transfer member may be poor. If it is less than 0.940, since there are many relatively large irregularities of about several hundred nm on the toner surface, high transfer efficiency can be achieved even if minute irregularities of several nm to several hundred nm are alleviated in the present invention. It may not be obtained.

また本発明の製造方法で得られるトナーの粒径は、体積平均粒径が1〜6μmとなるように制御される。特にトナーの体積平均粒径が2〜5μmであることが好ましい。1μmよりも小さい場合には、一次転写及び二次転写においてトナーチリが発生しやすく、逆に6μmよりも大きい場合には、ドット再現性が不十分になり、ハーフトーン部分の粒状性も悪化して高精細な画像が得られなくなってしまう。   The particle size of the toner obtained by the production method of the present invention is controlled so that the volume average particle size is 1 to 6 μm. In particular, the toner preferably has a volume average particle diameter of 2 to 5 μm. If it is smaller than 1 μm, toner dust is likely to occur in primary transfer and secondary transfer. Conversely, if it is larger than 6 μm, dot reproducibility becomes insufficient, and the graininess of the halftone portion also deteriorates. A high-definition image cannot be obtained.

(臨界ミセル濃度)
水系媒体に対する界面活性剤の臨界ミセル濃度は、表面張力法、電気伝導度法、色素法等により求めることができる。
例えば表面張力計Sigma(KSV Instruments社製)を用いて測定し、Sigmaシステム中の解析プログラムを用いて解析を行なった。界面活性剤を水系媒体に対して0.01wt%ずつ滴下し、攪拌、静置後の界面張力を測定した。得られた表面張力カーブから、界面活性剤の滴下によっても界面張力が低下しなくなる界面活性剤濃度を臨界ミセル濃度として算出した。
(Critical micelle concentration)
The critical micelle concentration of the surfactant with respect to the aqueous medium can be determined by a surface tension method, an electric conductivity method, a dye method, or the like.
For example, it measured using the surface tension meter Sigma (made by KSV Instruments), and analyzed using the analysis program in a Sigma system. Surfactant was added dropwise by 0.01 wt% with respect to the aqueous medium, and the interfacial tension after stirring and standing was measured. From the obtained surface tension curve, the surfactant concentration at which the interfacial tension did not decrease even when the surfactant was dropped was calculated as the critical micelle concentration.

(界面活性剤濃度の測定)
トナー分散液中の界面活性剤濃度の測定としては、例えば以下の方法で行なうことができる。
(Measurement of surfactant concentration)
The measurement of the surfactant concentration in the toner dispersion can be performed, for example, by the following method.

トナー分散液で使用している界面活性剤を水系媒体に0.01wt%ずつ滴下し、その際の電気伝導度を測定し、界面活性剤の検量線を作成する。トナー分散液の電気伝導度を測定し、得られた検量線より、トナー分散液中での界面活性剤濃度を算出することができる。   The surfactant used in the toner dispersion is dropped 0.01% by weight on an aqueous medium, the electrical conductivity at that time is measured, and a calibration curve for the surfactant is created. The electrical conductivity of the toner dispersion is measured, and the surfactant concentration in the toner dispersion can be calculated from the calibration curve obtained.

(BET比表面積)
トナー粒子のBET比表面積は自動比表面積/細孔分布測定装置(TriStar3000:島津製作所製)を用いて計測した。サンプルセルに試料を約0.5g秤量し、これを前処理スマートプレップ(島津製作所製)にて24時間真空乾燥させ、試料表面の不純物、水分を取り除いた。前処理後のサンプルをTriStar3000にセットし、窒素ガス吸着量と相対圧の関係を求める。この関係からBET多点法によって試料のBET比表面積を求めることができる。
(BET specific surface area)
The BET specific surface area of the toner particles was measured using an automatic specific surface area / pore distribution measuring device (TriStar 3000: manufactured by Shimadzu Corporation). About 0.5 g of a sample was weighed in a sample cell, and this was vacuum-dried for 24 hours with a pretreatment smart prep (manufactured by Shimadzu Corporation) to remove impurities and moisture on the sample surface. The pretreated sample is set in TriStar 3000, and the relationship between the nitrogen gas adsorption amount and the relative pressure is obtained. From this relationship, the BET specific surface area of the sample can be obtained by the BET multipoint method.

(体積平均粒径)
体積平均粒径(Dv)は、粒度測定器(「マルチサイザーIII」ベックマンコールター社製)を用い、アパーチャー径100μmで測定し、解析ソフト(Beckman Coulter Multisizer 3 Version3.51)にて解析を行なった。具体的にはガラス製100mlビーカーに10wt%界面活性剤(アルキルベンゼンスフォン酸塩ネオゲンSC−A;第一工業製薬性)を0.5ml添加し、各トナー0.5g添加しミクロスパーテルでかき混ぜ、次いでイオン交換水80mlを添加した。得られた分散液を超音波分散器(W−113MK−II本多電子社製)で10分間分散処理した。前記分散液を前記マルチサイザーIIIを用いて、測定用溶液としてアイソトンIII(ベックマンコールター製)を用いて測定を行なった。測定は装置が示す濃度が8±2%に成るように前記トナーサンプル分散液を滴下した。本測定法は粒径の測定再現性の点から前記濃度を8±2%にすることが重要である。この濃度範囲であれば粒径に誤差は生じない。
(Volume average particle size)
The volume average particle size (Dv) was measured with a particle size measuring device (“Multisizer III” manufactured by Beckman Coulter, Inc.) with an aperture diameter of 100 μm, and analyzed with analysis software (Beckman Coulter Multisizer 3 Version 3.51). . Specifically, 0.5 ml of 10 wt% surfactant (alkylbenzene sulfonate Neogen SC-A; Daiichi Kogyo Seiyaku) was added to a glass 100 ml beaker, 0.5 g of each toner was added, and the mixture was stirred with a micropartel. Subsequently, 80 ml of ion-exchanged water was added. The obtained dispersion was subjected to a dispersion treatment for 10 minutes with an ultrasonic disperser (W-113MK-II, manufactured by Honda Electronics Co., Ltd.). The dispersion was measured using the Multisizer III and Isoton III (manufactured by Beckman Coulter) as the measurement solution. In the measurement, the toner sample dispersion was dropped so that the concentration indicated by the apparatus was 8 ± 2%. In this measurement method, it is important that the concentration is 8 ± 2% from the viewpoint of the reproducibility of the particle size. Within this concentration range, no error occurs in the particle size.

(平均円形度)
トナーの平均円形度は、下記式(A)で定義される。
(Average circularity)
The average circularity of the toner is defined by the following formula (A).

Figure 0005387946
Figure 0005387946

フロー式粒子像分析装置(「FPIA−2100」;シスメックス社製)を用いて計測し、解析ソフト(FPIA−2100 Data Processing Program for FPIA version00−10)を用いて解析を行なった。具体的には、ガラス製100mlビーカーに10wt%界面活性剤(アルキルベンゼンスフォン酸塩ネオゲンSC−A;第一工業製薬性)を0.1〜0.5ml添加し、各トナー0.1〜0.5g添加しミクロスパーテルでかき混ぜ、次いでイオン交換水80mlを添加した。得られた分散液を超音波分散器(本多電子社製)で3分間分散処理した。前記分散液を前記FPIA−2100を用いて濃度を5000〜15000個/μlが得られるまでトナーの形状及び分布を測定した。本測定法は平均円形度の測定再現性の点から前記分散液濃度が5000〜15000個/μlにすることが重要である。前記分散液濃度を得るために前記分散液の条件、すなわち添加する界面活性剤量、トナー量を変更する必要がある。界面活性剤量は前述したトナー粒径の測定と同様にトナーの疎水性により必要量が異なり、多く添加すると泡によるノイズが発生し、少ないとトナーを十分にぬらすことができないため、分散が不十分となる。またトナー添加量は粒径のより異なり、小粒径の場合は少なく、また大粒径の場合は多くする必要があり、トナー粒径が3〜7μmの場合、トナー量を0.1〜0.5g添加することにより分散液濃度を5000〜15000個/μlにあわせることが可能となる。   Measurement was performed using a flow type particle image analyzer (“FPIA-2100”; manufactured by Sysmex Corporation), and analysis was performed using analysis software (FPIA-2100 Data Processing Program for FPIA version 00-10). Specifically, 0.1 to 0.5 ml of 10 wt% surfactant (alkylbenzene sulfonate Neogen SC-A; Daiichi Kogyo Seiyaku) is added to a glass 100 ml beaker, and each toner 0.1 to 0 is added. 0.5 g was added and stirred with a microspatel, and then 80 ml of ion-exchanged water was added. The obtained dispersion was subjected to a dispersion treatment for 3 minutes with an ultrasonic disperser (Honda Electronics). The shape and distribution of the toner were measured using the FPIA-2100 until the density of the dispersion was 5000 to 15000 / μl. In this measurement method, it is important that the concentration of the dispersion liquid is 5000 to 15000 / μl from the viewpoint of measurement reproducibility of the average circularity. In order to obtain the dispersion concentration, it is necessary to change the conditions of the dispersion, that is, the amount of surfactant to be added and the amount of toner. The amount of the surfactant varies depending on the hydrophobicity of the toner as in the measurement of the toner particle diameter described above. If it is added in a large amount, noise due to bubbles is generated, and if it is too small, the toner cannot be sufficiently wetted. It will be enough. Further, the toner addition amount differs from the particle size, and it is necessary to decrease the small particle size and increase the large particle size. When the toner particle size is 3 to 7 μm, the toner amount is 0.1 to 0. By adding 0.5 g, the dispersion concentration can be adjusted to 5000 to 15000 / μl.

(ガラス転移温度)
ここで、前記トナーのガラス転移温度(Tg)は、例えばDSCシステム(示差走査熱量計)(「DSC−60」島津製作所製)を用いて測定することができる。
まず、ポリエステル樹脂約5.0mgをアルミニウム製の試料容器に入れ、試料容器をホルダーユニットに載せ、電気炉中にセットした。次いで、窒素雰囲気下、20℃から昇温速度10℃/minにて150℃まで加熱した。その後、150℃から降温速度10℃/minにて0℃まで冷却させ、更に昇温速度10℃/minにて150℃まで加熱し、示差走査熱量計(「DSC−60」島津製作所製)により、DSC曲線を計測した。得られたDSC曲線から、DSC−60システム中の解析プログラムを用いて、2回目の昇温時におけるDSC曲線のショルダーを選択し、トナーのガラス転移温度(Tg)を算出できる。
(Glass-transition temperature)
Here, the glass transition temperature (Tg) of the toner can be measured using, for example, a DSC system (differential scanning calorimeter) (“DSC-60” manufactured by Shimadzu Corporation).
First, about 5.0 mg of a polyester resin was placed in an aluminum sample container, and the sample container was placed on a holder unit and set in an electric furnace. Subsequently, it heated from 20 degreeC to 150 degreeC with the temperature increase rate of 10 degree-C / min in nitrogen atmosphere. Thereafter, the temperature is lowered from 150 ° C. to 0 ° C. at a rate of temperature decrease of 10 ° C./min, further heated to 150 ° C. at a rate of temperature increase of 10 ° C./min, and a differential scanning calorimeter (“DSC-60” manufactured by Shimadzu Corporation) DSC curve was measured. From the obtained DSC curve, using the analysis program in the DSC-60 system, the shoulder of the DSC curve at the second temperature rise can be selected, and the glass transition temperature (Tg) of the toner can be calculated.

[本発明を構成する各トナー材料]
<結着樹脂>
前記結着樹脂は、低温定着性向上のために低軟化点にした際にも、他の樹脂に比べ対衝撃性に優れるため、トナーの耐ストレスを向上させることができ、かつ分に分子構造中に親水基を有し、比較的極性が高いため、水系媒体との親和性に優れ、より表面平滑化を達成しやすい。良好な低温定着性が得られることから、ポリエステル樹脂が好ましい。また結着樹脂の他に、着色剤を含むことが好ましく、さらには、ワックス等の離型剤その他後述のような副成分を含むことができる。
[Each toner material constituting the present invention]
<Binder resin>
Even when the binder resin has a low softening point for improving low-temperature fixability, it has superior impact resistance compared to other resins, so it can improve the stress resistance of the toner and has a molecular structure. Since it has a hydrophilic group in it and has a relatively high polarity, it has excellent affinity with an aqueous medium, and it is easier to achieve surface smoothing. A polyester resin is preferred because good low-temperature fixability can be obtained. In addition to the binder resin, a colorant is preferably included, and a release agent such as wax and other subcomponents as described below can be further included.

−ポリエステル樹脂−
前記ポリエステル樹脂としては、特に制限はなく、ポリエステル樹脂の分子量、構成モノマーなどが、目的に応じて適宜選択することができる。前記ポリエステル樹脂は、多価アルコールと多価カルボン酸を脱水縮合することにより得られる。前記多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−へキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水素化ビスフェノールA、ビスフェノールAにエチレンオキシド、プロピレンオキシド等の環状エーテルを付加することにより得られる2価のアルコール等が挙げられる。なお、ポリエステル樹脂を架橋させるためには、ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタトリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシベンゼン等の3価以上のアルコールを併用することが好ましい。
-Polyester resin-
There is no restriction | limiting in particular as said polyester resin, The molecular weight of a polyester resin, a structural monomer, etc. can be suitably selected according to the objective. The polyester resin can be obtained by dehydration condensation of a polyhydric alcohol and a polyvalent carboxylic acid. Examples of the polyhydric alcohol include ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, diethylene glycol, triethylene glycol, 1,5-pentanediol, , 6-hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, hydrogenated bisphenol A, divalent alcohols obtained by adding cyclic ethers such as ethylene oxide and propylene oxide to bisphenol A, etc. Is mentioned. In order to crosslink the polyester resin, sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, 1,2,4-butanetriol 1,2,5-pentatriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, 1,3,5-trihydroxybenzene, etc. It is preferable to use a trivalent or higher alcohol together.

前記多価カルボン酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸等のべンゼンジカルボン酸類又はその無水物、コハク酸、アジピン酸、セバシン酸、アゼライン酸等のアルキルジカルボン酸類又はその無水物、マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸等の不飽和二塩基酸、マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物等の不飽和二塩基酸無水物、トリメット酸、ピロメット酸、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシ−2−メチル−2−メチレンカルボキシプロパン、テトラキス(メチレンカルボキシ)メタン、1,2,7,8−オクタンテトラカルボン酸、エンポール三量体酸、これらの無水物、部分低級アルキルエステル等が挙げられる。   Examples of the polyvalent carboxylic acid include benzene dicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid or anhydrides thereof, and alkyldicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid, or anhydrides thereof. Unsaturated dibasic acids such as maleic acid, citraconic acid, itaconic acid, alkenyl succinic acid, fumaric acid, mesaconic acid, etc., unsaturated maleic anhydride, citraconic anhydride, itaconic anhydride, alkenyl succinic anhydride, etc. Dibasic acid anhydride, trimet acid, pyrometic acid, 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid Acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicar Xyl-2-methyl-2-methylenecarboxypropane, tetrakis (methylenecarboxy) methane, 1,2,7,8-octanetetracarboxylic acid, emporic trimer acid, anhydrides thereof, partial lower alkyl esters, etc. It is done.

また、前記ポリエステル樹脂は、トナーの定着性、耐オフセット性の観点から、THFに可溶な成分の分子量分布において、分子量が3,000〜50,000の領域に少なくとも1つのピークを有することが好ましく、分子量5,000〜20,000の領域に少なくとも1つのピークを有することが更に好ましい。更に、ポリエステル樹脂のTHFに可溶な成分は、分子量が100,000以下である成分の含有量が60〜100質量%であることが好ましい。ここで、ポリエステル樹脂の分子量分布は、例えば、THFを溶媒としたゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。   In addition, the polyester resin has at least one peak in a molecular weight range of 3,000 to 50,000 in the molecular weight distribution of components soluble in THF from the viewpoint of toner fixing property and offset resistance. Preferably, it has at least one peak in a region having a molecular weight of 5,000 to 20,000. Further, the component of the polyester resin soluble in THF preferably has a content of a component having a molecular weight of 100,000 or less of 60 to 100% by mass. Here, the molecular weight distribution of the polyester resin can be measured, for example, by gel permeation chromatography (GPC) using THF as a solvent.

前記ポリエステル樹脂のガラス転移温度(Tg)としては、トナーの保存性の観点から、55〜80℃が好ましく、60〜75℃がより好ましい。前記Tgが55〜80℃であると、トナーの高温保存時における安定性に優れ、トナーの低温定着性に優れる。   The glass transition temperature (Tg) of the polyester resin is preferably 55 to 80 ° C., and more preferably 60 to 75 ° C. from the viewpoint of toner storage stability. When the Tg is 55 to 80 ° C., the stability of the toner during high-temperature storage is excellent, and the toner has excellent low-temperature fixability.

また、前記結着樹脂は、ポリエステル樹脂以外の樹脂を含有してもよい。前記ポリエステル樹脂以外の樹脂としては、例えば、スチレン系単量体、アクリル系単量体、メタクリル系単量体等の単独重合体又は共重合体、ポリオール樹脂、フェノール樹脂、シリコーン樹脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、テルペン樹脂、クマロンインデン樹脂、ポリカーボネート樹脂、石油系樹脂等が挙げられる。前記ポリエステル樹脂以外の樹脂は、1種単独で使用してもよく、2種以上を併用してもよい。前記離型剤としては、特に制限はなく、目的に応じて適宜選択することができるが、融点が60〜90℃の低融点の離型剤が好ましい。低融点の離型剤は、前記樹脂と分散されることにより、離型剤として効果的に定着ローラとトナー界面との間で働き、これによりオイルレス(定着ローラにオイルの如き離型剤を塗布しない)でもホットオフセット性が良好である。特に本発明では、定着補助成分の導入によるトナーの低温定着化によって、定着ローラ温度が従来より低い設定温度で使用することが想定されるため、より低温で離型性を発揮する必要がある。そのため、融点90℃以上の離型剤が好適に用いられる。また、離型剤の融点が、60℃未満である場合、トナーの高温保存性が劣る場合があり、得られる画像を劣化させる恐れがある。   Further, the binder resin may contain a resin other than the polyester resin. Examples of the resin other than the polyester resin include homopolymers or copolymers such as styrene monomers, acrylic monomers, and methacrylic monomers, polyol resins, phenol resins, silicone resins, polyurethane resins, Examples thereof include polyamide resin, furan resin, epoxy resin, xylene resin, terpene resin, coumarone indene resin, polycarbonate resin, and petroleum resin. Resins other than the polyester resin may be used alone or in combination of two or more. There is no restriction | limiting in particular as said mold release agent, Although it can select suitably according to the objective, The low melting-point mold release agent whose melting | fusing point is 60-90 degreeC is preferable. The low melting point release agent, when dispersed with the resin, effectively acts as a release agent between the fixing roller and the toner interface, thereby preventing oilless (a release agent such as oil on the fixing roller). Even if it is not applied), the hot offset property is good. In particular, in the present invention, it is assumed that the fixing roller temperature is used at a set temperature lower than the conventional temperature by fixing the toner at a low temperature by introducing a fixing auxiliary component. Therefore, it is necessary to exhibit releasability at a lower temperature. Therefore, a release agent having a melting point of 90 ° C. or higher is preferably used. In addition, when the melting point of the release agent is less than 60 ° C., the high-temperature storage stability of the toner may be inferior, and the obtained image may be deteriorated.

前記ロウ類及びワックス類としては、例えば、カルナウバワックス、綿ロウ、木ロウ、ライスワックス等の植物系ワックス;ミツロウ、ラノリン等の動物系ワックス;オゾケライト、セルシン等の鉱物系ワックス;パラフィン、マイクロクリスタリン、ペトロラタム等の石油ワックス;などの天然ワックスが挙げられる。また、これら天然ワックスのほか、フィッシャー・トロプシュワックス、ポリエチレンワックス、ポリプロピレン等の合成炭化水素ワックス;エステル、ケトン、エーテル等の合成ワックス;などが挙げられる。更に、12−ヒドロキシステアリン酸アミド、ステアリン酸アミド、無水フタル酸イミド、塩素化炭化水素等の脂肪酸アミド系化合物;低分子量の結晶性高分子樹脂である、ポリ−n−ステアリルメタクリレート、ポリ−n−ラウリルメタクリレート等のポリアクリレートのホモ重合体あるいは共重合体(例えば、n−ステアリルアクリレート−エチルメタクリレートの共重合体等);側鎖に長いアルキル基を有する結晶性高分子、などを用いてもよい。   Examples of the waxes and waxes include plant waxes such as carnauba wax, cotton wax, wood wax and rice wax; animal waxes such as beeswax and lanolin; mineral waxes such as ozokerite and cercin; paraffin and micro wax And natural waxes such as petroleum waxes such as crystallin and petrolatum. In addition to these natural waxes, synthetic hydrocarbon waxes such as Fischer-Tropsch wax, polyethylene wax, and polypropylene; synthetic waxes such as esters, ketones, and ethers; Furthermore, fatty acid amide compounds such as 12-hydroxystearic acid amide, stearic acid amide, phthalic anhydride imide, chlorinated hydrocarbon; low molecular weight crystalline polymer resin, poly-n-stearyl methacrylate, poly-n -Polyacrylate homopolymer or copolymer such as lauryl methacrylate (eg, n-stearyl acrylate-ethyl methacrylate copolymer); crystalline polymer having a long alkyl group in the side chain, etc. Good.

これらは1種単独で使用してもよく、2種以上を併用してもよい。前記離型剤の中でも、本発明の離型剤としては、パラフィン、ポリエチレン、ポリプロピレン等の炭化水素系ワックスが好ましい。前記炭化水素系ワックスは、本発明の定着補助成分との相溶性が低いため、互いの機能を損なうことなく独立して作用することができるため、十分な低温定着性を得ることができる。   These may be used alone or in combination of two or more. Among the release agents, as the release agent of the present invention, hydrocarbon waxes such as paraffin, polyethylene, and polypropylene are preferable. Since the hydrocarbon wax has low compatibility with the fixing auxiliary component of the present invention and can act independently without impairing the functions of each other, sufficient low-temperature fixability can be obtained.

着色剤としては、公知の染料及び顔料の中から目的に応じて適宜選択することができ、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミウムレッド、カドミウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロロオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ピグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロムバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトポン等が挙げられ、2種以上併用してもよい。   The colorant can be appropriately selected from known dyes and pigments according to the purpose. For example, carbon black, nigrosine dye, iron black, naphthol yellow S, Hansa yellow (10G, 5G, G), cadmium Yellow, yellow iron oxide, ocher, yellow lead, titanium yellow, polyazo yellow, oil yellow, Hansa yellow (GR, A, RN, R), pigment yellow L, benzidine yellow (G, GR), permanent yellow (NCG) , Vulcan Fast Yellow (5G, R), Tartrazine Lake, Quinoline Yellow Lake, Anthrazan Yellow BGL, Isoindolinone Yellow, Bengala, Lead Red, Lead Zhu, Cadmium Red, Cadmium Mercury Red, Antimon Zhu, Permanent Red 4R, Para red Parachloroorthonitroaniline red, Resol Fast Scarlet G, Brilliant Fast Scarlet, Brilliant Carmine B, Permanent Red (F2R, F4R, FRL, FRLL, F4RH), Fast Scarlet VD, Belkan Fast Rubin B, Brilliant Scarlet G, Resol Rubin GX Permanent Red F5R, Brilliant Carmine 6B, Pigment Scarlet 3B, Bordeaux 5B, Tolujing Maroon, Permanent Bordeaux F2K, Helio Bordeaux BL, Bordeaux 10B, Bon Maroon Light, Bon Maroon Medium, Eosin Lake, Rhodamine Lake B, Rhodamine Lake Y, Alizarin Lake, Thioindigo Red B, Thioindigo Maroon, Oil Red, Quinacridone , Pyrazolone red, polyazo red, chrome vermilion, benzidine orange, perinone orange, oil orange, cobalt blue, cerulean blue, alkali blue rake, peacock blue rake, Victoria blue rake, metal free phthalocyanine blue, phthalocyanine blue, fast sky blue , Indanthrene Blue (RS, BC), Indigo, Ultramarine, Bitumen, Anthraquinone Blue, Fast Violet B, Methyl Violet Lake, Cobalt Purple, Manganese Purple, Dioxane Violet, Anthraquinone Violet, Chrome Green, Zinc Green, Chrome Oxide, Pyridian , Emerald Green, Pigment Green B, Naphthol Green B, Green Gold, Acid Green Lake, Malachite Examples include green lake, phthalocyanine green, anthraquinone green, titanium oxide, zinc white, lithopone, and the like.

トナー材料中の着色剤の含有量は、1〜15重量%であることが好ましく、3〜10重量%がさらに好ましい。この含有量が、1重量%未満であると、トナーの着色力が低下することがあり、15重量%を超えると、トナー中での顔料の分散不良が起こり、着色力の低下及びトナーの電気特性の低下を招くことがある。着色剤は、樹脂と複合化されたマスターバッチとして使用してもよい。このような樹脂としては、例えば、ポリエステル、スチレン又はその置換体の重合体、スチレン系共重合体、ポリメタクリル酸メチル、ポリメタクリル酸ブチル、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族炭化水素樹脂、脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィンワックス等が挙げられ、2種以上併用してもよい。   The content of the colorant in the toner material is preferably 1 to 15% by weight, and more preferably 3 to 10% by weight. If the content is less than 1% by weight, the coloring power of the toner may be reduced. If the content exceeds 15% by weight, poor dispersion of the pigment in the toner will occur. The characteristics may be degraded. The colorant may be used as a master batch combined with a resin. Examples of such resins include polyesters, styrene or substituted polymers thereof, styrene copolymers, polymethyl methacrylate, polybutyl methacrylate, polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, and epoxy resins. , Epoxy polyol resin, polyurethane, polyamide, polyvinyl butyral, polyacrylic acid resin, rosin, modified rosin, terpene resin, aliphatic hydrocarbon resin, alicyclic hydrocarbon resin, aromatic petroleum resin, chlorinated paraffin, paraffin wax 2 or more types may be used in combination.

スチレン又はその置換体の重合体としては、例えば、ポリスチレン、ポリ(p−クロロスチレン)、ポリビニルトルエン等が挙げられる。スチレン系共重合体としては、例えば、スチレン−p−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタレン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−α−クロロメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体等が挙げられる。   Examples of the polymer of styrene or a substituted product thereof include polystyrene, poly (p-chlorostyrene), and polyvinyl toluene. Examples of the styrene copolymer include styrene-p-chlorostyrene copolymer, styrene-propylene copolymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-methyl acrylate copolymer. Copolymer, styrene-ethyl acrylate copolymer, styrene-butyl acrylate copolymer, styrene-octyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-methacrylic copolymer Acid butyl copolymer, styrene-α-chloromethyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene- Acrylonitrile-indene copolymer, steel Down - maleic acid copolymer, styrene - maleic acid ester copolymers and the like.

マスターバッチは、高せん断力をかけて、樹脂と着色剤を混合又は混練させて製造することができる。この際、着色剤と樹脂の相互作用を高めるために、有機溶媒を添加することが好ましい。また、いわゆるフラッシング法も着色剤のウエットケーキをそのまま用いることができ、乾燥する必要がない点で好適である。フラッシング法は、着色剤の水を含んだ水性ペーストを樹脂と有機溶媒と共に混合又は混練し、着色剤を樹脂側に移行させて水及び有機溶媒を除去する方法である。混合又は混練には、例えば、三本ロールミル等の高せん断分散装置を用いることができる。   The master batch can be manufactured by applying a high shear force and mixing or kneading the resin and the colorant. At this time, it is preferable to add an organic solvent in order to enhance the interaction between the colorant and the resin. Also, the so-called flushing method is preferable in that the wet cake of the colorant can be used as it is, and there is no need to dry it. The flushing method is a method in which an aqueous paste containing water of a colorant is mixed or kneaded together with a resin and an organic solvent, and the colorant is transferred to the resin side to remove water and the organic solvent. For mixing or kneading, for example, a high shear dispersion device such as a three-roll mill can be used.

本発明のトナーは、帯電制御剤、無機微粒子、クリーニング性向上剤、磁性材料等をさらに含有することができる。   The toner of the present invention can further contain a charge control agent, inorganic fine particles, a cleaning improver, a magnetic material, and the like.

帯電制御剤としては、例えば、ニグロシン系染料、トリフェニルメタン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、アルキルアミド、リンの単体又は化合物、タングステンの単体又は化合物、フッ素系界面活性剤、サリチル酸の金属塩、サリチル酸誘導体の金属塩等が挙げられ、2種以上併用してもよい。   Examples of the charge control agent include nigrosine dyes, triphenylmethane dyes, chromium-containing metal complex dyes, molybdate chelate pigments, rhodamine dyes, alkoxy amines, quaternary ammonium salts (including fluorine-modified quaternary ammonium salts). ), Alkylamide, simple substance or compound of phosphorus, simple substance or compound of tungsten, fluorine-based surfactant, metal salt of salicylic acid, metal salt of salicylic acid derivative, and the like.

帯電制御剤としては、市販品を用いてもよく、例えば、ニグロシン系染料のボントロン03、4級アンモニウム塩のボントロンP−51、含金属アゾ染料のボントロンS−34、オキシナフトエ酸系金属錯体のE−82、サリチル酸系金属錯体のE−84、フェノール系縮合物のE−89(以上、オリエント化学工業社製)、4級アンモニウム塩モリブデン錯体のTP−302、TP−415(以上、保土谷化学工業社製)、4級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導体のコピーブルーPR、4級アンモニウム塩のコピーチャージ NEG VP2036、コピーチャージ NX VP434(以上、ヘキスト社製)、LRA−901、ホウ素錯体であるLR−147(日本カーリット社製)、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、スルホン酸基、カルボキシル基、4級アンモニウム塩基等の官能基を有する高分子系の化合物等が挙げられる。   Commercially available products may be used as the charge control agent. For example, bontron 03 of nigrosine dye, bontron P-51 of quaternary ammonium salt, bontron S-34 of metal-containing azo dye, oxynaphthoic acid metal complex E-82, E-84 of salicylic acid metal complex, E-89 of phenol-based condensate (above, manufactured by Orient Chemical Co., Ltd.), TP-302, TP-415 of quaternary ammonium salt molybdenum complex (above, Hodogaya) Chemical Industry Co., Ltd.) Quaternary ammonium salt copy charge PSY VP2038, Triphenylmethane derivative copy blue PR, Quaternary ammonium salt copy charge NEG VP2036, Copy charge NX VP434 (above, Hoechst), LRA-901 LR-147 which is a boron complex (manufactured by Nippon Carlit), copper lid Examples thereof include polymer compounds having functional groups such as Russianine, perylene, quinacridone, azo pigments, sulfonic acid groups, carboxyl groups, and quaternary ammonium bases.

トナー組成物中の帯電制御剤の含有量は、例えば、結着樹脂に対して、0.1〜10重量%であることが好ましく、0.2〜5重量%がさらに好ましい。この含有量が、0.1重量%未満であると、帯電制御性が得られないことがあり、10重量%を超えると、トナーの帯電性が大きくなりすぎ、主帯電制御剤の効果を減退させて、現像ローラーとの静電的吸引力が増大し、トナーの流動性低下や画像濃度の低下を招くことがある。   The content of the charge control agent in the toner composition is, for example, preferably 0.1 to 10% by weight, and more preferably 0.2 to 5% by weight with respect to the binder resin. If the content is less than 0.1% by weight, the charge controllability may not be obtained. If the content exceeds 10% by weight, the chargeability of the toner becomes too large and the effect of the main charge control agent is reduced. As a result, the electrostatic attraction force with the developing roller increases, which may lead to a decrease in toner fluidity and a decrease in image density.

無機微粒子は、トナーに流動性、現像性、帯電性等を付与するための外添剤として用いられる。無機微粒子としては、例えば、シリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素等が挙げられ、2種以上併用してもよい。無機微粒子は、一次粒径が5nm〜2μmであることが好ましく、5〜500nmがさらに好ましい。トナー中の無機微粒子の含有量は、0.01〜5.0重量%であることが好ましく、0.01〜2.0重量%がさらに好ましい。また、無機微粒子は、流動性向上剤で表面処理されていることが好ましい。これにより、無機微粒子の疎水性が向上し、高湿度下においても流動性や帯電性の低下を抑制することができる。流動性向上剤としては、例えば、シランカップリング剤、シリル化剤、フッ化アルキル基を有するシランカップリング剤、有機チタネート系カップリング剤、アルミニウム系のカップリング剤、シリコーンオイル、変性シリコーンオイル等が挙げられる。シリカ、酸化チタンは、流動性向上剤で表面処理し、疎水性シリカ、疎水性酸化チタンとして用いることが好ましい。
クリーニング性向上剤は、転写後に感光体や一次転写媒体に残存するトナーを除去しやすくするために用いられる。クリーニング性向上剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム等の脂肪酸金属塩、ポリメタクリル酸メチル微粒子、ポリスチレン微粒子等のソープフリー乳化重合により製造されたポリマー微粒子等が挙げられる。ポリマー微粒子は、比較的粒度分布が狭いものが好ましく、体積平均粒径が0.01〜1μmであることが好ましい。
The inorganic fine particles are used as an external additive for imparting fluidity, developability, chargeability and the like to the toner. Examples of inorganic fine particles include silica, alumina, titanium oxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide, tin oxide, quartz sand, clay, mica, wollastonite, diatomaceous earth, Examples thereof include chromium oxide, cerium oxide, bengara, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, barium carbonate, calcium carbonate, silicon carbide, and silicon nitride. The inorganic fine particles preferably have a primary particle size of 5 nm to 2 μm, more preferably 5 to 500 nm. The content of the inorganic fine particles in the toner is preferably 0.01 to 5.0% by weight, and more preferably 0.01 to 2.0% by weight. The inorganic fine particles are preferably surface-treated with a fluidity improver. As a result, the hydrophobicity of the inorganic fine particles is improved, and a decrease in fluidity and chargeability can be suppressed even under high humidity. Examples of the fluidity improver include, for example, a silane coupling agent, a silylating agent, a silane coupling agent having a fluorinated alkyl group, an organic titanate coupling agent, an aluminum coupling agent, silicone oil, and modified silicone oil. Is mentioned. Silica and titanium oxide are preferably surface-treated with a fluidity improver and used as hydrophobic silica and hydrophobic titanium oxide.
The cleaning property improver is used to facilitate removal of toner remaining on the photoreceptor and the primary transfer medium after transfer. Examples of the cleaning improver include fatty acid metal salts such as zinc stearate and calcium stearate, polymer fine particles produced by soap-free emulsion polymerization such as polymethyl methacrylate fine particles and polystyrene fine particles. The polymer fine particles preferably have a relatively narrow particle size distribution, and preferably have a volume average particle size of 0.01 to 1 μm.

磁性材料としては、例えば、鉄粉、マグネタイト、フェライト等が挙げられる。なお、磁性材料は、トナーの色調の点から、白色のものが好ましい。本発明のトナーは、低温定着性及び耐オフセット性に優れ、長期に亘り、高品位な画像を形成することができる。したがって、本発明のトナーは、各種分野で使用することができ、特に、電子写真法による画像形成に使用することが好ましい。   Examples of the magnetic material include iron powder, magnetite, and ferrite. The magnetic material is preferably white from the viewpoint of the color tone of the toner. The toner of the present invention is excellent in low-temperature fixability and offset resistance, and can form a high-quality image over a long period of time. Therefore, the toner of the present invention can be used in various fields, and is particularly preferably used for image formation by electrophotography.

−トナーの製造方法−
前記トナー母体粒子の製造方法としては、水系媒体中での表面平滑化処理工程を含む限りは、従来公知のトナーの製造方法の中から目的に応じて適宜選択することができるが、例えば、混練・粉砕法、重合法、溶解懸濁法、噴霧造粒法等が挙げられる。その中でもトナー材料が分散溶媒である水との親和性を有するため、加熱によりトナー粒子表面の平滑化をより達成しやすく、そもそもの製造過程において、トナーが水系媒体に分散されている状態を含み、かつ界面活性剤を除去する工程を含むため、表面処理工程に伴う製造プロセスの増大を抑制することができる点から、重合法、溶解懸濁法が好ましい。
-Toner production method-
The toner base particle production method can be appropriately selected from conventionally known toner production methods according to the purpose as long as it includes a surface smoothing treatment step in an aqueous medium. -A grinding method, a polymerization method, a dissolution suspension method, a spray granulation method, etc. are mentioned. Among them, since the toner material has an affinity with water as a dispersion solvent, it is easier to achieve smoothing of the toner particle surface by heating, and in the first place, the toner is dispersed in an aqueous medium. In addition, since it includes a step of removing the surfactant, the polymerization method and the dissolution suspension method are preferable from the viewpoint of suppressing an increase in the production process accompanying the surface treatment step.

−混練・粉砕法−
前記混練・粉砕法は、例えば、少なくとも結着樹脂、離型剤、及び定着補助成分を含有するトナー材料を溶融混練し、得られた混練物を粉砕し、分級することにより、前記トナーの母体粒子を製造する方法である。前記溶融混練では、前記トナー材料を混合し、該混合物を溶融混練機に仕込んで溶融混練する。該溶融混練機としては、例えば、一軸又は二軸の連続混練機や、ロールミルによるバッチ式混練機を用いることができる。例えば、神戸製鋼所製KTK型二軸押出機、東芝機械社製TEM型押出機、ケイシーケイ社製二軸押出機、株式会社池貝製PCM型二軸押出機、ブス社製コニーダー等が好適に用いられる。この溶融混練は、結着樹脂の分子鎖の切断を招来しないような適正な条件で行なうことが好ましい。具体的には、溶融混練温度は、結着樹脂の軟化点を参考にして行われ、該軟化点より高温過ぎると切断が激しく、低温すぎると分散が進まないことがある。
-Kneading and grinding method-
In the kneading and pulverizing method, for example, a toner material containing at least a binder resin, a release agent, and a fixing auxiliary component is melt-kneaded, and the obtained kneaded material is pulverized and classified, whereby the base material of the toner is obtained. A method for producing particles. In the melt kneading, the toner materials are mixed, and the mixture is charged into a melt kneader and melt kneaded. As the melt kneader, for example, a uniaxial or biaxial continuous kneader or a batch kneader using a roll mill can be used. For example, a KTK type twin screw extruder manufactured by Kobe Steel, a TEM type extruder manufactured by Toshiba Machine Co., Ltd., a twin screw extruder manufactured by Casey Kay Co., Ltd., a PCM type twin screw extruder manufactured by Ikegai Co., Ltd. Used. This melt-kneading is preferably performed under appropriate conditions that do not cause the molecular chains of the binder resin to be broken. Specifically, the melt-kneading temperature is determined with reference to the softening point of the binder resin. If the temperature is higher than the softening point, cutting is severe, and if the temperature is too low, dispersion may not proceed.

前記粉砕では、前記混練で得られた混練物を粉砕する。この粉砕においては、まず、混練物を粗粉砕し、次いで微粉砕することが好ましい。この際ジェット気流中で衝突板に衝突させて粉砕したり、ジェット気流中で粒子同士を衝突させて粉砕したり、機械的に回転するローターとステーターの狭いギャップで粉砕する方式が好ましく用いられる。   In the pulverization, the kneaded product obtained by the kneading is pulverized. In this pulverization, it is preferable that the kneaded material is first coarsely pulverized and then finely pulverized. At this time, a method of pulverizing by colliding with a collision plate in a jet stream, pulverizing particles by colliding with each other in a jet stream, or pulverizing with a narrow gap between a mechanically rotating rotor and a stator is preferably used.

前記分級は、前記粉砕で得られた粉砕物を分級して所定粒径の粒子に調整する。前記分級は、例えば、サイクロン、デカンター、遠心分離器等により、微粒子部分を取り除くことにより行なうことができる。前記粉砕及び分級が終了した後に、粉砕物を遠心力などで気流中にて分級し、所定の粒径のトナー母体粒子を製造することができる。   In the classification, the pulverized product obtained by the pulverization is classified and adjusted to particles having a predetermined particle diameter. The classification can be performed, for example, by removing the fine particle portion with a cyclone, a decanter, a centrifuge, or the like. After the pulverization and classification are completed, the pulverized product is classified in an air stream by a centrifugal force or the like to produce toner base particles having a predetermined particle size.

次いで、外添剤のトナー母体粒子への外添が行われる。トナー母体粒子と外添剤とをミキサーを用い、混合及び攪拌することにより外添剤が解砕されながらトナー母体粒子表面に被覆される。この時、無機微粒子や樹脂微粒子等の外添剤を均一かつ強固にトナー母体粒子に付着させることが耐久性の点で重要である。   Next, the external additive is externally added to the toner base particles. By mixing and stirring the toner base particles and the external additive using a mixer, the surface of the toner base particles is coated while being crushed. At this time, it is important from the viewpoint of durability that the external additives such as inorganic fine particles and resin fine particles are uniformly and firmly attached to the toner base particles.

−重合法−
前記重合法によるトナーの製造方法としては、例えば、有機溶媒中に少なくともウレア又はウレタン結合し得る変性されたポリエステル系樹脂、離型剤、及び定着助剤を含むトナー材料を溶解乃至分散させる。そして、この溶解乃至分散物を水系媒体中に分散し、重付加反応させ、この分散液の溶媒を除去し、界面活性剤等を洗浄して得られる。
-Polymerization method-
As a method for producing a toner by the polymerization method, for example, a toner material containing a modified polyester resin capable of at least urea or urethane bond, a release agent, and a fixing aid is dissolved or dispersed in an organic solvent. Then, this solution or dispersion is dispersed in an aqueous medium, subjected to polyaddition reaction, the solvent of this dispersion is removed, and the surfactant or the like is washed.

前記ウレア又はウレタン結合し得る変性されたポリエステル系樹脂としては、例えば、ポリエステルの末端のカルボキシル基や水酸基等と多価イソシアネート化合物(PIC)とを反応させた、イソシアネート基を有するポリエステルプレポリマーなどが挙げられる。そして、このポリエステルプレポリマーとアミン類等の活性水素基含有化合物との反応により分子鎖が架橋及び/又は伸長されて得られる変性ポリエステル樹脂は、低温定着性を維持しながらホットオフセット性を向上させることができる。   Examples of the modified polyester resin capable of being bonded with urea or urethane include, for example, polyester prepolymer having an isocyanate group obtained by reacting a carboxyl group or a hydroxyl group at a terminal of a polyester with a polyvalent isocyanate compound (PIC). Can be mentioned. The modified polyester resin obtained by crosslinking and / or extending the molecular chain by the reaction of the polyester prepolymer with an active hydrogen group-containing compound such as amines improves the hot offset property while maintaining the low temperature fixability. be able to.

前記多価イソシアネート化合物(PIC)としては、例えば脂肪族多価イソシアネート(テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,6−ジイソシアナトメチルカプロエート等);脂環式ポリイソシアネート(イソホロンジイソシアネート、シクロヘキシルメタンジイソシアネート等);芳香族ジイソシアネート(トリレンジイソシアネート、ジフェニルメタンジイソシアネート等);芳香脂肪族ジイソシアネート(α,α,α’,α’−テトラメチルキシリレンジイソシアネート等);イソシアネート類;前記ポリイソシアネートをフェノール誘導体、オキシム、カプロラクタム等でブロックしたもの、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。前記多価イソシアネート化合物(PIC)の比率は、イソシアネート基[NCO]と、水酸基を有するポリエステルの水酸基[OH]の当量比[NCO]/[OH]として、5/1〜1/1が好ましく、4/1〜1.2/1がより好ましく、2.5/1〜1.5/1が更に好ましい。   Examples of the polyvalent isocyanate compound (PIC) include aliphatic polyisocyanates (tetramethylene diisocyanate, hexamethylene diisocyanate, 2,6-diisocyanatomethylcaproate, etc.); alicyclic polyisocyanates (isophorone diisocyanate, cyclohexylmethane). Aromatic diisocyanates (tolylene diisocyanate, diphenylmethane diisocyanate, etc.); araliphatic diisocyanates (α, α, α ′, α′-tetramethylxylylene diisocyanate, etc.); isocyanates; And those blocked with oxime, caprolactam, and the like. These may be used individually by 1 type and may use 2 or more types together. The ratio of the polyvalent isocyanate compound (PIC) is preferably 5/1 to 1/1 as an equivalent ratio [NCO] / [OH] of the isocyanate group [NCO] and the hydroxyl group [OH] of the polyester having a hydroxyl group, 4/1 to 1.2 / 1 is more preferable, and 2.5 / 1 to 1.5 / 1 is still more preferable.

前記イソシアネート基を有するポリエステルプレポリマー(A)中の1分子当たりに含有されるイソシアネート基は、1個以上が好ましく、平均1.5〜3個がより好ましく、平均1.8〜2.5個が更に好ましい。   The number of isocyanate groups contained per molecule in the polyester prepolymer (A) having the isocyanate group is preferably 1 or more, more preferably 1.5 to 3 on average, and 1.8 to 2.5 on average. Is more preferable.

前記ポリエステルプレポリマーと反応させるアミン類(B)としては、2価アミン化合物(B1)、3価以上の多価アミン化合物(B2)、アミノアルコール(B3)、アミノメルカプタン(B4)、アミノ酸(B5)、B1〜B5のアミノ基をブロックしたもの(B6)などが挙げられる。前記2価アミン化合物(B1)としては、例えば芳香族ジアミン(フェニレンジアミン、ジエチルトルエンジアミン、4,4’−ジアミノジフェニルメタン等);脂環式ジアミン(4,4’−ジアミノ−3,3’−ジメチルジシクロヘキシルメタン、ジアミンシクロヘキサン、イソホロンジアミン等);脂肪族ジアミン(エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等)などが挙げられる。前記3価以上の多価アミン化合物(B2)としては、例えばジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。前記アミノアルコール(B3)としては、例えばエタノールアミン、ヒドロキシエチルアニリンなどが挙げられる。前記アミノメルカプタン(B4)としては、例えばアミノエチルメルカプタン、アミノプロピルメルカプタンなどが挙げられる。前記アミノ酸(B5)としては、例えばアミノプロピオン酸、アミノカプロン酸などが挙げられる。前記B1〜B5のアミノ基をブロックしたもの(B6)としては、例えば前記B1〜B5のアミン類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)から得られるケチミン化合物、オキサゾリジン化合物などが挙げられる。これらアミン類(B)の中でも、B1及びB1と少量のB2の混合物が特に好ましい。   Examples of amines (B) to be reacted with the polyester prepolymer include a divalent amine compound (B1), a trivalent or higher polyvalent amine compound (B2), an amino alcohol (B3), an amino mercaptan (B4), an amino acid (B5). ), B1 to B5 amino groups blocked (B6), and the like. Examples of the divalent amine compound (B1) include aromatic diamines (phenylenediamine, diethyltoluenediamine, 4,4′-diaminodiphenylmethane, etc.); alicyclic diamines (4,4′-diamino-3,3′-). Dimethyl dicyclohexyl methane, diamine cyclohexane, isophorone diamine, etc.); aliphatic diamines (ethylene diamine, tetramethylene diamine, hexamethylene diamine, etc.) and the like. Examples of the trivalent or higher polyvalent amine compound (B2) include diethylenetriamine and triethylenetetramine. Examples of the amino alcohol (B3) include ethanolamine and hydroxyethylaniline. Examples of the amino mercaptan (B4) include aminoethyl mercaptan and aminopropyl mercaptan. Examples of the amino acid (B5) include aminopropionic acid and aminocaproic acid. Examples of the blocked B1-B5 amino group (B6) include ketimine compounds and oxazolidine compounds obtained from the amines of B1 to B5 and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.). . Among these amines (B), B1 and a mixture of B1 and a small amount of B2 are particularly preferable.

前記アミン類(B)の比率は、イソシアネート基を有するポリエステルプレポリマー(A)中のイソシアネート基[NCO]と、アミン類(B)中のアミノ基[NHx]の当量比[NCO]/[NHx]として、1/2〜2/1が好ましく、1.5/1〜1/1.5がより好ましく、1.2/1〜1/1.2が更に好ましい。   The ratio of the amines (B) is equivalent to the equivalent ratio [NCO] / [NHx of the isocyanate group [NCO] in the polyester prepolymer (A) having an isocyanate group and the amino group [NHx] in the amine (B). ] Is preferably 1/2 to 2/1, more preferably 1.5 / 1 to 1 / 1.5, and still more preferably 1.2 / 1 to 1 / 1.2.

上記のような重合法によるトナーの製造方法によれば、小粒径かつ球形状トナーを環境負荷少なく、低コストで作製することができる。   According to the method for producing a toner by the polymerization method as described above, a toner having a small particle diameter and a spherical shape can be produced at low cost with little environmental load.

(表面処理工程)
本発明のトナーは、水系媒体中にトナーが分散されてなるトナー分散液を加熱するトナー表面平滑化工程を含む。粉砕法、噴霧造粒法により作成されたトナーでは、水系媒体中に界面活性剤を添加した後、トナーを加え高速せん断分散機にて分散させることでトナー分散液を得ることができる。重合法では、洗浄工程において、トナー分散液中の界面活性剤量を本発明における界面活性剤濃度である臨界ミセル濃度の2倍以下に調整した後、表面処理工程を実施することが好ましい。
(Surface treatment process)
The toner of the present invention includes a toner surface smoothing step of heating a toner dispersion liquid in which the toner is dispersed in an aqueous medium. In a toner prepared by a pulverization method or a spray granulation method, a toner dispersion can be obtained by adding a surfactant to an aqueous medium, adding the toner, and dispersing with a high-speed shearing disperser. In the polymerization method, it is preferable to carry out the surface treatment step after adjusting the amount of the surfactant in the toner dispersion to not more than twice the critical micelle concentration in the present invention, which is the surfactant concentration in the present invention.

(水系媒体)
水系媒体としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、水、水と混和可能な溶剤、これらの混合物、などを用いることができるが、これらの中でも、水が特に好ましい。水と混和可能な溶剤としては、水と混和可能であれば特に制限はなく、例えば、アルコール、ジメチルホルムアミド、テトラヒドロフラン、セルソルブ類、低級ケトン類、などを用いることができる。アルコールとしては、例えば、メタノール、イソプロパノール、エチレングリコール等が挙げられる。また、低級ケトン類としては、例えば、アセトン、メチルエチルケトン等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
(Aqueous medium)
The aqueous medium is not particularly limited and can be appropriately selected from known ones. For example, water, a solvent miscible with water, a mixture thereof, and the like can be used. Is particularly preferred. The solvent miscible with water is not particularly limited as long as it is miscible with water. For example, alcohol, dimethylformamide, tetrahydrofuran, cellosolves, lower ketones, and the like can be used. Examples of the alcohol include methanol, isopropanol, and ethylene glycol. Examples of lower ketones include acetone and methyl ethyl ketone. These may be used individually by 1 type and may use 2 or more types together.

本発明の現像剤は、本発明のトナーを有するが、キャリア等の成分をさらに有してもよく、トナーからなる一成分現像剤、トナー及びキャリアからなる二成分現像剤等として、用いることができるが、近年の情報処理速度の向上に対応した高速プリンタ等には、寿命向上等の点で、二成分現像剤を用いることが好ましい。このような現像剤は、磁性一成分現像法、非磁性一成分現像法、二成分現像法等の公知の各種電子写真法に用いることができる。本発明の現像剤を一成分現像剤として用いると、トナーの収支が行われても、トナーの粒径の変動が少なく、現像ローラへのトナーのフィルミングやトナーを薄層化するためのブレード等の部材へのトナーの融着を抑制することができ、現像装置の長期の使用(撹拌)においても、良好で安定した現像性が得られる。また、本発明の現像剤を二成分現像剤として用いると、長期に亘るトナーの収支が行われても、トナーの粒径の変動が少なく、現像装置における長期の攪拌においても、良好で安定した現像性が得られる。   The developer of the present invention has the toner of the present invention, but may further have a component such as a carrier, and may be used as a one-component developer composed of toner, a two-component developer composed of toner and carrier, or the like. However, it is preferable to use a two-component developer in the high-speed printer and the like corresponding to the recent improvement in information processing speed from the viewpoint of improving the service life. Such a developer can be used in various known electrophotographic methods such as a magnetic one-component development method, a non-magnetic one-component development method, and a two-component development method. When the developer of the present invention is used as a one-component developer, even if the balance of the toner is performed, the fluctuation of the toner particle size is small, and the blade for filming the toner on the developing roller and thinning the toner The toner can be prevented from being fused to a member such as the above, and good and stable developability can be obtained even in the long-term use (stirring) of the developing device. Further, when the developer of the present invention is used as a two-component developer, even if the toner balance is maintained over a long period of time, there is little fluctuation in the particle size of the toner, and even in the long-term agitation in the developing device, it is good and stable Developability is obtained.

二成分現像剤中のキャリアの含有量は、90〜98重量%であることが好ましく、93〜97重量%がさらに好ましい。キャリアは、特に限定されないが、芯材と、芯材を被覆する樹脂層を有することが好ましい。芯材の材料としては、例えば、50〜90emu/gのマンガン−ストロンチウム(Mn−Sr)系材料、マンガン−マグネシウム(Mn−Mg)系材料等が挙げられ、二種以上併用してもよい。なお、画像濃度の確保の点では、芯材として、鉄粉(100emu/g以上)、マグネタイト(75〜120emu/g)等の高磁化材料を用いることが好ましい。また、トナーが穂立ち状態となっている感光体への当りを弱くでき、高画質化に有利である点では、芯材として、銅−ジンク(Cu−Zn)系(30〜80emu/g)等の弱磁化材料を用いることが好ましい。   The content of the carrier in the two-component developer is preferably 90 to 98% by weight, and more preferably 93 to 97% by weight. The carrier is not particularly limited, but preferably has a core material and a resin layer covering the core material. Examples of the core material include 50 to 90 emu / g manganese-strontium (Mn—Sr) -based material, manganese-magnesium (Mn—Mg) -based material, and two or more of them may be used in combination. In terms of securing image density, it is preferable to use a highly magnetized material such as iron powder (100 emu / g or more) or magnetite (75 to 120 emu / g) as the core material. In addition, a copper-zinc (Cu-Zn) system (30 to 80 emu / g) is used as a core material in that it can weaken the hitting of the photoconductor in which the toner is in a spiked state, and is advantageous in improving the image quality. It is preferable to use a weakly magnetized material such as

芯材は、体積平均粒径(D50)が10〜150μmであることが好ましく、20〜80μmがさらに好ましい。D50が10μm未満であると、キャリアの粒径分布において、微粉が多くなるため、1粒子当たりの磁化が低下して、キャリアの飛散が生じることがある。一方、D50が150μmを超えると、キャリアの比表面積が低下して、トナーの飛散が生じることがある。その結果、ベタ部分の多いフルカラーでは、特にベタ部の再現性が低下することがある。   The core material preferably has a volume average particle size (D50) of 10 to 150 μm, more preferably 20 to 80 μm. If D50 is less than 10 μm, fine particles increase in the particle size distribution of the carrier, so that the magnetization per particle may decrease and carrier scattering may occur. On the other hand, if D50 exceeds 150 μm, the specific surface area of the carrier may decrease and toner scattering may occur. As a result, the reproducibility of the solid portion may be deteriorated particularly in a full color with many solid portions.

樹脂層の材料としては、例えば、アミノ系樹脂、ポリビニル系樹脂、ポリスチレン系樹脂、ハロゲン化オレフィン樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリエチレン樹脂、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂、ポリトリフルオロエチレン樹脂、ポリヘキサフルオロプロピレン樹脂、フッ化ビニリデンとアクリル単量体の共重合体、フッ化ビニリデンとフッ化ビニルの共重合体、テトラフルオロエチレンとフッ化ビニリデンと非フッ化単量体のターポリマー等のフルオロターポリマー、シリコーン樹脂等が挙げられ、二種以上併用してもよい。   Examples of the material of the resin layer include amino resins, polyvinyl resins, polystyrene resins, halogenated olefin resins, polyester resins, polycarbonate resins, polyethylene resins, polyvinyl fluoride resins, polyvinylidene fluoride resins, polytrifluoro Ethylene resin, polyhexafluoropropylene resin, copolymer of vinylidene fluoride and acrylic monomer, copolymer of vinylidene fluoride and vinyl fluoride, terpolymer of tetrafluoroethylene, vinylidene fluoride and non-fluorinated monomer Examples thereof include fluoroterpolymers such as polymers, silicone resins, and the like, and two or more of them may be used in combination.

アミノ系樹脂としては、例えば、尿素−ホルムアルデヒド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ユリア樹脂、ポリアミド樹脂、エポキシ樹脂等が挙げられる。ポリビニル系樹脂としては、例えば、アクリル樹脂、ポリメタクリル酸メチル、ポリアクリロニトリル、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルブチラール等が挙げられる。また、ポリスチレン系樹脂としては、例えば、ポリスチレン、スチレン−アクリル共重合体等が挙げられる。ハロゲン化オレフィン樹脂としては、例えば、ポリ塩化ビニル等が挙げられる。ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。   Examples of the amino resin include urea-formaldehyde resin, melamine resin, benzoguanamine resin, urea resin, polyamide resin, and epoxy resin. Examples of the polyvinyl resin include acrylic resin, polymethyl methacrylate, polyacrylonitrile, polyvinyl acetate, polyvinyl alcohol, and polyvinyl butyral. Examples of polystyrene resins include polystyrene and styrene-acrylic copolymers. Examples of the halogenated olefin resin include polyvinyl chloride. Examples of the polyester-based resin include polyethylene terephthalate and polybutylene terephthalate.

また、樹脂層は、必要に応じて、導電粉等を含有してもよい。導電粉の材料としては、例えば、金属、カーボンブラック、酸化チタン、酸化スズ、酸化亜鉛等が挙げられる。なお、導電粉は、平均粒径が1μm以下であることが好ましい。平均粒径が1μmを超えると、電気抵抗の制御が困難になることがある。樹脂層は、例えば、シリコーン樹脂等を溶剤に溶解させて塗布液を調製した後、公知の塗布方法により、芯材の表面に塗布液を塗布して、乾燥及び焼付を行なうことにより形成することができる。塗布方法としては、例えば、浸漬法、スプレー法、ハケ塗り法等が挙げられる。また、溶剤としては、例えば、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、セルソルブチルアセテート等が挙げられる。さらに、焼付方法としては、外部加熱方式及び内部加熱方式のいずれであってもよく、例えば、固定式電気炉、流動式電気炉、ロータリー式電気炉、バーナー炉等を用いる方法、マイクロ波を用いる方法等が挙げられる。   Moreover, a resin layer may contain conductive powder etc. as needed. Examples of the conductive powder material include metals, carbon black, titanium oxide, tin oxide, and zinc oxide. The conductive powder preferably has an average particle size of 1 μm or less. When the average particle size exceeds 1 μm, it may be difficult to control the electric resistance. The resin layer is formed by, for example, preparing a coating solution by dissolving a silicone resin or the like in a solvent, and then applying the coating solution to the surface of the core material by a known coating method, followed by drying and baking. Can do. Examples of the application method include a dipping method, a spray method, and a brush coating method. Examples of the solvent include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, celsol butyl acetate and the like. Furthermore, the baking method may be either an external heating method or an internal heating method, for example, a method using a fixed electric furnace, a fluid electric furnace, a rotary electric furnace, a burner furnace, or the like, or using a microwave. Methods and the like.

キャリア中の樹脂層の含有量は、0.01〜5.0重量%が好ましい。この含有量が0.01重量%未満であると、芯材の表面に均一な樹脂層を形成できないことがあり、5.0重量%を超えると、樹脂層が厚くなり過ぎてキャリア同士の合体造粒が発生して、均一なキャリアが得られないことがある。   The content of the resin layer in the carrier is preferably 0.01 to 5.0% by weight. If this content is less than 0.01% by weight, a uniform resin layer may not be formed on the surface of the core material. If it exceeds 5.0% by weight, the resin layer becomes too thick and the carriers are combined. Granulation may occur and a uniform carrier may not be obtained.

本発明の現像剤は、磁性一成分現像方法、非磁性一成分現像方法、二成分現像方法等の公知の各種電子写真法による画像形成に好適に用いることができる。   The developer of the present invention can be suitably used for image formation by various known electrophotographic methods such as a magnetic one-component development method, a non-magnetic one-component development method, and a two-component development method.

本発明の現像剤収容容器は、本発明の現像剤が収容されているが、容器としては、特に限定されず、公知のものの中から適宜選択することができるが、容器本体とキャップを有するもの等が挙げられる。また、容器本体の大きさ、形状、構造、材質等は、特に限定されないが、形状は、円筒状等であることが好ましく、内周面にスパイラル状の凹凸が形成され、回転させることにより、内容物である現像剤が排出口側に移行することが可能であり、スパイラル状の凹凸の一部又は全てが蛇腹機能を有することが特に好ましい。さらに、材質は、特に限定されないが、寸法精度がよいものであることが好ましく、例えば、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリアクリル酸、ポリカーボネート樹脂、ABS樹脂、ポリアセタール樹脂等の樹脂材料が挙げられる。   The developer container of the present invention contains the developer of the present invention, but the container is not particularly limited and can be appropriately selected from known ones, but has a container body and a cap. Etc. In addition, the size, shape, structure, material, etc. of the container body are not particularly limited, but the shape is preferably cylindrical, etc., spiral irregularities are formed on the inner peripheral surface, and by rotating, It is particularly preferable that the developer as the contents can move to the discharge port side, and that some or all of the spiral irregularities have a bellows function. Furthermore, the material is not particularly limited, but is preferably one having good dimensional accuracy. For example, polyester resin, polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, polyacrylic acid, polycarbonate resin, ABS resin, Examples thereof include resin materials such as polyacetal resin.

現像剤収容容器は、保存、搬送等が容易であり、取扱性に優れるため、後述するプロセスカートリッジ、画像形成装置等に着脱可能に取り付け、現像剤の補給に使用することができる。   Since the developer container is easy to store and transport and has excellent handleability, the developer container can be detachably attached to a process cartridge, an image forming apparatus, etc., which will be described later, and used for replenishing the developer.

[フルカラー画像形成方法]
本発明のフルカラー画像形成方法は、電子写真感光体を帯電手段により帯電させる帯電工程と、前記帯電された電子写真感光体上に露光手段により静電潜像を形成する露光工程と、前記静電潜像を形成された電子写真感光体上にトナーを含む現像手段によりトナー像を形成する現像工程と、前記電子写真感光体上に形成されたトナー像を一次転写手段により中間転写体上に転写する一次転写工程と、前記中間転写体上に転写されたトナー像を二次転写手段により記録材上に転写する二次転写工程と、前記記録材上に転写されたトナー像を熱及び圧力定着部材を含む定着手段により記録材上に定着させる定着工程と、前記一次転写手段によりトナー像を中間転写体上に転写した電子写真感光体の表面に付着している転写残トナーをクリーニング手段によりクリーニングするクリーニング工程とを備えている。そして、現像工程において使用するトナーが、上述の本発明の製造方法で製造されたトナーである。本発明のフルカラー画像形成方法は、二次転写工程において、トナー像の記録材への転写の線速度は300〜1000mm/secであり、二次転写手段のニップ部での転写時間は0.5〜20msecとすることが好ましい。また、本発明のフルカラー画像形成方法は、タンデム方式の電子写真画像形成プロセスを採用することが好ましい。
[Full-color image forming method]
The full color image forming method of the present invention comprises a charging step of charging an electrophotographic photosensitive member with a charging unit, an exposure step of forming an electrostatic latent image on the charged electrophotographic photosensitive member with an exposing unit, and the electrostatic A developing step of forming a toner image on the electrophotographic photosensitive member on which the latent image is formed by a developing unit including toner, and a toner image formed on the electrophotographic photosensitive member is transferred onto the intermediate transfer member by a primary transfer unit. A primary transfer step, a secondary transfer step of transferring a toner image transferred onto the intermediate transfer member onto a recording material by a secondary transfer means, and heat and pressure fixing of the toner image transferred onto the recording material. A fixing step of fixing on a recording material by a fixing means including a member, and cleaning of residual toner adhering to the surface of the electrophotographic photosensitive member having the toner image transferred onto the intermediate transfer member by the primary transfer means. And a cleaning step of cleaning the stage. The toner used in the development process is a toner manufactured by the above-described manufacturing method of the present invention. In the full color image forming method of the present invention, in the secondary transfer step, the linear velocity of transfer of the toner image to the recording material is 300 to 1000 mm / sec, and the transfer time at the nip portion of the secondary transfer means is 0.5. It is preferable to set it to -20 msec. The full color image forming method of the present invention preferably employs a tandem electrophotographic image forming process.

(帯電工程)
本発明の画像形成方法において使用される帯電装置としては、例えば図1及び図2に示した接触式の帯電装置を用いることができる。
(Charging process)
As the charging device used in the image forming method of the present invention, for example, the contact type charging device shown in FIGS. 1 and 2 can be used.

<ローラ式帯電装置>
図1に接触式帯電装置の一種であるローラ式帯電装置(500)の一例の概略構成を示した。被帯電体である像担持体としての感光体(505)は矢印の方向に所定の速度(プロセススピード)で回転駆動される。この感光体(505)に接触させた帯電部材である帯電ローラ(501)は芯金(502)とこの芯金(502)の外周に同心一体にローラ上に形成した導電ゴム層(503)を基本構成とし、芯金の両端を不図示の軸受け部材などで回転自由に保持させるとともに、不図示の加圧手段によって感光ドラムに所定の加圧力で押圧させており、本図の場合はこの帯電ローラ(501)は感光体(505)の回転駆動に従動して回転する。帯電ローラ(501)は、直径9mmの芯金上に100,000Ω・cm程度の中抵抗の導電ゴム層(503)を被膜して直径16mmに形成されている。帯電ローラ(501)の芯金(502)と図示の電源(504)とは電気的に接続されており、電源(504)により帯電ローラ(501)に対して所定のバイアスが印加される。これにより感光体(505)の周面が所定の極性、電位に一様に帯電処理される。
<Roller type charging device>
FIG. 1 shows a schematic configuration of an example of a roller charging device (500) which is a kind of contact charging device. A photosensitive member (505) as an image bearing member, which is a member to be charged, is driven to rotate at a predetermined speed (process speed) in the direction of the arrow. The charging roller (501), which is a charging member brought into contact with the photosensitive member (505), has a core metal (502) and a conductive rubber layer (503) formed on the roller concentrically and integrally on the outer periphery of the core metal (502). The basic structure is such that both ends of the core metal are held freely rotating by a bearing member (not shown), and are pressed against the photosensitive drum with a predetermined pressure by a pressing means (not shown). The roller (501) rotates following the rotational drive of the photoreceptor (505). The charging roller (501) is formed to a diameter of 16 mm by coating a medium resistance conductive rubber layer (503) of about 100,000 Ω · cm on a core metal having a diameter of 9 mm. The cored bar (502) of the charging roller (501) and the illustrated power source (504) are electrically connected, and a predetermined bias is applied to the charging roller (501) by the power source (504). As a result, the peripheral surface of the photoconductor (505) is uniformly charged to a predetermined polarity and potential.

<ファーブラシ式帯電装置>
本発明で使われる帯電装置の形状としてはローラ式帯電装置の他にも、磁気ブラシ式帯電装置、ファーブラシ式帯電装置など、どのような形態をとってもよく、電子写真装置の仕様や形態にあわせて選択可能である。磁気ブラシ式帯電装置を用いる場合、磁気ブラシは例えばZn−Cuフェライト等、各種フェライト粒子を帯電部材として用い、これを支持させるための非磁性の導電スリーブ、これに内包されるマグネットロールによって構成される。また、ファーブラシ式帯電装置を用いる場合、例えばファーブラシの材質としては、カーボン、硫化銅、金属、および金属酸化物により導電処理されたファーを用い、これを金属や他の導電処理された芯金に巻き付けたり張り付けたりすることで帯電装置とする。
<Fur brush type charging device>
The shape of the charging device used in the present invention may take any form, such as a magnetic brush type charging device or a fur brush type charging device, in addition to the roller type charging device, according to the specifications and form of the electrophotographic apparatus. Can be selected. When a magnetic brush charging device is used, the magnetic brush is composed of various ferrite particles such as Zn-Cu ferrite as a charging member, a non-magnetic conductive sleeve for supporting the charging member, and a magnet roll included therein. The In addition, when using a fur brush type charging device, for example, as a material of the fur brush, a fur treated with carbon, copper sulfide, metal, and metal oxide is used, and this is used as a metal or other conductive treated core. A charging device is formed by winding or sticking on gold.

図2に接触式のブラシ式帯電装置(510)の一例の概略構成を示した。被帯電体としての像担持体としての感光体(515)は矢印の方向に所定の速度(プロセススピード)で回転駆動される。この感光体(515)に対して、ファーブラシによって構成されるファーブラシローラ(511)が、ブラシ部(513)の弾性に抗して所定の押圧力をもって所定のニップ幅で接触させてある。   FIG. 2 shows a schematic configuration of an example of a contact-type brush charging device (510). A photoconductor (515) as an image carrier as a member to be charged is driven to rotate at a predetermined speed (process speed) in the direction of the arrow. A fur brush roller (511) constituted by a fur brush is brought into contact with the photoconductor (515) with a predetermined nip width with a predetermined pressing force against the elasticity of the brush portion (513).

本例における接触式帯電装置としてのファーブラシローラ(511)は、電極を兼ねる直径6mmの金属製の芯金(512)に、ブラシ部(513)としてユニチカ(株)製の導電性レーヨン繊維REC−Bをパイル地にしたテープをスパイラル状に巻き付けて、外径14mm、長手方向長さ250mmのロールブラシとしたものである。ブラシ部(513)のブラシは300デニール/50フィラメント、1平方ミリメートル当たり155本の密度である。このロールブラシを内径が12mmのパイプ内に一方向に回転させながらさし込み、ブラシと、パイプが同心となるように設定し、高温多湿雰囲気中に放置してクセ付けで斜毛させた。   The fur brush roller (511) as a contact charging device in this example is composed of a metal cored bar (512) having a diameter of 6 mm which also serves as an electrode, and a conductive rayon fiber REC manufactured by Unitika Ltd. as a brush part (513). A tape with -B piled is wound spirally into a roll brush with an outer diameter of 14 mm and a longitudinal length of 250 mm. The brush of the brush portion (513) has a density of 300 denier / 50 filaments and 155 brushes per square millimeter. This roll brush was inserted into a pipe having an inner diameter of 12 mm while rotating in one direction, and the brush and the pipe were set to be concentric, and left in a high-temperature and high-humidity atmosphere to bend and bevel.

ファーブラシローラ(511)の抵抗値は印加電圧100Vにおいて1×10E5Ωである。この抵抗値は、金属製の直径φ30mmのドラムにファーブラシローラをニップ幅3mmで当接させ、100Vの電圧を印加したときに流れる電流から換算した。このブラシ式帯電装置(510)の抵抗値は、被帯電体である感光体(515)上にピンホール等の低耐圧欠陥部が生じた場合にもこの部分に過大なリーク電流が流れ込んで帯電ニップ部が帯電不良になる画像不良を防止するために10E4Ω以上必要であり、感光体(515)表面に十分に電荷を注入させるために10E7Ω以下である必要がある。   The resistance value of the fur brush roller (511) is 1 × 10E5Ω at an applied voltage of 100V. This resistance value was converted from the current that flows when a fur brush roller is brought into contact with a metal drum having a diameter of φ30 mm with a nip width of 3 mm and a voltage of 100 V is applied. The resistance value of the brush-type charging device (510) is such that even when a low-voltage defective portion such as a pinhole is generated on the photosensitive member (515) to be charged, an excessive leak current flows into this portion. 10E4Ω or more is necessary to prevent an image defect in which the nip portion is poorly charged, and 10E7Ω or less is necessary to sufficiently inject the charge onto the surface of the photoreceptor (515).

ブラシの材質としては、ユニチカ(株)製のREC−B以外にも、REC−C、REC−M1、REC−M10、さらに東レ(株)製のSA−7、日本蚕毛(株)製のサンダーロン、カネボウ製のベルトロン、クラレ(株)のクラカーボ、レーヨンにカーボンを分散したもの、三菱レーヨン(株)製のローバル等が考えられる。ブラシは一本が3〜10デニールで、10〜100フィラメント/束、80〜600本/mmの密度が好ましい。毛足は1〜10mmが好ましい。   As the material of the brush, in addition to REC-B manufactured by Unitika Ltd., REC-C, REC-M1, REC-M10, SA-7 manufactured by Toray Industries, Inc., manufactured by Nippon Kashiwa Co., Ltd. Possible examples include Sanderlon, Kanebo Beltron, Kuraray Co., Ltd., Krabobo, carbon dispersion in rayon, Mitsubishi Rayon Co., Ltd. global. One brush is 3 to 10 denier, and preferably has a density of 10 to 100 filaments / bundle and 80 to 600 brushes / mm. The hair foot is preferably 1 to 10 mm.

このファーブラシローラ(511)は感光体(515)の回転方向と逆方向(カウンター)に所定の周速度(表面の速度)をもって回転駆動され、感光体面に対して速度差を持って接触する。そしてこのブラシローラ(511)に電源(514)から所定の帯電電圧が印加されることで、回転感光体面が所定の極性・電位に一様に接触帯電処理される。   The fur brush roller (511) is rotationally driven at a predetermined peripheral speed (surface speed) in a direction (counter) opposite to the rotation direction of the photoconductor (515), and contacts the photoconductor surface with a speed difference. A predetermined charging voltage is applied to the brush roller (511) from the power source (514), so that the surface of the rotating photosensitive member is uniformly contact-charged to a predetermined polarity and potential.

本例では該ファーブラシローラ(511)による感光体(515)の接触帯電は直接注入帯電が支配的となって行なわれ、回転感光体表面はファーブラシローラ(511)に対する印加帯電電圧とほぼ等しい電位に帯電される。   In this example, the contact charging of the photoreceptor (515) by the fur brush roller (511) is performed by direct injection charging, and the surface of the rotating photoreceptor is almost equal to the applied charging voltage to the fur brush roller (511). Charged to potential.

本発明で使われる帯電部材の形状としてはファーブラシローラ(511)の他にも、帯電ローラ、ファーブラシなど、どのような形態をとってもよく、電子写真装置の仕様や形態にあわせて選択可能である。帯電ローラを用いる場合、芯金上に100000Ω・cm程度の中抵抗ゴム層を被膜して用いるのが一般的である。磁気ブラシを用いる場合、磁気ブラシは例えばZn−Cuフェライト等、各種フェライト粒子を帯電部材として用い、これを支持させるための非磁性の導電スリーブ、これに内包されるマグネットロールによって構成される。   In addition to the fur brush roller (511), the charging member used in the present invention may take any form such as a charging roller or a fur brush, and can be selected according to the specifications and form of the electrophotographic apparatus. is there. When a charging roller is used, it is generally used by coating a medium resistance rubber layer of about 100,000 Ω · cm on a cored bar. In the case of using a magnetic brush, the magnetic brush is composed of various ferrite particles such as Zn—Cu ferrite as a charging member, a non-magnetic conductive sleeve for supporting it, and a magnet roll included therein.

<磁気ブラシ式帯電装置>
図2は、磁気ブラシ式帯電装置の例の概略構成を示した図でもある。被帯電体、像担持体としての感光体(515)は矢印の方向に所定の速度(プロセススピード)で回転駆動される。この感光体(515)に対して、磁気ブラシによって構成されるブラシローラ(511)が、ブラシ部(513)の弾性に抗して所定の押圧力をもって所定のニップ幅で接触させてある。
<Magnetic brush type charging device>
FIG. 2 is also a diagram showing a schematic configuration of an example of a magnetic brush type charging device. A photoreceptor (515) as a charged body and an image carrier is driven to rotate at a predetermined speed (process speed) in the direction of the arrow. A brush roller (511) constituted by a magnetic brush is brought into contact with the photoreceptor (515) with a predetermined nip width with a predetermined pressing force against the elasticity of the brush portion (513).

本例における接触帯電部材としての磁気ブラシとしては、平均粒径:25μmのZn−Cuフェライト粒子と、平均粒径10μmのZn−Cuフェライト粒子を、重量比1:0.05で混合して、それぞれの平均粒径の位置にピークを有する、平均粒径25μmのフェライト粒子を、中抵抗樹脂層でコートした磁性粒子を用いた。接触帯電部材は、上述で作成された被覆磁性粒子、および、これを支持させるための非磁性の導電スリーブ、これに内包されるマグネットロールによって構成され、上記被覆磁性粒子をスリーブ上に、厚さ1mmでコートして、感光体との間に幅約5mmの帯電ニップを形成した。また、該磁性粒子保持スリーブと感光体との間隙は、約500μmとした。さらに、マグネットロールは、スリーブ表面が、感光体表面の周速に対して、その2倍の速さで逆方向に摺擦するように、回転され、感光体と磁気ブラシとが均一に接触するようにした。   As a magnetic brush as a contact charging member in this example, Zn—Cu ferrite particles having an average particle diameter of 25 μm and Zn—Cu ferrite particles having an average particle diameter of 10 μm are mixed at a weight ratio of 1: 0.05, Magnetic particles obtained by coating ferrite particles having an average particle diameter of 25 μm and having a peak at each average particle diameter position with a medium resistance resin layer were used. The contact charging member is composed of the coated magnetic particles prepared above, a nonmagnetic conductive sleeve for supporting the coated magnetic particles, and a magnet roll included therein, and the coated magnetic particles are formed on the sleeve with a thickness. Coating was performed at 1 mm to form a charging nip having a width of about 5 mm between the photosensitive member and the photosensitive member. The gap between the magnetic particle holding sleeve and the photosensitive member was about 500 μm. Further, the magnet roll is rotated so that the sleeve surface rubs in the opposite direction at twice as fast as the peripheral speed of the surface of the photoconductor, and the photoconductor and the magnetic brush are in uniform contact with each other. I did it.

(現像工程)
本発明において感光体の潜像を現像するに際しては、交互電界を印加することが好ましい。図3に示した現像器(600)において、現像時、現像スリーブ(601)には、電源(602)により現像バイアスとして、直流電圧に交流電圧を重畳した振動バイアス電圧が印加される。背景部電位と画像部電位は、上記振動バイアス電位の最大値と最小値の間に位置している。これによって現像部(603)に向きが交互に変化する交互電界が形成される。この交互電界中で現像剤のトナーとキャリアが激しく振動し、トナー(605)が現像スリーブ(601)およびキャリアへの静電的拘束力を振り切って感光体(604)に飛翔し、感光体の潜像に対応して付着する。なお、トナー(605)は、上述の本発明の製造方法で製造されたトナーである。
(Development process)
In developing the latent image on the photoreceptor in the present invention, it is preferable to apply an alternating electric field. In the developing device (600) shown in FIG. 3, during development, a vibration bias voltage in which an AC voltage is superimposed on a DC voltage is applied to the developing sleeve (601) as a developing bias by a power source (602). The background portion potential and the image portion potential are located between the maximum value and the minimum value of the vibration bias potential. As a result, an alternating electric field whose direction changes alternately is formed in the developing portion (603). In this alternating electric field, the developer toner and the carrier vibrate vigorously, and the toner (605) flies to the photosensitive member (604) by shaking off the electrostatic binding force to the developing sleeve (601) and the carrier. It adheres corresponding to the latent image. The toner (605) is a toner manufactured by the above-described manufacturing method of the present invention.

振動バイアス電圧の最大値と最小値の差(ピーク間電圧)は、0.5〜5kVが好ましく、周波数は1〜10kHzが好ましい。振動バイアス電圧の波形は、矩形波、サイン波、三角波等が使用できる。振動バイアスの直流電圧成分は、上記したように背景部電位と画像部電位の間の値であるが、画像部電位よりも背景部電位に近い値である方が、背景部電位領域へのかぶりトナーの付着を防止する上で好ましい。   The difference (maximum peak voltage) between the maximum value and the minimum value of the vibration bias voltage is preferably 0.5 to 5 kV, and the frequency is preferably 1 to 10 kHz. As the waveform of the vibration bias voltage, a rectangular wave, a sine wave, a triangular wave, or the like can be used. As described above, the DC voltage component of the vibration bias is a value between the background part potential and the image part potential, but the value closer to the background part potential than the image part potential is more likely to cover the background part potential region. This is preferable for preventing toner adhesion.

振動バイアス電圧の波形が矩形波の場合、デューティ比を50%以下とすることが望ましい。ここでデューティ比とは、振動バイアスの1周期中でトナーが感光体に向かおうとする時間の割合である。このようにすることにより、トナーが感光体に向かおうとするピーク値とバイアスの時間平均値との差を大きくすることができるので、トナーの運動がさらに活発化し、トナーが潜像面の電位分布に忠実に付着してざらつき感や解像力を向上させることができる。またトナーとは逆極性の電荷を有するキャリアが感光体に向かおうとするピーク値とバイアスの時間平均値との差を小さくすることができるので、キャリアの運動を沈静化し、潜像の背景部にキャリアが付着する確率を大幅に低減することができる。   When the vibration bias voltage waveform is a rectangular wave, the duty ratio is preferably 50% or less. Here, the duty ratio is a ratio of time during which the toner is directed to the photosensitive member during one period of the vibration bias. By doing so, the difference between the peak value at which the toner is directed to the photoreceptor and the time average value of the bias can be increased, so that the movement of the toner is further activated and the potential of the latent image surface is increased. It can adhere to the distribution and improve the roughness and resolution. In addition, since the difference between the peak value of the carrier having a charge opposite to that of the toner and the time average value of the bias toward the photosensitive member can be reduced, the movement of the carrier is reduced, and the background portion of the latent image is reduced. The probability of carriers adhering to the substrate can be greatly reduced.

(定着装置)
本発明の画像形成方法において使用される定着装置としては、例えば図4に示した帯電装置を用いることができる。図4に示す定着装置は、誘導加熱手段(760)の電磁誘導により加熱される加熱ローラ(710)と、該加熱ローラ(710)と平行に配置された定着ローラ(720)(対向回転体)と、該加熱ローラ(710)と定着ローラ(720)とに張り渡され、該加熱ローラ(710)により加熱されるとともに少なくともこれらの何れかのローラの回転により矢印A方向に回転する無端帯状の定着ベルト(耐熱性ベルト、トナー加熱媒体)(730)と、該定着ベルト(730)を介して定着ローラ(720)に圧接されるとともに定着ベルト(730)に対して順方向に回転する加圧ローラ(740)(加圧回転体)とから構成されている。
(Fixing device)
As the fixing device used in the image forming method of the present invention, for example, a charging device shown in FIG. 4 can be used. The fixing device shown in FIG. 4 includes a heating roller (710) heated by electromagnetic induction of an induction heating means (760), and a fixing roller (720) (opposite rotating body) arranged in parallel with the heating roller (710). And an endless belt that is stretched between the heating roller (710) and the fixing roller (720), is heated by the heating roller (710), and rotates in the direction of arrow A by at least one of these rollers rotating. A fixing belt (heat-resistant belt, toner heating medium) (730) and a pressure that is pressed against the fixing roller (720) via the fixing belt (730) and rotates in the forward direction with respect to the fixing belt (730). It is comprised from a roller (740) (pressure rotary body).

加熱ローラ(710)は例えば鉄、コバルト、ニッケルまたはこれら金属の合金等の中空円筒状の磁性金属部材からなり、外径を例えば20〜40mm、肉厚を例えば0.3〜1.0mmとして、低熱容量で昇温の早い構成となっている。   The heating roller (710) is made of, for example, a hollow cylindrical magnetic metal member such as iron, cobalt, nickel, or an alloy of these metals, and has an outer diameter of, for example, 20 to 40 mm and a wall thickness of, for example, 0.3 to 1.0 mm. It has a low heat capacity and quick temperature rise.

定着ローラ(720)(対向回転体)は、例えばステンレススチール等の金属製の芯金(721)と、耐熱性を有するシリコーンゴムをソリッド状または発泡状にして芯金(721)を被覆した弾性部材(722)とからなる。そして、加圧ローラ(740)からの押圧力でこの加圧ローラ(740)と定着ローラ(720)との間に所定幅の接触部を形成するために外形を20〜40mm程度として加熱ローラ(710)より大きくしている。弾性部材(722)は、その肉厚を4〜6mm程度としている。この構成により、加熱ローラ(710)の熱容量は定着ローラ(720)の熱容量より小さくなるので、加熱ローラ(710)が急激に加熱されてウォームアップ時間が短縮される。   The fixing roller (720) (opposite rotating body) is made of, for example, a metal core (721) made of stainless steel or the like and a heat-resistant silicone rubber that is solid or foamed and covered with the core (721). It consists of a member (722). In order to form a contact portion having a predetermined width between the pressure roller (740) and the fixing roller (720) by the pressing force from the pressure roller (740), the outer shape is set to about 20 to 40 mm. 710). The elastic member (722) has a thickness of about 4 to 6 mm. With this configuration, since the heat capacity of the heating roller (710) is smaller than the heat capacity of the fixing roller (720), the heating roller (710) is rapidly heated and the warm-up time is shortened.

加熱ローラ(710)と定着ローラ(720)とに張り渡された定着ベルト(730)は、誘導加熱手段(760)により加熱される加熱ローラ(710)との接触部位(W1)で加熱される。そして、加熱ローラ(710)と定着ローラ(720)の回転によって定着ベルト(730)の内面が連続的に加熱され、結果としてベルト全体に渡って加熱される。図中、符号(742)は弾性部材を、符号(750)は温度検知部材を、それぞれ示す。   The fixing belt (730) stretched between the heating roller (710) and the fixing roller (720) is heated at the contact portion (W1) with the heating roller (710) heated by the induction heating means (760). . Then, the inner surface of the fixing belt (730) is continuously heated by the rotation of the heating roller (710) and the fixing roller (720). As a result, the entire belt is heated. In the figure, reference numeral (742) denotes an elastic member, and reference numeral (750) denotes a temperature detection member.

図5に定着ベルト(730)の層構成を示す。ベルト(730)の構成は、内層から表層に向かって下記4層であり、以下のようにすることができる。
・基体(731):ポリイミド(PI)樹脂などの樹脂層
・発熱層(732):Ni、Ag、SUS等の導電材料層
・中間層(733):均一定着のための弾性層
・離型層(734):離型効果とオイルレス化のための弗素樹脂材料等の樹脂層
FIG. 5 shows a layer structure of the fixing belt (730). The belt (730) has the following four layers from the inner layer to the surface layer, and can be configured as follows.
-Base (731): Resin layer such as polyimide (PI) resin-Heat generation layer (732): Conductive material layer such as Ni, Ag, SUS-Intermediate layer (733): Elastic layer for uniform fixing-Release layer (734): Resin layer such as fluorine resin material for releasing effect and oil-less

離型層(734)の厚さとしては、10μmから300μm程度が望ましく、特に200μm程度が望ましい。このようにすれば、図4に示すような定着装置(700)において、記録材(770)上に形成されたトナー像(T)を定着ベルト(730)の表層部が十分に包み込むため、トナー像(T)を均一に加熱溶融することが可能になる。離型層(734)の厚さ、即ち表面離型層は経時耐磨耗性を確保するためには最低10μmは必要である。また、離型層(734)の厚さが300μmよりも大きい場合には、定着ベルト(730)の熱容量が大きくなってウォームアップにかかる時間が長くなる。さらに、トナー像定着工程において定着ベルト(730)の表面温度が低下しにくくなって、定着部出口における融解したトナーの凝集効果が得られず、定着ベルト(730)の離型性が低下してトナー像(T)のトナーが定着ベルト(730)に付着し、いわゆるホットオフセットが発生する。なお、定着ベルト(730)の基体として、上記金属からなる発熱層(732)としてもよいが、フッ素系樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、PEEK樹脂、PES樹脂、PPS樹脂などの耐熱性を有する樹脂層を用いてもよい。   The thickness of the release layer (734) is preferably about 10 μm to 300 μm, particularly about 200 μm. In this way, in the fixing device (700) as shown in FIG. 4, the toner image (T) formed on the recording material (770) is sufficiently wrapped by the surface layer portion of the fixing belt (730). The image (T) can be heated and melted uniformly. The thickness of the release layer (734), that is, the surface release layer, needs to be at least 10 μm in order to ensure wear resistance over time. Further, when the thickness of the release layer (734) is larger than 300 μm, the heat capacity of the fixing belt (730) is increased and the time required for warm-up is increased. Further, the surface temperature of the fixing belt (730) is hardly lowered in the toner image fixing step, and the effect of aggregating the melted toner at the fixing portion outlet cannot be obtained, and the releasability of the fixing belt (730) is lowered. The toner of the toner image (T) adheres to the fixing belt (730), and so-called hot offset occurs. The heat generating layer (732) made of the above metal may be used as the base of the fixing belt (730), but the heat resistance of fluorine resin, polyimide resin, polyamide resin, polyamideimide resin, PEEK resin, PES resin, PPS resin, etc. A resin layer having properties may be used.

加圧ローラ(740)は、たとえば銅またはアルミ等の熱伝導性の高い金属製の円筒部材からなる芯金(741)と、この芯金(741)の表面に設けられた耐熱性およびトナー離型性の高い弾性部材(742)とから構成されている。芯金(741)には上記金属以外にSUSを使用してもよい。加圧ローラ(740)は定着ベルト(730)を介して定着ローラ(720)を押圧して定着ニップ部(N)を形成しているが、本実施の形態では、加圧ローラ(740)の硬度を定着ローラ(720)に比べて硬くすることによって、加圧ローラ(740)が定着ローラ(720)(及び定着ベルト(730))へ食い込む形となり、この食い込みにより、記録材(770)は加圧ローラ(740)表面の円周形状に沿うため、記録材(770)が定着ベルト(730)表面から離れやすくなる効果を持たせている。この加圧ローラ(740)の外径は定着ローラ(720)と同じ20〜40mm程度であるが、肉圧は0.5〜2.0mm程度で定着ローラ(720)より薄く構成されている。   The pressure roller (740) includes, for example, a metal core (741) made of a metal cylindrical member having a high thermal conductivity such as copper or aluminum, and heat resistance and toner separation provided on the surface of the metal core (741). It is comprised from the elastic member (742) with high moldability. In addition to the above metal, SUS may be used for the core metal (741). The pressure roller (740) presses the fixing roller (720) via the fixing belt (730) to form a fixing nip (N). In this embodiment, the pressure roller (740) By making the hardness harder than that of the fixing roller (720), the pressure roller (740) bites into the fixing roller (720) (and the fixing belt (730)), and by this biting, the recording material (770) becomes. The recording material (770) is easily separated from the surface of the fixing belt (730) because it follows the circumferential shape of the surface of the pressure roller (740). The outer diameter of the pressure roller (740) is about 20 to 40 mm, which is the same as that of the fixing roller (720), but the wall pressure is about 0.5 to 2.0 mm and is thinner than the fixing roller (720).

電磁誘導により加熱ローラ(710)を加熱する誘導加熱手段(760)は、図4に示すように、磁界発生手段である励磁コイル(761)と、この励磁コイル(761)が巻き回されたコイルガイド板(762)とを有している。コイルガイド板(762)は加熱ローラ(710)の外周面に近接配置された半円筒形状をしており、励磁コイル(761)は長い一本の励磁コイル線材をこのコイルガイド板(762)に沿って加熱ローラ(710)の軸方向に交互に巻き付けたものである。なお、励磁コイル(761)は、発振回路が周波数可変の駆動電源(図示せず)に接続されている。励磁コイル(761)の外側には、フェライト等の強磁性体よりなる半円筒形状の励磁コイルコア(763)が、励磁コイルコア支持部材(764)に固定されて励磁コイル(761)に近接配置されている。   As shown in FIG. 4, the induction heating means (760) for heating the heating roller (710) by electromagnetic induction includes an excitation coil (761) as a magnetic field generation means and a coil around which the excitation coil (761) is wound. And a guide plate (762). The coil guide plate (762) has a semi-cylindrical shape disposed close to the outer peripheral surface of the heating roller (710), and the excitation coil (761) has a single long excitation coil wire as the coil guide plate (762). Along the axial direction of the heating roller (710). The excitation coil (761) has an oscillation circuit connected to a drive power supply (not shown) whose frequency is variable. On the outside of the exciting coil (761), a semi-cylindrical exciting coil core (763) made of a ferromagnetic material such as ferrite is fixed to the exciting coil core support member (764) and is disposed close to the exciting coil (761). Yes.

[プロセスカートリッジ]
本発明のプロセスカートリッジは、電子写真感光体と、前記電子写真感光体を帯電させる帯電手段と、前記帯電された電子写真感光体上に静電潜像を形成する露光手段と、前記電子写真感光体上に形成された静電潜像をトナーによりトナー像とする現像手段と、前記電子写真感光体上に形成されたトナー像を中間転写体を介して又は介さずに記録材上に転写する転写手段と、前記記録材上に転写されたトナー像を熱及び圧力定着部材により記録材上に定着させる定着手段定着工程と、前記転写手段によりトナー像を中間転写体又は記録材上に転写した後の電子写真感光体表面に付着している転写残トナーをクリーニングするクリーニング手段とを備えた画像形成装置における各手段のうち、少なくとも電子写真感光体、及び現像手段を含む上記手段を一体に支持して画像形成装置本体に着脱自在としたものである。そして、現像手段には、上述の本発明の製造方法によって製造したトナーを備えている。現像手段及び帯電手段としては、上述の現像装置及び帯電装置が好適に使用できる。
[Process cartridge]
The process cartridge of the present invention includes an electrophotographic photosensitive member, a charging unit that charges the electrophotographic photosensitive member, an exposure unit that forms an electrostatic latent image on the charged electrophotographic photosensitive member, and the electrophotographic photosensitive member. Developing means for converting the electrostatic latent image formed on the body into a toner image with toner, and transferring the toner image formed on the electrophotographic photosensitive member onto a recording material with or without an intermediate transfer member. A transfer unit; a fixing unit fixing step of fixing the toner image transferred onto the recording material onto the recording material by a heat and pressure fixing member; and the toner image is transferred onto the intermediate transfer member or the recording material by the transfer unit. Among the units in the image forming apparatus provided with the cleaning unit for cleaning the transfer residual toner adhering to the surface of the subsequent electrophotographic photosensitive member, the upper part including at least the electrophotographic photosensitive member and the developing unit. It is obtained by detachable to the image forming apparatus main body integrally supported means. The developing means includes a toner manufactured by the above-described manufacturing method of the present invention. As the developing unit and the charging unit, the above-described developing device and charging device can be preferably used.

本発明のプロセスカートリッジの例を図6に示す。図6に示したプロセスカートリッジ(800)は、感光体(801)、帯電手段(802)、現像手段(803)、クリーニング手段(806)を備えている。このプロセスカートリッジ(800)の動作を説明すると、感光体(801)が所定の周速度で回転駆動される。感光体(801)は回転過程において、帯電手段(802)によりその周面に正または負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の不図示の像露光手段からの画像露光光を受け、こうして感光体(801)の周面に静電潜像が順次形成され、形成された静電潜像は、次いで現像手段(803)によりトナー像化され、現像されたトナー像は、給紙部から感光体(801)と不図示の転写手段との間に感光体(801)の回転と同期されて給送された記録材に、転写手段により順次転写されていく。像転写を受けた記録材は感光体面から分離されて不図示の像定着手段へ導入されて像定着され、複写物(コピー)として装置外へプリントアウトされる。像転写後の感光体(801)の表面は、クリーニング手段(806)によって転写残りトナーの除去を受けて清浄面化され、更除電された後、繰り返し画像形成に使用される。図中、符号(804)はトナーを、符号(805)は現像ローラを、それぞれ示す。   An example of the process cartridge of the present invention is shown in FIG. The process cartridge (800) shown in FIG. 6 includes a photoreceptor (801), a charging unit (802), a developing unit (803), and a cleaning unit (806). The operation of the process cartridge (800) will be described. The photosensitive member (801) is rotationally driven at a predetermined peripheral speed. In the rotating process, the photosensitive member (801) is uniformly charged at a predetermined positive or negative potential on its peripheral surface by the charging means (802), and then from an image exposure means (not shown) such as slit exposure or laser beam scanning exposure. In this way, an electrostatic latent image is sequentially formed on the peripheral surface of the photoreceptor (801), and the formed electrostatic latent image is then converted into a toner image by the developing means (803) and developed. The toner image is sequentially transferred from the paper feeding unit to the recording material fed between the photosensitive member (801) and a transfer unit (not shown) in synchronization with the rotation of the photosensitive member (801) by the transfer unit. . The recording material that has undergone image transfer is separated from the surface of the photosensitive member, introduced into an image fixing means (not shown), and fixed on the image, and printed out as a copy (copy). The surface of the photoconductor (801) after the image transfer is cleaned by removing the transfer residual toner by the cleaning means (806), and after being further discharged, it is repeatedly used for image formation. In the figure, reference numeral (804) denotes toner, and reference numeral (805) denotes a developing roller.

(フルカラー画像形成方法)
本発明のフルカラー画像形成方法において使用されるフルカラー画像形成装置としては、例えば図7、図8に示したタンデム方式の画像形成装置(100)を用いることができる。図7において、画像形成装置(100)は電子写真方式によるカラー画像形成を行なうための画像書込部(120Bk、120C、120M、120Y)、画像形成部(130Bk、130C、130M、130Y)、給紙部(140)から主に構成されている。画像信号を元に、画像処理部(図示せず)で画像処理を行ない、画像形成用の黒(Bk)、シアン(C)、マゼンタ(M)、イエロー(Y)の各色信号に変換し、画像書込部(120Bk、120C、120M、120Y)に送信する。画像書込部(120Bk、120C、120M、120Y)は、例えば、レーザ光源、回転多面鏡等の偏向器、走査結像光学系及びミラー群(いずれも図示せず)からなるレーザ走査光学系であり、上記の各色信号に対応した4つの書込光路を有し、画像形成部(130Bk、130C、130M、130Y)に各色信号に応じた画像書込を行なう。
(Full color image forming method)
As the full-color image forming apparatus used in the full-color image forming method of the present invention, for example, the tandem image forming apparatus (100) shown in FIGS. 7 and 8 can be used. In FIG. 7, an image forming apparatus (100) includes an image writing unit (120Bk, 120C, 120M, 120Y), an image forming unit (130Bk, 130C, 130M, 130Y), a feed for performing color image formation by electrophotography. It is mainly composed of a paper portion (140). Based on the image signal, image processing is performed by an image processing unit (not shown) and converted into black (Bk), cyan (C), magenta (M), and yellow (Y) color signals for image formation, It transmits to an image writing part (120Bk, 120C, 120M, 120Y). The image writing unit (120Bk, 120C, 120M, 120Y) is a laser scanning optical system including, for example, a laser light source, a deflector such as a rotary polygon mirror, a scanning imaging optical system, and a mirror group (none of which are shown). There are four writing optical paths corresponding to the respective color signals, and image writing corresponding to the respective color signals is performed in the image forming units (130Bk, 130C, 130M, and 130Y).

画像形成部(130Bk、130C、130M、130Y)は、黒、シアン、マゼンタ、イエロー用の各感光体(210Bk、210C、210M、210Y)を備え、これらの各色用の感光体(210Bk、210C、210M、210Y)には通常OPC感光体が用いられる。各感光体(210Bk、210C、210M、210Y)の周囲には、帯電装置(215Bk、215C、215M、215Y)、上記画像書込部(120Bk、120C、120M、120Y)からのレーザ光の露光部、各色用の現像装置(200Bk、200C、200M、200Y)、1次転写装置(230Bk、230C、230M、230Y)、クリーニング装置(300Bk、300C、300M、300Y)、除電装置(図示せず)等が配設されている。なお、上記現像装置(200Bk、200C、200M、200Y)には、2成分磁気ブラシ現像方式を用いている。また、中間転写ベルト(220)が各感光体(210Bk、210C、210M、210Y)と1次転写装置(230Bk、230C、230M、230Y)との間に介在し、この中間転写ベルト(220)に各感光体から各色のトナー像が順次重ね合わせて転写され、各感光体上のトナー像を担持する。   The image forming unit (130Bk, 130C, 130M, and 130Y) includes photoconductors (210Bk, 210C, 210M, and 210Y) for black, cyan, magenta, and yellow, and the photoconductors (210Bk, 210C, and 210Y) for these colors. 210M and 210Y) are usually OPC photoreceptors. Around each photoconductor (210Bk, 210C, 210M, 210Y), there is a charging device (215Bk, 215C, 215M, 215Y), an exposure unit for laser light from the image writing unit (120Bk, 120C, 120M, 120Y). , Developing devices for each color (200Bk, 200C, 200M, 200Y), primary transfer devices (230Bk, 230C, 230M, 230Y), cleaning devices (300Bk, 300C, 300M, 300Y), static eliminators (not shown), etc. Is arranged. The developing device (200Bk, 200C, 200M, 200Y) uses a two-component magnetic brush developing system. An intermediate transfer belt (220) is interposed between each photoconductor (210Bk, 210C, 210M, 210Y) and the primary transfer device (230Bk, 230C, 230M, 230Y), and this intermediate transfer belt (220). The toner images of the respective colors are sequentially transferred from the respective photoconductors so as to carry the toner images on the respective photoconductors.

場合によっては、この中間転写ベルト(220)の外側で、最終色の1次転写位置通過後で2次転写位置通過前の位置に転写前帯電手段としてのプレ転写チャージャ(502)が配設されるのが好ましい。このプレ転写チャージャ(502)は、上記1次転写部で感光体(210)に転写された中間転写ベルト(220)上のトナー像を記録材としての転写紙に転写する前に、トナー像をトナー像と同極性に均一に帯電するものである。   In some cases, a pre-transfer charger (502) as pre-transfer charging means is disposed outside the intermediate transfer belt (220) at a position after passing the primary transfer position of the final color and before passing the secondary transfer position. It is preferable. The pre-transfer charger (502) transfers the toner image before transferring the toner image on the intermediate transfer belt (220) transferred to the photosensitive member (210) to the transfer paper as a recording material. The toner image is uniformly charged to the same polarity as the toner image.

各感光体(210Bk、210C、210M、210Y)から転写された中間転写ベルト(220)上のトナー像は、ハーフトーン部及びベタ部を含んでいたりトナーの重ね合せ量が異なる部分を含んでいたりするため、帯電量がばらついている場合がある。また、中間転写ベルト移動方向における1次転写部の隣接下流側の空隙に発生する剥離放電により、1次転写後の中間転写ベルト(220)上のトナー像内に帯電量のばらつきが発生する場合もある。このような同一トナー像内の帯電量のばらつきは中間転写ベルト(220)上のトナー像を転写紙に転写する2次転写部における転写余裕度を低下させてしまう。そこで、プレ転写チャージャで転写紙へ転写する前のトナー像をトナー像と同極性に均一に帯電することにより、同一トナー像内の帯電量のばらつきを解消し、2次転写部における転写余裕度を向上させている。図中、符号(250Bk、250C、250M、250Y)は各色のトナー移送管を、符号(260)は中間転写ベルトクリーニング装置を、符号(500)は転写ベルトを、符号(502)は転写チャージャを、符号(600)は二次転写ローラを、符号(10Y、10C、10M、10K)は各感光体を、符号(14)は第1の支持ローラを、符号(15)は第2の支持ローラを、符号(16)は第3の支持ローラを、符号(130)は原稿台を、符号(40)は感光体を、符号(142)は給紙ローラを、符号(143)はペーパーバンクを、符号(144)は給紙カセットを、符号(145)は分離ローラを、符号(146)は給紙路を、符号(147)は搬送ローラを、符号(148)は給紙路を、符号(52)は分離ローラを、符号(58)は給紙ローラを、符号(62)は1次転写装置を、符号(100)は画像形成装置を、符号(110)は複写装置本体を、符号(110)は画像形成装置本体を、符号(120)は各カラー画像形成ユニットを、符号(130)は原稿載置台を、符号(145)は分離ローラを、符号(146)は給紙路を、符号(147)は搬送ローラを、符号(148)は給紙路を、それぞれ示す。   The toner image on the intermediate transfer belt (220) transferred from each photoconductor (210Bk, 210C, 210M, 210Y) includes a halftone portion and a solid portion, or includes portions having different amounts of toner overlap. Therefore, the charge amount may vary. Further, when the discharge amount generated in the gap adjacent to the downstream side of the primary transfer portion in the movement direction of the intermediate transfer belt causes variation in charge amount in the toner image on the intermediate transfer belt (220) after the primary transfer. There is also. Such variation in the charge amount in the same toner image lowers the transfer margin in the secondary transfer portion that transfers the toner image on the intermediate transfer belt (220) onto the transfer paper. Therefore, the toner image before being transferred to the transfer paper by the pre-transfer charger is uniformly charged to the same polarity as the toner image, thereby eliminating the variation in the charge amount in the same toner image and the transfer margin in the secondary transfer portion. Has improved. In the figure, reference numerals (250Bk, 250C, 250M, 250Y) denote toner transfer pipes of the respective colors, reference numeral (260) denotes an intermediate transfer belt cleaning device, reference numeral (500) denotes a transfer belt, and reference numeral (502) denotes a transfer charger. , (600) is a secondary transfer roller, (10Y, 10C, 10M, 10K) is each photoconductor, (14) is a first support roller, and (15) is a second support roller. Reference numeral (16) indicates a third support roller, reference numeral (130) indicates a document table, reference numeral (40) indicates a photosensitive member, reference numeral (142) indicates a paper feed roller, and reference numeral (143) indicates a paper bank. , (144) is a paper feed cassette, (145) is a separation roller, (146) is a paper feed path, (147) is a transport roller, and (148) is a paper feed path. (52) is the separation roller, Reference numeral (58) denotes a paper feed roller, reference numeral (62) denotes a primary transfer device, reference numeral (100) denotes an image forming apparatus, reference numeral (110) denotes a copying apparatus main body, and reference numeral (110) denotes an image forming apparatus main body. Reference numeral (120) denotes each color image forming unit, reference numeral (130) denotes a document placement table, reference numeral (145) denotes a separation roller, reference numeral (146) denotes a paper feed path, and reference numeral (147) denotes a conveyance roller. Reference numeral (148) denotes a paper feed path.

以上、この画像形成方法によれば、各感光体(210Bk、210C、210M、210Y)から転写した中間転写ベルト(220)上のトナー像をプレ転写チャージャ(502)で均一に帯電することにより、中間転写ベルト(220)上のトナー像内に帯電量のばらつきがあっても、2次転写部における転写特性を、中間転写ベルト(220)上のトナー像の各部に渡ってほぼ一定にすることができる。従って、転写紙へ転写する時の転写余裕度の低下を抑え、トナー像を安定して転写できる。   As described above, according to this image forming method, the toner image on the intermediate transfer belt (220) transferred from each photoconductor (210Bk, 210C, 210M, 210Y) is uniformly charged by the pre-transfer charger (502). Even if there is a variation in the charge amount in the toner image on the intermediate transfer belt (220), the transfer characteristics in the secondary transfer portion are made almost constant across the portions of the toner image on the intermediate transfer belt (220). Can do. Therefore, it is possible to suppress a decrease in transfer margin when transferring to transfer paper and to stably transfer a toner image.

なお、この画像形成方法において、プレ転写チャージャで帯電される帯電量は、帯電対象物である中間転写ベルト(220)の移動速度に依存して変化する。例えば、中間転写ベルト(220)の移動速度が遅ければ、中間転写ベルト(220)上のトナー像の同一部分がプレ転写チャージャによる帯電領域を通過する時間が長くなるので、帯電量が大きくなる。逆に、中間転写ベルト(220)の移動速度が速いと、中間転写ベルト(220)上のトナー像の帯電量が小さくなる。従って、中間転写ベルト(220)上のトナー像がプレ転写チャージャによる帯電位置を通過している途中に中間転写ベルト(220)の移動速度が変化するような場合には、その中間転写ベルト(220)の移動速度に応じて、トナー像に対する帯電量が途中で変化しないようにプレ転写チャージャを制御することが望ましい。   In this image forming method, the amount of charge charged by the pre-transfer charger varies depending on the moving speed of the intermediate transfer belt (220) that is the object to be charged. For example, if the moving speed of the intermediate transfer belt (220) is slow, the time for the same portion of the toner image on the intermediate transfer belt (220) to pass through the charging area by the pre-transfer charger becomes long, and the charge amount increases. Conversely, when the moving speed of the intermediate transfer belt (220) is fast, the charge amount of the toner image on the intermediate transfer belt (220) becomes small. Therefore, when the moving speed of the intermediate transfer belt (220) changes while the toner image on the intermediate transfer belt (220) passes through the charging position by the pre-transfer charger, the intermediate transfer belt (220 It is desirable to control the pre-transfer charger so that the charge amount with respect to the toner image does not change in the middle according to the movement speed of ().

1次転写装置(230Bk、230C、230M、230Y)の間に導電性ローラ(241)、(242)、(243)が設けられている。そして、転写紙は給紙部(140)から給紙された後、レジストローラ対(160)を介して転写ベルト(500)に担持され、中間転写ベルト(220)と転写ベルト(500)が接触するところで2次転写ローラ(600)により中間転写ベルト(220)上のトナー像が転写紙に転写され、カラー画像形成が行なわれる。   Conductive rollers (241), (242), and (243) are provided between the primary transfer devices (230Bk, 230C, 230M, and 230Y). After the transfer paper is fed from the paper feed unit (140), it is carried on the transfer belt (500) via the registration roller pair (160), and the intermediate transfer belt (220) and the transfer belt (500) are in contact with each other. The toner image on the intermediate transfer belt (220) is transferred to the transfer paper by the secondary transfer roller (600), and a color image is formed.

そして、画像形成後の転写紙は2次転写ベルト(180)で定着装置(150)に搬送され、画像が定着されてカラー画像が得られる。転写されずに残った中間転写ベルト(220)上のトナーは、中間転写ベルトクリーニング装置(260)によってベルトから除去される。   Then, the transfer paper after image formation is conveyed to the fixing device (150) by the secondary transfer belt (180), and the image is fixed to obtain a color image. The toner on the intermediate transfer belt (220) remaining without being transferred is removed from the belt by the intermediate transfer belt cleaning device (260).

転写紙への転写前の中間転写ベルト(220)上のトナー極性は、現像時と同じマイナス極性であるため、2次転写ローラ(170)にはプラスの転写バイアス電圧が印加され、トナーは転写紙上に転写される。この部分でのニップ圧が転写性に影響し、定着性に大きく影響する。また、転写されずに残った中間転写ベルト(220)上のトナーは、転写紙と中間転写ベルト(220)とが離れる瞬間にプラス極性側に放電帯電され、0〜プラス側に帯電される。なお、転写紙のジャム時や非画像域に形成されたトナー像は、2次転写の影響を受けないため、もちろんマイナス極性のままである。   Since the toner polarity on the intermediate transfer belt (220) before transfer onto the transfer paper is the same negative polarity as that during development, a positive transfer bias voltage is applied to the secondary transfer roller (170), and the toner is transferred. It is transferred onto paper. The nip pressure at this portion affects the transfer property and greatly affects the fixability. Further, the toner on the intermediate transfer belt (220) remaining without being transferred is discharged and charged to the positive polarity side and charged from 0 to the positive side at the moment when the transfer paper and the intermediate transfer belt (220) are separated. Note that the toner image formed when the transfer paper is jammed or in the non-image area is not affected by the secondary transfer, and of course remains in the negative polarity.

感光体層の厚みを30μmとし、光学系のビームスポット径を50×60μm、光量を0.47Mwとしている。感光体(黒)(210Bk)の帯電(露光側)電位V0を−700V、露光後電位VLを−120Vとして現像バイアス電圧を−470Vすなわち現像ポテンシャル350Vとして現像工程が行なわれるものである。感光体(黒)(210Bk)上に形成されたトナー(黒)の顕像はその後、転写(中間転写ベルト及び転写紙)、定着工程を経て画像として完成される。転写は最初、1次転写装置(230Bk、230C、230M、230Y)から中間転写ベルト(220)へ全色転写された後、更に別の2次転写ローラ(170)へのバイアス印加により転写紙へ転写される。   The thickness of the photoreceptor layer is 30 μm, the beam spot diameter of the optical system is 50 × 60 μm, and the light quantity is 0.47 Mw. The developing process is carried out with the charging (exposure side) potential V0 of the photoconductor (black) (210Bk) set to -700V, the post-exposure potential VL set to -120V, and the developing bias voltage set to -470V, ie, the developing potential 350V. The visible image of the toner (black) formed on the photoconductor (black) (210Bk) is then transferred (intermediate transfer belt and transfer paper) and completed as an image through a fixing process. First, all colors are transferred from the primary transfer device (230Bk, 230C, 230M, 230Y) to the intermediate transfer belt (220), and then applied to the transfer paper by applying a bias to another secondary transfer roller (170). Transcribed.

次に、感光体クリーニング装置について詳細に説明する。図7において、各現像装置(200Bk、200C、200M、200Y)と各クリーニング装置(300Bk、300C、300M、300Y)とは、各々トナー移送管(250Bk、250C、250M、250Y)で接続されている(図7中の破線)。そして、各トナー移送管(250Bk、250C、250M、250Y)の内部には、スクリュー(図示せず)が入っており、各クリーニング装置(300Bk、300C、300M、300Y)で回収されたトナーが、各現像装置(200Bk、200C、200M、200Y)へ移送されるようになっている。   Next, the photoconductor cleaning device will be described in detail. In FIG. 7, each developing device (200Bk, 200C, 200M, 200Y) and each cleaning device (300Bk, 300C, 300M, 300Y) are connected to each other by a toner transfer pipe (250Bk, 250C, 250M, 250Y). (Dashed line in FIG. 7). Each toner transfer pipe (250Bk, 250C, 250M, 250Y) contains a screw (not shown), and the toner collected by each cleaning device (300Bk, 300C, 300M, 300Y) Each developing device (200Bk, 200C, 200M, 200Y) is transferred.

従来の4つの感光体ドラムとベルト搬送との組合せによる直接転写方式では、感光体と転写紙が当接することにより紙粉が付着しトナーを回収すると紙粉が含有しているので、画像形成時にトナー抜け等の画像劣化をきたし使用することができなかった。更に、従来の一つの感光体ドラムと中間転写とを組合せたシステムでは、中間転写体の採用で転写紙転写時の感光体への紙粉付着はなくなったが、感光体への残トナーのリサイクルを行おうした場合、混色したトナーを分離することは実用上不可能である。また、混色トナーを黒トナーとして使用する提案があるが、全色混合しても黒にならず、プリントモードにより色が変化するため1つの感光体の構成ではトナーリサイクルは不可能であった。   In the conventional direct transfer method using the combination of the four photosensitive drums and the belt conveyance, paper dust adheres when the photoreceptor and the transfer paper come into contact with each other, and the paper dust is contained when the toner is collected. The image was deteriorated such as toner missing and could not be used. Furthermore, in the conventional system combining a single photoconductor drum and intermediate transfer, the use of an intermediate transfer member eliminates paper dust adhesion to the photoconductor during transfer paper transfer, but recycling of residual toner on the photoconductor In practice, it is practically impossible to separate the mixed color toners. There is also a proposal to use a mixed color toner as a black toner, but even if all the colors are mixed, it does not become black, and the color changes depending on the print mode. Therefore, it is impossible to recycle the toner with one photoconductor configuration.

これに対して、このフルカラーが造形性装置では、中間転写ベルト(220)を使用するので紙粉の混入が少なく、かつ、紙転写時の中間転写ベルト(220)への紙粉の付着も防止される。各感光体(210Bk、210C、210M、210Y)が独立した色のトナーを使用するので各感光体クリーニング装置(300Bk、300C、300M、300Y)を接離する必要もなく、確実にトナーのみを回収することができる。   On the other hand, the full-color molding apparatus uses an intermediate transfer belt (220), so that paper dust is less mixed and also prevents paper dust from adhering to the intermediate transfer belt (220) during paper transfer. Is done. Since each photoconductor (210Bk, 210C, 210M, 210Y) uses independent color toner, it is not necessary to contact or separate each photoconductor cleaning device (300Bk, 300C, 300M, 300Y), and only the toner is reliably collected. can do.

上記中間転写ベルト(220)上に残ったプラス帯電されたトナーは、マイナス電圧が印加された導電性ファーブラシ(262)でクリーニングされる。導電性ファーブラシ(262)への電圧印加方法は、導電性ファーブラシ(261)と極性が異なるだけで全く同一である。転写されずに残ったトナーも2つの導電性ファーブラシ(261)、(262)でほとんどクリーニングされる。ここで、導電性ファーブラシ(262)でクリーニングされずに残ったトナー、紙粉、タルク等は、導電性ファーブラシ(262)のマイナス電圧により、マイナス帯電される。次の黒色の1次転写は、プラス電圧による転写であり、マイナス帯電したトナー等は中間転写ベルト(220)側に引き寄せられるため、感光体(黒)(210Bk)側への移行は防止できる。   The positively charged toner remaining on the intermediate transfer belt (220) is cleaned by a conductive fur brush (262) to which a negative voltage is applied. The method of applying a voltage to the conductive fur brush (262) is exactly the same as that of the conductive fur brush (261) except for the polarity. The toner remaining without being transferred is also almost cleaned by the two conductive fur brushes (261) and (262). Here, toner, paper powder, talc, and the like remaining without being cleaned by the conductive fur brush (262) are negatively charged by the negative voltage of the conductive fur brush (262). The next black primary transfer is a transfer using a positive voltage, and negatively charged toner or the like is attracted to the intermediate transfer belt (220) side, so that the transfer to the photoconductor (black) (210Bk) side can be prevented.

次に、この画像形成装置に使用される中間転写ベルト(220)について説明する。中間転写ベルトは前述のとおり、単層の樹脂層であることが好ましいが、必要に応じて、弾性層や、表層を保有してもよい。   Next, the intermediate transfer belt (220) used in this image forming apparatus will be described. As described above, the intermediate transfer belt is preferably a single resin layer, but may have an elastic layer or a surface layer as necessary.

上記樹脂層を構成する樹脂材料としては、ポリカーボネート、フッ素系樹脂(ETFE、PVDF)、ポリスチレン、クロロポリスチレン、ポリ−α−メチルスチレン、スチレン−ブタジエン共重合体、スチレン−塩化ビニル共重合体、スチレン−酢酸ビニル共重合体、スチレン−マレイン酸共重合体、スチレン−アクリル酸エステル共重合体(スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体及びスチレン−アクリル酸フェニル共重合体等)、スチレン−メタクリル酸エステル共重合体(スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸フェニル共重合体等)、スチレン−α−クロルアクリル酸メチル共重合体、スチレン−アクリロニトリル−アクリル酸エステル共重合体等のスチレン系樹脂(スチレンまたはスチレン置換体を含む単重合体または共重合体)、メタクリル酸メチル樹脂、メタクリル酸ブチル樹脂、アクリル酸エチル樹脂、アクリル酸ブチル樹脂、変性アクリル樹脂(シリコーン変性アクリル樹脂、塩化ビニル樹脂変性アクリル樹脂、アクリル・ウレタン樹脂等)、塩化ビニル樹脂、スチレン−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル共重合体、ロジン変性マレイン酸樹脂、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂、ポリエステルポリウレタン樹脂、ポリエチレン、ポリプロピレン、ポリブタジエン、ポリ塩化ビニリデン、アイオノマー樹脂、ポリウレタン樹脂、シリコーン樹脂、ケトン樹脂、エチレン−エチルアクリレート共重合体、キシレン樹脂及びポリビニルブチラール樹脂、ポリアミド樹脂、変性ポリフェニレンオキサイド樹脂等からなる群より選ばれる1種類あるいは2種類以上を使用することができる。ただし、上記材料に限定されるものではないことは当然である。   As the resin material constituting the resin layer, polycarbonate, fluororesin (ETFE, PVDF), polystyrene, chloropolystyrene, poly-α-methylstyrene, styrene-butadiene copolymer, styrene-vinyl chloride copolymer, styrene -Vinyl acetate copolymer, styrene-maleic acid copolymer, styrene-acrylic acid ester copolymer (styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer, styrene-butyl acrylate copolymer) Styrene-octyl acrylate copolymer and styrene-phenyl acrylate copolymer), styrene-methacrylic acid ester copolymer (styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene- (Methacrylic acid phenyl copolymer, etc.), styrene -Styrenic resins (monopolymer or copolymer containing styrene or a styrene-substituted product) such as methyl α-chloroacrylate copolymer, styrene-acrylonitrile-acrylic acid ester copolymer, methyl methacrylate resin, methacrylic acid Butyl resin, ethyl acrylate resin, butyl acrylate resin, modified acrylic resin (silicone modified acrylic resin, vinyl chloride resin modified acrylic resin, acrylic / urethane resin, etc.), vinyl chloride resin, styrene-vinyl acetate copolymer, vinyl chloride -Vinyl acetate copolymer, rosin modified maleic acid resin, phenol resin, epoxy resin, polyester resin, polyester polyurethane resin, polyethylene, polypropylene, polybutadiene, polyvinylidene chloride, ionomer resin, polyurethane resin, silicone resin , Ketone resin, ethylene - ethyl acrylate copolymer, may be used xylene resin and polyvinyl butyral resin, polyamide resin, one kind or two kinds or more selected from the group consisting of modified polyphenylene oxide resin. However, it is a matter of course that the material is not limited to the above materials.

また、上記弾性層を構成する弾性材料(弾性材ゴム、エラストマー)としては、ブチルゴム、フッ素系ゴム、アクリルゴム、EPDM、NBR、アクリロニトリル−ブタジエン−スチレンゴム天然ゴム、イソプレンゴム、スチレン−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレンゴム、エチレン−プロピレンターポリマー、クロロプレンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン、ウレタンゴム、シンジオタクチック1,2−ポリブタジエン、エピクロロヒドリン系ゴム、リコーンゴム、フッ素ゴム、多硫化ゴム、ポリノルボルネンゴム、水素化ニトリルゴム、熱可塑性エラストマー(例えばポリスチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリアミド系、ポリウレア、ポリエステル系、フッ素樹脂系)等からなる群より選ばれる1種類あるいは2種類以上を使用することができる。ただし、上記材料に限定されるものではないことは当然である。   Examples of the elastic material (elastic material rubber, elastomer) constituting the elastic layer include butyl rubber, fluorine-based rubber, acrylic rubber, EPDM, NBR, acrylonitrile-butadiene-styrene rubber natural rubber, isoprene rubber, styrene-butadiene rubber, Butadiene rubber, ethylene-propylene rubber, ethylene-propylene terpolymer, chloroprene rubber, chlorosulfonated polyethylene, chlorinated polyethylene, urethane rubber, syndiotactic 1,2-polybutadiene, epichlorohydrin rubber, ricone rubber, fluororubber, Polysulfide rubber, polynorbornene rubber, hydrogenated nitrile rubber, thermoplastic elastomer (eg polystyrene, polyolefin, polyvinyl chloride, polyurethane, polyamide, polyurea, polyester) It is possible to use one kind or two kinds or more selected from the group consisting of fluorocarbon resin) or the like. However, it is a matter of course that the material is not limited to the above materials.

また、上記表層の材料は特に制限は無いが、中間転写ベルト表面へのトナーの付着力を小さくして2次転写性を高めるものが要求される。例えば、ポリウレタン、ポリエステル、エポキシ樹脂等の1種類あるいは2種類以上を使用し表面エネルギーを小さくし潤滑性を高める材料、例えばフッ素樹脂、フッ素化合物、フッ化炭素、2酸化チタン、シリコンカーバイト等の粉体、粒子を1種類あるいは2種類以上または粒径を異ならしたものを分散させ使用することができる。また、フッ素系ゴム材料のように熱処理を行なうことで表面にフッ素リッチな層を形成させ表面エネルギーを小さくさせたものを使用することもできる。   The material for the surface layer is not particularly limited, but a material that reduces the adhesive force of the toner to the surface of the intermediate transfer belt and increases the secondary transfer property is required. For example, materials that use one or more of polyurethane, polyester, epoxy resin, etc. to reduce surface energy and increase lubricity, such as fluorine resin, fluorine compound, fluorocarbon, titanium dioxide, silicon carbide, etc. One kind or two or more kinds of powders and particles or particles having different particle diameters can be dispersed and used. Further, it is also possible to use a material having a surface energy reduced by forming a fluorine-rich layer on the surface by heat treatment, such as a fluorine-based rubber material.

上記樹脂層や弾性層には、抵抗値調節用導電剤が添加される。この抵抗値調節用導電剤は特に制限はないが、例えば、カーボンブラック、グラファイト、アルミニウムやニッケル等の金属粉末、酸化錫、酸化チタン、酸化アンチモン、酸化インジウム、チタン酸カリウム、酸化アンチモン−酸化錫複合酸化物(ATO)、酸化インジウム−酸化錫複合酸化物(ITO)等の導電性金属酸化物、導電性金属酸化物は、硫酸バリウム、ケイ酸マグネシウム、炭酸カルシウム等の絶縁性微粒子を被覆したものでもよい。上記導電剤に限定されるものではないことは当然である。   A resistance value adjusting conductive agent is added to the resin layer and the elastic layer. The conductive agent for adjusting the resistance value is not particularly limited. For example, carbon black, graphite, metal powder such as aluminum and nickel, tin oxide, titanium oxide, antimony oxide, indium oxide, potassium titanate, antimony oxide-tin oxide Conductive metal oxides such as composite oxide (ATO) and indium oxide-tin oxide composite oxide (ITO), and conductive metal oxide covered with insulating fine particles such as barium sulfate, magnesium silicate, and calcium carbonate. It may be a thing. Of course, the conductive agent is not limited thereto.

図8は、本発明の画像形成方法において使用される画像形成装置の他の例を示すもので、タンデム型間接転写方式の電子写真式の画像形成装置を備えた複写装置(100)である。図8中、(101)は複写装置本体、(200)はそれを載せる給紙テーブル、(300)は複写装置本体(101)上に取り付けるスキャナ、(400)はさらにその上に取り付ける原稿自動搬送装置(ADF)である。複写装置本体(101)には、中央に、無端ベルト状の中間転写体(10)を設ける。   FIG. 8 shows another example of an image forming apparatus used in the image forming method of the present invention, which is a copying apparatus (100) provided with a tandem indirect transfer type electrophotographic image forming apparatus. In FIG. 8, (101) is a copying apparatus main body, (200) is a paper feed table on which it is placed, (300) is a scanner mounted on the copying apparatus main body (101), and (400) is an automatic document feeder mounted thereon. Device (ADF). The copying machine main body (101) is provided with an endless belt-shaped intermediate transfer member (10) in the center.

そして、図8に示すとおり、この例では3つの支持ローラ(14)、(15)、(16)に掛け回して図中時計回りに回転搬送可能とする。この図示例では、3つのなかで第2の支持ローラ(15)の左に、画像転写後に中間転写体(10)上に残留する残留トナーを除去する中間転写体クリーニング装置(17)を設ける。また、3つのなかで第1の支持ローラ(14)と第2の支持ローラ(15)間に張り渡した中間転写体(10)上には、その搬送方向に沿って、イエロー、シアン、マゼンタ、ブラックの4つの画像形成手段(18)を横に並べて配置してタンデム画像形成装置(20)を構成する。   Then, as shown in FIG. 8, in this example, the three support rollers (14), (15), and (16) are hung to enable rotation and conveyance in the clockwise direction in the figure. In this illustrated example, an intermediate transfer body cleaning device (17) for removing residual toner remaining on the intermediate transfer body (10) after image transfer is provided on the left of the second support roller (15) among the three. Further, among the three, the intermediate transfer member (10) stretched between the first support roller (14) and the second support roller (15) has yellow, cyan and magenta along the transport direction. The four black image forming means (18) are arranged side by side to constitute a tandem image forming apparatus (20).

このタンデム画像形成装置(20)の上には、図8に示すように、さらに露光装置(21)を設ける。一方、中間転写体(10)を挟んでタンデム画像形成装置(20)と反対の側には、2次転写装置(22)を備える。2次転写装置(22)は、図示例では、2つのローラ(23)間に、無端ベルトである2次転写ベルト(24)を掛け渡して構成し、中間転写体(10)を介して第3の支持ローラ(16)に押し当てて配置し、中間転写体(10)上の画像をシートに転写する。2次転写装置(22)の横には、シート上の転写画像を定着する定着装置(25)を設ける。定着装置(25)は、無端ベルトである定着ベルト(26)に加圧ローラ(27)を押し当てて構成する。上述した2次転写装置(22)には、画像転写後のシートをこの定着装置(25)へと搬送するシート搬送機能も備えてなる。もちろん、2次転写装置(22)として、転写ローラや非接触のチャージャを配置してもよく、そのような場合はこのシート搬送機能を併せて備えることは難しくなる。なお、図示例では、このような2次転写装置(22)および定着装置(25)の下に、上述したタンデム画像形成装置(20)と平行に、シートの両面に画像を記録すべくシートを反転するシート反転装置(28)を備える。   An exposure device (21) is further provided on the tandem image forming apparatus (20) as shown in FIG. On the other hand, a secondary transfer device (22) is provided on the side opposite to the tandem image forming device (20) with the intermediate transfer member (10) interposed therebetween. In the illustrated example, the secondary transfer device (22) includes a secondary transfer belt (24), which is an endless belt, spanned between two rollers (23), and the second transfer device (22) passes through an intermediate transfer member (10). 3 is pressed against the support roller (16), and the image on the intermediate transfer body (10) is transferred to the sheet. Next to the secondary transfer device (22), a fixing device (25) for fixing the transferred image on the sheet is provided. The fixing device (25) is configured by pressing a pressure roller (27) against a fixing belt (26) which is an endless belt. The secondary transfer device (22) described above is also provided with a sheet transport function for transporting the image-transferred sheet to the fixing device (25). Of course, as the secondary transfer device (22), a transfer roller or a non-contact charger may be arranged. In such a case, it is difficult to provide this sheet conveying function together. In the illustrated example, a sheet is placed under such a secondary transfer device (22) and a fixing device (25) so as to record an image on both sides of the sheet in parallel with the tandem image forming device (20). A sheet inverting device (28) for inverting is provided.

さて、いまこのカラー電子写真装置を用いてコピーをとるときは、原稿自動搬送装置(400)の原稿台(30)上に原稿をセットする。または、原稿自動搬送装置(400)を開いてスキャナ(300)のコンタクトガラス(32)上に原稿をセットし、原稿自動搬送装置(400)を閉じてそれで押さえる。   Now, when making a copy using this color electrophotographic apparatus, the document is set on the document table (30) of the automatic document feeder (400). Alternatively, the automatic document feeder (400) is opened, a document is set on the contact glass (32) of the scanner (300), and the automatic document feeder (400) is closed and pressed by it.

そして、不図示のスタートスイッチを押すと、原稿自動搬送装置(400)に原稿をセットしたときは、原稿を搬送してコンタクトガラス(32)上へと移動して後、他方コンタクトガラス(32)上に原稿をセットしたときは、直ちにスキャナ(300)を駆動し、第1走行体(33)および第2走行体(34)を走行する。そして、第1走行体(33)で光源から光を発射するとともに原稿面からの反射光をさらに反射して第2走行体(34)に向け、第2走行体(34)のミラーで反射して結像レンズ(35)を通して読取りセンサ(36)に入れ、原稿内容を読み取る。   When a start switch (not shown) is pressed, when the document is set on the automatic document feeder (400), the document is transported and moved onto the contact glass (32), and then the other contact glass (32). When a document is set on the scanner, the scanner (300) is immediately driven to travel on the first traveling body (33) and the second traveling body (34). Then, the first traveling body (33) emits light from the light source, and the reflected light from the document surface is further reflected toward the second traveling body (34) and reflected by the mirror of the second traveling body (34). Then, the image is placed in the reading sensor (36) through the imaging lens (35) and the content of the original is read.

また、不図示のスタートスイッチを押すと、不図示の駆動モータで支持ローラ(14)、(15)、(16)の1つを回転駆動して他の2つの支持ローラを従動回転し、中間転写体(10)を回転搬送する。同時に、個々の画像形成手段(18)でその感光体(40)を回転して各感光体(40)上にそれぞれ、ブラック・イエロー・マゼンタ・シアンの単色画像を形成する。そして、中間転写体(10)の搬送とともに、それらの単色画像を順次転写して中間転写体(10)上に合成カラー画像を形成する。   When a start switch (not shown) is pressed, one of the support rollers (14), (15), and (16) is driven to rotate by the drive motor (not shown), and the other two support rollers are driven to rotate. The transfer body (10) is rotated and conveyed. At the same time, the individual image forming means (18) rotates the photoreceptor (40) to form monochrome images of black, yellow, magenta, and cyan on each photoreceptor (40). Then, along with the conveyance of the intermediate transfer member (10), these monochrome images are sequentially transferred to form a composite color image on the intermediate transfer member (10).

一方、不図示のスタートスイッチを押すと、給紙テーブル(200)の給紙ローラ(42)の1つを選択回転し、ペーパーバンク(43)に多段に備える給紙カセット(44)の1つからシートを繰り出し、分離ローラ(45)で1枚ずつ分離して給紙路(46)に入れ、搬送ローラ(47)で搬送して複写機本体(100)内の給紙路(48)に導き、レジストローラ(49)に突き当てて止める。   On the other hand, when a start switch (not shown) is pressed, one of the paper feed rollers (42) of the paper feed table (200) is selectively rotated, and one of paper feed cassettes (44) provided in multiple stages in the paper bank (43). The sheet is fed out from the sheet, separated one by one by a separation roller (45), put into a sheet feeding path (46), and conveyed by a conveying roller (47) to a sheet feeding path (48) in the copying machine main body (100). Guide and stop against the registration roller (49).

または、給紙ローラ(50)を回転して手差しトレイ(51)上のシートを繰り出し、分離ローラ(52)で1枚ずつ分離して手差し給紙路(53)に入れ、同じくレジストローラ(49)に突き当てて止める。そして、中間転写体(10)上の合成カラー画像にタイミングを合わせてレジストローラ(49)を回転し、中間転写体(10)と2次転写装置(22)との間にシートを送り込み、2次転写装置(22)で転写してシート上にカラー画像を記録する。   Alternatively, the sheet feeding roller (50) is rotated to feed out the sheets on the manual feed tray (51), separated one by one by the separation roller (52), and placed in the manual sheet feeding path (53). ) And stop. Then, the registration roller (49) is rotated in time with the composite color image on the intermediate transfer member (10), and the sheet is fed between the intermediate transfer member (10) and the secondary transfer device (22). The image is transferred by the next transfer device (22) and a color image is recorded on the sheet.

画像転写後のシートは、2次転写装置(22)で搬送して定着装置(25)へと送り込み、定着装置(25)で熱と圧力とを加えて転写画像を定着して後、切換爪(55)で切り換えて排出ローラ(56)で排出し、排紙トレイ(57)上にスタックする。または、切換爪(55)で切り換えてシート反転装置(28)に入れ、そこで反転して再び転写位置へと導き、裏面にも画像を記録して後、排出ローラ(56)で排紙トレイ(57)上に排出する。   The sheet after the image transfer is conveyed by the secondary transfer device (22) and sent to the fixing device (25). The fixing device (25) applies heat and pressure to fix the transferred image, and then the switching claw. It is switched at (55), discharged by the discharge roller (56), and stacked on the discharge tray (57). Alternatively, it is switched by the switching claw (55) and put into the sheet reversing device (28), where it is reversed and guided again to the transfer position, and an image is recorded also on the back surface, and then the paper discharge tray (56) is discharged by the discharge roller (56). 57) Drain up.

一方、画像転写後の中間転写体(10)は、中間転写体クリーニング装置(17)で、画像転写後に中間転写体(10)上に残留する残留トナーを除去し、タンデム画像形成装置(20)による再度の画像形成に備える。ここで、レジストローラ(49)は一般的には接地されて使用されることが多いが、シートの紙粉除去のためにバイアスを印加することも可能である。   On the other hand, the intermediate transfer member (10) after the image transfer is removed by the intermediate transfer member cleaning device (17) to remove residual toner remaining on the intermediate transfer member (10) after the image transfer, and the tandem image forming device (20). To prepare for image formation again. Here, the registration roller (49) is generally used while being grounded, but it is also possible to apply a bias for removing paper dust from the sheet.

以下、本発明の実施例について説明するが、本発明は、実施例に何ら限定されるものではない。前述のように、本発明のトナーの製造方法は、特に限定されないが、実施例においては、水中造粒法の一つである溶解懸濁法を用いて、トナーを製造した結果について述べる。なお、部は、質量部を意味する。   Examples of the present invention will be described below, but the present invention is not limited to the examples. As described above, the method for producing the toner of the present invention is not particularly limited. In the examples, the result of producing the toner using the dissolution suspension method, which is one of the underwater granulation methods, will be described. In addition, a part means a mass part.

−ポリエステル樹脂Aの合成−
冷却管、攪拌機及び窒素導入管の付いた反応槽中に、ビスフェノールAのエチレンオキシド2モル付加物65部、ビスフェノールAのプロピオンオキシド3モル付加物86部、テレフタル酸274部及びジブチルスズオキシド2部を投入し、常圧下、230℃で15時間反応させた。次に、5〜10mmHgの減圧下、6時間反応させて、ポリエステル樹脂を合成した。得られたポリエステル樹脂Aは、数平均分子量(Mn)が2,300、重量平均分子量(Mw)が8,000、ガラス転移温度(Tg)が58℃、酸価が25mgKOH/g、水酸基価が35mgKOH/gであった。
-Synthesis of polyester resin A-
Into a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 65 parts of 2-molar addition product of ethylene oxide of bisphenol A, 86 parts of 3-mole addition product of propion oxide of bisphenol A, 274 parts of terephthalic acid and 2 parts of dibutyltin oxide And allowed to react at 230 ° C. for 15 hours under normal pressure. Next, it was made to react under reduced pressure of 5-10 mmHg for 6 hours, and the polyester resin was synthesize | combined. The obtained polyester resin A has a number average molecular weight (Mn) of 2,300, a weight average molecular weight (Mw) of 8,000, a glass transition temperature (Tg) of 58 ° C., an acid value of 25 mgKOH / g, and a hydroxyl value of It was 35 mgKOH / g.

−スチレンアクリル樹脂Aの合成−
冷却管、攪拌機及び窒素導入管の付いた反応槽中に、酢酸エチル300部、スチレン185部、アクリルモノマー115部及びアゾビスイソブチルニトリル5部を投入して、窒素雰囲気下、65℃(常圧)で8時間反応させた。次に、メタノール200部を加え、1時間攪拌した後、上澄みを除去し、減圧乾燥させて、スチレン−アクリル樹脂Aを合成した。得られたスチレンアクリル樹脂Aは、Mwが20,000、Tgが58℃であった。
-Synthesis of styrene acrylic resin A-
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 300 parts of ethyl acetate, 185 parts of styrene, 115 parts of acrylic monomer and 5 parts of azobisisobutylnitrile were introduced, and the temperature was 65 ° C. (atmospheric pressure). ) For 8 hours. Next, 200 parts of methanol was added and stirred for 1 hour, and then the supernatant was removed and dried under reduced pressure to synthesize styrene-acrylic resin A. The obtained styrene acrylic resin A had Mw of 20,000 and Tg of 58 ° C.

―プレポリマー(活性水素基含有化合物と反応可能な重合体)の合成―
冷却管、攪拌機及び窒素導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物682質量部、ビスフェノールAプロピレンオキサイド2モル付加物81質量部、テレフタル酸283質量部、無水トリメリット酸22質量部、及びジブチルチンオキサイド2質量部を仕込み、常圧下で、230℃にて8時間反応させた。次いで、10〜15mHgの減圧下で、5時間反応させて、中間体ポリエステルを合成した。
-Synthesis of prepolymer (polymer capable of reacting with active hydrogen group-containing compound)-
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 682 parts by mass of bisphenol A ethylene oxide 2 mol adduct, 81 parts by mass of bisphenol A propylene oxide 2 mol adduct, 283 parts by mass of terephthalic acid, trimellitic anhydride 22 parts by mass and 2 parts by mass of dibutyltin oxide were charged and reacted at 230 ° C. for 8 hours under normal pressure. Subsequently, it was made to react under reduced pressure of 10-15mHg for 5 hours, and the intermediate polyester was synthesize | combined.

得られた中間体ポリエステルは、数平均分子量(Mn)が2,100、重量平均分子量(Mw)が9,600、ガラス転移温度(Tg)が55℃、酸価が0.5、水酸基価が49であった。   The obtained intermediate polyester has a number average molecular weight (Mn) of 2,100, a weight average molecular weight (Mw) of 9,600, a glass transition temperature (Tg) of 55 ° C., an acid value of 0.5, and a hydroxyl value of 49.

次に、冷却管、攪拌機及び窒素導入管の付いた反応容器中に、前記中間体ポリエステル411質量部、イソホロンジイソシアネート89質量部、及び酢酸エチル500質量部を仕込み、100℃にて5時間反応させて、プレポリマー(前記活性水素基含有化合物と反応可能な重合体)を合成した。   Next, 411 parts by mass of the intermediate polyester, 89 parts by mass of isophorone diisocyanate, and 500 parts by mass of ethyl acetate are charged in a reaction vessel equipped with a cooling tube, a stirrer, and a nitrogen introduction tube, and reacted at 100 ° C. for 5 hours. Thus, a prepolymer (polymer capable of reacting with the active hydrogen group-containing compound) was synthesized.

得られたプレポリマーの遊離イソシアネート含有量は、1.60質量%であり、プレポリマーの固形分濃度(150℃、45分間放置後)は50質量%であった。   The free isocyanate content of the obtained prepolymer was 1.60% by mass, and the solid content concentration of the prepolymer (after standing at 150 ° C. for 45 minutes) was 50% by mass.

−ケチミン(前記活性水素基含有化合物)の合成−
攪拌棒及び温度計をセットした反応容器中に、イソホロンジアミン30質量部及びメチルエチルケトン70質量部を仕込み、50℃にて5時間反応を行い、ケチミン化合物(前記活性水素基含有化合物)を合成した。得られたケチミン化合物(前記活性水素機含有化合物)のアミン価は423であった。
-Synthesis of ketimine (the active hydrogen group-containing compound)-
In a reaction vessel equipped with a stir bar and a thermometer, 30 parts by mass of isophoronediamine and 70 parts by mass of methyl ethyl ketone were charged and reacted at 50 ° C. for 5 hours to synthesize a ketimine compound (the active hydrogen group-containing compound). The amine value of the obtained ketimine compound (the active hydrogen machine-containing compound) was 423.

−マスターバッチの作製−
水1,000部、DBP吸油量が42mL/100g、pHが9.5のカーボンブラックPrintex35(デグサ社製)540部、及び1,200部のポリエステル樹脂Aを、ヘンシェルミキサー(三井鉱山社製)を用いて混合した。次に、二本ロールを用いて、得られた混合物を150℃で30分間混練した後、圧延冷却し、パルペライザー(ホソカワミクロン社製)で粉砕して、マスターバッチを作製した。
-Preparation of master batch-
1,000 parts of water, 540 parts of carbon black Printex 35 (manufactured by Degussa) having a DBP oil absorption of 42 mL / 100 g and a pH of 9.5, and 1,200 parts of polyester resin A, Henschel mixer (manufactured by Mitsui Mining) And mixed. Next, the obtained mixture was kneaded at 150 ° C. for 30 minutes using two rolls, then cooled by rolling, and pulverized with a pulverizer (manufactured by Hosokawa Micron Corporation) to prepare a master batch.

(実施例1)
実施例1では以下に示す重合法によりトナーの作成を行なった。
Example 1
In Example 1, toner was prepared by the following polymerization method.

−水系媒体の調製−
イオン交換水306部、リン酸三カルシウムの10質量%懸濁液265部及びドデシルベンゼンスルホン酸ナトリウム1.0部を混合攪拌し、均一に溶解させて、水系媒体を調製した。
-Preparation of aqueous medium-
An aqueous medium was prepared by mixing and stirring 306 parts of ion-exchanged water, 265 parts of a 10% by mass suspension of tricalcium phosphate, and 1.0 part of sodium dodecylbenzenesulfonate, and uniformly dissolving them.

−臨界ミセル濃度の測定−
界面活性剤の臨界ミセル濃度は以下の方法で測定した。表面張力計Sigma(KSV Instruments社製)を用いて、Sigmaシステム中の解析プログラムを用いて解析を行なった。界面活性剤を水系媒体に対して0.01wt%ずつ滴下し、攪拌、静置後の界面張力を測定した。得られた表面張力カーブから、界面活性剤の滴下によっても界面張力が低下しなくなる界面活性剤濃度を臨界ミセル濃度として算出した。実施例1の水系媒体に対するドデシルベンゼンスルホン酸ナトリウムの臨界ミセル濃度を表面張力計Sigmaで測定を行ったところ、水系媒体の重量に対して0.05wt%であった。
-Measurement of critical micelle concentration-
The critical micelle concentration of the surfactant was measured by the following method. Using a surface tension meter Sigma (manufactured by KSV Instruments), analysis was performed using an analysis program in the Sigma system. Surfactant was added dropwise by 0.01 wt% with respect to the aqueous medium, and the interfacial tension after stirring and standing was measured. From the obtained surface tension curve, the surfactant concentration at which the interfacial tension did not decrease even when the surfactant was dropped was calculated as the critical micelle concentration. When the critical micelle concentration of sodium dodecylbenzenesulfonate with respect to the aqueous medium of Example 1 was measured with a surface tension meter Sigma, it was 0.05 wt% with respect to the weight of the aqueous medium.

―トナー材料液の調整―
ビーカー内に、ポリエステル樹脂Aを70部、プレポリマーを10質量部及び酢酸エチル100部を入れ、攪拌して溶解させた。離型剤としてパラフィンワックス5部(日本精鑞社製 HNP−9 融点75℃)、MEK−ST(日産化学工業社製)2部、及びマスターバッチ10部を加えて、ビーズミルのウルトラビスコミル(アイメックス社製)を用いて、送液速度1kg/時、ディスクの周速度6m/秒で、粒径0.5mmのジルコニアビーズを80体積%充填した条件で3パスした後、前記ケチミン2.7質量部を加えて溶解させ、トナー材料液を調製した。
-Adjustment of toner material liquid-
In a beaker, 70 parts of polyester resin A, 10 parts by mass of prepolymer and 100 parts of ethyl acetate were added and dissolved by stirring. As a release agent, 5 parts of paraffin wax (HNP-9, melting point 75 ° C., manufactured by Nippon Seiki Co., Ltd.), 2 parts of MEK-ST (Nissan Chemical Industry Co., Ltd.), and 10 parts of masterbatch were added. After 3 passes under the condition that the liquid feeding speed is 1 kg / hour, the peripheral speed of the disk is 6 m / second, and 80% by volume of zirconia beads having a particle diameter of 0.5 mm are filled, the ketimine 2.7 is used. A part by mass was added and dissolved to prepare a toner material solution.

―乳化乃至分散液の調製―
前記水系媒体相150質量部を容器に入れ、TK式ホモミキサー(特殊機化工業社製)を用い、回転数12,000rpmで攪拌し、これに前記トナー材料の溶解乃至分散液100質量部を添加し、10分間混合して乳化乃至分散液(乳化スラリー)を調製した。
―Preparation of emulsion or dispersion―
150 parts by mass of the aqueous medium phase is placed in a container, and stirred at a rotational speed of 12,000 rpm using a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.). The mixture was added and mixed for 10 minutes to prepare an emulsified dispersion (emulsified slurry).

―有機溶剤の除去―
攪拌機及び温度計をセットしたコルベンに、前記乳化スラリー100質量部を仕込み、攪拌周速20m/分で攪拌しながら30℃にて12時間脱溶剤した。
―Removal of organic solvent―
100 parts by mass of the emulsified slurry was charged into a Kolben equipped with a stirrer and a thermometer, and the solvent was removed at 30 ° C. for 12 hours while stirring at a stirring peripheral speed of 20 m / min.

―洗浄―
前記分散スラリー100質量部を減圧濾過した後、濾過ケーキにイオン交換水100質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過した。得られた濾過ケーキにイオン交換水300質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過する操作を2回行った。得られた濾過ケーキに10質量%水酸化ナトリウム水溶液20質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて30分間)した後減圧濾過した。得られた濾過ケーキにイオン交換水300質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過した。得られた濾過ケーキにイオン交換水300質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過する操作を2回行った。更に得られた濾過ケーキに10質量%塩酸20質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過した。
-Washing-
After 100 parts by mass of the dispersion slurry was filtered under reduced pressure, 100 parts by mass of ion-exchanged water was added to the filter cake, mixed with a TK homomixer (10 minutes at a rotational speed of 12,000 rpm), and then filtered. To the obtained filter cake, 300 parts by mass of ion-exchanged water was added, mixed with a TK homomixer (10 minutes at 12,000 rpm), and then filtered twice. To the obtained filter cake, 20 parts by mass of a 10% by mass aqueous sodium hydroxide solution was added, mixed with a TK homomixer (30 minutes at 12,000 rpm), and then filtered under reduced pressure. To the obtained filter cake, 300 parts by mass of ion-exchanged water was added, mixed with a TK homomixer (at 12,000 rpm for 10 minutes), and then filtered. To the obtained filter cake, 300 parts by mass of ion-exchanged water was added, mixed with a TK homomixer (10 minutes at 12,000 rpm), and then filtered twice. Furthermore, 20 mass parts of 10 mass% hydrochloric acid was added to the obtained filter cake, mixed with a TK homomixer (at a rotation speed of 12,000 rpm for 10 minutes) and then filtered.

―界面活性剤量調整―
上記洗浄により得られた濾過ケーキに、イオン交換水300質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した際のトナー分散液の電気伝導度を測定し、事前に作成した界面活性剤濃度の検量線より、トナー分散液の界面活性剤濃度を算出した。その値から、界面活性剤濃度が狙いの界面活性剤濃度0.05wt%になるように、イオン交換水を追加し、トナー分散液を得た。
-Surfactant adjustment-
To the filter cake obtained by the above washing, 300 parts by mass of ion-exchanged water was added, and the electrical conductivity of the toner dispersion was measured by mixing with a TK homomixer (10 minutes at 12,000 rpm). The surfactant concentration of the toner dispersion was calculated from a calibration curve for surfactant concentration prepared in advance. From this value, ion-exchanged water was added so that the surfactant concentration was the target surfactant concentration of 0.05 wt%, and a toner dispersion was obtained.

―表面処理工程―
前記所定の界面活性剤濃度に調整されたトナー分散液を、TK式ホモミキサーで5000rpmで混合しながら、ウォーターバスで加熱温度T1=55℃で10時間加熱を行なった。その後トナー分散液を25℃まで冷却し、濾過を行なった。更に得られた濾過ケーキに、イオン交換水300質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過した。
―Surface treatment process―
The toner dispersion liquid adjusted to the predetermined surfactant concentration was heated for 10 hours at a heating temperature T1 = 55 ° C. in a water bath while mixing at 5000 rpm with a TK homomixer. Thereafter, the toner dispersion was cooled to 25 ° C. and filtered. Further, 300 parts by mass of ion-exchanged water was added to the obtained filter cake, mixed with a TK homomixer (10 minutes at 12,000 rpm), and then filtered.

―乾燥―
得られた最終濾過ケーキを循風乾燥機にて45℃で48時間乾燥し、目開き75μmメッシュで篩い、実施例1のトナー母体粒子を得た。
―Dry―
The obtained final filter cake was dried with a circulating dryer at 45 ° C. for 48 hours, and sieved with a mesh of 75 μm to obtain toner base particles of Example 1.

―外添処理―
さらに、トナー母体粒子を100重量部に対して、平均粒径100nmの疎水性シリカ0.6重量部と、平均粒径20nmの酸化チタン1.0重量部と、平均粒径15nmの疎水性シリカ微粉体を0.8部とをヘンシェルミキサーにて混合し、実施例1のトナーを得た。
―External treatment―
Further, with respect to 100 parts by weight of the toner base particles, 0.6 part by weight of hydrophobic silica having an average particle diameter of 100 nm, 1.0 part by weight of titanium oxide having an average particle diameter of 20 nm, and hydrophobic silica having an average particle diameter of 15 nm 0.8 parts of the fine powder was mixed with a Henschel mixer to obtain the toner of Example 1.

(実施例2)
実施例1の表面処理工程における加熱温度T1を46℃に変更した以外は、実施例1と同様にして、実施例2のトナーを作成した。
(Example 2)
A toner of Example 2 was prepared in the same manner as in Example 1 except that the heating temperature T1 in the surface treatment process of Example 1 was changed to 46 ° C.

(実施例3)
実施例1の表面処理工程における加熱温度T1を64℃に変更した以外は、実施例1と同様にして、実施例2のトナーを作成した。
(Example 3)
A toner of Example 2 was prepared in the same manner as in Example 1 except that the heating temperature T1 in the surface treatment process of Example 1 was changed to 64 ° C.

参考例1
参考例1のトナーは以下のようにして、粉砕法によりトナーを製造した。
―トナー母体粒子の作成―
ポリエステル樹脂A80質量部、パラフィンワックス5部(日本精鑞社製 HNP−9 融点75℃)、及びマスターバッチ10部を加えて、ヘンシェルミキサー中で十分攪拌混合した後、ロールミルを用い、130℃で30分間加熱溶融させ、更に室温まで冷却し、得られた混練物をハンマーミルにて200〜400μmに粗粉砕した。次いで、ジェット気流を用いて衝突板に粗粉砕物を直接衝突させて微粉砕する微粉砕装置と、該微粉砕装置で得られた微粉砕粉を分級室内に旋回流を形成させ、粉砕物を遠心分離して分級する風力分級装置と、を一体に有するIDS−2型粉砕分級装置(日本ニューマチック工業製)を用い、粉砕分級を行い、分級上がりトナー母体粒子を得た。

( Reference Example 1 )
The toner of Reference Example 1 was produced by the pulverization method as follows.
-Preparation of toner base particles-
After adding 80 parts by mass of polyester resin A, 5 parts of paraffin wax (HNP-9 melting point 75 ° C., manufactured by Nippon Seiki Co., Ltd.) and 10 parts of master batch, the mixture was sufficiently stirred and mixed in a Henschel mixer, and then at 130 ° C. using a roll mill. The mixture was heated and melted for 30 minutes, further cooled to room temperature, and the obtained kneaded material was coarsely pulverized to 200 to 400 μm with a hammer mill. Next, a finely pulverized apparatus that directly pulverizes the coarsely pulverized product against the impingement plate using a jet stream, and a finely pulverized powder obtained by the finely pulverized apparatus forms a swirl flow in the classification chamber, and Crushing and classification were performed using an IDS-2 type pulverizing and classifying apparatus (manufactured by Nippon Pneumatic Industry Co., Ltd.) integrally having an air classifier that was separated by centrifugation, and toner base particles were obtained after classification.

なお、所望の粒度分布は、コールターカウンターで測定し、被粉砕物の供給量、粉砕用高圧空気の圧力及び流量、粉砕用衝突部材の毛上、分級装置内におけるエアーが吸引される際のエアー流入位置や流入方向、排気ブロワー圧、等を変更することにより調整することができる。   The desired particle size distribution is measured with a Coulter counter, the supply amount of the object to be crushed, the pressure and flow rate of the pulverizing high-pressure air, the hair on the collision member for pulverization, and the air when the air in the classifier is sucked It can be adjusted by changing the inflow position, the inflow direction, the exhaust blower pressure, and the like.

―トナー分散液の調整―
得られたトナー母体粒子100質量部と、ドデシルベンゼンスルホン酸ナトリウム5質量部、イオン交換水895質量部を加え、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)し、トナー分散液を得た。
-Adjustment of toner dispersion-
100 parts by mass of the obtained toner base particles, 5 parts by mass of sodium dodecylbenzenesulfonate, and 895 parts by mass of ion-exchanged water are added and mixed with a TK homomixer (at 12,000 rpm for 10 minutes) to disperse the toner. A liquid was obtained.

―表面処理工程―
上記のようにして得られたトナー分散液を、TK式ホモミキサーで5000rpmで混合しながら、ウォーターバスで加熱温度T1=55℃で10時間加熱を行なった。その後トナー分散液を25℃まで冷却し、濾過を行なった。更に得られた濾過ケーキにイオン交換水300質量部を加え、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過した。
―Surface treatment process―
The toner dispersion obtained as described above was heated for 10 hours at a heating temperature T1 = 55 ° C. in a water bath while mixing at 5000 rpm with a TK homomixer. Thereafter, the toner dispersion was cooled to 25 ° C. and filtered. Further, 300 parts by mass of ion-exchanged water was added to the obtained filter cake, mixed with a TK homomixer (10 minutes at 12,000 rpm), and then filtered.

―乾燥―
得られた最終濾過ケーキを循風乾燥機にて45℃で48時間乾燥し、目開き75μmメッシュで篩い、参考例1のトナー母体粒子を得た。
―Dry―
The obtained final filter cake was dried with a circulating dryer at 45 ° C. for 48 hours, and sieved with a mesh of 75 μm to obtain toner base particles of Reference Example 1 .

―外添処理―
さらに、トナー母体粒子を100重量部に対して、平均粒径100nmの疎水性シリカ0.6重量部と、平均粒径20nmの酸化チタン1.0重量部と、平均粒径15nmの疎水性シリカ微粉体を0.8部とをヘンシェルミキサーにて混合し、参考例1のトナーを得た。
―External treatment―
Further, with respect to 100 parts by weight of the toner base particles, 0.6 part by weight of hydrophobic silica having an average particle diameter of 100 nm, 1.0 part by weight of titanium oxide having an average particle diameter of 20 nm, and hydrophobic silica having an average particle diameter of 15 nm 0.8 parts of the fine powder was mixed with a Henschel mixer to obtain the toner of Reference Example 1 .

参考例2
参考例1における表面処理工程での加熱温度T1を64℃に変更した以外は同様にして、参考例2のトナーを作成した。
( Reference Example 2 )
The toner of Reference Example 2 was prepared in the same manner except that the heating temperature T1 in the surface treatment step of Reference Example 1 was changed to 64 ° C.

(実施例
以下のとおりにして、実施例のトナーを作成した。
(Example 4 )
The toner of Example 4 was prepared as follows.

−水系媒体の調製−
イオン交換水306部、リン酸三カルシウムの10質量%懸濁液265部及びドデシルベンゼンスルホン酸ナトリウム1.0部を混合攪拌し、均一に溶解させて、水系媒体を調製した。
-Preparation of aqueous medium-
An aqueous medium was prepared by mixing and stirring 306 parts of ion-exchanged water, 265 parts of a 10% by mass suspension of tricalcium phosphate, and 1.0 part of sodium dodecylbenzenesulfonate, and uniformly dissolving them.

―臨界ミセル濃度の測定―
界面活性剤の臨界ミセル濃度は以下の方法で測定した。表面張力計Sigma(KSV Instruments社製)を用いて、Sigmaシステム中の解析プログラムを用いて解析を行なった。界面活性剤を水系媒体に対して0.01wt%ずつ滴下し、攪拌、静置後の界面張力を測定した。得られた表面張力カーブから、界面活性剤の滴下によっても界面張力が低下しなくなる界面活性剤濃度を臨界ミセル濃度として算出した。実施例1の水系媒体に対するドデシルベンゼンスルホン酸ナトリウムの臨界ミセル濃度を表面張力計Sigmaで測定を行ったところ、水系媒体の重量に対して0.05wt%であった。
―Measurement of critical micelle concentration―
The critical micelle concentration of the surfactant was measured by the following method. Using a surface tension meter Sigma (manufactured by KSV Instruments), analysis was performed using an analysis program in the Sigma system. Surfactant was added dropwise by 0.01 wt% with respect to the aqueous medium, and the interfacial tension after stirring and standing was measured. From the obtained surface tension curve, the surfactant concentration at which the interfacial tension did not decrease even when the surfactant was dropped was calculated as the critical micelle concentration. When the critical micelle concentration of sodium dodecylbenzenesulfonate with respect to the aqueous medium of Example 1 was measured with a surface tension meter Sigma, it was 0.05 wt% with respect to the weight of the aqueous medium.

―トナー材料液の調整―
ビーカー内に、スチレンアクリル樹脂Aを80質量部及び酢酸エチル100部を入れ、攪拌して溶解させた。離型剤としてパラフィンワックス5部(日本精鑞社製 HNP−9 融点75℃)、MEK−ST(日産化学工業社製)2部、及びマスターバッチ10部を加えて、ビーズミルのウルトラビスコミル(アイメックス社製)を用いて、送液速度1kg/時、ディスクの周速度6m/秒で、粒径0.5mmのジルコニアビーズを80体積%充填した条件で3パスした後、トナー材料液を調製した。
-Adjustment of toner material liquid-
In a beaker, 80 parts by mass of styrene acrylic resin A and 100 parts of ethyl acetate were added and dissolved by stirring. As a release agent, 5 parts of paraffin wax (HNP-9, melting point 75 ° C., manufactured by Nippon Seiki Co., Ltd.), 2 parts of MEK-ST (Nissan Chemical Industry Co., Ltd.), and 10 parts of masterbatch were added. The toner material solution is prepared after three passes under the condition that 80% by volume of zirconia beads having a particle diameter of 0.5 mm are filled at a liquid feeding speed of 1 kg / hour and a peripheral speed of the disk of 6 m / second. did.

―乳化乃至分散液の調製―
前記水系媒体相150質量部を容器に入れ、TK式ホモミキサー(特殊機化工業社製)を用い、回転数12,000rpmで攪拌し、これに前記トナー材料の溶解乃至分散液100質量部を添加し、10分間混合して乳化乃至分散液(乳化スラリー)を調製した。
―Preparation of emulsion or dispersion―
150 parts by mass of the aqueous medium phase is placed in a container, and stirred at a rotational speed of 12,000 rpm using a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.). The mixture was added and mixed for 10 minutes to prepare an emulsified dispersion (emulsified slurry).

―有機溶剤の除去―
攪拌機及び温度計をセットしたコルベンに、前記乳化スラリー100質量部を仕込み、攪拌周速20m/分で攪拌しながら30℃にて12時間脱溶剤した。
―Removal of organic solvent―
100 parts by mass of the emulsified slurry was charged into a Kolben equipped with a stirrer and a thermometer, and the solvent was removed at 30 ° C. for 12 hours while stirring at a stirring peripheral speed of 20 m / min.

―洗浄―
前記分散スラリー100質量部を減圧濾過した後、濾過ケーキにイオン交換水100質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過した。得られた濾過ケーキにイオン交換水300質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過する操作を2回行った。得られた濾過ケーキに10質量%水酸化ナトリウム水溶液20質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて30分間)した後減圧濾過した。得られた濾過ケーキにイオン交換水300質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過した。得られた濾過ケーキにイオン交換水300質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過する操作を2回行った。更に得られた濾過ケーキに10質量%塩酸20質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過した。
-Washing-
After 100 parts by mass of the dispersion slurry was filtered under reduced pressure, 100 parts by mass of ion-exchanged water was added to the filter cake, mixed with a TK homomixer (10 minutes at a rotational speed of 12,000 rpm), and then filtered. To the obtained filter cake, 300 parts by mass of ion-exchanged water was added, mixed with a TK homomixer (10 minutes at 12,000 rpm), and then filtered twice. To the obtained filter cake, 20 parts by mass of a 10% by mass aqueous sodium hydroxide solution was added, mixed with a TK homomixer (30 minutes at 12,000 rpm), and then filtered under reduced pressure. To the obtained filter cake, 300 parts by mass of ion-exchanged water was added, mixed with a TK homomixer (at 12,000 rpm for 10 minutes), and then filtered. To the obtained filter cake, 300 parts by mass of ion-exchanged water was added, mixed with a TK homomixer (10 minutes at 12,000 rpm), and then filtered twice. Furthermore, 20 mass parts of 10 mass% hydrochloric acid was added to the obtained filter cake, mixed with a TK homomixer (at a rotation speed of 12,000 rpm for 10 minutes) and then filtered.

―界面活性剤量調整―
上記洗浄により得られた濾過ケーキに、イオン交換水300質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した際のトナー分散液の電気伝導度を測定し、事前に作成した界面活性剤濃度の検量線より、トナー分散液の界面活性剤濃度を算出した。その値から、界面活性剤濃度が狙いの界面活性剤濃度0.05wt%になるように、イオン交換水を追加し、トナー分散液を得た。
-Surfactant adjustment-
To the filter cake obtained by the above washing, 300 parts by mass of ion-exchanged water was added, and the electrical conductivity of the toner dispersion was measured by mixing with a TK homomixer (10 minutes at 12,000 rpm). The surfactant concentration of the toner dispersion was calculated from a calibration curve for surfactant concentration prepared in advance. From this value, ion-exchanged water was added so that the surfactant concentration was the target surfactant concentration of 0.05 wt%, and a toner dispersion was obtained.

―表面処理工程―
所定の界面活性剤濃度に調整されたトナー分散液を、TK式ホモミキサーで5000rpmで混合しながら、ウォーターバスで加熱温度T1=55℃で10時間加熱を行なった。その後トナー分散液を25℃まで冷却し、濾過を行なった。更に得られた濾過ケーキに、イオン交換水300質量部を添加し、TK式ホモミキサーで混合(回転数12,000rpmにて10分間)した後濾過した。
―Surface treatment process―
The toner dispersion liquid adjusted to a predetermined surfactant concentration was heated with a water bath at a heating temperature T1 = 55 ° C. for 10 hours while being mixed with a TK homomixer at 5000 rpm. Thereafter, the toner dispersion was cooled to 25 ° C. and filtered. Further, 300 parts by mass of ion-exchanged water was added to the obtained filter cake, mixed with a TK homomixer (10 minutes at 12,000 rpm), and then filtered.

―乾燥―
得られた最終濾過ケーキを循風乾燥機にて45℃で48時間乾燥し、目開き75μmメッシュで篩い、実施例のトナー母体粒子を得た。
―Dry―
The obtained final filter cake was dried with a circulating dryer at 45 ° C. for 48 hours, and sieved with a mesh of 75 μm to obtain toner base particles of Example 4 .

―外添処理―
さらに、トナー母体粒子を100重量部に対して、平均粒径100nmの疎水性シリカ0.6重量部と、平均粒径20nmの酸化チタン1.0重量部と、平均粒径15nmの疎水性シリカ微粉体を0.8部とをヘンシェルミキサーにて混合し、実施例のトナーを得た。
―External treatment―
Further, with respect to 100 parts by weight of the toner base particles, 0.6 part by weight of hydrophobic silica having an average particle diameter of 100 nm, 1.0 part by weight of titanium oxide having an average particle diameter of 20 nm, and hydrophobic silica having an average particle diameter of 15 nm 0.8 part of the fine powder was mixed with a Henschel mixer to obtain the toner of Example 4 .

(実施例
実施例1の界面活性剤量調整において狙いの界面活性剤濃度を0.09wt%にした以外は同様にして実施例のトナーを作成した。
(Example 5 )
The toner of Example 5 was prepared in the same manner except that the target surfactant concentration was adjusted to 0.09 wt% in the surfactant amount adjustment of Example 1.

(比較例1)
実施例1の界面活性剤調整、及び表面処理工程を実施せず、洗浄後、乾燥してトナーを得た以外は同様にして、比較例1のトナーを得た。
(Comparative Example 1)
The toner of Comparative Example 1 was obtained in the same manner except that the surfactant adjustment and surface treatment steps of Example 1 were not performed, and the toner was obtained by washing and drying.

(比較例2)
実施例1の表面処理工程における加熱温度T1を44℃に変更した以外は、実施例1と同様にして、比較例2のトナーを作成した。
(Comparative Example 2)
A toner of Comparative Example 2 was prepared in the same manner as in Example 1 except that the heating temperature T1 in the surface treatment process of Example 1 was changed to 44 ° C.

(比較例3)
実施例1の表面処理工程における加熱温度T1を66℃に変更した以外は、実施例1と同様にして、比較例3のトナーを作成した。
(Comparative Example 3)
A toner of Comparative Example 3 was prepared in the same manner as in Example 1 except that the heating temperature T1 in the surface treatment process of Example 1 was changed to 66 ° C.

(比較例4)
実施例1の界面活性剤量調整において、水系媒体に対する界面活性剤の狙い濃度を0.12wt%とした以外は同様にして、比較例4のトナーを作成した。
(Comparative Example 4)
The toner of Comparative Example 4 was prepared in the same manner except that the surfactant concentration in the aqueous medium was adjusted to 0.12 wt% in the adjustment of the surfactant amount in Example 1.

(比較例5)
実施例1の界面活性剤量調整において、水系媒体に対する界面活性剤の狙い濃度を0.003wt%とした以外は同様にして、比較例5のトナーを作成した。
(Comparative Example 5)
The toner of Comparative Example 5 was prepared in the same manner as in Example 1 except that the surfactant concentration in the aqueous medium was adjusted to 0.003 wt% in the adjustment of the surfactant amount.

上記のようにして得られた実施例1〜5、参考例1,2と、比較例1〜5のトナーの製造条件の一覧を表1に、得られたトナーの各種物性値を表2に示す。 Table 1 shows a list of production conditions of the toners of Examples 1 to 5, Reference Examples 1 and 2 and Comparative Examples 1 to 5 obtained as described above, and Table 2 shows various physical property values of the obtained toners. Show.

Figure 0005387946
Figure 0005387946

Figure 0005387946
Figure 0005387946

<キャリアの作製>
トルエン100部に、シリコーン樹脂オルガノストレートシリコーン100部、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン5部及びカーボンブラック10部を添加し、ホモミキサーで20分間分散させて、樹脂層塗布液を調製した。流動床型コーティング装置を用いて、平均粒径50μmの球状マグネタイト1,000部の表面に樹脂層塗布液を塗布して、キャリアを作製した。
<Creation of carrier>
To 100 parts of toluene, 100 parts of silicone resin organostraight silicone, 5 parts of γ- (2-aminoethyl) aminopropyltrimethoxysilane and 10 parts of carbon black are added and dispersed with a homomixer for 20 minutes. Was prepared. Using a fluidized bed type coating apparatus, the resin layer coating solution was applied to the surface of 1,000 parts of spherical magnetite having an average particle size of 50 μm to prepare a carrier.

<現像剤の作製>
ボールミルを用いて、トナー5部とキャリア95部を混合し、現像剤を作製した。
<Production of developer>
Using a ball mill, 5 parts of toner and 95 parts of carrier were mixed to prepare a developer.

<評価方法及び評価結果>
得られた現像剤を用いて、以下の評価を行った。評価結果を表3に示す。
[トナーの評価]
<Evaluation method and evaluation results>
The following evaluation was performed using the obtained developer. The evaluation results are shown in Table 3.
[Evaluation of toner]

[転写効率(%)]
富士ゼロックス社製のDocuColor 8000 Digital Pressを改造して、線速及び転写時間を調整可能にチューニングした評価機を用い、各現像剤について、A4サイズ、トナー付着量0.6mg/cm2のベタパターンをテスト画像として出力するランニング試験を行った。テスト画像10万枚、100万枚出力後、一次転写における転写効率を下記式(3)により、二次転写における転写効率を下記式(4)により、それぞれ求めた。なお、評価基準は下記のとおりである。
[Transfer efficiency (%)]
A solid pattern of A4 size and 0.6 mg / cm2 of toner adhesion was used for each developer using an evaluation machine that was remodeled from Fuji Xerox DocuColor 8000 Digital Press and tuned so that the linear speed and transfer time could be adjusted. A running test to output as a test image was performed. After outputting 100,000 test images and 1,000,000 test images, the transfer efficiency in primary transfer was determined from the following formula (3), and the transfer efficiency in secondary transfer was determined from the following formula (4). The evaluation criteria are as follows.

Figure 0005387946
Figure 0005387946

Figure 0005387946
評価基準は、
◎・・・90%以上
○・・・85%以上90%未満
△・・・80%以上85%未満
×・・・80%未満
とした。
Figure 0005387946
Evaluation criteria are
◎ ... 90% or more ○ ... 85% or more and less than 90% △ ... 80% or more and less than 85% × ... less than 80%

[転写ムラ]
富士ゼロックス社製のDocuColor 8000 Digital Pressを改造して、線速及び転写時間を調整可能にチューニングした評価機を用いて、黒ベタ画像を形成し、得られた画像の転写ムラの有無を目視観察し、転写ムラを評価した。なお、転写ムラがなく、非常に良好なレベルであるものを(◎)、転写ムラがなく、実使用上、問題が無いレベルであるものを(○)、転写ムラが少しあるが、実使用可能なレベルであるものを(△)、転写ムラがあり、実用上、問題があるレベルであるものを(×)として、判定した。
[Transfer unevenness]
A black solid image was formed using an evaluation machine that was remodeled from Fuji Xerox DocuColor 8000 Digital Press and tuned so that the linear speed and transfer time could be adjusted, and the resulting image was visually observed for transfer unevenness. The transfer unevenness was evaluated. It should be noted that there is no transfer unevenness and a very good level (◎), there is no transfer unevenness and there is no problem in actual use (○), there is a little transfer unevenness, but actual use The determination was made with (Δ) indicating a possible level and (×) indicating that there was a transfer unevenness and a practically problematic level.

[かぶり]
感光体に当接するクリーニングブレード及び帯電ローラーを有するタンデム型カラー電子写真装置imagio Neo 450(リコー社製)を用いて、現像スリーブの回転方向に対して垂直な方向に1cm間隔で黒ベタと白ベタを繰り返したA4横チャート(画像パターンA)を1万枚出力した後、白紙画像を出力し、かぶりの有無を目視評価した。なお、かぶりが無く非常に良好なレベルであるものを(◎)、かぶりが殆ど無く実使用上問題が無いレベルであるものを(○)、かぶりが少しあるが、実使用可能なレベルであるものを(△)、かぶりがあり、実用上、問題があるレベルであるものを(×)として判定した。
[Cover]
Using a tandem color electrophotographic apparatus imagio Neo 450 (manufactured by Ricoh Co., Ltd.) having a cleaning blade in contact with the photosensitive member and a charging roller, black solid and white solid at intervals of 1 cm in a direction perpendicular to the rotation direction of the developing sleeve. After outputting 10,000 A4 horizontal charts (image pattern A), a blank image was output and the presence or absence of fogging was visually evaluated. It should be noted that a very good level with no fogging (◎), a level with almost no fogging and no problem in actual use (○), a level with a little fogging but practically usable. A thing with a ((triangle | delta)) and a fogging and the level which has a problem practically was determined as (x).

[クリーニング性]
クリーニング性は、以下のようにして評価した。初期並びに1000枚及び10万枚印
刷した後に、クリーニング工程を通過した感光体上の残存するトナーを、スコッチテープ
(住友スリーエム社製)を用いて白紙に移し、マクベス反射濃度計RD514型で測定し
、ブランクとの差が0.005未満のものを良好(◎)、0.005以上0.015未満のものを(○)、0.015以上0.025未満のものを(△)、0.025を越えるものを不良(×)として判定した。
[Cleanability]
The cleaning property was evaluated as follows. The toner remaining on the photoconductor after passing the cleaning process at the initial stage and after printing 1000 sheets and 100,000 sheets is transferred to a white paper using a scotch tape (manufactured by Sumitomo 3M) and measured with a Macbeth reflection densitometer RD514 type. The difference from the blank is less than 0.005 is good (◎), 0.005 or more and less than 0.015 (◯), 0.015 or more and less than 0.025 (△), Those exceeding 025 were judged as defective (x).

Figure 0005387946
Figure 0005387946

表3から判るように、実施例1〜5、参考例1,2は、一次、二次転写効率、転写ムラ、かぶり、クリーニングのいずれも良好であるが、比較例1〜5全ての評価で満足できるものはなかった。

As can be seen from Table 3, Examples 1 to 5 and Reference Examples 1 and 2 are all good in primary, secondary transfer efficiency, transfer unevenness, fogging and cleaning, but in all evaluations of Comparative Examples 1 to 5. There was nothing satisfactory.

本発明の画像形成方法における現像装置の一例を示す概略図である。It is a schematic diagram showing an example of a developing device in the image forming method of the present invention. 本発明のローラ式帯電装置の一例を示す概略図である。It is the schematic which shows an example of the roller-type charging device of this invention. 本発明の画像形成方法におけるブラシ式帯電装置の一例を示す概略図である。It is the schematic which shows an example of the brush-type charging device in the image forming method of this invention. 本発明のプロセスカートリッジの一例を示す概略図である。It is the schematic which shows an example of the process cartridge of this invention. 本発明の画像形成方法における定着装置の一例を示す概略図である。FIG. 3 is a schematic diagram illustrating an example of a fixing device in the image forming method of the present invention. 本発明の画像形成方法における定着装置に備えたベルトの層構成の一例を示す概略図である。FIG. 3 is a schematic diagram illustrating an example of a layer configuration of a belt provided in a fixing device in the image forming method of the present invention. 本発明の画像形成装置の構成の一例を示す概略図である。1 is a schematic diagram illustrating an example of a configuration of an image forming apparatus of the present invention. 本発明の画像形成装置の構成の他の一例を示す概略図である。It is the schematic which shows another example of a structure of the image forming apparatus of this invention.

符号の説明Explanation of symbols

(図1について)
500 ローラ式帯電装置
501 帯電ローラ
502 芯金
503 導電ゴム層
504 電源
505 感光体
(図2について)
510 ブラシ式帯電装置
511 ブラシローラ(ファーブラシローラ又は磁気ブラシローラ)
512 芯金
513 ブラシ部
514 電源
515 感光体
(図3について)
600 現像装置(現像器)
601 現像スリーブ
602 電源
603 現像部
604 感光体
605 トナー
(図4、5について)
700 定着装置
710 加熱ローラ
720 定着ローラ(対向回転体)
721 芯金
722 弾性部材
730 定着ベルト(耐熱性ベルト、トナー加熱媒体)
731 基体
732 発熱層
733 中間層
734 離型層
740 加圧ローラ(加圧回転体)
741 芯金
742 弾性部材
750 温度検知部材
760 誘導加熱手段
761 励磁コイル
762 コイルガイド板
763 励磁コイルコア
764 励磁コイルコア支持部材
770 記録媒体(記録材)
A ベルトの回転方向
N 定着ニップ部
W1 接触部位
T トナー像
(図6について)
800 プロセスカートリッジ
801 感光体
802 帯電手段
803 現像手段
804 トナー
805 現像ローラ
806 クリーニング手段
(図7について)
100 画像形成装置
120Bk 画像書込部(黒)
120C 画像書込部(シアン)
120M 画像書込部(マゼンダ)
120Y 画像書込部(イエロー)
130Bk 画像形成部(黒)
130C 画像形成部(シアン)
130M 画像形成部(マゼンダ)
130Y 画像形成部(イエロー)
140 給紙部
150 定着装置
160 レジストローラ対
170 2次転写ローラ
180 転写ベルト
200Bk 現像装置(黒)
200C 現像装置(シアン)
200M 現像装置(マゼンダ)
200Y 現像装置(イエロー)
210Bk 感光体(黒)
210C 感光体(シアン)
210M 感光体(マゼンダ)
210Y 感光体(イエロー)
215Bk 帯電装置(黒)
215C 帯電装置(シアン)
215M 帯電装置(マゼンダ)
215Y 帯電装置(イエロー)
220 中間転写ベルト
230Bk 1次転写装置(黒)
230C 1次転写装置(シアン)
230M 1次転写装置(マゼンダ)
230Y 1次転写装置(イエロー)
241 導電性ローラ
242 導電性ローラ
243 導電性ローラ
250Bk トナー移送管(黒)
250C トナー移送管(シアン)
250M トナー移送管(マゼンダ)
250Y トナー移送管(イエロー)
260 中間転写ベルトクリーニング装置
261 導電性ファーブラシ
262 導電性ファーブラシ
300Bk クリーニング装置(黒)
300C クリーニング装置(シアン)
300M クリーニング装置(マゼンダ)
300Y クリーニング装置(イエロー)
500 転写ベルト
502 転写チャージャ
600 二次転写ローラ
(図8の符号)
10Y、10C、10M、10K 各感光体
14 第1の支持ローラ
15 第2の支持ローラ
16 第3の支持ローラ
17 中間転写体クリーニング装置
18 画像形成手段
21 露光手段
22 2次転写手段
23 ローラ
24 2次転写ベルト
25 定着装置
26 定着ベルト
27 加圧ローラ
28 シート反転装置
130 原稿台
32 コンタクトガラス
33 第1走行体
34 第2走行体
35 結像レンズ
36 読取りセンサ
40 感光体
42 給紙ローラ
43 ペーパーバンク
144 給紙カセット
145 分離ローラ
146 給紙路
147 搬送ローラ
148 給紙路
49 レジストローラ
50 給紙ローラ
51 手差しトレイ
53 給紙路
55 切換爪
56 排出ローラ
57 排紙トレイ
58 手差給紙ローラ
62 1次転写装置
100 画像形成装置
101 複写装置本体
110 画像形成装置本体
120 カラー画像形成ユニット
130 原稿載置台
142 給紙ローラ
143 給紙カセット
144 給紙カセット
145 分離ローラ
146 給紙路
147 搬送ローラ
148 給紙路
200 給紙テーブル
300 スキャナ
400 原稿自動搬送装置(ADF)
(About Figure 1)
500 Roller-type charging device 501 Charging roller 502 Core metal 503 Conductive rubber layer 504 Power source 505 Photoconductor (FIG. 2)
510 Brush-type charging device 511 Brush roller (fur brush roller or magnetic brush roller)
512 Core 513 Brush 514 Power Supply 515 Photosensitive Member (About FIG. 3)
600 Development device (developer)
601 Developing sleeve 602 Power source 603 Developing unit 604 Photoconductor 605 Toner (FIGS. 4 and 5)
700 Fixing Device 710 Heating Roller 720 Fixing Roller (Counter Rotating Body)
721 Core 722 Elastic member 730 Fixing belt (heat-resistant belt, toner heating medium)
731 Substrate 732 Heat generation layer 733 Intermediate layer 734 Release layer 740 Pressure roller (pressure rotator)
741 Core metal 742 Elastic member 750 Temperature detection member 760 Induction heating means 761 Excitation coil 762 Coil guide plate 763 Excitation coil core 764 Excitation coil core support member 770 Recording medium (recording material)
A Belt rotation direction N Fixing nip W1 Contact part T Toner image (FIG. 6)
800 Process cartridge 801 Photoconductor 802 Charging means 803 Developing means 804 Toner 805 Developing roller 806 Cleaning means (about FIG. 7)
100 Image forming apparatus 120Bk Image writing unit (black)
120C Image writing unit (cyan)
120M Image writing unit (Magenta)
120Y Image writing unit (yellow)
130Bk image forming part (black)
130C Image forming unit (cyan)
130M Image forming unit (Magenta)
130Y Image forming unit (yellow)
140 Feeder 150 Fixing Device 160 Registration Roller Pair 170 Secondary Transfer Roller 180 Transfer Belt 200Bk Developing Device (Black)
200C Developer (Cyan)
200M Developer (Magenta)
200Y Development device (yellow)
210Bk photoconductor (black)
210C photoconductor (cyan)
210M photoconductor (magenta)
210Y photoconductor (yellow)
215Bk charging device (black)
215C charging device (cyan)
215M charging device (magenta)
215Y Charging device (yellow)
220 Intermediate transfer belt 230Bk Primary transfer device (black)
230C primary transfer device (cyan)
230M Primary transfer device (Magenta)
230Y primary transfer device (yellow)
241 Conductive roller 242 Conductive roller 243 Conductive roller 250Bk Toner transfer tube (black)
250C Toner transfer tube (cyan)
250M Toner transfer pipe (Magenta)
250Y Toner transfer tube (yellow)
260 Intermediate transfer belt cleaning device 261 Conductive fur brush 262 Conductive fur brush 300Bk Cleaning device (black)
300C Cleaning device (Cyan)
300M Cleaning device (Magenta)
300Y Cleaning device (yellow)
500 Transfer belt 502 Transfer charger 600 Secondary transfer roller (reference numeral in FIG. 8)
10Y, 10C, 10M, 10K Each photoconductor 14 First support roller 15 Second support roller 16 Third support roller 17 Intermediate transfer member cleaning device 18 Image forming unit 21 Exposure unit 22 Secondary transfer unit 23 Roller 24 2 Next transfer belt 25 Fixing device 26 Fixing belt 27 Pressure roller 28 Sheet reversing device 130 Document table 32 Contact glass 33 First traveling member 34 Second traveling member 35 Imaging lens 36 Reading sensor 40 Photosensitive member 42 Feeding roller 43 Paper bank 144 Paper feed cassette 145 Separation roller 146 Paper feed path 147 Transport roller 148 Paper feed path 49 Registration roller 50 Paper feed roller 51 Manual feed tray 53 Paper feed path 55 Switching claw 56 Paper discharge roller 57 Paper discharge tray 58 Manual paper feed roller 62 1 Next transfer apparatus 100 Image forming apparatus 101 Copying apparatus main body 110 Image Forming device main body 120 Color image forming unit 130 Document placing table 142 Paper feed roller 143 Paper feed cassette 144 Paper feed cassette 145 Separating roller 146 Paper feed path 147 Transport roller 148 Paper feed path 200 Paper feed table 300 Scanner 400 Automatic document transport apparatus ( ADF)

Claims (11)

着色粒子を表面処理してトナーを得るトナーの製造方法において、少なくとも界面活性剤を含む水系媒体中に着色粒子を分散して着色粒子分散液を調整する工程、及び、前記着色粒子分散液を加熱する表面処理工程を含むものであり、前記着色粒子分散液を調整する工程と着色粒子表面処理工程の間に、さらに着色粒子を洗浄する工程を含み、前記表面処理工程が、前記トナー母体粒子表面の凹凸を少なくする工程であり、前記表面処理工程における前記着色粒子分散液中の界面活性剤量が前記界面活性剤の臨界ミセル濃度の0.1倍以上2.0倍以下であり、かつ前記表面処理工程における加熱温度(T1)がトナーのガラス転移温度(Tg)に対して、−10℃以上10℃未満であることを特徴とするトナーの製造方法。 In a toner manufacturing method for obtaining toner by surface-treating colored particles, a step of preparing colored particle dispersion by dispersing colored particles in an aqueous medium containing at least a surfactant, and heating the colored particle dispersion to a Dressings containing surface treatment step, between the step and the colored particles surface treatment step of adjusting the colored particle dispersion, comprising the step of further washing the colored particles, the surface treatment step, the toner base particle surface The amount of the surfactant in the colored particle dispersion in the surface treatment step is 0.1 to 2.0 times the critical micelle concentration of the surfactant, and A method for producing a toner, wherein the heating temperature (T1) in the surface treatment step is -10 ° C or higher and lower than 10 ° C with respect to the glass transition temperature (Tg) of the toner. 界面活性剤を含む水系媒体中でトナー材料混合物を造粒することで着色粒子分散液を調整する工程、前記着色粒子分散液を加熱する着色粒子表面処理工程、該分散液から表面処理済み着色粒子をろ過し、乾燥してトナー母体粒子を得る工程、及び、トナー母体粒子へ外添剤を処理してトナーを得る工程を含むものであり、前記着色粒子分散液を調整する工程と着色粒子表面処理工程の間に、さらに着色粒子を洗浄する工程を含み、前記表面処理工程が、前記トナー母体粒子表面の凹凸を少なくする工程であり、前記着色粒子表面処理工程における着色粒子分散液中の界面活性剤量が界面活性剤の臨界ミセル濃度の0.1倍以上2.0倍以下であり、加熱温度(T1)がトナーのガラス転移温度(Tg)に対して、−10℃以上10℃未満であることを特徴とするトナーの製造方法。 A step of preparing a colored particle dispersion by granulating a toner material mixture in an aqueous medium containing a surfactant, a colored particle surface treatment step of heating the colored particle dispersion, and a surface-treated colored particle from the dispersion was filtered, to obtain the toner base particles and dried, and treated with an external additive to toner base particles are Dressings containing obtaining a toner, the surface of the colored particles and the step of adjusting the colored particle dispersion A step of washing the colored particles between the treatment steps, wherein the surface treatment step is a step of reducing irregularities on the surface of the toner base particles, and the interface in the colored particle dispersion in the colored particle surface treatment step The amount of the activator is 0.1 to 2.0 times the critical micelle concentration of the surfactant, and the heating temperature (T1) is −10 ° C. or more and less than 10 ° C. with respect to the glass transition temperature (Tg) of the toner. In Method for producing a toner, characterized in that. 前記着色粒子分散液を調整する工程が、少なくとも樹脂、着色剤、離型剤、含むトナー材料を有機溶媒中へ溶解乃至分散させ、該溶解乃至分散物を界面活性剤を含む水系媒体中へ分散させることで、着色粒子分散液を調整する工程であることを特徴とする請求項1または2に記載のトナー製造方法。 The step of adjusting the colored particle dispersion comprises dissolving or dispersing at least a resin material, a colorant, a release agent, and a toner material in an organic solvent, and dispersing the dispersion or dispersion in an aqueous medium containing a surfactant. 3. The toner production method according to claim 1, wherein the toner production method is a step of adjusting the colored particle dispersion. 前記着色粒子分散液を調整する工程が、少なくとも変性されていないポリエステル樹脂、ウレア又はウレタン結合し得る変性されたポリエステル樹脂、アミン、着色剤、離型剤を含むトナー材料を有機溶媒中へ溶解乃至分散させ、該溶解乃至分散物を界面活性剤を含む水系媒体中へ分散させ、前記変性されたポリエステル樹脂と前記アミンとを反応させることで得られるウレア又はウレタン結合を有するポリエステル樹脂を含む着色粒子分散液を調整する工程であることを特徴とする請求項1乃至3のいずれかに記載のトナー製造方法。 The step of preparing the colored particle dispersion comprises dissolving at least an unmodified polyester resin, a modified polyester resin capable of bonding with urea or urethane, an amine, a colorant, and a toner material containing a release agent in an organic solvent. Colored particles containing a polyester resin having a urea or urethane bond obtained by dispersing, dispersing the dispersion or dispersion in an aqueous medium containing a surfactant, and reacting the modified polyester resin with the amine 4. The toner manufacturing method according to claim 1, wherein the toner is a step of adjusting a dispersion. 請求項1乃至に記載のトナー製造方法で得られるトナー。 The toner obtained by the toner manufacturing method according to claims 1 to 4. トナーのBET比表面積(Sbet)と前記トナーの体積平均粒径(Dv)の比Sbet/Dvが2.0×10m/g以上4.0×10m/g未満であることを特徴とする請求項に記載のトナー。 The ratio Sbet / Dv between the BET specific surface area (Sbet) of the toner and the volume average particle diameter (Dv) of the toner is 2.0 × 10 5 m / g or more and less than 4.0 × 10 5 m / g. The toner according to claim 5 . トナーの平均円形度が0.940以上0.970未満であることを特徴とする請求項5又は6のいずれかに記載のトナー。 The toner according to claim 5, wherein the toner has an average circularity of 0.940 or more and less than 0.970. トナーの体積平均粒径が1.0μm以上6.0μm未満であることを特徴とする請求項5乃至7のいずれかに記載のトナー。 The toner according to claim 5, wherein the toner has a volume average particle diameter of 1.0 μm or more and less than 6.0 μm. 電子写真感光体を帯電手段により帯電させる帯電工程と、前記帯電された電子写真感光体上に露光手段により静電潜像を形成する露光工程と、前記静電潜像が形成された電子写真感光体上に現像手段によりトナーを用いてトナー像を形成する現像工程と、前記電子写真感光体上に形成されたトナー像を一次転写手段により中間転写体上に転写する一次転写工程と、前記中間転写体上に転写されたトナー像を二次転写手段により記録材上に転写する二次転写工程と、前記記録材上に転写されたトナー像を熱及び圧力定着部材を含む定着手段により記録材上に定着させる定着工程と、前記一次転写手段によりトナー像を中間転写体上に転写した電子写真感光体の表面に付着している転写残トナーをクリーニング手段によりクリーニングするクリーニング工程とを備え、前記現像工程におけるトナーが請求項5乃至8のいずれかに記載のトナーであることを特徴とするフルカラー画像形成方法。 A charging step for charging the electrophotographic photosensitive member by a charging unit; an exposure step for forming an electrostatic latent image on the charged electrophotographic photosensitive member by an exposing unit; and an electrophotographic photosensitive member on which the electrostatic latent image is formed. A developing process for forming a toner image on the body using toner by a developing means, a primary transfer process for transferring the toner image formed on the electrophotographic photosensitive member onto an intermediate transfer body by a primary transfer means, and the intermediate A secondary transfer step of transferring the toner image transferred onto the transfer body onto a recording material by a secondary transfer means, and a recording material by means of a fixing means including a heat and pressure fixing member for transferring the toner image transferred onto the recording material. A fixing step of fixing the toner image on the surface of the electrophotographic photosensitive member having the toner image transferred onto the intermediate transfer member by the primary transfer unit; And a ring step, full-color image forming method, wherein the toner in the developing step is a toner according to any one of claims 5 to 8. 前記二次転写工程において、トナー像の記録材への転写の線速度は300〜1000mm/secであり、二次転写手段のニップ部での転写時間は0.5〜20msecであることを特徴とする請求項に記載のフルカラー画像形成方法。 In the secondary transfer step, the linear speed of transfer of the toner image to the recording material is 300 to 1000 mm / sec, and the transfer time at the nip portion of the secondary transfer means is 0.5 to 20 msec. The full-color image forming method according to claim 9 . タンデム方式の電子写真画像形成プロセスを採用したことを特徴とする請求項9又は10に記載のフルカラー画像形成方法。 11. The full color image forming method according to claim 9 , wherein a tandem type electrophotographic image forming process is employed.
JP2008317923A 2008-12-15 2008-12-15 Method for producing surface smoothing toner in aqueous medium Active JP5387946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317923A JP5387946B2 (en) 2008-12-15 2008-12-15 Method for producing surface smoothing toner in aqueous medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317923A JP5387946B2 (en) 2008-12-15 2008-12-15 Method for producing surface smoothing toner in aqueous medium

Publications (2)

Publication Number Publication Date
JP2010139912A JP2010139912A (en) 2010-06-24
JP5387946B2 true JP5387946B2 (en) 2014-01-15

Family

ID=42350086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317923A Active JP5387946B2 (en) 2008-12-15 2008-12-15 Method for producing surface smoothing toner in aqueous medium

Country Status (1)

Country Link
JP (1) JP5387946B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423226B2 (en) * 2009-08-10 2014-02-19 株式会社リコー Toner production method
JP5655417B2 (en) * 2009-08-05 2015-01-21 株式会社リコー Toner, process cartridge, image forming method, and toner manufacturing method
JP5392045B2 (en) * 2009-12-09 2014-01-22 株式会社リコー Toner production method
US8338069B2 (en) * 2010-07-19 2012-12-25 Xerox Corporation Toner compositions
JP5561046B2 (en) * 2010-09-08 2014-07-30 株式会社リコー Developer for developing electrostatic latent image, method for producing developer for developing electrostatic latent image, container with developer, image forming method, and process cartridge
JP5915018B2 (en) * 2010-09-15 2016-05-11 株式会社リコー Toner, developer, container containing toner, process cartridge, and image forming apparatus
JP5990881B2 (en) * 2010-10-22 2016-09-14 株式会社リコー Toner production method
JP5625754B2 (en) * 2010-10-29 2014-11-19 株式会社リコー Method for producing surface smoothing toner in aqueous medium
JP2012163774A (en) * 2011-02-07 2012-08-30 Ricoh Co Ltd Toner for electrostatic charge image development, two-component developer, process cartridge and image forming apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994001B2 (en) * 1990-05-10 1999-12-27 株式会社東芝 Electrostatic latent image developing toner and method of manufacturing electrostatic latent image developing toner
JPH0859715A (en) * 1994-08-26 1996-03-05 Konica Corp Polymeric particle containing pigment and its production
JP2787897B2 (en) * 1994-12-22 1998-08-20 富士ゼロックス株式会社 Electrostatic toner and method for producing the same
JP3158982B2 (en) * 1995-07-28 2001-04-23 富士ゼロックス株式会社 Electrostatic image developing toner and method of manufacturing the same
JP4057747B2 (en) * 1999-06-25 2008-03-05 株式会社巴川製紙所 Method for producing toner for circuit formation
JP2006030263A (en) * 2004-07-12 2006-02-02 Canon Inc Toner, image forming method, and process cartridge
JP4597821B2 (en) * 2004-09-16 2010-12-15 株式会社リコー Toner, method for producing the same, and image forming method
JP2007010722A (en) * 2005-06-28 2007-01-18 Konica Minolta Business Technologies Inc Image forming apparatus
JP2008176220A (en) * 2007-01-22 2008-07-31 Ricoh Co Ltd Toner, method for manufacturing toner, toner supply cartridge, process cartridge and image forming apparatus

Also Published As

Publication number Publication date
JP2010139912A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5568888B2 (en) Toner, developer, toner container, process cartridge, and image forming method
JP5124308B2 (en) Toner, developer using the toner, container with toner, process cartridge, and image forming method
JP5157733B2 (en) Toner, developer, toner container, process cartridge, and image forming method
JP5387946B2 (en) Method for producing surface smoothing toner in aqueous medium
JP5510026B2 (en) Toner, developer, process cartridge, image forming method, and image forming apparatus
JP2013156430A (en) Toner, and image forming apparatus
JP2012008354A (en) Method for producing electrophotographic toner, toner, method for forming full-color image, and full-color image forming apparatus
JP2009109661A (en) Method for manufacturing toner, image forming method and process cartridge
JP2010134024A (en) Toner, and full-color image forming method and process cartridge, using the toner
JP5982838B2 (en) Toner for electrophotography, developer using the toner, and image forming method
JP2010244033A (en) Toner for developing electrostatic charge image, and image forming device
JP2012177827A (en) Toner, method for forming full-color image and full-color image forming apparatus using the toner
JP4960694B2 (en) Toner manufacturing method, toner, two-component developer, process cartridge, and image forming apparatus
JP5625754B2 (en) Method for producing surface smoothing toner in aqueous medium
JP5423226B2 (en) Toner production method
JP5445925B2 (en) Toner, developer, toner container, process cartridge, and image forming method
JP5494072B2 (en) Toner, and image forming method and process cartridge using the toner
JP2015176038A (en) toner
JP2012163774A (en) Toner for electrostatic charge image development, two-component developer, process cartridge and image forming apparatus
JP2011128349A (en) Toner, and image forming method and image forming apparatus using the toner
JP5440842B2 (en) Toner manufacturing method and image forming method
JP5458852B2 (en) Toner and image forming method and process cartridge using the same
JP5581944B2 (en) Toner and manufacturing method thereof, developer, process cartridge, image forming method, and image forming apparatus
JP2008134561A (en) Image forming method which suppresses gloss unevenness, process cartridge and image forming apparatus
JP5354274B2 (en) Toner, developer using the toner, process cartridge, and image forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R151 Written notification of patent or utility model registration

Ref document number: 5387946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151