JP5387263B2 - Steam reheating device - Google Patents

Steam reheating device Download PDF

Info

Publication number
JP5387263B2
JP5387263B2 JP2009213433A JP2009213433A JP5387263B2 JP 5387263 B2 JP5387263 B2 JP 5387263B2 JP 2009213433 A JP2009213433 A JP 2009213433A JP 2009213433 A JP2009213433 A JP 2009213433A JP 5387263 B2 JP5387263 B2 JP 5387263B2
Authority
JP
Japan
Prior art keywords
steam
heat
temperature
low
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009213433A
Other languages
Japanese (ja)
Other versions
JP2011064354A (en
Inventor
雅祐 中島
一雄 三好
久和 鬼塚
淳 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009213433A priority Critical patent/JP5387263B2/en
Publication of JP2011064354A publication Critical patent/JP2011064354A/en
Application granted granted Critical
Publication of JP5387263B2 publication Critical patent/JP5387263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

蒸気利用プロセスで低温化した低温蒸気を、再加熱して高温蒸気とし、該高温蒸気を蒸気利用プロセスに再度供給する蒸気再加熱装置に関するものである。   The present invention relates to a steam reheating apparatus that reheats low-temperature steam that has been lowered in temperature in a steam utilization process to form high-temperature steam and supplies the high-temperature steam again to the steam utilization process.

蒸気プロセスでは、一般に、ボイラで蒸気(水蒸気)を生成してこれを蒸気ヘッダ(蒸気溜め)に送り、蒸気ヘッダから各蒸気利用プロセスに蒸気を分配する。分配された蒸気は、各蒸気利用プロセスで熱を放出して低温低圧化し、最終的に蒸気ドレンに排出される。   In the steam process, generally, steam (water vapor) is generated in a boiler and is sent to a steam header (steam reservoir), and the steam is distributed from the steam header to each steam utilization process. The distributed steam releases heat in each steam utilization process to lower the temperature and pressure, and is finally discharged to the steam drain.

このような蒸気プロセスでは、蒸気利用プロセスで低温化(乾き度が低下)した低温蒸気を再加熱して高温蒸気とし、高温蒸気を蒸気ヘッダや蒸気利用プロセスに再度供給する蒸気再加熱装置が用いられている。蒸気再加熱装置を用いることにより、ボイラで生成する蒸気の量を少なくでき、省エネルギーを実現できる。   Such a steam process uses a steam reheating device that reheats the low-temperature steam, which has been lowered (dryness decreased) in the steam utilization process, into high-temperature steam, and supplies the high-temperature steam again to the steam header or steam utilization process. It has been. By using the steam reheating device, the amount of steam generated by the boiler can be reduced, and energy saving can be realized.

従来の蒸気再加熱装置として、蒸気利用プロセスで低温化した低温蒸気を圧縮機で再圧縮(再加熱)する、所謂、蒸気再圧縮(Vapor Re-Compression;以下、VRCという)式の蒸気再加熱装置がある。   As a conventional steam reheating device, so-called steam re-compression (hereinafter referred to as VRC) steam reheating, in which low-temperature steam that has been lowered in the steam utilization process is recompressed (reheated) with a compressor. There is a device.

一例として、図4に示すVRC式の蒸気再加熱装置41では、煮沸釜42で発生した蒸気(例えば100℃の蒸気)を圧縮機43で圧縮して高温蒸気(例えば136℃の蒸気)とし、この高温蒸気を加熱器44にて煮沸釜42で煮沸される液体(例えば麦汁)と熱交換させて、加熱した液体を煮沸釜42内に戻し、煮沸釜42にて効率よく煮沸を行えるようにしている。   As an example, in the VRC-type steam reheating device 41 shown in FIG. 4, steam generated in the boiling kettle 42 (for example, steam at 100 ° C.) is compressed by the compressor 43 into high-temperature steam (for example, steam at 136 ° C.), The high-temperature steam is heat-exchanged with a liquid (for example, wort) boiled in the boiling pot 42 by the heater 44, and the heated liquid is returned to the boiling pot 42 so that the boiling pot 42 can be efficiently boiled. I have to.

なお、蒸気再加熱装置のような付帯設備を用いない場合には、予め蒸気流量や圧力を過剰にすることで、蒸気利用プロセスにおける蒸気の乾き度の低下を抑制する対策が取られている。   In the case where auxiliary equipment such as a steam reheating device is not used, measures are taken to suppress a decrease in the dryness of steam in the steam utilization process by preliminarily increasing the steam flow rate and pressure.

なお、この出願の発明に関連する先行技術文献情報としては、特許文献1,2がある。   As prior art document information related to the invention of this application, there are Patent Documents 1 and 2.

特開2007−71419号公報JP 2007-71419 A 特開2008−45806号公報JP 2008-45806 A

しかしながら、付帯設備を用いない場合には、必要な蒸気量に対して過剰な蒸気供給を行うため不経済となり、省エネルギーの観点からも好ましくない。   However, when the incidental equipment is not used, an excessive supply of steam to the required amount of steam is uneconomical, which is not preferable from the viewpoint of energy saving.

したがって、蒸気再加熱装置を用いることが望ましいが、従来のVRC式の蒸気再加熱装置では、圧縮機にて蒸気を圧縮しており、蒸気を圧縮する圧縮機が現状で130〜135℃程度までの昇温にしか対応できないので、130〜135℃程度の低温蒸気プロセスにしか適用できないという問題がある。   Therefore, it is desirable to use a steam reheating device, but in the conventional VRC type steam reheating device, the steam is compressed by a compressor, and the compressor that compresses the steam is currently about 130 to 135 ° C. Therefore, there is a problem that it can be applied only to a low-temperature steam process of about 130 to 135 ° C.

そこで、本発明の目的は、上記課題を解決し、高温蒸気プロセスにも適用可能であり、経済的で省エネルギーを実現可能な蒸気再加熱装置を提供することにある。   Accordingly, an object of the present invention is to provide a steam reheating apparatus that solves the above-described problems and can be applied to a high-temperature steam process, and is economical and can realize energy saving.

本発明は上記目的を達成するために創案されたものであり、蒸気利用プロセスで低温化した低温蒸気を、再加熱して高温蒸気とし、該高温蒸気を前記蒸気利用プロセスに再度供給する蒸気再加熱装置であって、熱媒体を高温熱源と熱交換させ、前記熱媒体を蒸発させる蒸発器と、該蒸発器で蒸発させた前記熱媒体を圧縮する圧縮機と、該圧縮機で圧縮された前記熱媒体を低温熱源と熱交換させ、前記熱媒体を凝縮させる凝縮器と、該凝縮器で凝縮させた前記熱媒体を膨張させて前記蒸発器に供給する膨張弁とを備えたヒートポンプと、前記低温蒸気を、前記ヒートポンプの前記蒸発器に前記高温熱源として供給する低温蒸気導入ラインと、該低温蒸気導入ラインからの前記低温蒸気が前記蒸発器にて前記熱媒体と熱交換して凝縮された熱水を、前記ヒートポンプの前記凝縮器に前記低温熱源として供給するための昇圧ラインと、該昇圧ラインに設けられ、前記熱水を昇圧して前記凝縮器に供給する昇圧ポンプと、前記昇圧ラインからの前記熱水が前記凝縮器にて前記熱媒体と熱交換して蒸発した前記高温蒸気を、前記蒸気利用プロセスに供給する高温蒸気供給ラインとを備えた蒸気再加熱装置である。   The present invention was devised to achieve the above-described object. The low-temperature steam that has been reduced in temperature in the steam utilization process is reheated to form high-temperature steam, and the steam re-supply for supplying the high-temperature steam to the steam utilization process again. A heating device that exchanges heat with a high-temperature heat source and evaporates the heat medium, a compressor that compresses the heat medium evaporated by the evaporator, and a compressor that compresses the heat medium A heat pump comprising: a condenser that heat-exchanges the heat medium with a low-temperature heat source and condenses the heat medium; and an expansion valve that expands the heat medium condensed by the condenser and supplies the heat medium to the evaporator; A low temperature steam introduction line for supplying the low temperature steam to the evaporator of the heat pump as the high temperature heat source, and the low temperature steam from the low temperature steam introduction line is condensed by exchanging heat with the heat medium in the evaporator. Hot water A booster line for supplying the condenser of the heat pump as the low-temperature heat source; a booster pump provided in the booster line for boosting the hot water to supply the condenser; and the heat from the booster line The steam reheating device includes a high-temperature steam supply line that supplies the high-temperature steam, which is evaporated by heat exchange with the heat medium in the condenser, to the steam utilization process.

前記低温蒸気と前記高温蒸気の温度差が5〜30℃であるとよい。   The temperature difference between the low temperature steam and the high temperature steam is preferably 5 to 30 ° C.

前記ヒートポンプは、前記凝縮器で凝縮された前記熱媒体を過冷却するための過冷却器をさらに備えてもよい。   The heat pump may further include a supercooler for supercooling the heat medium condensed by the condenser.

前記過冷却器は、前記凝縮器と一体に形成されてもよい。   The subcooler may be formed integrally with the condenser.

前記過冷却器に給水を供給し、前記過冷却器にて前記給水を前記熱媒体と熱交換させ、前記熱媒体を過冷却すると共に、前記給水を加熱して温水を得るようにしてもよい。   Supplying water to the supercooler may cause the water to be exchanged with the heat medium in the supercooler so that the heat medium is supercooled and the water is heated to obtain hot water. .

前記過冷却器に、前記蒸気利用プロセスで回収された低圧蒸気ドレンを供給し、前記過冷却器にて前記低圧蒸気ドレンを前記熱媒体と熱交換させ、前記熱媒体を過冷却すると共に、前記低圧蒸気ドレンを加熱して低圧蒸気を得るようにしてもよい。   The low-pressure steam drain recovered in the steam utilization process is supplied to the supercooler, the low-pressure steam drain is heat-exchanged with the heat medium in the supercooler, and the heat medium is supercooled, and The low pressure steam drain may be heated to obtain low pressure steam.

本発明によれば、高温蒸気プロセスにも適用可能であり、経済的で省エネルギーを実現可能な蒸気再加熱装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the steam reheating apparatus which can be applied also to a high temperature steam process and can implement | achieve economical and energy saving can be provided.

本発明の一実施の形態に係る蒸気再加熱装置を用いた蒸気利用システムを示す概略構成図である。It is a schematic block diagram which shows the vapor | steam utilization system using the vapor | steam reheating apparatus which concerns on one embodiment of this invention. 本発明において、ヒートポンプの熱媒の熱サイクルを示す図である。In this invention, it is a figure which shows the thermal cycle of the heat medium of a heat pump. 本発明の一実施の形態に係る蒸気再加熱装置を用いた蒸気利用システムを示す概略構成図である。It is a schematic block diagram which shows the vapor | steam utilization system using the vapor | steam reheating apparatus which concerns on one embodiment of this invention. 従来の蒸気再加熱装置を示す概略構成図である。It is a schematic block diagram which shows the conventional steam reheating apparatus.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本実施の形態に係る蒸気再加熱装置を用いた蒸気利用システムの概略構成図である。   FIG. 1 is a schematic configuration diagram of a steam utilization system using the steam reheating device according to the present embodiment.

図1に示すように、蒸気利用システム1は、高温高圧の蒸気を生成する複数(図1では2つ)のボイラ2と、ボイラ2で生成した高温高圧の蒸気を貯留する蒸気ヘッダ3と、蒸気ヘッダ3からの高温高圧の蒸気を蒸気利用装置4に供給する蒸気供給配管5と、蒸気利用装置4で放熱して低温低圧化した蒸気(以下、単に低温蒸気という)を排出する蒸気排出配管6と、蒸気排出配管6から排出された低温蒸気を低圧蒸気ドレンとして回収する蒸気ドレン7と、本発明の蒸気再加熱装置8とを主に備えている。   As shown in FIG. 1, a steam utilization system 1 includes a plurality of (two in FIG. 1) boilers 2 that generate high-temperature and high-pressure steam, a steam header 3 that stores high-temperature and high-pressure steam generated by the boiler 2, A steam supply pipe 5 that supplies high-temperature and high-pressure steam from the steam header 3 to the steam utilization apparatus 4 and a steam discharge pipe that discharges the steam that has been radiated by the steam utilization apparatus 4 and reduced in temperature and pressure (hereinafter simply referred to as low-temperature steam). 6, a steam drain 7 that recovers low-temperature steam discharged from the steam discharge pipe 6 as a low-pressure steam drain, and a steam reheating device 8 of the present invention.

蒸気再加熱装置8は、蒸気利用プロセス(ここでは蒸気利用装置4)で低温低圧化した低温蒸気を、再加熱して高温高圧の蒸気(以下、単に高温蒸気という)とし、該高温蒸気を蒸気利用プロセス(蒸気利用装置4)に再度供給(再循環)するものである。   The steam reheating device 8 reheats the low-temperature steam that has been reduced in temperature and pressure in the steam utilization process (here, the steam utilization device 4) to form high-temperature and high-pressure steam (hereinafter simply referred to as high-temperature steam). It is again supplied (recirculated) to the utilization process (steam utilization device 4).

蒸気再加熱装置8は、ヒートポンプ9と、低温蒸気導入ライン10、昇圧ライン11、高温蒸気供給ライン12の各ラインを主に備えている。   The steam reheating device 8 mainly includes a heat pump 9, a low-temperature steam introduction line 10, a boost line 11, and a high-temperature steam supply line 12.

ヒートポンプ9は、熱媒体を高温熱源と熱交換させ、熱媒体を蒸発させる蒸発器13と、蒸発器13で蒸発させた熱媒体を圧縮する圧縮機14と、圧縮機14で圧縮された熱媒体を低温熱源と熱交換させ、熱媒体を凝縮させる凝縮器15と、凝縮器15で凝縮させた熱媒体を過冷却する過冷却器16と、過冷却器16からの熱媒体を膨張させて蒸発器13に供給する膨張弁17とを備えている。   The heat pump 9 exchanges the heat medium with a high-temperature heat source, evaporates the heat medium, the compressor 14 compresses the heat medium evaporated by the evaporator 13, and the heat medium compressed by the compressor 14. Is exchanged with a low-temperature heat source, the condenser 15 for condensing the heat medium, the supercooler 16 for supercooling the heat medium condensed by the condenser 15, and the heat medium from the subcooler 16 is expanded and evaporated. And an expansion valve 17 for supplying to the vessel 13.

低温蒸気導入ライン10は、その一端が蒸気利用装置4の下流側の蒸気排出配管6に接続され、他端がヒートポンプ9の蒸発器13に接続されており、蒸気利用装置4から蒸気排出配管6に排出される低温蒸気の一部を、ヒートポンプ9の蒸発器13に高温熱源として供給するようにされている。   One end of the low-temperature steam introduction line 10 is connected to the steam discharge pipe 6 on the downstream side of the steam utilization device 4, and the other end is connected to the evaporator 13 of the heat pump 9. A part of the low temperature steam discharged to the heat pump 9 is supplied to the evaporator 13 of the heat pump 9 as a high temperature heat source.

昇圧ライン11は、その一端がヒートポンプ9の蒸発器13に接続され、他端がヒートポンプ9の凝縮器15に接続されており、昇圧ライン11には、昇圧ポンプ18が設けられている。昇圧ライン11は、蒸発器13にて低温蒸気が熱媒体と熱交換して凝縮され液体となった熱水(低圧熱水)を、昇圧ポンプ18で昇圧して高圧熱水とし、その高圧熱水をヒートポンプ9の凝縮器15に低温熱源として供給するようにされている。昇圧ポンプ18は、熱水を昇圧して蒸気ヘッダ3よりもやや高圧化し、高圧熱水とする。   One end of the booster line 11 is connected to the evaporator 13 of the heat pump 9, the other end is connected to the condenser 15 of the heat pump 9, and the booster line 11 is provided with a booster pump 18. The booster line 11 boosts hot water (low-pressure hot water), which has been condensed into a liquid by heat exchange of the low-temperature steam with the heat medium in the evaporator 13, and is pressurized to high-pressure hot water by the booster pump 18. Water is supplied to the condenser 15 of the heat pump 9 as a low-temperature heat source. The booster pump 18 pressurizes the hot water so that the pressure is slightly higher than that of the steam header 3 to obtain high-pressure hot water.

高温蒸気供給ライン12は、その一端がヒートポンプ9の凝縮器15に接続され、他端が蒸気利用装置4の上流側の蒸気供給配管5に接続されており、高圧熱水が凝縮器15にて熱媒体と熱交換して蒸発した高温蒸気を、蒸気供給配管5を介して蒸気利用装置4に供給するようにされている。   One end of the high-temperature steam supply line 12 is connected to the condenser 15 of the heat pump 9, and the other end is connected to the steam supply pipe 5 on the upstream side of the steam utilization device 4. High-temperature steam evaporated by heat exchange with the heat medium is supplied to the steam utilization device 4 via the steam supply pipe 5.

過冷却器16には、凝縮器15で凝縮させた熱媒体を過冷却すべく、低温の過冷却用熱源を供給するための過冷却用熱源供給ライン19が接続されている。過冷却用熱源供給ライン19には、過冷却用熱源の流量を調節するための調節弁20が設けられている。   A supercooling heat source supply line 19 for supplying a low-temperature supercooling heat source is connected to the supercooler 16 in order to supercool the heat medium condensed by the condenser 15. The supercooling heat source supply line 19 is provided with a control valve 20 for adjusting the flow rate of the supercooling heat source.

低温蒸気と高温蒸気の温度差ΔTは、温度差ΔTが大きくなるほどヒートポンプ9の効率が低下してしまうことから、ヒートポンプ9の効率を考慮して、適宜設定するようにすればよい。具体的には、低温蒸気と高温蒸気の温度差ΔTが、20〜30℃の範囲であると実用性が高いと考えられるが、温度差ΔTは5℃以上あれば十分な機能を持つ。   The temperature difference ΔT between the low temperature steam and the high temperature steam is appropriately set in consideration of the efficiency of the heat pump 9 because the efficiency of the heat pump 9 decreases as the temperature difference ΔT increases. Specifically, it is considered that the practicality is high when the temperature difference ΔT between the low temperature steam and the high temperature steam is in the range of 20 to 30 ° C., but the temperature difference ΔT has a sufficient function if it is 5 ° C. or more.

また、低温蒸気の温度は、100℃以上であることが望ましい。これは、低温蒸気の温度を100℃未満とした場合、それ自体、蒸気排出配管6が負圧で作動していることを意味するが、実用上ほとんどないこと、及び上述のヒートポンプ9の効率を考慮して、十分な量の高温蒸気が得られないおそれがあるためである。また、高温蒸気の温度は180℃以下であることが望ましく、低温蒸気と高温蒸気の温度差ΔTを20〜30℃の範囲とすることを考慮すると、低温蒸気の温度は100〜160℃、高温蒸気の温度は120〜180℃の範囲となるように設定するとよい。本実施の形態では、低温蒸気の温度を140℃、高温蒸気の温度を160℃とし、低温蒸気と高温蒸気の温度差ΔTを20℃としている。   The temperature of the low temperature steam is desirably 100 ° C. or higher. This means that when the temperature of the low-temperature steam is less than 100 ° C., it means that the steam discharge pipe 6 is operating at a negative pressure, but there is almost no practical use and the efficiency of the heat pump 9 described above. This is because a sufficient amount of high-temperature steam may not be obtained in consideration. The temperature of the high-temperature steam is desirably 180 ° C. or less, and considering that the temperature difference ΔT between the low-temperature steam and the high-temperature steam is in the range of 20 to 30 ° C., the temperature of the low-temperature steam is 100 to 160 ° C. The temperature of the steam is preferably set to be in the range of 120 to 180 ° C. In this embodiment, the temperature of the low temperature steam is 140 ° C., the temperature of the high temperature steam is 160 ° C., and the temperature difference ΔT between the low temperature steam and the high temperature steam is 20 ° C.

ヒートポンプ9に用いる熱媒体としては、特に限定されるものではないが、低温蒸気(ここでは140℃)を高温蒸気(ここでは160℃)に再生する温度条件を考慮して、適切な蒸発・凝縮温度を有する熱媒体を適宜選択して使用するようにすればよい。これにより、ヒートポンプ9は、低圧蒸気を凝縮できる熱媒体低圧温度と高圧熱水を蒸発できる熱媒体高圧温度を保持するヒートポンプサイクルを形成する。   The heat medium used for the heat pump 9 is not particularly limited, but appropriate evaporation / condensation is performed in consideration of temperature conditions for regenerating low-temperature steam (140 ° C. here) into high-temperature steam (160 ° C. here). A heat medium having a temperature may be appropriately selected and used. Thereby, the heat pump 9 forms a heat pump cycle that maintains a heat medium low pressure temperature capable of condensing the low pressure steam and a heat medium high pressure temperature capable of evaporating the high pressure hot water.

過冷却器16に供給する過冷却用熱源としては、蒸気ドレン7に回収した低圧蒸気ドレンや、給水を用いるとよい。これにより、低圧蒸気ドレンを過冷却器16にて加熱し、低圧蒸気として系外の低圧蒸気ラインに供給したり、あるいは、給水を過冷却器16にて加熱し、温水として系外の温水系統やボイラ給水としてボイラ2に供給することが可能となり、省エネルギー性をより高めることが可能となる。   As a heat source for supercooling supplied to the supercooler 16, low-pressure steam drain recovered in the steam drain 7 or feed water may be used. Thereby, the low pressure steam drain is heated by the supercooler 16 and supplied to the low pressure steam line outside the system as low pressure steam, or the feed water is heated by the supercooler 16 and the hot water system outside the system is used as hot water. And it becomes possible to supply to the boiler 2 as boiler feed water, and it becomes possible to improve energy-saving property more.

次に、蒸気再加熱装置8の動作を説明する。   Next, the operation of the steam reheating device 8 will be described.

蒸気利用装置4から蒸気排出配管6に排出された低温蒸気は、その一部が低温蒸気導入ライン10を介してヒートポンプ9の蒸発器13に導入される。   A part of the low-temperature steam discharged from the steam utilization device 4 to the steam discharge pipe 6 is introduced into the evaporator 13 of the heat pump 9 through the low-temperature steam introduction line 10.

蒸発器13では、低温蒸気導入ライン10からの低温蒸気を熱媒体と熱交換させ、低温蒸気の潜熱を熱媒体に与えて熱媒体を蒸発させると共に、低温蒸気を凝縮させて熱水(ここでは140℃の熱水)とする。   The evaporator 13 heat-exchanges the low-temperature steam from the low-temperature steam introduction line 10 with the heat medium, applies the latent heat of the low-temperature steam to the heat medium to evaporate the heat medium, condenses the low-temperature steam to hot water (here, 140 ° C. hot water).

蒸発器13にて蒸発させた熱媒体は、圧縮機14にて加圧(加熱)されて、凝縮器15に供給される。他方、蒸発器13にて低温蒸気が凝縮された熱水は、昇圧ポンプ18にて昇圧されて高圧熱水となり、昇圧ライン11を介して凝縮器15に供給される。   The heat medium evaporated by the evaporator 13 is pressurized (heated) by the compressor 14 and supplied to the condenser 15. On the other hand, the hot water in which the low-temperature steam is condensed in the evaporator 13 is pressurized by the booster pump 18 to become high-pressure hot water, and is supplied to the condenser 15 via the booster line 11.

凝縮器15では、昇圧ライン11からの高圧熱水を熱媒体と熱交換させ、熱媒体の潜熱を高圧熱水に与えて、高圧熱水を蒸発させて高温高圧の高温蒸気(ここでは160℃の高温蒸気)とすると共に、熱媒体を凝縮させる。   In the condenser 15, the high-pressure hot water from the booster line 11 exchanges heat with the heat medium, the latent heat of the heat medium is given to the high-pressure hot water, the high-pressure hot water is evaporated, and high-temperature high-pressure high-temperature steam (160 ° C. here) And the heat medium is condensed.

凝縮器15にて凝縮させた熱媒体は、過冷却器16にて過冷却用熱源と熱交換してさらに冷却された後、膨張弁17にて膨張されて、蒸発器13に供給される。他方、凝縮器15にて高圧熱水を蒸発させた高温蒸気は、高温蒸気供給ライン12を介して蒸気供給配管5に供給され、蒸気利用装置4に再び供給される。   The heat medium condensed in the condenser 15 is further cooled by exchanging heat with the supercooling heat source in the subcooler 16, expanded in the expansion valve 17, and supplied to the evaporator 13. On the other hand, the high-temperature steam obtained by evaporating the high-pressure hot water in the condenser 15 is supplied to the steam supply pipe 5 via the high-temperature steam supply line 12 and is supplied again to the steam utilization device 4.

ここで、ヒートポンプ9における熱媒体の熱サイクル(ヒートポンプサイクル)について説明しておく。   Here, the heat cycle (heat pump cycle) of the heat medium in the heat pump 9 will be described.

図2に示すように、ヒートポンプ9の熱媒体は、蒸発・圧縮・凝縮・膨張のサイクルを繰返す。   As shown in FIG. 2, the heat medium of the heat pump 9 repeats the cycle of evaporation, compression, condensation, and expansion.

本実施の形態では、蒸発過程における吸熱(受熱)は、蒸発器13にて低温蒸気の凝縮潜熱を授受することによって行われるが、このときの吸熱量(低圧側受熱量)と凝縮過程における放熱量(高圧側放出熱量)とでは、後者の方が大きくなる。つまり、ヒートポンプ9では、蒸気再加熱に必要な熱量(低温蒸気を高温蒸気とするのに必要な熱量)に加えて、余剰な熱量を放出できることとなる。   In the present embodiment, heat absorption (heat reception) in the evaporation process is performed by transferring the condensation latent heat of the low-temperature steam in the evaporator 13. At this time, the heat absorption amount (low-pressure side heat reception amount) and the heat release in the condensation process are performed. In terms of the amount of heat (high-pressure side released heat amount), the latter is larger. That is, in the heat pump 9, in addition to the amount of heat necessary for steam reheating (the amount of heat necessary to convert the low temperature steam into the high temperature steam), an excessive amount of heat can be released.

この余剰な熱量は、ヒートポンプサイクルの圧力温度設定と熱媒体の種類で制限が加わるが、例えば、上記の温度(低温蒸気140℃、高温蒸気160℃)で検討すれば、低圧蒸気または温水を製造するのに十分な熱量となる。   This excess amount of heat is limited by the pressure temperature setting of the heat pump cycle and the type of the heat medium. For example, if studied at the above temperatures (low temperature steam 140 ° C, high temperature steam 160 ° C), low pressure steam or hot water is produced. The amount of heat is enough to do.

より具体的には、熱媒体の熱サイクルにおける凝縮過程は、熱媒体を気体(気相)から液体(液相)に凝縮する際の凝縮潜熱を放熱する潜熱放熱過程と、液体となった熱媒体の顕熱をさらに放熱して冷却する過冷却過程に分けることができる。本実施の形態では、凝縮器15にて熱媒体の凝縮潜熱を放熱し、過冷却器16にて液体となった熱媒体の顕熱を放熱して熱媒体を過冷却するようにしている。   More specifically, the condensation process in the heat cycle of the heat medium includes a latent heat heat release process that dissipates latent heat of condensation when the heat medium is condensed from gas (gas phase) to liquid (liquid phase), and heat that has become liquid. It can be divided into a subcooling process in which the sensible heat of the medium is further dissipated and cooled. In the present embodiment, the condenser 15 dissipates the latent heat of condensation of the heat medium, and the supercooler 16 dissipates the sensible heat of the heat medium that has become a liquid to supercool the heat medium.

昇圧ライン11から供給された高圧熱水は、凝縮器15にて熱媒体の凝縮潜熱(高圧熱水の蒸発潜熱)を授受し、高温高圧の蒸気(高温蒸気)となる。また、過冷却用熱源供給ライン19から供給された過冷却用熱源(例えば、低圧蒸気ドレンや給水)は、過冷却器16にて熱媒体の顕熱を授受し、加熱されて、例えば、低圧蒸気や温水となる。   The high-pressure hot water supplied from the booster line 11 receives and transfers the latent heat of condensation of the heat medium (the latent heat of evaporation of the high-pressure hot water) in the condenser 15 and becomes high-temperature and high-pressure steam (high-temperature steam). Further, the supercooling heat source (for example, low-pressure steam drain or feed water) supplied from the supercooling heat source supply line 19 receives and heats the sensible heat of the heat medium in the supercooler 16 and is heated, for example, low pressure Steam or hot water.

このように、蒸気再加熱装置8では、ヒートポンプ9から、蒸気再加熱に必要な熱量以外に、低圧蒸気や温水等を生成可能な熱量が付随して発生するため、主プロセス以外の熱源を兼ねることができる。   As described above, in the steam reheating device 8, in addition to the amount of heat necessary for the steam reheating, the heat amount that can generate low-pressure steam, hot water, and the like is generated from the heat pump 9, so that it also serves as a heat source other than the main process. be able to.

本実施の形態の作用を説明する。   The operation of the present embodiment will be described.

本実施の形態に係る蒸気再加熱装置8では、低温蒸気導入ライン10にて低温蒸気をヒートポンプ9の蒸発器13に供給し、低温蒸気が蒸発器13にて熱媒体と熱交換して凝縮された熱水を、昇圧ポンプ18で昇圧し、昇圧ライン11にてヒートポンプ9の凝縮器15に低温熱源として供給し、熱水が凝縮器15にて熱媒体と熱交換して蒸発した高温蒸気を、高温蒸気供給ライン12にて蒸気利用プロセスに供給するようにしている。   In the steam reheating device 8 according to the present embodiment, low temperature steam is supplied to the evaporator 13 of the heat pump 9 in the low temperature steam introduction line 10, and the low temperature steam is condensed by exchanging heat with the heat medium in the evaporator 13. The hot water is boosted by the booster pump 18 and supplied as a low-temperature heat source to the condenser 15 of the heat pump 9 via the booster line 11, and the hot water is evaporated by exchanging heat with the heat medium in the condenser 15. The high-temperature steam supply line 12 supplies the steam using process.

上述のように、従来のVRC式の蒸気再加熱装置では、圧縮機にて蒸気を気相で圧縮する必要があるために、現状の圧縮機の性能では130〜135℃程度の低温蒸気プロセスにしか適用できなかった。   As described above, in the conventional VRC type steam reheating device, it is necessary to compress the vapor in the gas phase by the compressor, so that the current compressor performance is a low temperature steam process of about 130 to 135 ° C. Only applicable.

これに対して、本実施の形態では、ヒートポンプ9の蒸発器13にて低温蒸気を凝縮させて熱水とし、この熱水を昇圧ポンプ18にて液相で昇圧している。蒸気を圧縮することは困難であるが、液相圧縮(ポンプ昇圧)は高圧化が比較的容易であるため、このような液相圧縮をヒートポンププロセスに組み込むことで、より高温の蒸気プロセスにも適用可能となり、温度設計の自由度が高い蒸気再加熱装置8を実現できる。   On the other hand, in the present embodiment, the low-temperature steam is condensed by the evaporator 13 of the heat pump 9 into hot water, and the hot water is pressurized in the liquid phase by the booster pump 18. Although it is difficult to compress steam, it is relatively easy to increase the pressure in liquid phase compression (pump pressurization). By incorporating such liquid phase compression into the heat pump process, it is possible to achieve higher temperature steam processes. The steam reheating device 8 that can be applied and has a high degree of freedom in temperature design can be realized.

したがって、蒸気再加熱装置8によれば、従来のVRC式の蒸気再加熱装置で対応できない150℃以上の蒸気プロセスにも適用可能となる。VRCは主に食品分野に適用されているが、150℃以上の蒸気プロセスを持つ産業分野は多岐にわたるため、本発明の蒸気再加熱装置8は、食品分野はもちろん食品分野以外の分野にも広く適用可能である。   Therefore, the steam reheating device 8 can be applied to a steam process at 150 ° C. or higher which cannot be handled by the conventional VRC type steam reheating device. VRC is mainly applied to the food field, but since the industrial field having a steam process of 150 ° C. or higher is diverse, the steam reheating device 8 of the present invention is widely used not only in the food field but also in fields other than the food field. Applicable.

さらに、蒸気再加熱装置8では、蒸気利用装置4にて低温化した低温蒸気をヒートポンプ9で再加熱して蒸気利用装置4の上流側の蒸気供給配管5に再循環させているため、ボイラ2で製造する蒸気量を低減でき、ボイラ燃料費やCO2排出量を削減でき、経済的で省エネルギーな蒸気再加熱装置8を実現できる。 Further, in the steam reheating device 8, the low temperature steam that has been lowered in temperature by the steam using device 4 is reheated by the heat pump 9 and recirculated to the steam supply pipe 5 on the upstream side of the steam using device 4. The amount of steam to be produced can be reduced, boiler fuel costs and CO 2 emissions can be reduced, and an economical and energy-saving steam reheating device 8 can be realized.

また、蒸気再加熱装置8では、低温蒸気と高温蒸気の温度差ΔTを20〜30℃としているため、ヒートポンプ9の効率を低下させることなく、蒸気再加熱を行うことが可能となる。温度差ΔTを小さくすれば、蒸気再加熱度は低下するが、ヒートポンプ9の効率はさらに高くなる。   Moreover, in the steam reheating apparatus 8, since the temperature difference ΔT between the low temperature steam and the high temperature steam is set to 20 to 30 ° C., the steam reheating can be performed without reducing the efficiency of the heat pump 9. If the temperature difference ΔT is reduced, the steam reheating degree is lowered, but the efficiency of the heat pump 9 is further increased.

さらに、蒸気再加熱装置8では、ヒートポンプ9にて蒸気再加熱に必要な熱量に加えて、低圧蒸気や温水等を生成可能な熱量が付随して発生するため、この付随して発生する熱量を主プロセス以外の熱源、例えば、給水を加熱して温水とするための熱源や、蒸気ドレン7で回収された低圧蒸気ドレンを加熱して低圧蒸気とするための熱源として用いることで、省エネルギー性をより高めることができる。   Furthermore, in the steam reheating device 8, in addition to the amount of heat necessary for steam reheating by the heat pump 9, the amount of heat that can generate low-pressure steam, hot water, and the like is generated. By using it as a heat source other than the main process, for example, a heat source for heating the feed water to warm water, or a heat source for heating the low-pressure steam drain recovered by the steam drain 7 to low-pressure steam, energy saving is achieved. Can be increased.

上記実施の形態では、凝縮器15と過冷却器16を別体としたが、凝縮器15と過冷却器16を一体としてもよい。   In the above-described embodiment, the condenser 15 and the supercooler 16 are separated, but the condenser 15 and the supercooler 16 may be integrated.

図3に示す蒸気再加熱装置31は、図1で説明した蒸気再加熱装置8において、過冷却器16を省略し、過冷却機能を有する凝縮器32を備えたものである。凝縮器32は、蒸気再加熱装置8における凝縮器15と過冷却器16とを一体化したものであり、熱媒体を凝縮させると共に過冷却するためのものである。   The steam reheating device 31 shown in FIG. 3 is the same as the steam reheating device 8 described in FIG. 1 except that the supercooler 16 is omitted and a condenser 32 having a supercooling function is provided. The condenser 32 is obtained by integrating the condenser 15 and the supercooler 16 in the vapor reheating device 8, and condenses the heat medium and supercools it.

凝縮器32には、昇圧ライン11、高温蒸気供給ライン12に加え、過冷却用熱源供給ライン19が接続されており、熱媒体と高圧熱水とを熱交換させると共に、熱媒体と過冷却用熱源とを熱交換させるように構成されている。   The condenser 32 is connected with a heat source supply line 19 for supercooling in addition to the pressure boosting line 11 and the high-temperature steam supply line 12, and exchanges heat between the heat medium and high-pressure hot water, and for heat medium and supercooling. The heat source is configured to exchange heat.

このように、凝縮器と過冷却器を一体とすることにより、過冷却器を省略して熱交換器を1つ減らすことができるため、設備コストを低減できる。   Thus, by integrating the condenser and the supercooler, the supercooler can be omitted and the number of heat exchangers can be reduced, so that the equipment cost can be reduced.

また、上記実施の形態では、ヒートポンプ9の凝縮器15,32からの高温蒸気を蒸気利用装置4の上流側の蒸気供給配管5に供給するようにしたが、これに限らず、例えば、高温蒸気を蒸気ヘッダ3に供給するようにしてもよい。   Moreover, in the said embodiment, although the high temperature steam from the condensers 15 and 32 of the heat pump 9 was supplied to the steam supply piping 5 of the upstream of the steam utilization apparatus 4, it is not restricted to this, For example, high temperature steam May be supplied to the steam header 3.

このように、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を加え得ることは勿論である。   As described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

1 蒸気利用システム
2 ボイラ
3 蒸気ヘッダ
4 蒸気利用装置
5 蒸気供給配管
6 蒸気排出配管
7 蒸気ドレン
8 蒸気再加熱装置
9 ヒートポンプ
10 低温蒸気導入ライン
11 昇圧ライン
12 高温蒸気供給ライン
13 蒸発器
14 圧縮機
15 凝縮器
16 過冷却器
17 膨張弁
18 昇圧ポンプ
19 過冷却用熱源供給ライン
20 調節弁
DESCRIPTION OF SYMBOLS 1 Steam utilization system 2 Boiler 3 Steam header 4 Steam utilization apparatus 5 Steam supply piping 6 Steam discharge piping 7 Steam drain 8 Steam reheating apparatus 9 Heat pump 10 Low temperature steam introduction line 11 Boosting line 12 High temperature steam supply line 13 Evaporator 14 Compressor 15 Condenser 16 Supercooler 17 Expansion Valve 18 Booster Pump 19 Supercooling Heat Source Supply Line 20 Control Valve

Claims (6)

蒸気利用プロセスで低温化した低温蒸気を、再加熱して高温蒸気とし、該高温蒸気を前記蒸気利用プロセスに再度供給する蒸気再加熱装置であって、
熱媒体を高温熱源と熱交換させ、前記熱媒体を蒸発させる蒸発器と、該蒸発器で蒸発させた前記熱媒体を圧縮する圧縮機と、該圧縮機で圧縮された前記熱媒体を低温熱源と熱交換させ、前記熱媒体を凝縮させる凝縮器と、該凝縮器で凝縮させた前記熱媒体を膨張させて前記蒸発器に供給する膨張弁とを備えたヒートポンプと、
前記低温蒸気を、前記ヒートポンプの前記蒸発器に前記高温熱源として供給する低温蒸気導入ラインと、
該低温蒸気導入ラインからの前記低温蒸気が前記蒸発器にて前記熱媒体と熱交換して凝縮された熱水を、前記ヒートポンプの前記凝縮器に前記低温熱源として供給するための昇圧ラインと、
該昇圧ラインに設けられ、前記熱水を昇圧して前記凝縮器に供給する昇圧ポンプと、
前記昇圧ラインからの前記熱水が前記凝縮器にて前記熱媒体と熱交換して蒸発した前記高温蒸気を、前記蒸気利用プロセスに供給する高温蒸気供給ラインとを備えたことを特徴とする蒸気再加熱装置。
A low-temperature steam that has been lowered in temperature in the steam utilization process is reheated into a high-temperature steam, and the high-temperature steam is supplied again to the steam utilization process.
An evaporator that exchanges heat with a high-temperature heat source and evaporates the heat medium, a compressor that compresses the heat medium evaporated by the evaporator, and a low-temperature heat source that compresses the heat medium compressed by the compressor A heat pump comprising: a condenser that exchanges heat with the condenser; and an expansion valve that expands the heat medium condensed in the condenser and supplies the refrigerant to the evaporator;
A low-temperature steam introduction line for supplying the low-temperature steam as the high-temperature heat source to the evaporator of the heat pump;
A booster line for supplying hot water condensed from the low temperature steam from the low temperature steam introduction line by heat exchange with the heat medium in the evaporator as the low temperature heat source to the condenser of the heat pump;
A booster pump provided in the booster line, pressurizing the hot water and supplying the hot water to the condenser;
Steam provided with a high-temperature steam supply line for supplying the high-temperature steam evaporated from the hot water from the boosting line by exchanging heat with the heat medium in the condenser to the steam utilization process Reheating device.
前記低温蒸気と前記高温蒸気の温度差が5〜30℃である請求項1記載の蒸気再加熱装置。   The steam reheating apparatus according to claim 1, wherein a temperature difference between the low temperature steam and the high temperature steam is 5 to 30 ° C. 前記ヒートポンプは、前記凝縮器で凝縮された前記熱媒体を過冷却するための過冷却器をさらに備える請求項1または2記載の蒸気再加熱装置。   The steam reheating device according to claim 1, wherein the heat pump further includes a supercooler for supercooling the heat medium condensed by the condenser. 前記過冷却器は、前記凝縮器と一体に形成される請求項3記載の蒸気再加熱装置。   The steam reheating device according to claim 3, wherein the subcooler is formed integrally with the condenser. 前記過冷却器に給水を供給し、前記過冷却器にて前記給水を前記熱媒体と熱交換させ、前記熱媒体を過冷却すると共に、前記給水を加熱して温水を得るようにした請求項3または4記載の蒸気再加熱装置。   The feed water is supplied to the subcooler, the feed water is heat-exchanged with the heat medium in the subcooler, the heat medium is supercooled, and the feed water is heated to obtain hot water. The steam reheating device according to 3 or 4. 前記過冷却器に、前記蒸気利用プロセスで回収された低圧蒸気ドレンを供給し、前記過冷却器にて前記低圧蒸気ドレンを前記熱媒体と熱交換させ、前記熱媒体を過冷却すると共に、前記低圧蒸気ドレンを加熱して低圧蒸気を得るようにした請求項3または4記載の蒸気再加熱装置。   The low-pressure steam drain recovered in the steam utilization process is supplied to the supercooler, the low-pressure steam drain is heat-exchanged with the heat medium in the supercooler, and the heat medium is supercooled, and The steam reheating apparatus according to claim 3 or 4, wherein the low pressure steam drain is heated to obtain low pressure steam.
JP2009213433A 2009-09-15 2009-09-15 Steam reheating device Active JP5387263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213433A JP5387263B2 (en) 2009-09-15 2009-09-15 Steam reheating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213433A JP5387263B2 (en) 2009-09-15 2009-09-15 Steam reheating device

Publications (2)

Publication Number Publication Date
JP2011064354A JP2011064354A (en) 2011-03-31
JP5387263B2 true JP5387263B2 (en) 2014-01-15

Family

ID=43950801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213433A Active JP5387263B2 (en) 2009-09-15 2009-09-15 Steam reheating device

Country Status (1)

Country Link
JP (1) JP5387263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895383B1 (en) * 2017-06-26 2018-09-05 서울대학교산학협력단 Steam generating heat pump system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124842A (en) * 2011-12-16 2013-06-24 Ihi Corp Energy using system
JP5977572B2 (en) * 2012-04-25 2016-08-24 株式会社Ihi Vacuum cleaning device
KR101320527B1 (en) * 2012-06-29 2013-10-23 엘아이지엔설팅주식회사 Apparatus and method for contolling of vapor compression
JP6075016B2 (en) * 2012-11-07 2017-02-08 三浦工業株式会社 Boiler system
CN106440487B (en) * 2016-11-25 2019-03-01 天津大学 A kind of combined twin-stage steam heat pump system
CN108387021A (en) * 2018-05-28 2018-08-10 天津商业大学 A kind of classification heat pump steam generation facility
JP7207674B1 (en) 2022-03-22 2023-01-18 松下工業株式会社 drain elimination unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659601B2 (en) * 2004-12-17 2011-03-30 株式会社日立製作所 Energy supply system, energy supply method, and energy supply system remodeling method
JP2006348876A (en) * 2005-06-17 2006-12-28 Tokyo Electric Power Co Inc:The Steam supply system and power generation plant
JP4972421B2 (en) * 2006-02-01 2012-07-11 関西電力株式会社 Heat pump steam / hot water generator
JP2008292119A (en) * 2007-05-28 2008-12-04 Chugoku Electric Power Co Inc:The Power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895383B1 (en) * 2017-06-26 2018-09-05 서울대학교산학협력단 Steam generating heat pump system

Also Published As

Publication number Publication date
JP2011064354A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5387263B2 (en) Steam reheating device
CA2798770C (en) Cascaded organic rankine cycle system
EP2942492B1 (en) Electrical energy storage and discharge system
US20110265501A1 (en) System and a method of energy recovery from low temperature sources of heat
JP2007064047A (en) Waste heat recovery facility for steam turbine plant
JP5958819B2 (en) Heat pump system and cooling system using the same
US20220213813A1 (en) Combined cycle power device
KR100963221B1 (en) Heat pump system using terrestrial heat source
US20190316810A1 (en) Superhigh temperature heat pump system and method capableof preparing boiling water not lower than 100°c
US20220228512A1 (en) Combined cycle power device
JP2006348876A (en) Steam supply system and power generation plant
JP3299989B2 (en) Triple effect absorption cooling system
JP2006220351A (en) Freezer
JP4815247B2 (en) Combined heat pump system
JP5148448B2 (en) Waste heat heat pump system
JP2010025413A (en) Water heat source type heat pump
US20220290584A1 (en) Combined cycle power device
EA031586B1 (en) Device for energy saving
JP2011075206A (en) Heat pump system generating a plurality of systems of warm water with different temperature
WO2020027650A1 (en) Heating system
JP6152661B2 (en) Steam generation system
CN208749417U (en) Double heat source organic Rankine cycle power generation systems
US11248500B2 (en) Optimized direct exchange cycle
WO2020251480A1 (en) Water sourced heating-cooling machine with refrigerant cooling unit that cools with an external cooling source and heating-cooling method
JP6036939B1 (en) Operation method of refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R151 Written notification of patent or utility model registration

Ref document number: 5387263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250