JP5387108B2 - Turbocharged internal combustion engine - Google Patents

Turbocharged internal combustion engine Download PDF

Info

Publication number
JP5387108B2
JP5387108B2 JP2009098263A JP2009098263A JP5387108B2 JP 5387108 B2 JP5387108 B2 JP 5387108B2 JP 2009098263 A JP2009098263 A JP 2009098263A JP 2009098263 A JP2009098263 A JP 2009098263A JP 5387108 B2 JP5387108 B2 JP 5387108B2
Authority
JP
Japan
Prior art keywords
exhaust
passage
internal combustion
combustion engine
turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009098263A
Other languages
Japanese (ja)
Other versions
JP2010248980A (en
Inventor
隆徳 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009098263A priority Critical patent/JP5387108B2/en
Publication of JP2010248980A publication Critical patent/JP2010248980A/en
Application granted granted Critical
Publication of JP5387108B2 publication Critical patent/JP5387108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Description

本発明は、ターボ過給機を備えた内燃機関に関する。   The present invention relates to an internal combustion engine provided with a turbocharger.

吸気通路に設けられた吸気共鳴管により吸気脈動の振幅及び位相を制御し、排気マニホールドから吸気共鳴管に至るEGR通路の途中の逆止弁前後の圧力差、すなわち、吸気圧と排気圧との間の差を瞬間的に拡大してEGR率を向上させるターボ過給機付き内燃機関が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2が存在する。   The amplitude and phase of the intake pulsation are controlled by the intake resonance pipe provided in the intake passage, and the pressure difference before and after the check valve in the middle of the EGR passage from the exhaust manifold to the intake resonance pipe, that is, the intake pressure and the exhaust pressure There is known an internal combustion engine with a turbocharger that instantaneously expands the difference between them to improve the EGR rate (see Patent Document 1). In addition, there is Patent Document 2 as a prior art document related to the present invention.

特開2007−263017号公報JP 2007-263017 A 特開2001−107722号公報JP 2001-107722 A

特許文献1の内燃機関においては、吸気通路の負圧が大きくなることにより、ポンピングロスが増大するという問題がある。   In the internal combustion engine of Patent Document 1, there is a problem that the pumping loss increases due to an increase in the negative pressure in the intake passage.

そこで、本発明は、吸気通路の負圧の増大を抑えつつ、EGR率を向上させることが可能なターボ過給機付き内燃機関を提供することを目的とする。   Therefore, an object of the present invention is to provide an internal combustion engine with a turbocharger that can improve the EGR rate while suppressing an increase in the negative pressure in the intake passage.

本発明は、ターボ過給機と、前記ターボ過給機のタービンを迂回する排気バイパス通路、及び前記排気バイパス通路を開閉する排気バイパス弁を含む排気系と、排気ガスの一部を吸気通路にEGRガスとして導くためのEGR通路と、を具備し、前記排気系の排気背圧が他の運転領域よりも相対的に低くなる特定の運転領域で、前記排気系に固有振動が発生するように、前記排気バイパス通路の長さ及び半径が設定されたものである(請求項1)。 The present invention relates to a turbocharger, an exhaust bypass passage that bypasses the turbine of the turbocharger, an exhaust system that includes an exhaust bypass valve that opens and closes the exhaust bypass passage, and a part of the exhaust gas to the intake passage. An EGR passage for guiding the exhaust gas as EGR gas, so that a natural vibration is generated in the exhaust system in a specific operation region where the exhaust back pressure of the exhaust system is relatively lower than other operation regions. The length and radius of the exhaust bypass passage are set (claim 1).

本発明の過給機付き内燃機関によれば、内燃機関が特定の運転領域にあるときに排気バイパス弁を開くと、排気バイパス通路を排気が通過して排気系に固有共振振動が発生する。そのため、排気の脈動が大きくなり、吸気通路の負圧の増大を抑えつつ排気側と吸気側との瞬間的な圧力差を拡大してEGR率を向上させることができる。   According to the internal combustion engine with a supercharger of the present invention, when the exhaust bypass valve is opened when the internal combustion engine is in a specific operation region, the exhaust passes through the exhaust bypass passage, and a natural resonance vibration is generated in the exhaust system. Therefore, the exhaust pulsation increases, and the EGR rate can be improved by expanding the instantaneous pressure difference between the exhaust side and the intake side while suppressing an increase in the negative pressure in the intake passage.

本発明の一形態に係るターボ過給機付き内燃機関の排気系の要部を示す図。The figure which shows the principal part of the exhaust system of the internal combustion engine with a turbocharger which concerns on one form of this invention. 内燃機関の回転数と排気背圧との関係、及び内燃機関の回転数とEGR率との関係を示す図。The figure which shows the relationship between the rotation speed of an internal combustion engine, and an exhaust back pressure, and the relationship between the rotation speed of an internal combustion engine, and an EGR rate. 内燃機関の始動開始からの時間と排気浄化触媒の床温との関係を示す図。The figure which shows the relationship between the time from the start start of an internal combustion engine, and the bed temperature of an exhaust gas purification catalyst.

図1に示すように、本発明の一形態に係る4サイクル式の内燃機関(以下、エンジンと略称することがある。)においては、その排気系1に排気通路2が設けられ、その排気通路2には、排気マニホールド2aから分岐するようにして排気主通路2bと排気バイパス通路2cとが設けられている。排気主通路2bにはターボ過給機4のタービン4aが設けられ、排気バイパス通路2cはそのタービン4aを迂回してタービン4の下流で排気主通路2bと合流する。両通路2b、2cの下流には排気浄化触媒5が設けられている。排気バイパス通路2cの途中には、排気バイパス通路2cを開閉するための排気バイパス弁6が設けられている。排気バイパス弁6は、エンジンコントロールユニット等の制御装置によって開閉制御される。また、排気マニホールド3には、排気ガスの一部を不図示の吸気通路にEGRガスとして導くためのEGR通路10が接続されている。EGR通路10の途中には、EGRガスの流量を調整するためのEGR弁11が設けられている。   As shown in FIG. 1, in a four-cycle internal combustion engine (hereinafter sometimes abbreviated as an engine) according to an embodiment of the present invention, an exhaust passage 2 is provided in the exhaust system 1, and the exhaust passage is provided. 2, an exhaust main passage 2b and an exhaust bypass passage 2c are provided so as to branch from the exhaust manifold 2a. The exhaust main passage 2 b is provided with a turbine 4 a of the turbocharger 4, and the exhaust bypass passage 2 c bypasses the turbine 4 a and joins the exhaust main passage 2 b downstream of the turbine 4. An exhaust purification catalyst 5 is provided downstream of both passages 2b and 2c. An exhaust bypass valve 6 for opening and closing the exhaust bypass passage 2c is provided in the middle of the exhaust bypass passage 2c. The exhaust bypass valve 6 is controlled to be opened and closed by a control device such as an engine control unit. The exhaust manifold 3 is connected to an EGR passage 10 for guiding a part of the exhaust gas to an intake passage (not shown) as EGR gas. An EGR valve 11 for adjusting the flow rate of EGR gas is provided in the middle of the EGR passage 10.

以上の排気系1を有するエンジンにおいて、排気系1の排気背圧が他の運転領域よりも相対的に低くなる特定の運転領域で、排気系1が固有振動を起こすように、排気バイパス通路2cを含む排気系1の固有共振周波数に相関するパラメータが設定されている。以下、具体的な設定方法を説明する。   In the engine having the exhaust system 1 described above, the exhaust bypass passage 2c is configured so that the exhaust system 1 causes a natural vibration in a specific operation region where the exhaust back pressure of the exhaust system 1 is relatively lower than other operation regions. A parameter that correlates with the natural resonance frequency of the exhaust system 1 including is set. Hereinafter, a specific setting method will be described.

まず、音速をv、排気バイパス通路2bの断面積をS、排気マニホールド3の容積をV、排気バイパス通路2bの長さをL、排気バイパス通路2bの半径をrとしたときに、排気系1の固有振動数fは下式(1)で算出される。 First, when the velocity of sound is v, the sectional area of the exhaust bypass passage 2b is S, the volume of the exhaust manifold 3 is V 0 , the length of the exhaust bypass passage 2b is L, and the radius of the exhaust bypass passage 2b is r, the exhaust system The natural frequency f T of 1 is calculated by the following equation (1).

Figure 0005387108
Figure 0005387108

一方、エンジンの排気系1の背圧P1(排気背圧)は、図3に実線P1で示したように特定の運転領域Aにおいて他の運転領域よりも低下する。この原因は、排気系1の気柱振動に起因するものである。エンジンの回転周波数fEXは、エンジンの毎分当たりの回転数をX(r.p.m)、排気系1を共有するシリンダ数、この例では同一の排気マニホールド2aに接続されるシリンダ数をNcとしたときに、下式(2)で算出される。なお、シリンダ数Ncを2で除算するのは、4サイクル式のエンジンにおいて、クランク軸が1回転する間の爆発数がNc/2回となるためである。 On the other hand, the back pressure P1 (exhaust back pressure) of the engine exhaust system 1 is lower in the specific operation region A than in the other operation regions as indicated by the solid line P1 in FIG. This cause is due to air column vibration of the exhaust system 1. The engine rotation frequency f EX is defined as the number of rotations per minute of the engine X (rpm), the number of cylinders sharing the exhaust system 1, in this example, the number of cylinders connected to the same exhaust manifold 2a. When Nc, it is calculated by the following formula (2). The reason why the number of cylinders Nc is divided by 2 is that, in a four-cycle engine, the number of explosions during one revolution of the crankshaft is Nc / 2 times.

Figure 0005387108
Figure 0005387108

そして、本形態では、エンジンの特定領域Aを代表する回転数を(2)式に代入して、運転領域Aに対応する回転周波数fEXを算出し、得られた回転周波数fEXと(1)式で算出される排気系1の固有振動数fとが互いに等しくなるように、排気バイパス通路2bの固有共振周波数に相関するパラメータとしての長さL及び半径rが設定される。 In this embodiment, the rotational frequency representing the specific region A of the engine is substituted into the equation (2), the rotational frequency f EX corresponding to the operating region A is calculated, and the obtained rotational frequency f EX and (1 ) so that the natural frequency f T of the exhaust system 1 calculated are equal to each other in formula, the length L and radius r as a parameter that correlates to the natural resonant frequency of the exhaust bypass passage 2b is set.

以上の構成によれば、エンジンが運転領域Aで運転されるときに排気バイパス弁6を開弁すると、排気系1の固有振動数fがエンジンの回転周波数fEXと一致して排気系1に固有振動が発生する。それにより、排気の脈動が大きくなり、その脈動を利用して瞬間的な排気背圧を図2の鎖線P2で示すように上昇させることができる。それにより、破線P3で示す吸気通路の圧力に対する排気背圧の圧力差を拡大してEGR率を向上させることができる。 According to the above configuration, when the exhaust bypass valve 6 is opened when the engine is operated in the operation region A, the natural frequency f T of the exhaust system 1 matches the engine rotation frequency f EX and the exhaust system 1 Natural vibration occurs. Thereby, the pulsation of the exhaust gas becomes large, and the instantaneous exhaust back pressure can be increased as shown by a chain line P2 in FIG. Thereby, the pressure difference of the exhaust back pressure with respect to the pressure of the intake passage shown by the broken line P3 can be expanded to improve the EGR rate.

また、上記の形態によれば、エンジンの回転数が相対的に低い運転領域Aで排気バイパス弁6を開いて排気の少なくとも一部を、タービン4aを迂回して排気浄化触媒5に導いている。そのため、エンジンの始動直後のように排気浄化触媒5の床温が低い場合には、排気バイパス通路2cを通過した比較的高温の排気ガスの熱を利用して排気浄化触媒5の早期活性化を図ることが可能である。例えば、図3に示したように、エンジンの運転開始後の経過時間を横軸に、排気浄化触媒5の床温を縦軸にそれぞれ取り、排気バイパス弁6を閉位置に固定したときの床温の変化を実線L1で、排気バイパス弁6を開いたときの床温の変化を破線L2で示せば、排気浄化触媒5の活性化温度Taを超えるまでの経過時間は、排気バイパス弁6を開いたときの方が時間tだけ早くなる。それにより、エンジン始動直後の排気エミッションを改善することが可能である。   Further, according to the above embodiment, the exhaust bypass valve 6 is opened in the operation region A where the engine speed is relatively low, and at least a part of the exhaust is led to the exhaust purification catalyst 5 by bypassing the turbine 4a. . For this reason, when the floor temperature of the exhaust purification catalyst 5 is low, such as immediately after the start of the engine, the exhaust purification catalyst 5 is activated early using the heat of the relatively hot exhaust gas that has passed through the exhaust bypass passage 2c. It is possible to plan. For example, as shown in FIG. 3, the elapsed time after the start of engine operation is plotted on the horizontal axis, the bed temperature of the exhaust purification catalyst 5 is plotted on the vertical axis, and the floor when the exhaust bypass valve 6 is fixed at the closed position. If the change in temperature is indicated by the solid line L1 and the change in the bed temperature when the exhaust bypass valve 6 is opened is indicated by the broken line L2, the elapsed time until the activation temperature Ta of the exhaust purification catalyst 5 is exceeded is shown in FIG. The opening time is earlier by time t. Thereby, it is possible to improve the exhaust emission immediately after starting the engine.

本発明は上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、本発明において、排気系を共有するシリンダの個数は4に限らず、適宜に変更することが可能である。排気系の固有共振周波数に相関するパラメータは、排気バイパス通路の長さ及び半径に限らず、排気バイパス通路を排気が通過するときの排気系の固有振動数に影響する各種の物理量を対象としてよい。   This invention is not limited to the form mentioned above, It can implement with a various form. For example, in the present invention, the number of cylinders sharing the exhaust system is not limited to four, and can be changed as appropriate. Parameters relating to the natural resonance frequency of the exhaust system are not limited to the length and radius of the exhaust bypass passage, and may be various physical quantities that affect the natural frequency of the exhaust system when exhaust passes through the exhaust bypass passage. .

1 排気系
2 排気通路
2b 排気主通路
2c 排気バイパス通路
4 ターボ過給機
4a タービン
5 排気浄化触媒
6 排気バイパス弁
10 EGR通路
11 EGR弁
DESCRIPTION OF SYMBOLS 1 Exhaust system 2 Exhaust passage 2b Exhaust main passage 2c Exhaust bypass passage 4 Turbocharger 4a Turbine 5 Exhaust purification catalyst 6 Exhaust bypass valve 10 EGR passage 11 EGR valve

Claims (1)

ターボ過給機と、前記ターボ過給機のタービンを迂回する排気バイパス通路、及び前記排気バイパス通路を開閉する排気バイパス弁を含む排気系と、排気ガスの一部を吸気通路にEGRガスとして導くためのEGR通路と、を具備し、
前記排気系の排気背圧が他の運転領域よりも相対的に低くなる特定の運転領域で、前記排気系に固有振動が発生するように、前記排気バイパス通路の長さ及び半径が設定されている、ターボ過給機付き内燃機関。
An exhaust system including a turbocharger, an exhaust bypass passage that bypasses the turbine of the turbocharger, and an exhaust bypass valve that opens and closes the exhaust bypass passage, and a part of the exhaust gas is led to the intake passage as EGR gas And an EGR passage for
The length and radius of the exhaust bypass passage are set so that the natural vibration is generated in the exhaust system in a specific operation region where the exhaust back pressure of the exhaust system is relatively lower than other operation regions. An internal combustion engine with a turbocharger.
JP2009098263A 2009-04-14 2009-04-14 Turbocharged internal combustion engine Expired - Fee Related JP5387108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098263A JP5387108B2 (en) 2009-04-14 2009-04-14 Turbocharged internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098263A JP5387108B2 (en) 2009-04-14 2009-04-14 Turbocharged internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010248980A JP2010248980A (en) 2010-11-04
JP5387108B2 true JP5387108B2 (en) 2014-01-15

Family

ID=43311583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098263A Expired - Fee Related JP5387108B2 (en) 2009-04-14 2009-04-14 Turbocharged internal combustion engine

Country Status (1)

Country Link
JP (1) JP5387108B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828921B2 (en) * 2015-10-19 2017-11-28 GM Global Technology Operations LLC External vehicle sound field enhancement
PL232261B1 (en) 2015-11-02 2019-05-31 Gen Electric Method and the system for decreasing resonance in a chamber
US10294878B2 (en) 2016-02-24 2019-05-21 GM Global Technology Operations LLC Wastegate control systems and methods for engine sound emission
CN110513162B (en) 2018-05-22 2022-06-14 通用电气公司 Bucket type entrance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694850B2 (en) * 1987-12-28 1994-11-24 三菱重工業株式会社 Exhaust turbocharged engine exhaust gas recirculation system
JP3341087B2 (en) * 1993-03-02 2002-11-05 マツダ株式会社 Exhaust recirculation system for turbocharged engines
JPH078554U (en) * 1993-06-28 1995-02-07 日産ディーゼル工業株式会社 Exhaust gas recirculation control system for internal combustion engine with turbocharger
JP2001107722A (en) * 1999-10-06 2001-04-17 Fuji Heavy Ind Ltd Exhaust device of engine with turbo superchager
JP4637779B2 (en) * 2006-03-29 2011-02-23 Udトラックス株式会社 Multi-cylinder engine

Also Published As

Publication number Publication date
JP2010248980A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
RU2709898C2 (en) Control method of engine braking device, engine braking device and vehicle
JP5515977B2 (en) Exhaust system for multi-cylinder engine
JP5170339B2 (en) Control device for an internal combustion engine with a supercharger
JP2009228448A (en) Supercharging device of engine
JP2007051586A (en) Exhaust emission control device for diesel engine
JP6236960B2 (en) Control device and control method for spark ignition internal combustion engine
JP5387108B2 (en) Turbocharged internal combustion engine
JP2004068631A (en) Engine exhaust system and its controlling method
JP5998503B2 (en) Intake and exhaust system for multi-cylinder engine
JP2009002249A (en) Device for estimating throttle upstream pressure of internal combustion engine
JP2009235944A (en) Supercharging apparatus for engine
JP4953100B2 (en) Turbocharged internal combustion engine
CN105164390B (en) The control device of internal combustion engine
JP5737161B2 (en) Control device for supercharged engine
JP4406384B2 (en) Control device for internal combustion engine
JP2019135388A (en) Exhaust emission control device of internal combustion engine
JPS5974325A (en) Exhaust device for internal-combustion engine
JP4978525B2 (en) Exhaust system for turbocharged engine
JP5447095B2 (en) Exhaust system for multi-cylinder engine
JP2017031841A (en) Engine control device
JP2009293537A (en) Control device for internal combustion engine
JP5338709B2 (en) Control device for internal combustion engine
JP5454071B2 (en) Apparatus and control system for exhaust pulsation characteristic estimation of internal combustion engine
JP2008274884A (en) Control device for internal combustion engine
JP5673214B2 (en) Intake and exhaust system for multi-cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

LAPS Cancellation because of no payment of annual fees