JP5386399B2 - Internal combustion engine knock detection device - Google Patents

Internal combustion engine knock detection device Download PDF

Info

Publication number
JP5386399B2
JP5386399B2 JP2010039034A JP2010039034A JP5386399B2 JP 5386399 B2 JP5386399 B2 JP 5386399B2 JP 2010039034 A JP2010039034 A JP 2010039034A JP 2010039034 A JP2010039034 A JP 2010039034A JP 5386399 B2 JP5386399 B2 JP 5386399B2
Authority
JP
Japan
Prior art keywords
knocking
internal combustion
vibration
combustion engine
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010039034A
Other languages
Japanese (ja)
Other versions
JP2011174409A (en
Inventor
聖彦 渡辺
伸一 岡部
匡史 生ノ谷
昭夫 吉松
宏太朗 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2010039034A priority Critical patent/JP5386399B2/en
Publication of JP2011174409A publication Critical patent/JP2011174409A/en
Application granted granted Critical
Publication of JP5386399B2 publication Critical patent/JP5386399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関のノッキング検出装置に関する。   The present invention relates to a knocking detection device for an internal combustion engine.

内燃機関のノッキングの発生を検出した場合に点火時期補正や空燃比補正を行なってノッキングの発生を抑制する技術が知られている。ノッキングを検出する技術に関連して、内燃機関の振動を検出し、ノッキングに特有の周波数の振動強度が所定の閾値を超える場合であって、且つ、燃焼圧センサにより検出される燃焼圧の最大値がある値を超える場合に、擬似ノッキングではない真のノッキングが発生していると判定することが知られている(特許文献1を参照)。   A technique is known in which when the occurrence of knocking in an internal combustion engine is detected, ignition timing correction or air-fuel ratio correction is performed to suppress the occurrence of knocking. In connection with the technology for detecting knocking, the vibration of the internal combustion engine is detected, and the maximum vibration pressure detected by the combustion pressure sensor when the vibration intensity at the frequency specific to knocking exceeds a predetermined threshold value. It is known that when a value exceeds a certain value, it is determined that true knocking that is not pseudo knocking has occurred (see Patent Document 1).

特開2002−364446号公報JP 2002-364446 A

ノッキングの発生を判定するための閾値は、聴感上のノック音の大きさをもとに定められるが、聴感上のノック音の大きさが同じであっても、内燃機関の回転数によって燃焼圧振動の振幅が異なり、内燃機関が高回転の運転状態では低回転の運転状態よりも燃焼圧振動の振幅が大幅に大きくなる傾向がある。燃焼圧振動の振幅が大きい状態が頻発すると内燃機関に過度の 負担がかかり、内燃機関の信頼性を低下させる原因となるため、このような状態ではノッキングを抑制するための制御を行なうことが望ましいが、従来の技術ではこのような状態をノッキング発生有りとして検出できない可能性があった。   The threshold for determining the occurrence of knocking is determined based on the magnitude of the audible knock sound. Even if the audible knock noise is the same, the combustion pressure depends on the rotational speed of the internal combustion engine. The amplitudes of vibrations are different, and the combustion pressure oscillations tend to be significantly larger when the internal combustion engine is operating at high speed than when the internal combustion engine is operating at low speed. Frequent occurrence of large combustion pressure oscillations can overload the internal combustion engine and reduce the reliability of the internal combustion engine. Therefore, it is desirable to perform control to suppress knocking in such a state. However, in the conventional technique, there is a possibility that such a state cannot be detected as occurrence of knocking.

本発明はこのような事情を考慮してなされたものであり、内燃機関のノッキングを精度良く検出することができるノッキング検出装置を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a knocking detection device capable of accurately detecting knocking of an internal combustion engine.

上記目的を達成するため、本発明に係る内燃機関のノッキング検出装置は、
内燃機関のシリンダブロックの振動を検出する振動検出手段と、
前記内燃機関の燃焼圧を検出する燃焼圧検出手段と、
前記振動検出手段により検出される振動のうちノッキングに固有の周波数域の振動の強度又はそれに相関する物理量と所定の第1の閾値との比較に基づいてノッキングが発生したか否かを判定する第1の判定手段と、
前記燃焼圧検出手段により検出される燃焼圧の振動のうちノッキングに固有の周波数域の振動の強度が所定の第2の閾値より大きいか否か判定する第2の判定手段と、
前記第2の判定手段による判定を複数回行ない、該複数回のうち燃焼圧の前記振動の強度が前記第2の閾値より大きいと判定された回数の割合が所定の第3の閾値より大きい場合、前記第1の判定手段によりノッキングが発生したと判定され易くなる方向に前記第1の閾値を補正する補正処理を行なう補正手段と、
を有することを特徴とする。
In order to achieve the above object, a knock detection device for an internal combustion engine according to the present invention comprises:
Vibration detecting means for detecting vibration of a cylinder block of the internal combustion engine;
Combustion pressure detecting means for detecting the combustion pressure of the internal combustion engine;
A first determination is made as to whether or not knocking has occurred based on a comparison between a predetermined first threshold and the intensity of vibration in a frequency range unique to knocking or the physical quantity correlated therewith among the vibrations detected by the vibration detection means. 1 determination means;
Second determination means for determining whether or not the intensity of the vibration in the frequency range specific to knocking among vibrations of the combustion pressure detected by the combustion pressure detection means is greater than a predetermined second threshold;
The determination by the second determination means is performed a plurality of times, and the ratio of the number of times that the vibration intensity of the combustion pressure is determined to be greater than the second threshold among the plurality of times is greater than a predetermined third threshold. Correcting means for correcting the first threshold value in a direction in which it is easy to determine that knocking has occurred by the first determining means;
It is characterized by having.

第1の閾値は聴感上のノック音の大きさをもとに定められる。第2の閾値及び第3の閾値はそれぞれ、内燃機関に過度の負担がかかり内燃機関の信頼性が低下する可能性があるか否かを判断できるように定められる。上記構成のノッキング検出装置によれば、第2の閾値を超える強度の燃焼圧振動が第3の閾値を超えるような高頻度で発生していることが
検出された場合には、第1の判定手段によってノッキングが発生したと判定され易くなる。
The first threshold value is determined based on the volume of the knock sound on hearing. Each of the second threshold value and the third threshold value is determined so that it can be determined whether or not there is a possibility that the internal combustion engine will be overloaded and the reliability of the internal combustion engine may be reduced. According to the knocking detection device having the above-described configuration, when it is detected that the combustion pressure vibration having the intensity exceeding the second threshold is generated at a high frequency exceeding the third threshold, the first determination is made. It becomes easy to determine that knocking has occurred by the means.

従って、内燃機関に過度の負担がかかる可能性があるような強度の燃焼圧振動が頻発している状態を、ノッキング発生有りとして精度良く検出することが可能になる。ノッキングの検出に応じてノッキングを抑制するための点火時期制御や空燃比制御を行なうシステムにおいてノッキングの検出に本発明に係るノッキング検出装置を用いれば、内燃機関に過度の負担がかかる可能性があるような強度の燃焼圧振動が頻発する状態が持続しないようにできるので、内燃機関の信頼性が低下することを抑制できる。   Therefore, it is possible to accurately detect a state in which combustion pressure vibration with such a magnitude that an excessive load may be applied to the internal combustion engine occurs as occurrence of knocking. If the knocking detection device according to the present invention is used for knocking detection in a system that performs ignition timing control or air-fuel ratio control for suppressing knocking according to knocking detection, an excessive burden may be placed on the internal combustion engine. Since it is possible to prevent the combustion pressure vibration with such a high frequency from continuing, it is possible to suppress a decrease in the reliability of the internal combustion engine.

聴感上のノック音の大きさが同じ場合でも、内燃機関の回転数が高くなると燃焼圧振動の強度が大きくなる傾向がある。従って、内燃機関が高回転数の運転状態である場合には、内燃機関に過度の負担がかかる可能性があるような強度の燃焼圧振動が頻発する状態になり易い。   Even when the audible knock noise is the same, the intensity of combustion pressure vibration tends to increase as the rotational speed of the internal combustion engine increases. Therefore, when the internal combustion engine is in an operating state at a high rotational speed, it is likely to be in a state where frequent combustion pressure vibrations that may cause an excessive burden on the internal combustion engine occur.

そこで本発明において、前記補正手段は、前記内燃機関の回転数が所定の第4の閾値より高い場合に、前記補正処理を実行するようにしても良い。   Therefore, in the present invention, the correction means may execute the correction process when the rotational speed of the internal combustion engine is higher than a predetermined fourth threshold value.

これにより内燃機関に過度の負担がかかる可能性があるような強度の燃焼圧振動が頻発する状態になり易い高回転運転状態において、そのような状態をノッキング発生有りとして検出し易くなる。   This makes it easier to detect that knocking has occurred in a high-speed operation state in which a combustion pressure vibration with a strength that may cause an excessive load on the internal combustion engine is likely to occur.

本発明において、前記内燃機関は火花点火式内燃機関であり、
前記第1の判定手段によりノッキングが発生したと判定された場合に、前記内燃機関の点火時期を遅角させる制御及び前記内燃機関の空燃比をリッチにさせる制御の少なくともいずれかを行なう制御手段を有するようにしても良い。
In the present invention, the internal combustion engine is a spark ignition internal combustion engine,
Control means for performing at least one of control for retarding the ignition timing of the internal combustion engine and control for making the air-fuel ratio of the internal combustion engine rich when the first determination means determines that knocking has occurred; You may make it have.

点火時期を遅角させたり空燃比をリッチにさせたりすることにより、内燃機関に過度の負担をかけるような強度の燃焼圧振動が頻発しない燃焼状態にすることができるので、内燃機関の信頼性の低下を抑制できる。   By retarding the ignition timing or making the air-fuel ratio rich, it is possible to achieve a combustion state in which intense combustion pressure oscillations that place an excessive burden on the internal combustion engine do not occur frequently. Can be suppressed.

本発明において、前記第1の判定手段は、前記振動検出手段により検出される振動のうちノッキングに固有の周波数域の振動の強度の、所定期間における検出値のばらつき度合が所定の第1の閾値より大きい場合に、ノッキングが発生したと判定し、
前記補正手段による前記補正処理は、前記第1の閾値を小さくする補正であるようにしても良い。
In the present invention, the first determination means has a predetermined first threshold value that has a predetermined degree of variation in the detected value in a predetermined period of the intensity of the vibration in the frequency range unique to knocking among the vibrations detected by the vibration detection means. If it is larger, it is determined that knocking has occurred,
The correction process by the correction unit may be correction for reducing the first threshold value.

所定期間における検出値のばらつき度合は、例えば標準偏差を算出することにより取得することができる。   The degree of variation of the detected value in the predetermined period can be obtained by calculating a standard deviation, for example.

本発明に係る内燃機関のノッキング検出装置によれば、内燃機関のノッキングを精度良く検出することができる。   The knock detection device for an internal combustion engine according to the present invention can detect knocking of the internal combustion engine with high accuracy.

実施例の内燃機関のノッキング検出装置の概略構成を示す図である。It is a figure which shows schematic structure of the knocking detection apparatus of the internal combustion engine of an Example. エンジンが低回転数の場合と高回転数の場合とのそれぞれにおいて振動センサ及び燃焼圧センサの出力を複数のサイクルにわたってプロットした図である。It is the figure which plotted the output of the vibration sensor and the combustion pressure sensor over several cycles in each of the case where an engine is a low speed and the case of a high speed. 実施例に係るノッキング発生を判定するための第1の閾値を燃焼圧振動の発生状況に応じて補正する処理を表すフローチャートである。It is a flowchart showing the process which correct | amends the 1st threshold value for determining knocking generation which concerns on an Example according to the generation | occurrence | production state of combustion pressure vibration. 実施例に係るノッキング発生を判定するための第1の閾値を燃焼圧振動の発生状況に応じて補正する処理が実行される運転領域の例を示す図である。It is a figure which shows the example of the driving | operation area | region where the process which correct | amends the 1st threshold value for determining knocking generation which concerns on an Example according to the generation | occurrence | production state of combustion pressure vibration is performed. 燃焼圧振動の固有振動の振幅が第2の閾値を超えた回数の割合とピストンの故障の発生の有無との関係の例を示す図である。It is a figure which shows the example of the relationship between the ratio of the frequency | count that the amplitude of the natural vibration of a combustion pressure vibration exceeded the 2nd threshold value, and the occurrence of the failure of a piston.

以下、本発明の実施の形態について、詳細に説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, embodiments of the present invention will be described in detail. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

図1は本発明の内燃機関のノッキング検出装置の一実施形態である火花点火式ガソリンエンジンの概略構成を示す図である。図1において、エンジン3はシリンダブロック12及びシリンダヘッド11を有し、シリンダブロック12内にはピストン14が摺動可能に挿入された気筒7が形成されている。シリンダヘッド11には図示しない吸気通路と気筒7とを連通する吸気ポート13と、図示しない排気通路と気筒7とを連通する排気ポート5が形成されており、吸気ポート13は吸気バルブ8によって開閉され、排気ポート5は排気バルブ9によって開閉される。   FIG. 1 is a diagram showing a schematic configuration of a spark ignition type gasoline engine which is an embodiment of a knocking detection device for an internal combustion engine of the present invention. In FIG. 1, the engine 3 has a cylinder block 12 and a cylinder head 11, and a cylinder 7 in which a piston 14 is slidably inserted is formed in the cylinder block 12. The cylinder head 11 is formed with an intake port 13 that connects an unillustrated intake passage and the cylinder 7, and an exhaust port 5 that connects an unillustrated exhaust passage and the cylinder 7. The intake port 13 is opened and closed by an intake valve 8. The exhaust port 5 is opened and closed by an exhaust valve 9.

シリンダヘッド11には気筒7内の混合気に点火するための点火プラグ10が設けられる。気筒7の内壁面6には開口部20が設けられ、シリンダヘッド11に設けられた圧力導入路4が開口部20に接続されている。圧力導入路4は気筒7内の圧力を燃焼圧センサ2(燃焼圧検出手段)に導き、燃焼圧センサ2によって気筒7内の圧力を検出することができる。   The cylinder head 11 is provided with a spark plug 10 for igniting the air-fuel mixture in the cylinder 7. An opening 20 is provided in the inner wall surface 6 of the cylinder 7, and a pressure introduction path 4 provided in the cylinder head 11 is connected to the opening 20. The pressure introduction path 4 guides the pressure in the cylinder 7 to the combustion pressure sensor 2 (combustion pressure detecting means), and the combustion pressure sensor 2 can detect the pressure in the cylinder 7.

図1に戻って、エンジン3のシリンダブロック12にはシリンダブロック12の振動を検出する振動センサ1(振動検出手段)が設けられている。また、エンジン3の回転数を検出する回転数センサ16及び吸入空気量を検出するエアフローメータ17が設けられている。振動センサ1、燃焼圧センサ2、回転数センサ16及びエアフローメータ17による検出値はECU15に入力される。   Returning to FIG. 1, the cylinder block 12 of the engine 3 is provided with a vibration sensor 1 (vibration detecting means) that detects vibration of the cylinder block 12. Further, a rotation speed sensor 16 that detects the rotation speed of the engine 3 and an air flow meter 17 that detects the intake air amount are provided. Detection values by the vibration sensor 1, the combustion pressure sensor 2, the rotation speed sensor 16, and the air flow meter 17 are input to the ECU 15.

ECU15はエンジン3の運転を制御するコンピュータであり、CPU、ROM、RAM、D/A変換器、A/D変換器等の公知の構成を有する。ECU15は、上記各センサから入力される検出値に基づいてエンジン3の運転状態を検出し、検出した運転状態に応じて点火時期や燃料噴射量を算出し、それに基づいて点火プラグ10や図示しない燃料噴射弁やスロットルバルブの制御を行なう。   The ECU 15 is a computer that controls the operation of the engine 3 and has a known configuration such as a CPU, a ROM, a RAM, a D / A converter, and an A / D converter. The ECU 15 detects the operating state of the engine 3 based on the detection values input from the respective sensors, calculates the ignition timing and the fuel injection amount according to the detected operating state, and based on the ignition plug 10 and not shown Controls fuel injection valves and throttle valves.

本実施例では、ECU15は、振動センサ1による検出値に基づいてノッキングの発生を検出する。すなわち、振動センサ1によってノッキングが発生する可能性のある所定のクランク角度範囲(例えばATDC0〜90°CAや、ATDC10〜30°CAなど)におけるシリンダブロック12の振動を検出し、検出される振動のうちエンジン3で発生するノッキングに固有の周波数域の振動の強度を取得する。   In this embodiment, the ECU 15 detects the occurrence of knocking based on the detection value obtained by the vibration sensor 1. That is, the vibration of the cylinder block 12 in a predetermined crank angle range (for example, ATDC 0 to 90 ° CA, ATDC 10 to 30 ° CA, etc.) in which knocking may occur by the vibration sensor 1 is detected. Among them, the vibration intensity in the frequency range specific to knocking generated in the engine 3 is acquired.

ノッキングに固有の周波数域はエンジン3の設計に依存する。ノッキングが発生すると、おおよそ6〜9kHzの範囲にピークが現われる。また、更に高周波域においてもノッキングの発生に起因するピークが複数現われる。ECU15は、振動センサ1によって検出したシリンダブロック12の振動のうちノッキングに固有の周波数域の振動(固有振動という)の強度Yの所定期間におけるばらつき度合を表す指標の値がY1(第1の閾値とよぶ)より大きい場合にノッキングが発生したと判定する。このようなノッキング発生の判定を行なうECU15が本発明における第1の判定手段として機能する。なお、固有振動の強度Yのばらつき度合を表す指標値として、所定期間における強度Yの標準偏差を使
っても良い。
The frequency range specific to knocking depends on the design of the engine 3. When knocking occurs, a peak appears in the range of approximately 6 to 9 kHz. Further, a plurality of peaks appear due to the occurrence of knocking in a higher frequency range. The ECU 15 determines that the index value indicating the degree of variation in the intensity Y of the vibration in the frequency range specific to knocking (referred to as natural vibration) among the vibrations of the cylinder block 12 detected by the vibration sensor 1 is Y1 (first threshold value). If it is larger than that, it is determined that knocking has occurred. The ECU 15 that determines the occurrence of knocking as such functions as the first determination means in the present invention. Note that the standard deviation of the intensity Y over a predetermined period may be used as an index value representing the degree of variation in the natural vibration intensity Y.

第1の閾値Y1は、適合工程において、エンジン3を搭載した車両の乗員にとって聴感上許容できるレベルのノック音を伴うノッキングが生じているときのシリンダブロック12の固有振動の強度の上限値に基づいて定める。   The first threshold value Y1 is based on the upper limit value of the natural vibration intensity of the cylinder block 12 when knocking with a level of knocking sound that is permissible for the occupant of the vehicle equipped with the engine 3 occurs in the adaptation process. Determine.

振動センサ1によって検出されたシリンダブロック12の固有振動の強度Yのばらつき度合を表す指標が第1の閾値Y1を超えている場合は、ノッキングが発生したと判断し、ノッキングを抑制する(ノッキングの強度を弱める)制御を行なう。ノッキングを抑制する制御として、本実施例では、点火プラグ10による点火時期を遅角させる制御及び空燃比をリッチにさせる制御の少なくともいずれかを行なう。この制御を行なうECU15が本発明における制御手段として機能する。   When the index indicating the variation degree of the natural vibration strength Y of the cylinder block 12 detected by the vibration sensor 1 exceeds the first threshold Y1, it is determined that knocking has occurred, and knocking is suppressed (knocking of knocking). (Reducing the strength) Control. In the present embodiment, at least one of control for retarding the ignition timing by the spark plug 10 and control for making the air-fuel ratio rich is performed as control for suppressing knocking. The ECU 15 that performs this control functions as the control means in the present invention.

例えば、点火時期を遅角させる制御を行なう場合、ノッキング発生の検出に応じて点火時期を一定量遅角させた後、MBTに向かって徐々に進角させていくことにより、聴感上許容レベルを超えるノック音が発生しない範囲で最大限の出力が得られる点火時期に制御することができる。   For example, when performing control to retard the ignition timing, after delaying the ignition timing by a certain amount in response to detection of the occurrence of knocking, the angle is gradually advanced toward the MBT, so that the permissible level for auditory perception is increased. It is possible to control the ignition timing so that the maximum output can be obtained within a range in which excessive knock noise does not occur.

このように、ノッキングの検出及びノッキングを抑制する制御は、聴感上のノック音レベルに基づいて行なわれるが、聴感上のノック音の大きさが同じでも、ノッキングに伴う燃焼圧振動の強度(振幅)はエンジン3の運転状態によって異なることがわかった。図2は、エンジン3が低回転数の場合(回転数NE=2000rpm)と、高回転数の場合(回転数NE=6000rpm)とのそれぞれにおいて、聴感によるノック音が同等な場合の振動センサ1及び燃焼圧センサ2の出力を複数のサイクルにわたってプロットした図である。   As described above, the detection of knocking and the control for suppressing knocking are performed based on the level of audible knock sound. Even if the level of audible knock sound is the same, the intensity (amplitude) of combustion pressure vibration associated with knocking is detected. ) Was found to vary depending on the operating state of the engine 3. FIG. 2 shows a vibration sensor 1 when the knocking sound due to audibility is the same when the engine 3 has a low rotation speed (rotation speed NE = 2000 rpm) and when the engine 3 has a high rotation speed (rotation speed NE = 6000 rpm). FIG. 5 is a diagram in which the output of the combustion pressure sensor 2 is plotted over a plurality of cycles.

図2の横軸は振動センサ1によって検出されるシリンダブロック12の固有振動の振幅に対応する。図2の縦軸は燃焼圧センサ2によって検出される燃焼圧の振動のうちノッキングに固有の周波数の振動(固有振動という)の振幅を表す。   The horizontal axis in FIG. 2 corresponds to the natural vibration amplitude of the cylinder block 12 detected by the vibration sensor 1. The vertical axis in FIG. 2 represents the amplitude of the vibration of the combustion pressure detected by the combustion pressure sensor 2 (referred to as natural vibration) at a frequency unique to knocking.

図2に示すように、エンジン3が高回転数の場合、燃焼圧振動の強度のばらつきが大きく、聴感によるノックの大きさが同じでもエンジン3が低回転数の場合と比較して大幅に大きな強度の燃焼圧振動が生じる場合があることがわかる。   As shown in FIG. 2, when the engine 3 has a high engine speed, the intensity of combustion pressure vibration varies greatly, and the engine 3 is significantly larger than the engine having a low engine speed even when the knock level is the same. It can be seen that strong combustion pressure oscillations may occur.

つまり、ノック音の大きさが同じでも、エンジン3が高回転数の場合は低回転数の場合よりも強い燃焼圧振動が生じ得るため、ノック音の大きさが聴感上許容できるレベル以下に抑えられている場合すなわちノッキングの発生が検出されない場合であっても、エンジンに過大な負担がかかるような強い燃焼圧振動が生じている場合があり得る。エンジンに過大な負担がかかるような強い燃焼圧振動が頻繁に発生すると、エンジン3の耐久性や信頼性が低下する可能性がある。   In other words, even if the volume of the knocking sound is the same, when the engine 3 has a high engine speed, combustion pressure vibrations can be stronger than when the engine 3 has a low engine speed. Even when the occurrence of knocking is not detected, there may be a case where strong combustion pressure oscillation is applied that places an excessive burden on the engine. If strong combustion pressure vibration that causes an excessive load on the engine frequently occurs, the durability and reliability of the engine 3 may be reduced.

そこで、本実施例のシステムでは、エンジン3の回転数NEが所定の閾値NE1より大きく、且つエンジン3の負荷率KLが所定の閾値KL1より大きい運転領域に属する運転状態を、エンジン3に過大な負担がかかるような強い燃焼圧振動が生じる可能性が高い運転状態と規定し、エンジン3の運転状態がこの運転領域に属する場合に、実際にエンジン3に過大な負荷がかかるような強い燃焼圧振動が頻発していることが検出されたときは、上述した第1の閾値Y1をY1より小さい値Y1’に補正する補正処理を行なう。   Therefore, in the system of the present embodiment, the engine 3 has an excessive operating state that belongs to the operating region in which the rotational speed NE of the engine 3 is larger than the predetermined threshold value NE1 and the load factor KL of the engine 3 is larger than the predetermined threshold value KL1. It is defined as an operating state in which there is a high possibility that a strong combustion pressure vibration that causes a burden is generated, and when the operating state of the engine 3 belongs to this operating region, a strong combustion pressure that actually applies an excessive load to the engine 3 When it is detected that vibrations are frequently occurring, the correction process for correcting the above-described first threshold Y1 to a value Y1 ′ smaller than Y1 is performed.

エンジン3に過大な負荷がかかるような強い燃焼圧振動が頻発しているか否かを判定するには、例えば、エンジン3が上記高回転高負荷の運転状態である場合に、複数サイクル
にわたって(例えば200サイクル)、燃焼圧センサ2によって検出される燃焼圧振動の固有振動の振幅Xが所定の第2の閾値X1より大きいか否かの判定を行ない、前記複数サイクルにわたる判定において振幅Xが第2の閾値X1より大きいと判定された回数を積算する。
In order to determine whether or not strong combustion pressure vibration that causes an excessive load on the engine 3 frequently occurs, for example, when the engine 3 is in the operating state of the high rotation and high load, for example, over a plurality of cycles (for example, 200 cycles), it is determined whether or not the amplitude X of the natural vibration of the combustion pressure vibration detected by the combustion pressure sensor 2 is greater than a predetermined second threshold value X1, and the amplitude X is the second in the determination over the plurality of cycles. The number of times determined to be greater than the threshold value X1 is integrated.

そして、検出される振幅Xが第2の閾値X1より大きいと判定された回数の割合Cが所定の第3の閾値C1より大きい場合に、エンジン3に過大な負荷がかかるような強い燃焼圧振動が頻発していると判定する。   Then, when the ratio C of the number of times that the detected amplitude X is determined to be greater than the second threshold value X1 is greater than the predetermined third threshold value C1, a strong combustion pressure oscillation that causes an excessive load on the engine 3 Is determined to occur frequently.

ノッキングの発生の判定に用いる第1の閾値Y1がより小さい値Y1’に補正されることにより、ノッキング発生有りとの判定がなされ易くなる。これにより、点火時期の遅角などのノッキングを抑制する(弱める)ための制御が実行され易くなるので、高回転高負荷の運転状態においてエンジン3に過大な負担がかかるような強い燃焼圧振動が頻繁に生じることを抑制することができ、エンジン3の耐久性や信頼性が低下することを抑制することが可能になる。   By correcting the first threshold Y1 used for determining the occurrence of knocking to a smaller value Y1 ', it is easy to determine that knocking has occurred. As a result, control for suppressing (weakening) knocking such as retarding of the ignition timing is easily performed, so that strong combustion pressure vibration that causes an excessive burden on the engine 3 in a high-rotation and high-load operation state. Frequent occurrence can be suppressed, and deterioration of the durability and reliability of the engine 3 can be suppressed.

図3は、以上説明した第1の閾値を補正する処理を表すフローチャートである。このフローチャートはECU15によってエンジン3の運転中に所定間隔で実行される。このフローチャートの処理を実行するECU15が本発明における第2の判定手段及び補正手段として機能する。   FIG. 3 is a flowchart showing the process of correcting the first threshold described above. This flowchart is executed at predetermined intervals by the ECU 15 during operation of the engine 3. The ECU 15 that executes the processing of this flowchart functions as a second determination unit and a correction unit in the present invention.

このフローチャートの処理が開始されると、ECU15はまずステップ100においてエンジン3の運転状態(回転数NE及び負荷率KL)を取得する。回転数NEは回転数センサ16から入力される検出値に基づいて算出する。負荷率KLはエアフローメータ17から入力される検出値に基づいて算出する。続くステップ101において、ECU15は前記取得した回転数NEが閾値NE1より大きく且つ前記取得した負荷率KLが閾値KL1より大きいか判定する。   When the processing of this flowchart is started, the ECU 15 first acquires the operating state (the rotational speed NE and the load factor KL) of the engine 3 in step 100. The rotational speed NE is calculated based on the detection value input from the rotational speed sensor 16. The load factor KL is calculated based on the detection value input from the air flow meter 17. In the following step 101, the ECU 15 determines whether the acquired rotational speed NE is greater than the threshold value NE1 and whether the acquired load factor KL is greater than the threshold value KL1.

回転数NEが閾値NE1以下又は負荷率KLが閾値KL1以下の場合、ECU15は本フローチャートの処理を一旦抜け、それ以外の場合ステップ102に進む。ステップ102において、燃焼圧センサ2によって燃焼圧振動の固有振動の振幅Xを検出し、ステップ103において前記検出した振幅Xが第2の閾値X1より大きいか否か判定する。   If the rotational speed NE is equal to or less than the threshold value NE1 or the load factor KL is equal to or less than the threshold value KL1, the ECU 15 once exits the processing of this flowchart, and otherwise proceeds to step 102. In step 102, the amplitude X of the natural vibration of the combustion pressure vibration is detected by the combustion pressure sensor 2, and in step 103, it is determined whether or not the detected amplitude X is larger than the second threshold value X1.

検出した振幅Xが第2の閾値X1より大きい場合、ECU15はステップ104に進みRAMに記憶されている直近の200サイクルの判定結果において振幅Xが第2の閾値X1より大きかった回数の積算値をカウントアップするとともに、直近の200回の判定のうち振幅Xが第2の閾値X1より大きいという判定結果だった割合Cを計算する。そして、続くステップ105において前記計算した割合Cが第3の閾値C1より大きいか否か判定する。なお、割合Cを計算するための総サイクル数は200に限らない。   When the detected amplitude X is larger than the second threshold value X1, the ECU 15 proceeds to step 104 and calculates the integrated value of the number of times that the amplitude X was larger than the second threshold value X1 in the determination result of the last 200 cycles stored in the RAM. In addition to counting up, a ratio C that is a determination result that the amplitude X is greater than the second threshold value X1 in the latest 200 determinations is calculated. Then, in the following step 105, it is determined whether or not the calculated ratio C is larger than the third threshold C1. The total number of cycles for calculating the ratio C is not limited to 200.

計算した割合Cが第3の閾値C1より大きい場合、ECU15はステップ106に進み前記高回転高負荷領域においてノッキング発生の判定を行なう場合に用いる第1の閾値Y1をY1より小さい値Y1’に補正する。なお、前記高回転高負荷領域以外の運転領域においては、ノッキング発生の判定を行なう場合に用いる第1の閾値はY1’ではなくY1のままとする。   When the calculated ratio C is larger than the third threshold C1, the ECU 15 proceeds to step 106 and corrects the first threshold Y1 used when determining the occurrence of knocking in the high rotation / high load region to a value Y1 ′ smaller than Y1. To do. In the operation region other than the high rotation / high load region, the first threshold value used for determining the occurrence of knocking is not Y1 'but Y1.

ステップ103において前記検出した振幅Xが第2の閾値X1以下の場合と、ステップ105において前記計算した割合Cが第3の閾値C1以下の場合は、ECU15は本フローチャートの処理を一旦抜ける。なお、ステップ103において前記検出した振幅Xが第2の閾値X1以下の場合に、直近の200サイクルの判定結果において振幅Xが第2の閾
値X1より大きかった回数をカウントアップせずに、直近の200回の判定のうち振幅Xが第2の閾値X1より大きいとの判定だった回数の割合Cを計算し、ステップ105以降の処理を行なっても良い。
When the detected amplitude X is less than or equal to the second threshold value X1 in step 103 and when the calculated ratio C is less than or equal to the third threshold value C1 in step 105, the ECU 15 once exits the process of this flowchart. When the detected amplitude X is equal to or smaller than the second threshold value X1 in step 103, the most recent 200 cycle determination result does not count up the number of times that the amplitude X is greater than the second threshold value X1, and The ratio C of the number of times that the amplitude X was determined to be larger than the second threshold value X1 among the 200 determinations may be calculated, and the processing after Step 105 may be performed.

この場合、計算される割合Cはステップ103で肯定判定だった場合よりも、今回のカウントアップが無い分だけ小さくなるが、それでも直近200回分の割合が第3の閾値C1より大きければ(ステップ105で肯定判定の場合)、第1の閾値Y1の減少補正が行なわれることになる。そして、振幅Xが第2の閾値X1以下である回数がある程度増えて割合Cが小さくなり、第3の閾値C1以下になったときに、ステップ105で否定判定されて第1の閾値Y1の減少補正が終了することになる。   In this case, the calculated ratio C is smaller than the case where the affirmative determination is made in step 103, but the ratio for the last 200 times is still larger than the third threshold C1 (step 105). In the case of an affirmative determination), a decrease correction of the first threshold value Y1 is performed. When the number of times that the amplitude X is equal to or smaller than the second threshold value X1 increases to some extent and the ratio C decreases and becomes smaller than or equal to the third threshold value C1, a negative determination is made in step 105 and the first threshold value Y1 decreases. The correction will end.

図4は、上述した第1の閾値を燃焼圧振動の発生状況に応じて減少補正する処理が実行される運転領域を例示した図であり、回転数に関する閾値NE1を5000rpm、負荷率に関する閾値KL1を80%とした場合を表す。   FIG. 4 is a diagram exemplifying an operation region in which a process for reducing and correcting the first threshold value according to the occurrence state of the combustion pressure vibration is executed. The threshold value NE1 related to the rotational speed is 5000 rpm, and the threshold value KL1 related to the load factor. Represents 80%.

図4の斜線部分の運転領域にエンジン3の運転状態が属している場合に、燃焼圧振動の固有振動の振幅の検出値Xが第2の閾値X1を超える割合Cが第3の閾値C1を超えた場合、この運転領域におけるノッキング発生の判断に用いる第1の閾値Y1をY1’(<Y1)に補正する。   When the operating state of the engine 3 belongs to the operating region in the shaded area in FIG. 4, the ratio C at which the detected value X of the natural vibration amplitude of the combustion pressure vibration exceeds the second threshold value X1 becomes the third threshold value C1. If exceeded, the first threshold value Y1 used for determining the occurrence of knocking in this operating region is corrected to Y1 ′ (<Y1).

図5は、6気筒エンジンにおいて、燃焼圧振動の固有振動の振幅に関する第2の閾値X1をある所定値として試験を行ない、燃焼圧振動の固有振動の振幅Xが当該第2の閾値X1を超えた回数の割合及びピストン14の故障の発生の有無を示している。   FIG. 5 shows a six-cylinder engine in which a second threshold value X1 related to the amplitude of the natural vibration of the combustion pressure vibration is set as a predetermined value, and the amplitude X of the natural vibration of the combustion pressure vibration exceeds the second threshold value X1. The ratio of the number of times of occurrence and the presence or absence of failure of the piston 14 are shown.

図5に示すように、燃焼圧振動の固有振動の振幅Xが第2の閾値X1より大きかった割合が2%強以上の場合、ピストン14に当該燃焼圧振動に起因すると考えられる故障が生じたのに対し、燃焼圧振動の固有振動の振幅Xが第2の閾値X1より大きかった割合が2%弱以下では、そのような強い燃焼圧振動が発生してもピストン14は故障しなかった。   As shown in FIG. 5, when the ratio that the amplitude X of the natural vibration of the combustion pressure vibration is larger than the second threshold value X1 is more than 2%, the piston 14 has failed due to the combustion pressure vibration. On the other hand, when the ratio of the amplitude X of the natural vibration of the combustion pressure vibration being larger than the second threshold value X1 is less than 2%, the piston 14 did not fail even if such strong combustion pressure vibration occurred.

このことから、図5の試験の条件では、第3の閾値C1を0.02に設定することによって、高回転高負荷運転領域においてノッキングとして判定されないレベルのノッキングの発生に伴う燃焼圧振動に起因してエンジン3の耐久性や信頼性が低下することを抑制できることがわかった。なお、図4及び図5で例示した各閾値の数値は一例であって本発明はこれらのみに限定されない。   Therefore, in the test conditions of FIG. 5, by setting the third threshold C1 to 0.02, it is caused by the combustion pressure oscillation accompanying the occurrence of knocking at a level that is not determined as knocking in the high rotation high load operation region. And it turned out that it can suppress that durability and reliability of the engine 3 fall. In addition, the numerical value of each threshold illustrated in FIG.4 and FIG.5 is an example, and this invention is not limited only to these.

以上説明したように、本実施例に係る内燃機関のノッキング検出装置は、内燃機関3のシリンダブロック12の振動を検出する振動検出手段1と、前記内燃機関3の燃焼圧を検出する燃焼圧検出手段2と、前記振動検出手段1により検出される振動のうちノッキングに固有の周波数域の振動の強度Yのばらつき度合を表す指標が第1の閾値Y1より大きい場合にノッキングが発生したと判定する第1の判定手段15と、前記燃焼圧検出手段2により検出される燃焼圧の振動のうちノッキングに固有の周波数域の振動の強度Xが所定の第2の閾値X1より大きいか否か判定する第2の判定手段15と、前記第2の判定手段15による判定を複数回行ない、該複数回のうち燃焼圧の前記振動の強度Xが前記第2の閾値X1より大きいと判定された回数の割合Cが所定の第3の閾値C1より大きい場合、前記第1の閾値Y1を小さくする補正処理を行なう補正手段15と、を有し、前記補正手段15は、前記内燃機関3の回転数NEが所定の閾値NE1より高い場合に、前記補正処理を実行するので、内燃機関3に過度の負担がかかるような強い燃焼圧振動が頻発し得る高回転数の運転状態では、シリンダブロック12の振動の強度のばらつき度合を表す指標の値が第1の閾値Y1以下であっても、補正後の第1の閾値Y1’より大きければ、第1の判定手段15はノッキングが発生していると判定するようになる。そして、そのように前
記第1の判定手段15によりノッキングが発生したと判定された場合に、前記内燃機関3の点火時期を遅角させる制御及び前記内燃機関3の空燃比をリッチにさせる制御の少なくともいずれかを行なう制御手段15を有するので、内燃機関3に過度の負担がかかるような強い燃焼圧振動が頻発しないような燃焼状態に制御されることになる。よって、高回転数の運転状態においても、内燃機関3の耐久性や信頼性が低下することを抑制することが可能になる。
As described above, the knock detection device for an internal combustion engine according to this embodiment includes the vibration detection means 1 for detecting the vibration of the cylinder block 12 of the internal combustion engine 3 and the combustion pressure detection for detecting the combustion pressure of the internal combustion engine 3. It is determined that knocking has occurred when the index indicating the degree of variation in the vibration intensity Y in the frequency range specific to knocking among the vibrations detected by the means 2 and the vibration detection means 1 is greater than the first threshold Y1. It is determined whether or not the intensity X of the vibration in the frequency range unique to knocking among the vibrations of the combustion pressure detected by the first determination means 15 and the combustion pressure detection means 2 is greater than a predetermined second threshold value X1. The determination by the second determination means 15 and the second determination means 15 is performed a plurality of times, and the vibration intensity X of the combustion pressure is determined to be greater than the second threshold value X1 among the plurality of times. Correction means 15 for performing a correction process for reducing the first threshold Y1 when the ratio C of numbers is larger than a predetermined third threshold C1, and the correction means 15 rotates the internal combustion engine 3. Since the correction process is executed when the number NE is higher than the predetermined threshold NE1, the cylinder block 12 is operated in a high engine speed state in which strong combustion pressure oscillations that cause an excessive load on the internal combustion engine 3 can occur frequently. Even if the value of the index representing the degree of variation in the vibration intensity is equal to or smaller than the first threshold value Y1, the first determination means 15 has knocked if it is larger than the corrected first threshold value Y1 ′. It comes to judge. Then, when it is determined by the first determination means 15 that knocking has occurred, control for retarding the ignition timing of the internal combustion engine 3 and control for making the air-fuel ratio of the internal combustion engine 3 rich. Since the control means 15 for performing at least one of them is provided, the combustion state is controlled so that strong combustion pressure vibrations that cause an excessive load on the internal combustion engine 3 do not occur frequently. Therefore, it is possible to suppress a decrease in durability and reliability of the internal combustion engine 3 even in an operating state at a high rotational speed.

なお、以上述べた実施例は本発明を説明するための一例であって、本発明の本旨を逸脱しない範囲内において上記の実施例には種々の変更を加え得る。例えば上記実施例では高回転高負荷の運転領域において燃焼圧振動の振幅が大きいノッキングが頻発した場合にノッキング判定のための閾値を下げる処理を行なう例を説明したが、負荷によらず高回転数の運転領域において同処理を行なうようにしても良い。   The above-described embodiment is an example for explaining the present invention, and various modifications can be made to the above-described embodiment without departing from the gist of the present invention. For example, in the above embodiment, an example in which the process for lowering the threshold for knocking determination is performed when knocking with large amplitude of combustion pressure vibration frequently occurs in the operation region of high rotation and high load has been described. The same processing may be performed in the operation region.

ノッキング判定の手段として、振動強度のばらつき度合を示す指標(標準偏差など)を利用しても良い。その場合には、第1の閾値として標準偏差の値を利用しても良い。   As a means for determining knocking, an index (standard deviation or the like) indicating the degree of variation in vibration intensity may be used. In that case, a standard deviation value may be used as the first threshold value.

1 振動センサ
2 燃焼圧センサ
3 エンジン
4 圧力導入路
5 排気ポート
6 気筒内壁面
7 気筒
8 吸気バルブ
9 排気バルブ
10 点火プラグ
11 シリンダヘッド
12 シリンダブロック
13 吸気ポート
14 ピストン
15 ECU
16 回転数センサ
17 エアフローメータ
20 開口部
DESCRIPTION OF SYMBOLS 1 Vibration sensor 2 Combustion pressure sensor 3 Engine 4 Pressure introduction path 5 Exhaust port 6 Cylinder inner wall surface 7 Cylinder 8 Intake valve 9 Exhaust valve 10 Spark plug 11 Cylinder head 12 Cylinder block 13 Intake port 14 Piston 15 ECU
16 Rotational speed sensor 17 Air flow meter 20 Opening

Claims (4)

内燃機関のシリンダブロックの振動を検出する振動検出手段と、
前記内燃機関の燃焼圧を検出する燃焼圧検出手段と、
前記振動検出手段により検出される振動のうちノッキングに固有の周波数域の振動の強度又はそれに相関する物理量と所定の第1の閾値との比較に基づいてノッキングが発生したか否かを判定する第1の判定手段と、
前記燃焼圧検出手段により検出される燃焼圧の振動のうちノッキングに固有の周波数域の振動の強度が所定の第2の閾値より大きいか否か判定する第2の判定手段と、
前記第2の判定手段による判定を複数回行ない、該複数回のうち燃焼圧の前記振動の強度が前記第2の閾値より大きいと判定された回数の割合が所定の第3の閾値より大きい場合、前記第1の判定手段によりノッキングが発生したと判定され易くなる方向に前記第1の閾値を補正する補正処理を行なう補正手段と、
を有することを特徴とする内燃機関のノッキング検出装置。
Vibration detecting means for detecting vibration of a cylinder block of the internal combustion engine;
Combustion pressure detecting means for detecting the combustion pressure of the internal combustion engine;
A first determination is made as to whether or not knocking has occurred based on a comparison between a predetermined first threshold and the intensity of vibration in a frequency range unique to knocking or the physical quantity correlated therewith among the vibrations detected by the vibration detection means. 1 determination means;
Second determination means for determining whether or not the intensity of the vibration in the frequency range specific to knocking among vibrations of the combustion pressure detected by the combustion pressure detection means is greater than a predetermined second threshold;
The determination by the second determination means is performed a plurality of times, and the ratio of the number of times that the vibration intensity of the combustion pressure is determined to be greater than the second threshold among the plurality of times is greater than a predetermined third threshold. Correcting means for correcting the first threshold value in a direction in which it is easy to determine that knocking has occurred by the first determining means;
A knocking detection device for an internal combustion engine, comprising:
請求項1において、
前記補正手段は、前記内燃機関の回転数が所定の第4の閾値より高い場合に、前記補正処理を実行することを特徴とする内燃機関のノッキング検出装置。
In claim 1,
The knocking detection apparatus for an internal combustion engine, wherein the correction means executes the correction process when the rotational speed of the internal combustion engine is higher than a predetermined fourth threshold value.
請求項1又は2において、
前記内燃機関は火花点火式内燃機関であり、
前記第1の判定手段によりノッキングが発生したと判定された場合に、前記内燃機関の点火時期を遅角させる制御及び前記内燃機関の空燃比をリッチにさせる制御の少なくともいずれかを行なう制御手段を有することを特徴とする内燃機関のノッキング検出装置。
In claim 1 or 2,
The internal combustion engine is a spark ignition internal combustion engine;
Control means for performing at least one of control for retarding the ignition timing of the internal combustion engine and control for making the air-fuel ratio of the internal combustion engine rich when the first determination means determines that knocking has occurred; A knocking detection device for an internal combustion engine, comprising:
請求項1から3のいずれか1項において、
前記第1の判定手段は、前記振動検出手段により検出される振動のうちノッキングに固有の周波数域の振動の強度の、所定期間における検出値のばらつき度合を表す指標の値が所定の第1の閾値より大きい場合に、ノッキングが発生したと判定し、
前記補正手段による前記補正処理は、前記第1の閾値を小さくする補正であることを特徴とする内燃機関のノッキング検出装置。
In any one of Claim 1 to 3,
The first determination means has a predetermined first index value indicating a degree of variation of a detected value in a predetermined period of the intensity of vibration in a frequency range unique to knocking among vibrations detected by the vibration detection means. If it is larger than the threshold, it is determined that knocking has occurred,
The knocking detection apparatus for an internal combustion engine, wherein the correction processing by the correction means is correction for reducing the first threshold value.
JP2010039034A 2010-02-24 2010-02-24 Internal combustion engine knock detection device Expired - Fee Related JP5386399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039034A JP5386399B2 (en) 2010-02-24 2010-02-24 Internal combustion engine knock detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039034A JP5386399B2 (en) 2010-02-24 2010-02-24 Internal combustion engine knock detection device

Publications (2)

Publication Number Publication Date
JP2011174409A JP2011174409A (en) 2011-09-08
JP5386399B2 true JP5386399B2 (en) 2014-01-15

Family

ID=44687484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039034A Expired - Fee Related JP5386399B2 (en) 2010-02-24 2010-02-24 Internal combustion engine knock detection device

Country Status (1)

Country Link
JP (1) JP5386399B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065400A1 (en) * 2011-11-01 2013-05-10 日産自動車株式会社 Malfunction diagnosis device and malfunction diagnosis method for knock sensor
JP6037745B2 (en) * 2012-09-25 2016-12-07 ダイハツ工業株式会社 Control device for internal combustion engine
JP2017141693A (en) 2016-02-08 2017-08-17 トヨタ自動車株式会社 Control device of internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2580155B2 (en) * 1987-03-27 1997-02-12 富士重工業株式会社 Knock control control device for internal combustion engine
JP2002357174A (en) * 2001-05-31 2002-12-13 Ngk Spark Plug Co Ltd Ignition timing control device for two cycle internal combustion engine
JP2003314349A (en) * 2002-04-26 2003-11-06 Denso Corp Method of knocking detecting for an internal combustion engine, method of adjusting ignition timing, method of controlling ignition timing, and knocking detecting device
JP2005083314A (en) * 2003-09-10 2005-03-31 Fujitsu Ten Ltd Knocking detection device for internal combustion engine
JP4549920B2 (en) * 2005-04-27 2010-09-22 トヨタ自動車株式会社 Internal combustion engine knock determination device
JP4418808B2 (en) * 2006-08-23 2010-02-24 ヤンマー株式会社 How to avoid knocking in spark ignition engines
JP2008157087A (en) * 2006-12-22 2008-07-10 Honda Motor Co Ltd Knocking detection device
JP2008215141A (en) * 2007-03-01 2008-09-18 Hitachi Ltd Knocking control device for internal combustion engine

Also Published As

Publication number Publication date
JP2011174409A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP6032136B2 (en) Misfire detection system for internal combustion engine
JP5508834B2 (en) Internal combustion engine knock determination device
US9316556B2 (en) Knock control apparatus for an internal combustion engine
JP4390774B2 (en) Ignition timing control device for internal combustion engine
JP4538383B2 (en) Ignition timing control device for internal combustion engine
JPH1030977A (en) Preignition detecting apparatus
WO2016125687A1 (en) Knock detecting device
JP2013122191A5 (en)
JP6006228B2 (en) In-cylinder pressure sensor abnormality diagnosis device and in-cylinder pressure sensor sensitivity correction device including the same
JP4732305B2 (en) Control device for internal combustion engine
JP6136341B2 (en) Abnormal combustion detection device for internal combustion engine
JP5386399B2 (en) Internal combustion engine knock detection device
JP2008008177A (en) Knocking determination device for internal combustion engine
JP2013147980A (en) Control device for internal combustion engine
JP4559977B2 (en) Ignition timing control device for internal combustion engine
JP5098690B2 (en) Combustion state detection device
JP7390433B1 (en) Internal combustion engine control device
JP4925251B2 (en) Internal combustion engine knock determination device
JP2009250212A (en) Apparatus and method for determining knocking of internal combustion engine
JP2011157852A (en) Control device of internal combustion engine
JP4324137B2 (en) Control device for internal combustion engine
JP2009115011A (en) Knock determining device for internal combustion engine
JP2007332916A (en) Ignition timing control device of internal combustion engine
JP2007023834A (en) Control device of internal combustion engine
JP7491375B2 (en) Engine control method and control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees