JP5385700B2 - Horizontal axis windmill - Google Patents

Horizontal axis windmill Download PDF

Info

Publication number
JP5385700B2
JP5385700B2 JP2009152019A JP2009152019A JP5385700B2 JP 5385700 B2 JP5385700 B2 JP 5385700B2 JP 2009152019 A JP2009152019 A JP 2009152019A JP 2009152019 A JP2009152019 A JP 2009152019A JP 5385700 B2 JP5385700 B2 JP 5385700B2
Authority
JP
Japan
Prior art keywords
angle
yaw
wind
yaw angle
wind speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009152019A
Other languages
Japanese (ja)
Other versions
JP2011007121A (en
Inventor
茂雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009152019A priority Critical patent/JP5385700B2/en
Publication of JP2011007121A publication Critical patent/JP2011007121A/en
Application granted granted Critical
Publication of JP5385700B2 publication Critical patent/JP5385700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Description

本発明は、水平軸風車に係り、特にヨー角制御に関する。   The present invention relates to a horizontal axis wind turbine, and more particularly to yaw angle control.

周知のように、いわゆる水平軸風車が風力発電等の商業用に広く実用化されている。水平軸風車は、一般に1枚又は2枚以上のブレードがハブから放射状に取付けられてなるロータと、ハブに接続されるとともに略水平方向に延在した主軸を介してこのロータを軸支するナセルと、略鉛直方向に設置されるとともにナセルをヨー回転自在に支持するタワーとを有して構成される。  As is well known, so-called horizontal axis wind turbines are widely used for commercial purposes such as wind power generation. A horizontal axis wind turbine generally includes a rotor in which one or more blades are radially attached from a hub, and a nacelle that supports the rotor via a main shaft that is connected to the hub and extends in a substantially horizontal direction. And a tower that is installed in a substantially vertical direction and supports the nacelle in a yaw-rotatable manner.

ナセルのヨー回転を駆動するヨー駆動装置やヨー制御装置等を備えて、ヨー角を制御する水平軸風車が利用されている。
従来、水平軸風車は性能と耐久性の両面からヨー制御によりロータを風に正対させることが一般的であった。
しかし、特許文献1,2に記載されるように、ナセルに設置された風向計により計測されるヨー角は、流入する気流がロータやナセルの影響を受けるため、正確でないことが知られている。
特許文献1記載の発明にあっては、ナセルの左右に設置された風速計により計測された風速の差又は比に基づき、吹上角の有無に関わらずに正確にロータのヨー角を制御せんとする。
特許文献2記載の発明にあっては、各流入風速において発電出力等をピークとするヨー角にロータを制御せんとする。
A horizontal axis windmill that controls a yaw angle by using a yaw driving device, a yaw control device, and the like that drive yaw rotation of the nacelle is used.
Conventionally, horizontal axis wind turbines generally face the rotor to the wind by yaw control in terms of both performance and durability.
However, as described in Patent Documents 1 and 2, it is known that the yaw angle measured by the anemometer installed in the nacelle is not accurate because the inflowing airflow is affected by the rotor and nacelle. .
In the invention described in Patent Document 1, based on the difference or ratio of the wind speed measured by the anemometers installed on the left and right of the nacelle, the yaw angle of the rotor is accurately controlled regardless of the presence or absence of the blowing angle. To do.
In the invention described in Patent Document 2, it is assumed that the rotor is controlled to the yaw angle at which the power generation output or the like peaks at each inflow wind speed.

特開2005−214066号公報JP 2005-214066 A 特開2008−291786号公報JP 2008-291786 A

しかし、本発明者の研究によると、性能や耐久性の観点で最適なヨー角は風速及び吹上角によって異なることがわかった。
したがって、特許文献1記載の発明のように、正確にヨー角を計測する手段を構成しても、ヨー角を0度に収束させるという制御基準だけで運用していては、性能や耐久性の観点で最適なヨー角に制御できるとは限らない。
また、特許文献2記載の発明にあっては、吹上角を考慮していないため、吹上角が生じ易い地形に設置される風車や、浮体式洋上風車のように風車全体が傾倒することにより相対的に吹上角が生じる風車にあっては、吹上角の値によっては最適なヨー角制御にならない場合がある。
However, according to the research of the present inventors, it has been found that the optimum yaw angle from the viewpoint of performance and durability varies depending on the wind speed and the blowing angle.
Therefore, even if the means for accurately measuring the yaw angle is configured as in the invention described in Patent Document 1, if the operation is performed only with the control standard for converging the yaw angle to 0 degrees, the performance and durability are not improved. It is not always possible to control to the optimum yaw angle from the viewpoint.
Further, in the invention described in Patent Document 2, since the wind-up angle is not taken into consideration, the wind turbine is inclined relative to the wind turbine installed on the terrain where the wind-up angle is likely to occur or the floating wind turbine is inclined. In a wind turbine in which an updraft angle is generated, there is a case where optimum yaw angle control may not be achieved depending on the value of the upwind angle.

本発明は以上の従来技術における問題に鑑みてなされたものであって、風速及び吹上角に応じて変化する最適なヨー角にロータを制御することができる水平軸風車を提供することを課題とする。   The present invention has been made in view of the above problems in the prior art, and it is an object of the present invention to provide a horizontal axis wind turbine capable of controlling a rotor to an optimum yaw angle that changes in accordance with a wind speed and a blowing angle. To do.

以上の課題を解決するための請求項1記載の発明は、ヨー回転自在に支持されたロータと、
前記ロータのヨー角を駆動制御するヨー制御手段と、
本風車に対する風速を計測する風速計測手段と、
本風車に対する風の吹上角を計測する吹上角計測手段と、
風向に対する前記ロータのヨー角を計測するヨー角計測手段とを備え、
前記ヨー制御手段は、前記風速計測手段により計測される風速及び前記吹上角計測手段により計測される吹上角に応じて特定されるヨー角値を制御目標値として前記ヨー角計測手段により計測されるヨー角に基づき前記ロータのヨー角を制御する水平軸風車である。
The invention according to claim 1 for solving the above-described problems includes a rotor supported in a yaw-rotating manner,
Yaw control means for driving and controlling the yaw angle of the rotor;
Wind speed measuring means for measuring wind speed with respect to the wind turbine;
A wind-up angle measuring means for measuring the wind-up angle of the wind with respect to the wind turbine;
A yaw angle measuring means for measuring the yaw angle of the rotor with respect to the wind direction,
The yaw control means is measured by the yaw angle measurement means with a yaw angle value specified according to the wind speed measured by the wind speed measurement means and the windup angle measured by the windup angle measurement means as a control target value. The horizontal axis wind turbine controls the yaw angle of the rotor based on the yaw angle.

請求項2記載の発明は、ヨー制御手段は、風速及び吹上角の変化に対して不変のヨー角値を制御目標値とする場合よりも、前記ロータによる仕事効率又は本風車の耐久性を高くするヨー角値変化に従ってヨー角値を特定し、この特定されたヨー角値を制御目標値とする請求項1に記載の水平軸風車である。さらには、ヨー制御手段は、風速の変化に対して不変のヨー角値を制御目標値とする場合よりも、吹上角の変化に対して不変のヨー角値を制御目標値とする場合よりも、前記ロータによる仕事効率又は/及び本風車の耐久性を高くする風速及び吹上角に対するヨー角値変化に従ってヨー角値を特定し、この特定されたヨー角値を制御目標値とする。   According to the second aspect of the present invention, the yaw control means increases the work efficiency of the rotor or the durability of the wind turbine as compared with the case where the control target value is a yaw angle value that is invariant to changes in the wind speed and the wind-up angle. The horizontal axis wind turbine according to claim 1, wherein a yaw angle value is specified in accordance with a change in the yaw angle value, and the specified yaw angle value is set as a control target value. Further, the yaw control means has a control target value that is an invariant yaw angle value with respect to a change in the wind-up angle, rather than a yaw angle value that is invariant with respect to a change in the wind speed. The yaw angle value is specified in accordance with the change in the yaw angle value with respect to the wind speed and the wind-up angle that increases the work efficiency by the rotor and / or the durability of the wind turbine, and the specified yaw angle value is set as the control target value.

本発明によれば、風速及び吹上角に応じて特定されるヨー角値を制御目標値としてロータのヨー角を制御するので、風速及び吹上角に応じて性能や耐久性を最適にするヨー角値を特定する手段を予め構成しておくことにより、風速及び吹上角に応じて変化する最適なヨー角にロータを制御することができる。   According to the present invention, since the yaw angle of the rotor is controlled using the yaw angle value specified according to the wind speed and the blowing angle as the control target value, the yaw angle that optimizes performance and durability according to the wind speed and the blowing angle. By configuring the means for specifying the value in advance, the rotor can be controlled to an optimum yaw angle that changes according to the wind speed and the blowing angle.

本発明の実施形態に係り、水平軸風車の制御装置を示す機能ブロック図である。It is a functional block diagram which shows the control apparatus of a horizontal axis windmill concerning embodiment of this invention. 本発明の実施形態に係り、(a)は吹上角0[deg]における風速に応じたヨー角目標値を示すグラフ、(b)は吹上角8[deg]における風速に応じたヨー角目標値を示すグラフである。According to the embodiment of the present invention, (a) is a graph showing a yaw angle target value according to the wind speed at a blowing angle of 0 [deg], and (b) is a yaw angle target value according to the wind speed at a blowing angle of 8 [deg]. It is a graph which shows. ある共通の20年間の風況条件に基づき計算した疲労ダメージの風速域毎の値及び合計値を示す棒グラフであり、(a)は吹上角0[deg]の条件における比較例、(b)は吹上角0[deg]の条件における本発明例、(c)は吹上角8[deg]の条件における比較例、(d)は吹上角8[deg]の条件における本発明例に関するものである。It is a bar graph showing the value and total value of fatigue damage for each wind speed region calculated based on a common 20-year wind condition, (a) is a comparative example under the condition of a blowing angle of 0 [deg], (b) is The example of the present invention under the condition of a blowing angle of 0 [deg], (c) relates to a comparative example under the condition of a blowing angle of 8 [deg], and (d) relates to the example of the present invention under the condition of a blowing angle of 8 [deg].

以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。   An embodiment of the present invention will be described below with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.

本実施形態の水平軸風車は、1枚又は2枚以上のブレードがハブから放射状に取付けられてなるロータと、ハブに接続されるとともに略水平方向に延在した主軸を介してこのロータを軸支するナセルと、略鉛直方向に設置されるとともにナセル(従ってロータ)をヨー回転自在に支持するタワーとを有して構成される。
また本実施形態の水平軸風車は、図1に示すように、ナセル(従ってロータ)をタワーの軸回りに回転駆動(ヨー回転)させるとともに、その回転にブレーキを付与するヨー駆動手段としてのヨー駆動部1、ヨー駆動部1を駆動制御してロータのヨー角を制御するヨー制御手段としてのヨー制御部2、及び、後述する図2にグラフ化して示すヨー角目標値参照データを記憶保持する記憶部6を備える。
The horizontal axis wind turbine according to the present embodiment pivots the rotor through a rotor in which one or more blades are radially attached from the hub, and a main shaft that is connected to the hub and extends in a substantially horizontal direction. The nacelle is configured to have a supporting nacelle and a tower that is installed in a substantially vertical direction and supports the nacelle (and hence the rotor) in a yaw-rotatable manner.
Further, as shown in FIG. 1, the horizontal axis wind turbine according to the present embodiment rotates the nacelle (and hence the rotor) around the axis of the tower (yaw rotation) and provides yaw as a yaw driving means for applying a brake to the rotation. The drive unit 1, the yaw control unit 2 as a yaw control means for controlling the yaw angle of the rotor by controlling the drive of the yaw drive unit 1, and the yaw angle target value reference data shown in a graph in FIG. The storage unit 6 is provided.

さらに本実施形態の水平軸風車は、ナセルに設置された風速計3及び風向計4を備える。
このナセルに設置された風速計3を、本風車に対する風速を計測する風速計測手段として適用し、このナセルに設置された風向計4を、風向に対するロータのヨー角を計測するヨー角計測手段として適用する。また本実施形態の水平軸風車は、本風車に対する風の吹上角を水平軸を基準として計測する吹上角計測手段を備える。吹上角計測手段としては、三次元風速計5が一般に利用されているので、これを適用する。近時、ブレードのピッチ角やロータ回転数、ブレードに付設した歪センサ等により検出したブレードの変形などから風速や風向、吹上角を推算することが考えられている。将来、そのような手段によりロータに吹き込む風の風速や風向、吹上角をより直接的、正確に計測する手段が構成されれば、これに置き換えて実施しても良い。
Furthermore, the horizontal axis windmill of the present embodiment includes an anemometer 3 and an anemometer 4 installed in the nacelle.
The anemometer 3 installed in the nacelle is applied as an anemometer for measuring the wind speed with respect to the wind turbine, and the anemometer 4 installed in the nacelle is used as a yaw angle measuring means for measuring the rotor yaw angle with respect to the wind direction. Apply. Moreover, the horizontal axis windmill of this embodiment is provided with the blowing angle measurement means which measures the wind blowing angle with respect to this windmill on the basis of a horizontal axis. Since the three-dimensional anemometer 5 is generally used as the blowing angle measuring means, this is applied. In recent years, it has been considered to estimate the wind speed, wind direction, and blowing angle from the pitch angle of the blade, the rotational speed of the rotor, the deformation of the blade detected by a strain sensor attached to the blade, and the like. In the future, if means for directly and accurately measuring the wind speed, wind direction, and wind-up angle of the wind blown into the rotor by such means is configured, this may be replaced.

ヨー制御部2は、図2にグラフ化して示すヨー角目標値参照データを記憶保持している。
ヨー制御部2は、所定の時間毎に、風速計3により計測される風速を取得するとともに、三次元風速計5により計測される吹上角を取得し、図2に示すヨー角目標値参照データを記憶部6から読み出し参照することによって、取得した風速と吹上角に対応するヨー角の制御目標値を特定する。
次に、ヨー制御部2は、風向計4により計測されるヨー角値が図2に示す下閾値を下回れば、ナセルを正の方向にすなわちナセルを上空から見て時計周りに所定角度(例えば10[deg])だけ回転するようにしてロータのヨー角を変角制御する。また、風向計4により計測されるヨー角値が図2に示す上閾値を上回れば、ナセルを負の方向にすなわちナセルを上空から見て反時計周りに所定角度(例えば10[deg])だけ回転するようにしてロータのヨー角を変角制御する。これにより、実際のヨー角がヨー角目標値から許容差以上に外れないように制御する。
The yaw control unit 2 stores and holds yaw angle target value reference data shown in a graph in FIG.
The yaw control unit 2 acquires the wind speed measured by the anemometer 3 and the blowing angle measured by the three-dimensional anemometer 5 every predetermined time, and the yaw angle target value reference data shown in FIG. Is read from the storage unit 6 and referred to, thereby specifying the control target value of the yaw angle corresponding to the acquired wind speed and blowing angle.
Next, if the yaw angle value measured by the anemometer 4 falls below the lower threshold value shown in FIG. 2, the yaw control unit 2 moves the nacelle in a positive direction, that is, when the nacelle is viewed from above, a predetermined angle clockwise (for example, The yaw angle of the rotor is controlled so as to rotate by 10 [deg]). Also, if the yaw angle value measured by the anemometer 4 exceeds the upper threshold value shown in FIG. 2, the nacelle is in a negative direction, that is, a predetermined angle (for example, 10 [deg]) counterclockwise when the nacelle is viewed from above. The yaw angle of the rotor is controlled so as to rotate. Thus, control is performed so that the actual yaw angle does not deviate from the yaw angle target value beyond the tolerance.

例えば、吹上角計測値が0[deg]で風速計測値が10[m/s]であれば、図2(a)よりヨー角目標値0[deg]、上閾値10[deg]、下閾値−10[deg]として制御する。
また例えば、吹上角計測値が0[deg]で風速計測値が15[m/s]であれば、図2(a)よりヨー角目標値−20[deg]、上閾値−10[deg]、下閾値−30[deg]として制御する。
吹上角計測値が8[deg]の場合は、図2(b)より風速によらずヨー角目標値0[deg]、上閾値10[deg]、下閾値−10[deg]として制御する。ここで、本実施例では、下閾値と上限値を、風速によらずにヨー角目標値から負の方向或いは正の方向に10[deg]だけオフセットした値に設定している。
For example, if the measured wind-up angle value is 0 [deg] and the wind speed measurement value is 10 [m / s], the yaw angle target value 0 [deg], the upper threshold value 10 [deg], and the lower threshold value are shown in FIG. Control as −10 [deg].
Further, for example, if the measured blow-up angle value is 0 [deg] and the measured wind speed value is 15 [m / s], the yaw angle target value −20 [deg] and the upper threshold value −10 [deg] are shown in FIG. The lower threshold value is controlled as −30 [deg].
When the measured value of the blowing angle is 8 [deg], the yaw angle target value 0 [deg], the upper threshold value 10 [deg], and the lower threshold value −10 [deg] are controlled regardless of the wind speed as shown in FIG. In this embodiment, the lower threshold value and the upper limit value are set to values that are offset by 10 [deg] in the negative direction or the positive direction from the yaw angle target value regardless of the wind speed.

以上の例に倣って、本風車に対して想定される吹上角範囲内の代表的な複数の吹上角毎に風速に応じた最適なヨー角を予め定め、それらの間は線形補完するなどして、想定されるあらゆる風速及び吹上角に応じてヨー角目標値を特定できるようにヨー角目標値参照データを構成する。本実施例では、ヨー角目標値参照データを設定するにあたり、まず、所定の期間における風況条件から図3のような翼根フラップ曲げの疲労ダメージを計算するとともに、主軸やタワーなど各部位の疲労ダメージを計算する。そして、それらの疲労ダメージを風速域毎に総合的に評価することで風車の耐久性を高めるヨー角値を特定する。なお、この例に限らず、ヨー角値を特定する手段は、風速と吹上角の2つの入力値に対して一のヨー角値を算出するあらゆる演算手段を適用して実施してよい。また、ヨー角目標値は、ロータの回転方向とロータのティルト角によって異なる値になる。本実施例の水平軸風車は、ロータの回転方向を風上側から見て時計周りに設定し、ロータが風上側ほど下を向くようにティルト角を水平軸から8[deg]だけ傾けた値に設定している。すなわち、本実施例の水平軸風車では、吹上角が8[deg]の場合にロータの軸と吹上角のアライメントが一致する。   Following the above example, an optimum yaw angle corresponding to the wind speed is determined in advance for each of a plurality of typical blowing angles within the range of the blowing angle assumed for the wind turbine, and linear interpolation is performed between them. Thus, the yaw angle target value reference data is configured so that the yaw angle target value can be specified in accordance with all possible wind speeds and blowing angles. In this embodiment, in setting the yaw angle target value reference data, first, the fatigue damage of the blade root flap bending as shown in FIG. 3 is calculated from the wind conditions in a predetermined period, and each part such as the spindle and the tower is also calculated. Calculate fatigue damage. And the yaw angle value which raises durability of a windmill is specified by comprehensively evaluating those fatigue damages for every wind speed range. Note that the means for specifying the yaw angle value is not limited to this example, and any calculation means for calculating one yaw angle value for the two input values of the wind speed and the blowing angle may be applied. The yaw angle target value varies depending on the rotation direction of the rotor and the tilt angle of the rotor. In the horizontal axis wind turbine of this embodiment, the rotation direction of the rotor is set clockwise when viewed from the windward side, and the tilt angle is inclined by 8 [deg] from the horizontal axis so that the rotor faces downward as the windward side. It is set. That is, in the horizontal axis wind turbine of the present embodiment, the alignment of the rotor shaft and the blowing angle coincides when the blowing angle is 8 [deg].

図3は、ある共通の20年間の風況条件に基づき計算した翼根フラップ曲げの疲労ダメージの風速域毎の値及び合計値を示す棒グラフである。すなわち、本風況条件に置かれた風車の疲労ダメージを計算し、風速域毎の累積値、と合計値(図中Σ)を示したものである。
本風況条件における風速は平均が10[m/s]で時間により変化する。図3(a)(b)は吹上角0[deg]の条件で、図3(c)(d)は吹上角8[deg]の条件であるが、その他は同一風況条件による。
疲労ダメージは、疲労寿命の逆数に相当する値であり、1.0で疲労破壊に達するダメージに相当する。
FIG. 3 is a bar graph showing values and total values of the fatigue damage of the blade root flap bending for each wind speed region calculated based on a certain common 20-year wind condition. That is, the fatigue damage of the wind turbine placed under this wind condition is calculated, and the cumulative value and total value (Σ in the figure) for each wind speed region are shown.
The average wind speed under this wind condition is 10 [m / s] and changes with time. 3 (a) and 3 (b) are the conditions for a blowing angle of 0 [deg], and FIGS. 3 (c) and 3 (d) are the conditions for a blowing angle of 8 [deg]. The other conditions are based on the same wind conditions.
Fatigue damage is a value corresponding to the reciprocal of fatigue life, and corresponds to damage reaching fatigue failure at 1.0.

図3(a)は、図2(b)に示したヨー角目標値、上閾値及び下閾値を適用して制御した場合の計算結果を示すグラフである。
図3(b)は、図2(a)に示したヨー角目標値、上閾値及び下閾値を適用して制御した場合の計算結果を示すグラフである。
これら両グラフの比較にからわかるように、本実施形態の制御による場合(図3(b)の本発明例)の方が疲労ダメージは小さくなった。すなわち、吹上角0では、図2(b)に示すように風速によらずヨー角目標値を0[deg]で一定とするより、図2(a)に示すように風速に応じてヨー角目標値を変化させた方が疲労ダメージは小さくなった。
FIG. 3A is a graph showing a calculation result when control is performed by applying the yaw angle target value, the upper threshold value, and the lower threshold value shown in FIG.
FIG. 3B is a graph showing calculation results when control is performed by applying the yaw angle target value, the upper threshold value, and the lower threshold value shown in FIG.
As can be seen from the comparison of these two graphs, the fatigue damage was smaller in the case of the control according to the present embodiment (the present invention example in FIG. 3B). In other words, at the blowing angle 0, the yaw angle target value is kept constant at 0 [deg] regardless of the wind speed as shown in FIG. 2 (b), but the yaw angle according to the wind speed as shown in FIG. 2 (a). Fatigue damage was smaller when the target value was changed.

しかし、吹上角8[deg]の場合は、結果は逆である。
図3(c)は、図2(b)に示したヨー角目標値、上閾値及び下閾値を適用して制御した場合の計算結果を示すグラフである。
図3(d)は、図2(a)に示したヨー角目標値、上閾値及び下閾値を適用して制御した場合の計算結果を示すグラフである。
これら両グラフの比較にからわかるように、本実施形態の制御による場合(図3(c)の本発明例)の方が疲労ダメージは小さくなった。すなわち、吹上角8[deg]では、図2(a)に示すように風速に応じてヨー角目標値を変化させるより、図2(b)に示すように風速によらずヨー角目標値を0[deg]で一定とする方が疲労ダメージは小さくなった。
However, in the case of a blowing angle of 8 [deg], the result is opposite.
FIG. 3C is a graph showing calculation results when control is performed by applying the yaw angle target value, the upper threshold value, and the lower threshold value shown in FIG.
FIG. 3D is a graph showing calculation results when control is performed by applying the yaw angle target value, the upper threshold value, and the lower threshold value shown in FIG.
As can be seen from the comparison of these two graphs, the fatigue damage was smaller in the case of the control according to the present embodiment (the present invention example of FIG. 3C). That is, at the blowing angle 8 [deg], the yaw angle target value is changed according to the wind speed as shown in FIG. 2 (a), and the yaw angle target value is set regardless of the wind speed as shown in FIG. 2 (b). Fatigue damage was smaller when the value was constant at 0 [deg].

本発明の実施に当たっては、風車は吹上角が変化する風況条件に置かれる。本実施形態によれば、吹上角が0[deg]に変化すれば、図2(a)に示したヨー角目標値で制御して、図3(b)に示したような低い疲労ダメージを受け、吹上角が8[deg]に変化すれば、図2(b)に示したヨー角目標値で制御して、図3(c)に示したような低い疲労ダメージを受けることで、疲労ダメージの蓄積を抑えて疲労寿命を長期化することができる。   In practicing the present invention, the wind turbine is subjected to wind conditions where the blowing angle changes. According to the present embodiment, when the blowing angle changes to 0 [deg], control is performed with the yaw angle target value shown in FIG. 2A, and low fatigue damage as shown in FIG. If the blow-up angle changes to 8 [deg], it is controlled by the yaw angle target value shown in FIG. 2 (b) and is subjected to low fatigue damage as shown in FIG. 3 (c). The fatigue life can be prolonged by suppressing the accumulation of damage.

以上のように、風速及び吹上角の変化に対して不変のヨー角値(例えば一律0[deg]など)を制御目標値とする場合よりも、本風車の耐久性を高くするには、目標とするヨー角値を風速及び吹上角の変化に従って変化させることが有効であり、このヨー角値変化を予め求めておき、ヨー制御部2はこのヨー角値変化に従ってヨー角値を特定し制御する。
風速及び吹上角の変化に対して最適なヨー角目標値変化を求めることは、ヨー制御手段の設計段階で行っても良いし、風車に搭載される学習機能によって行わせても良い。また、その両者を実施しても良い。
As described above, in order to make the wind turbine more durable than when the control target value is a yaw angle value that is invariant to changes in wind speed and wind-up angle (for example, uniformly 0 [deg], etc.) It is effective to change the yaw angle value according to the change in the wind speed and the blowing angle. The yaw angle value change is obtained in advance, and the yaw control unit 2 specifies and controls the yaw angle value according to the yaw angle value change. To do.
Obtaining the optimum yaw angle target value change with respect to changes in the wind speed and the wind-up angle may be performed at the design stage of the yaw control means, or may be performed by a learning function mounted on the windmill. Moreover, you may implement both.

以上の実施形態にあっては、疲労ダメージを取り上げて、本風車の耐久性を高くするヨー角値を制御目標値として制御したが、本発明はこれに限らず、予めの実験や計算によって取得したデータに基づき、発電効率等のロータによる仕事効率を高くするヨー角値を制御目標値として制御することも可能であり、耐久性及び仕事効率の両者を考慮して耐用年数における仕事量が向上するように制御目標とするヨー角値を決定することが好ましい。   In the above embodiment, the fatigue damage is taken up and the yaw angle value that increases the durability of the wind turbine is controlled as the control target value. However, the present invention is not limited to this, and is acquired by a prior experiment or calculation. Based on the obtained data, it is also possible to control the yaw angle value that increases the work efficiency by the rotor, such as power generation efficiency, as the control target value, and the work amount in the service life is improved considering both durability and work efficiency It is preferable to determine the yaw angle value that is the control target.

Claims (3)

ヨー回転自在に支持されたロータと、
前記ロータのヨー角を駆動制御するヨー制御手段と、
本風車に対する風速を計測する風速計測手段と、
本風車に対する風の吹上角を計測する吹上角計測手段と、
風向に対する前記ロータのヨー角を計測するヨー角計測手段とを備え、
前記ヨー制御手段は、前記風速計測手段により計測される風速及び前記吹上角計測手段により計測される吹上角を取得し風速及び吹上角に応じて特定されるヨー角値を制御目標値として前記ヨー角計測手段により計測されるヨー角に基づき前記ロータのヨー角を制御する水平軸風車。
A rotor supported for yaw rotation;
Yaw control means for driving and controlling the yaw angle of the rotor;
Wind speed measuring means for measuring wind speed with respect to the wind turbine;
A wind-up angle measuring means for measuring the wind-up angle of the wind with respect to the wind turbine;
A yaw angle measuring means for measuring the yaw angle of the rotor with respect to the wind direction,
The yaw control means obtains the wind speed measured by the wind speed measuring means and the blowing angle measured by the blowing angle measuring means, and uses the yaw angle value specified according to the wind speed and the blowing angle as the control target value. A horizontal axis wind turbine that controls a yaw angle of the rotor based on a yaw angle measured by an angle measuring means.
前記ヨー制御手段は、風速及び吹上角の変化に対して不変のヨー角値を制御目標値とする場合よりも、前記ロータによる仕事効率又は本風車の耐久性を高くするヨー角値変化に従ってヨー角値を特定し、この特定されたヨー角値を制御目標値とする請求項1に記載の水平軸風車。 The yaw control means adjusts the yaw angle according to the yaw angle value change that increases the work efficiency by the rotor or the durability of the wind turbine, compared with the case where the control target value is a yaw angle value that is invariant to changes in wind speed and wind-up angle. The horizontal axis wind turbine according to claim 1, wherein an angle value is specified, and the specified yaw angle value is set as a control target value. 前記ヨー制御手段は、吹上角毎に風速に応じたヨー角を予め定めたヨー角目標値参照データの記憶部を備え、所定時間毎に、前記風速計測手段により計測される風速及び前記吹上角計測手段により計測される吹上角を取得し、前記記憶部から前記ヨー角目標値参照データを読み出し、取得した風速及び吹上角に対応する制御目標値を特定する請求項1に記載の水平軸風車。The yaw control means includes a yaw angle target value reference data storage unit that predetermines a yaw angle corresponding to the wind speed for each blowing angle, and the wind speed and the blowing angle measured by the wind speed measuring means every predetermined time. The horizontal axis wind turbine according to claim 1, wherein a wind-up angle measured by a measuring unit is acquired, the yaw angle target value reference data is read from the storage unit, and a control target value corresponding to the acquired wind speed and the wind-up angle is specified. .
JP2009152019A 2009-06-26 2009-06-26 Horizontal axis windmill Expired - Fee Related JP5385700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152019A JP5385700B2 (en) 2009-06-26 2009-06-26 Horizontal axis windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152019A JP5385700B2 (en) 2009-06-26 2009-06-26 Horizontal axis windmill

Publications (2)

Publication Number Publication Date
JP2011007121A JP2011007121A (en) 2011-01-13
JP5385700B2 true JP5385700B2 (en) 2014-01-08

Family

ID=43564051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152019A Expired - Fee Related JP5385700B2 (en) 2009-06-26 2009-06-26 Horizontal axis windmill

Country Status (1)

Country Link
JP (1) JP5385700B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5984791B2 (en) * 2013-12-20 2016-09-06 三菱重工業株式会社 Wind power generator monitoring system and monitoring method
JP6475292B2 (en) * 2017-07-28 2019-02-27 株式会社日立製作所 Wind power generator, control method thereof and repair method
EP3667076A1 (en) * 2018-12-13 2020-06-17 Siemens Gamesa Renewable Energy A/S Estimating wind speed

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4414687B2 (en) * 2003-06-26 2010-02-10 富士重工業株式会社 Wind condition observation device for horizontal axis wind turbine and performance evaluation method for horizontal axis wind turbine
JP4434661B2 (en) * 2003-08-11 2010-03-17 富士重工業株式会社 Horizontal axis wind turbine and wind-up angle measurement method
JP4589633B2 (en) * 2004-01-29 2010-12-01 富士重工業株式会社 Horizontal axis wind turbine and control method of horizontal axis wind turbine
JP4777808B2 (en) * 2006-03-30 2011-09-21 大和ハウス工業株式会社 Wind turbine speed control system
JP5022102B2 (en) * 2007-05-25 2012-09-12 三菱重工業株式会社 Wind power generator, wind power generator system, and power generation control method for wind power generator

Also Published As

Publication number Publication date
JP2011007121A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
US7476985B2 (en) Method of operating a wind turbine
CA2755154C (en) Method and system for adjusting a power parameter of a wind turbine
EP3056726B1 (en) System and method for operating a wind turbine based on rotor blade margin
EP2840258B1 (en) System and method for preventing excessive loading on a wind turbine
US8622698B2 (en) Rotor-sector based control of wind turbines
JP5033033B2 (en) Method for measuring turbulence intensity of horizontal axis wind turbine
US9644610B2 (en) Warning a wind turbine generator in a wind park of an extreme wind event
EP3218600B1 (en) System and method for estimating rotor blade loads of a wind turbine
CN110520621B (en) Turbine operation dependent on air density
US20130302161A1 (en) Controller of wind turbine and wind turbine
EP3412909B1 (en) System and method for reducing wind turbine noise during high wind speed conditions
CN108278178B (en) Method for controlling a wind turbine with thrust control twist compensation
DK2515122T3 (en) Method for measuring wind direction just after a wind turbine rotor
US20140030090A1 (en) Systems and methods for controlling tower clearance in a wind turbine
US10145361B2 (en) Methods and systems to shut down a wind turbine
US20180283352A1 (en) Method for Preventing Wind Turbine Rotor Blade Tower Strikes
US8807937B2 (en) Wind turbine
US20130193686A1 (en) System and methods for determining pitch angles for a wind turbine during peak shaving
JP6581435B2 (en) Wind power generation system
JP5385700B2 (en) Horizontal axis windmill
TWI729349B (en) Wind power generation device and wind power generation system
KR101656478B1 (en) Wind turbine generator
JP6865672B2 (en) Evaluation method and design method of wind power generation equipment
JP7477866B2 (en) Wind turbine control device, wind turbine control program, and wind turbine control method
JP2021110272A (en) Wind turbine generator, controller, and method of controlling the wind turbine generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5385700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees