JP5384090B2 - Non-slip gloves and manufacturing method thereof - Google Patents

Non-slip gloves and manufacturing method thereof Download PDF

Info

Publication number
JP5384090B2
JP5384090B2 JP2008312977A JP2008312977A JP5384090B2 JP 5384090 B2 JP5384090 B2 JP 5384090B2 JP 2008312977 A JP2008312977 A JP 2008312977A JP 2008312977 A JP2008312977 A JP 2008312977A JP 5384090 B2 JP5384090 B2 JP 5384090B2
Authority
JP
Japan
Prior art keywords
slip
glove
coating layer
porous coating
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008312977A
Other languages
Japanese (ja)
Other versions
JP2010138499A (en
Inventor
直仁 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Glove Co
Original Assignee
Showa Glove Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Glove Co filed Critical Showa Glove Co
Priority to JP2008312977A priority Critical patent/JP5384090B2/en
Publication of JP2010138499A publication Critical patent/JP2010138499A/en
Application granted granted Critical
Publication of JP5384090B2 publication Critical patent/JP5384090B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gloves (AREA)

Description

本発明は滑り止め手袋に関し、更に詳しくは、特に、水や油等を使用する状況下においても優れた滑り止め効果を発揮する手袋及びその製造方法に関する。   The present invention relates to a non-slip glove, and more particularly to a glove that exhibits an excellent anti-slipping effect even under conditions where water, oil, or the like is used, and a method for manufacturing the glove.

一般に、ゴムや熱可塑性樹脂(以下、単に樹脂と記す場合がある)で被覆された手袋は、乾いた状況下では優れた滑り止め効果が得られるものの、水や油等を使用する状況下においては、ゴムや樹脂の皮膜と作業対象物(把持される対象物)との界面に水や油等の薄層が形成され、滑り止め効果が著しく低下する。とりわけ、油を使用する状況下では滑り止め効果の低下が顕著である。
この問題を解決する方法として、ゴムや樹脂を機械的に、あるいは化学的に発泡させたり、予めゴムや樹脂を含む手袋浸漬用原料に無機塩や親水性溶剤等の親水性物質を配合しておき、手袋成形時にこの親水性物質を抽出・除去することにより物理的に皮膜に多孔質構造を形成させる方法などが提案されているが、多孔質構造が油等で飽和し埋まってしまうと滑り止め効果が低下するなどの問題がある。
In general, gloves coated with rubber or thermoplastic resin (hereinafter sometimes referred to simply as “resin”) can provide an excellent anti-slip effect in dry conditions, but in situations where water or oil is used. In this case, a thin layer of water or oil or the like is formed at the interface between the rubber or resin film and the work object (object to be gripped), and the anti-slip effect is significantly reduced. In particular, the reduction of the anti-slip effect is significant under the circumstances where oil is used.
As a method of solving this problem, rubber or resin is foamed mechanically or chemically, or a glove dipping raw material containing rubber or resin is mixed with a hydrophilic substance such as an inorganic salt or a hydrophilic solvent in advance. In addition, a method of physically forming a porous structure in the film by extracting and removing this hydrophilic substance at the time of glove molding has been proposed, but if the porous structure becomes saturated with oil or the like, it slips. There are problems such as a reduction in stopping effect.

近年、手袋の表面に、指の関節に沿ってほぼ平行となる凸状を横縞模様状に現出させ、ゴムや樹脂の原料液で被覆した作業用手袋が提案され(例えば、特許文献1参照)、また主糸(タテ糸)に対して添糸(ヨコ糸)が表面側にのみ出るようにプレーティング編みした手袋の表面をコーティング材によりコーティングした作業用手袋が提案されている(例えば、特許文献2参照)。
特開2000−45114号公報(図1、図8) WO00/65941号公報(FIG.1、FIG.2、FIG.4、FIG.10、FIG.11)
In recent years, a work glove has been proposed in which a convex shape that is substantially parallel to the finger joint appears on the surface of the glove in a horizontal stripe pattern and is covered with a raw material liquid of rubber or resin (for example, see Patent Document 1). In addition, work gloves are proposed in which the surface of a glove plated with a coating material is coated with a coating material so that the main yarn (warp yarn) comes out only on the surface side (for example, warp yarn) (for example, Patent Document 2).
JP 2000-45114 A (FIGS. 1 and 8) WO 00/65941 (FIG. 1, FIG. 2, FIG. 4, FIG. 10, FIG. 11)

上記特許文献1、2で提案されている手袋は、いずれも指関節に対して平行となる凸状を横縞模様状に現出させた原手の表面をゴムや樹脂で被覆したものである。
しかしながら、これらの手袋は、着用した際に手にフィットしてよく馴染み、屈伸し易いという特徴を有するものの、水や油等が手袋表面に付着た場合の滑り止め効果は十分とは言い難い。
The gloves proposed in Patent Documents 1 and 2 are obtained by coating the surface of a hand in which convex shapes parallel to the finger joints appear in a horizontal stripe pattern with rubber or resin.
However, these gloves have features that they fit well in hands when worn and are easy to bend and stretch, but it is difficult to say that the anti-slip effect when water or oil adheres to the glove surface is sufficient. .

本発明の滑り止め手袋は、上記課題を解決するためになされたもので、下記を特徴とするものである。   The anti-slip glove of the present invention has been made to solve the above problems, and is characterized by the following.

(1)平編表目と平編裏目とからなる原手の該平編表目であって指先部分と裾部分とを連通する凸状部からなる縦縞模様の表面がゴム又は熱可塑性樹脂の多孔質皮膜層で被覆され、該多孔質皮膜層の内部に、前記平編表目の凸状部と前記平編裏目とにより形成される凹状部に沿ってゴム又は熱可塑性樹脂の多孔質皮膜層で囲まれた空洞部が形成されている。
(2)多孔質皮膜層の表層部が実質的に平坦である。
(3)多孔質皮膜層の表層部厚みが1〜300μmである。
(4)熱可塑性樹脂がポリウレタン樹脂である。
(1) The surface of a vertical stripe pattern consisting of a convex portion that communicates the fingertip portion and the hem portion of the flat hand surface composed of a flat knitting surface and a flat knitting back surface is made of rubber or a thermoplastic resin. A porous coating of rubber or thermoplastic resin that is covered with a porous coating layer and is formed along the concave portion formed by the convex portion of the flat knitted surface and the flat knitted back surface inside the porous coating layer A cavity surrounded by layers is formed.
(2) The surface layer portion of the porous coating layer is substantially flat.
(3) The surface layer thickness of the porous coating layer is 1 to 300 μm.
(4) The thermoplastic resin is a polyurethane resin.

また、本発明の滑り止め手袋の製造方法は下記を特徴とするものである。
(1)平編表目と平編裏目とからなる原手の該平編表目であって指先部分と裾部分とを連通する凸状部からなる縦縞模様の表面に、ゴム又は熱可塑性樹脂の多孔質皮膜層を形成させる。
(2)熱可塑性樹脂の多孔質皮膜層が、親水性溶媒中に溶解した濃度7〜12重量%の熱可塑性樹脂溶液から形成される。
(3)熱可塑性樹脂溶液の粘度が100〜800mPa/secである。
(4)熱可塑性樹脂がポリウレタン樹脂である。
Moreover, the manufacturing method of the anti-slip glove of this invention is characterized by the following.
(1) A rubber or thermoplastic resin on the surface of a vertical stripe pattern consisting of a convex part that communicates the fingertip part and the hem part of the flat knitted face consisting of a flat knitted face and a flat knitted face A porous coating layer is formed.
(2) A porous coating layer of a thermoplastic resin is formed from a thermoplastic resin solution having a concentration of 7 to 12% by weight dissolved in a hydrophilic solvent.
(3) The viscosity of the thermoplastic resin solution is 100 to 800 mPa / sec.
(4) The thermoplastic resin is a polyurethane resin.

本発明の滑り止め手袋は、手袋の表面側(作業対象物を把持する側)に、指先部分と裾部分とを連通する、多孔質皮膜層に囲まれた空洞部、即ち、部分的に連続したトンネル構造を有するため、水や油の吸収性が大きく、多孔質皮膜層の表層部と作業対象物との界面に水や油の薄層の形成が防止され、優れた滑り止め効果を発揮する。   The anti-slip glove of the present invention has a hollow portion surrounded by a porous coating layer, that is, partially continuous, which communicates the fingertip portion and the hem portion with the surface side of the glove (the side on which the work object is gripped). Because of its tunnel structure, it absorbs water and oil greatly, prevents the formation of a thin layer of water or oil at the interface between the surface of the porous coating layer and the work object, and exhibits an excellent anti-slip effect To do.

また、トンネル構造となっている空洞部は、水や油の十分な吸収能を有し、たとえ空洞部が水や油で吸収飽和したとしても、この空洞部は多孔質皮膜層で囲まれて形成されているため、水や油を空洞外へ容易に排出することができるので、優れた滑り止め効果を持続することが可能である。   In addition, the cavity that has a tunnel structure has sufficient absorption capacity for water and oil, and even if the cavity is saturated with water or oil, the cavity is surrounded by a porous coating layer. Since it is formed, water and oil can be easily discharged out of the cavity, so that an excellent anti-slip effect can be maintained.

更に、手袋の表面側(作業対象物を把持する側)が多孔質皮膜層(表層部)からなるため、水や油の吸収性が高められるばかりでなく、作業対象物との接触面積が大きくなり、滑り止め効果の向上が図られる。   Furthermore, since the surface side of the glove (side on which the work object is gripped) is composed of a porous film layer (surface layer part), not only is the water or oil absorbability improved, but the contact area with the work object is large. Thus, the anti-slip effect is improved.

更にまた、指先部分と裾部分とを連通する凸状部からなる縦縞模様の表面に多孔質皮膜層が形成されているため、作業対象物を把持した際に、作業対象物が滑る方向に対し該凸状部が略垂直方向に押圧作用することになり、その結果、作業対象物に対する摩擦抵抗が高められ、顕著な滑り止め効果が発揮される。   Furthermore, since the porous coating layer is formed on the surface of the vertical stripe pattern composed of convex portions that connect the fingertip portion and the hem portion, when the work object is gripped, the work object slides in the direction of sliding. The convex portion presses in a substantially vertical direction. As a result, the frictional resistance against the work object is increased, and a remarkable anti-slip effect is exhibited.

本発明は、平編表目と平編裏目とからなる原手の該平編表目であって指先部分と裾部分とを連通する凸状部からなる縦縞模様の表面がゴム又は熱可塑性樹脂の多孔質皮膜層で被覆され、該多孔質皮膜層の内部に、前記平編表目の凸状部と前記平編裏目とにより形成される凹状部に沿って空洞部が形成されていることを特徴とする。   The present invention provides a flat striped surface composed of a flat knitted surface and a flat knitted back surface, wherein the surface of the vertical stripe pattern formed of a convex portion communicating the fingertip portion and the hem portion has a rubber or thermoplastic resin And a hollow portion is formed in the porous coating layer along the concave portion formed by the convex portion of the flat knitted face and the flat knitted back surface. It is characterized by.

即ち、図1は、本発明に用いられる原手の概略図、図2は、原手の表面がゴム又は樹脂の多孔質皮膜層で被覆された本発明の滑り止め手袋の水平方向の要部概略断面図であるが、これらの図に示すように、平編表目2と平編裏目3とからなる原手1の該平編表目2で指先部分Yと裾部分Sとを連通する凸状部5からなる縦縞模様の表面が多孔質皮膜層4で被覆されており、該多孔質皮膜層4の内部には、前記平編表目2の凸状部5と平編裏目3とにより形成される凹状部6に沿って空洞部7が形成されていることを特徴とする。
尚、本発明において、平編表目とは、編み上げられた手袋の外表面を、そのまま手袋の表面側とすることを意味する。
That is, FIG. 1 is a schematic view of a hand used in the present invention, and FIG. 2 is a horizontal portion of the anti-slip glove of the present invention in which the surface of the hand is covered with a porous film layer of rubber or resin. Although these are schematic cross-sectional views, as shown in these drawings, the fingertip portion Y and the hem portion S are communicated with each other in the flat knitting surface 2 of the master hand 1 composed of the flat knitting surface 2 and the flat knitting back surface 3. The surface of the vertical stripe pattern composed of the convex portions 5 is covered with the porous coating layer 4, and the convex coating portions 5 of the flat knitting surface 2 and the flat knitting back stitch 3 are formed inside the porous coating layer 4. A hollow portion 7 is formed along the concave portion 6 formed by the above.
In the present invention, the term “flat stitch surface” means that the outer surface of the knitted glove is directly used as the surface side of the glove.

本発明において、繊維基材からなる手袋である原手を構成する糸は、その種類を問わずいずれの繊維も用いることが可能であるが、装着感などの面から綿、ナイロン、弾性ポリウレタン、ポリエステル、レーヨン、アクリル、ポリプロピレン等が好ましく、機能面からは高強度繊維であるポリアラミド、延伸ポリエチレン等の合成繊維が好ましい。また、これらの混紡繊維から形成されるものであってもよく、また、金属細線やグラスファイバーを含んでいてもよい。
このような原手としては、捲縮処理したウーリーナイロン繊維をシームレス編みして形成される伸縮性に優れた編み手袋が好ましい。原手は、手袋編機にて編成され、編みゲージについてはいずれのゲージも用いることができるが、装着感・使用感の面から10〜18ゲージとすることが好ましい。
In the present invention, any yarn can be used regardless of the type of yarn constituting the gloves, which is a glove made of a fiber base material. However, cotton, nylon, elastic polyurethane, Polyester, rayon, acrylic, polypropylene and the like are preferable, and synthetic fibers such as polyaramid and stretched polyethylene which are high-strength fibers are preferable from the functional aspect. Moreover, it may be formed from these blended fibers, and may contain fine metal wires or glass fibers.
As such a hand, a knitted glove excellent in elasticity formed by seamless knitting of crimped wooly nylon fibers is preferable. The hand is knitted by a glove knitting machine, and any gauge can be used as the knitting gauge, but it is preferably 10 to 18 gauge from the viewpoint of wearing feeling and feeling of use.

原手は、手袋編機(例えば、株式会社島精機製作所製N−SFG)にて編成され、平編表目を外表面として、そのまま浸漬加工用手型に被せられた後、ゴムまたは樹脂を原手内部に含浸付着させて、多孔質構造を形成することで本発明の滑り止め手袋が得られる。   The hand is knitted with a glove knitting machine (for example, N-SFG manufactured by Shima Seiki Co., Ltd.), and the flat knitted surface is placed on the outer mold as it is and then covered with rubber or resin. The anti-slip glove of the present invention is obtained by impregnating and adhering to the inside of the hand to form a porous structure.

多孔質皮膜層の形成に使用される素材はゴム又は熱可塑性樹脂が用いられ、例えば、天然ゴム、イソプレンゴム、クロロプレンゴム、アクリルゴム、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ポリウレタン樹脂、塩化ビニリデン樹脂、シリコーン樹脂、ブチルゴム、ポリブタジエンゴム、フッ素ゴム、クロロスルホン化ポリエチレン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、あるいはこれらをブレンドしたものなどが挙げられる。
通常、これらのゴムまたは樹脂は溶剤に溶解した状態あるいは水に分散した状態で使用され、酸化防止剤、顔料、安定剤、レべリング剤等の添加の有無、また、加硫工程や架橋工程については従来公知と同様の工程条件で差し支えない。
The material used for forming the porous coating layer is rubber or thermoplastic resin, such as natural rubber, isoprene rubber, chloroprene rubber, acrylic rubber, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, polyurethane. Examples thereof include resins, vinylidene chloride resins, silicone resins, butyl rubber, polybutadiene rubber, fluoro rubber, chlorosulfonated polyethylene, polyvinyl alcohol, ethylene-vinyl alcohol copolymers, and blends thereof.
Usually, these rubbers or resins are used in a state dissolved in a solvent or dispersed in water, with or without the addition of antioxidants, pigments, stabilizers, leveling agents, etc. The process conditions may be the same as those conventionally known.

上記素材の中で、多孔質構造の形成のしやすさからポリウレタン樹脂が好ましい。ポリウレタン樹脂の形態は特に制限されず、有機溶剤に溶解されたポリウレタン樹脂、W/Oエマルジョン型ポリウレタン樹脂、水分散型ポリウレタンエマルジョンなどが挙げられるが、その中でも好ましくは有機溶剤に溶解されたポリウレタン樹脂溶液である。   Among the above materials, polyurethane resin is preferable because of the ease of forming a porous structure. The form of the polyurethane resin is not particularly limited, and examples thereof include a polyurethane resin dissolved in an organic solvent, a W / O emulsion type polyurethane resin, and a water-dispersed polyurethane emulsion. Among them, a polyurethane resin dissolved in an organic solvent is preferable. It is a solution.

特に、ポリウレタン樹脂溶液が親水性有機溶剤を主体とする溶媒に溶解されたウレタン樹脂溶液は、湿式製法により皮膜を形成することにより、連泡した多孔質皮膜が得られ、高い滑り止め効果を付与することができるので好ましい。
ここで、湿式製法とは、浸漬用手型に原手を装着し、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミドなどの親水性溶媒を主体とする溶媒に溶解されたポリウレタン樹脂溶液に、この手型に装着された原手をゆっくりと浸漬し、ポリウレタン樹脂溶液を原手中に含浸付着させた後、次いで再びゆっくりと手型を引き上げ、滴下する余分な樹脂溶液を除去し、手型を水もしくは温水に浸漬して溶媒である親水性溶媒を抽出・除去する方法である。
この製法は、親水性溶媒が水中に抽出されることで、それまで溶媒和していたポリウレタン樹脂をゲル化し析出することができる。また、原手に対しては、当該ポリウレタン樹脂溶液を含浸させた後に、同様に親水性溶媒を水中に抽出することによって連泡した多孔質皮膜を形成することができる。
In particular, a urethane resin solution in which a polyurethane resin solution is dissolved in a solvent mainly composed of a hydrophilic organic solvent can form a continuous porous film by forming a film by a wet process, and provides a high anti-slip effect. This is preferable.
Here, the wet manufacturing method refers to a polyurethane resin solution in which a hand is attached to a dipping hand mold and dissolved in a solvent mainly composed of a hydrophilic solvent such as dimethylformamide, dimethyl sulfoxide, dimethylacetamide, etc. Slowly immerse the attached hand and impregnate and attach the polyurethane resin solution into the hand, then slowly pull up the hand mold again to remove the dripping excess resin solution, and the hand mold into water or warm water This is a method of extracting and removing a hydrophilic solvent as a solvent by dipping.
In this production method, the hydrophilic solvent is extracted into water, whereby the polyurethane resin that has been solvated so far can be gelled and precipitated. Moreover, after impregnating the said polyurethane resin solution with respect to a hand, the porous membrane | film | coat which foamed continuously can be similarly formed by extracting a hydrophilic solvent in water.

湿式製法の場合、得られる多孔質皮膜層は溶媒の種類、ポリウレタン樹脂溶液の樹脂濃度や樹脂粘度による原手に含浸する樹脂量、さらには凝固槽の水温などにより多孔質構造の形状が変化する。
樹脂溶液の粘度は通常、樹脂溶液の樹脂濃度に比例し、樹脂濃度が高過ぎる場合には、原手への樹脂の付着量が多くなり、得られる多孔質皮膜層中に占める樹脂分が多くなることから密度が大きく空隙の少ない多孔質皮膜層となる。この場合には、水や油の吸収のための表層部の表面積が小さくなり、多孔質皮膜層の利点は失われ十分な滑り止め効果は得られない。反対に、樹脂濃度が低過ぎる場合には、原手への樹脂の付着量が極めて少なくなり、得られる多孔質皮膜層中に占める樹脂分が少なくなることから密度が小さく空隙の多い多孔質皮膜層となる。このように空隙の多い多孔質皮膜層の場合は実用強度に乏しい。また、原手に対しても十分に樹脂が含浸されず、部分的に樹脂の付着していない原手繊維が手袋表面に出ることにより滑り止め効果が低下する場合がある。
上記の理由から、樹脂溶液の粘度は100〜800mPa/secであることが好ましく、樹脂濃度は7 〜12重量%であることが好ましい。
In the case of a wet manufacturing method, the shape of the porous structure of the resulting porous coating layer changes depending on the type of solvent, the amount of resin impregnated in the hand due to the resin concentration and resin viscosity of the polyurethane resin solution, and the water temperature of the coagulation tank .
The viscosity of the resin solution is usually proportional to the resin concentration of the resin solution. If the resin concentration is too high, the amount of resin adhering to the hand increases and the resin content in the resulting porous coating layer increases. Therefore, the porous coating layer has a large density and a small number of voids. In this case, the surface area of the surface layer portion for absorbing water and oil is reduced, and the advantage of the porous coating layer is lost, and a sufficient anti-slip effect cannot be obtained. On the other hand, if the resin concentration is too low, the amount of resin adhering to the hand will be extremely small and the resin content in the resulting porous film layer will be small, so the porous film will have a small density and many voids. Become a layer. In the case of such a porous coating layer having many voids, the practical strength is poor. In addition, the anti-slip effect may be reduced by the fact that the original hand fibers that are not sufficiently impregnated with the resin even on the original hand and the resin fiber does not partially adhere to the surface of the hand appear on the surface of the glove.
For the above reasons, the viscosity of the resin solution is preferably 100 to 800 mPa / sec, and the resin concentration is preferably 7 to 12% by weight.

原手中にゴムや樹脂溶液を含浸付着させた後、余分なゴムや樹脂溶液を除去するが、除去の量が少ないと、上記した如く、多孔質皮膜層中に占める樹脂分が多くなるケースと同様の問題が生じ、また除去の量が多いと、多孔質皮膜層中に占める樹脂分が少なくなるケースと同様の問題が生じるので注意を要する。
また、本発明において、多孔質皮膜層を形成する方法は、上記湿式製法に限られず、機械的又は化学的に発泡させる方法も使用可能である。
After impregnating and adhering rubber or resin solution into the hand, excess rubber or resin solution is removed, but if the amount of removal is small, the resin content in the porous coating layer increases as described above. Care must be taken because the same problem occurs, and if the amount of removal is large, the same problem as in the case where the resin content in the porous coating layer is reduced occurs.
In the present invention, the method for forming the porous coating layer is not limited to the above-described wet manufacturing method, and a method of foaming mechanically or chemically can also be used.

本発明においては、ゴムまたは樹脂の多孔質皮膜層からなる滑り止め層は、少なくとも原手の一部に形成されていればよく、形成箇所は特に限定されるものではない。例えば、原手の外表面全体や指先部分のみ、または、背抜き状態となるように手の平部分にのみ浸透皮膜を形成することができる。   In the present invention, the anti-slip layer composed of a rubber or resin porous coating layer is not particularly limited as long as it is formed on at least a part of the hand. For example, it is possible to form an osmotic coating only on the entire outer surface of the original hand, only the fingertip portion, or only on the palm portion of the hand so as to be in an undrawn state.

上記の如くして得られる本発明の滑り止め手袋は、図1、図2に示したように、原手1の平編表目2であって指先部分Yと裾部分Sとを連通する凸状部5が列設された縦縞模様の表面がゴム又は樹脂の多孔質皮膜層4で被覆されており、その多孔質皮膜層4の内部には、隣接する前記凸状部と原手1の平編裏目3とにより形成される凹状部6に沿って空洞部7が形成される。   As shown in FIGS. 1 and 2, the anti-slip glove of the present invention obtained as described above is a flat knitted surface 2 of the hand 1 and has a convex portion communicating the fingertip portion Y and the hem portion S. The surface of the vertical stripe pattern in which the line-shaped parts 5 are arranged is covered with a porous film layer 4 of rubber or resin, and the adjacent convex-shaped part and the original hand 1 are formed inside the porous film layer 4. A hollow portion 7 is formed along the concave portion 6 formed by the flat knitted back stitch 3.

空洞部7は、手袋の指先部分Yと裾部分Sとを連通し、通常、部分的に連続したトンネル構造を形成している。即ち、空洞部7からなるトンネル構造は、多孔質皮膜層4により囲まれ、更に詳しくは、図2に示すように、多孔質皮膜層の表層部4aと、平編表目2の凸状部5と平編裏目3とにより形成される凹状部6に沿って形成される多孔質皮膜層の内層部4bとにより形成されている。   The cavity 7 communicates the fingertip portion Y and the hem portion S of the glove, and usually forms a partially continuous tunnel structure. That is, the tunnel structure composed of the hollow portion 7 is surrounded by the porous coating layer 4, and more specifically, as shown in FIG. 2, the surface layer portion 4a of the porous coating layer and the convex portion of the flat knitted surface 2 5 and the inner layer portion 4b of the porous coating layer formed along the concave portion 6 formed by the flat knitting back stitch 3.

多孔質皮膜層の表層部4aは特に重要であり、実質的に平坦であることが望ましい。実質的に平坦とは、作業対象物を把持した際に、表層部4aと作業対象物との接触面積が大きく、十分な摩擦抵抗が得られ、十分な滑り止め効果が得られることを意味する。従って、表層部4aが実質的に平坦でない場合は、作業対象物を把持した際に、接触面積が小さいために十分な摩擦抵抗が得られず、目的とする滑り止め効果を十分に得ることができない。それゆえ、実質的に平坦とは、作業対象物を把持した際の表層部4aの接触面積が概ね70%以上、好ましくは80%以上であることが望ましい。   The surface layer portion 4a of the porous coating layer is particularly important, and is desirably substantially flat. Substantially flat means that when the work object is gripped, the contact area between the surface layer portion 4a and the work object is large, a sufficient frictional resistance is obtained, and a sufficient anti-slip effect is obtained. . Therefore, when the surface layer portion 4a is not substantially flat, when the work object is gripped, the contact area is small, so that sufficient frictional resistance cannot be obtained, and the intended anti-slip effect can be sufficiently obtained. Can not. Therefore, the term “substantially flat” means that the contact area of the surface layer portion 4a when gripping the work object is approximately 70% or more, preferably 80% or more.

また、多孔質皮膜層の表層部4aの厚みは1〜300μm程度が好ましく、より好ましくは10〜200μm程度である。この表層部4aの厚みが1μmより小さいと実用強度に欠け耐久性に問題が生じる傾向にあり、300μmを超えると、手袋が柔軟性に欠け硬くなり、作業性が低下する傾向にある。   The thickness of the surface layer portion 4a of the porous coating layer is preferably about 1 to 300 μm, more preferably about 10 to 200 μm. If the thickness of the surface layer portion 4a is smaller than 1 μm, the practical strength tends to be lacking and a problem in durability tends to occur. If the thickness exceeds 300 μm, the glove becomes inflexible and hard, and workability tends to decrease.

本発明の滑り止め手袋は、手袋の表面側(作業対象物を把持する側)に、指先部分Yと裾部分Sとを連通する、多孔質皮膜層に囲まれた空洞部7、即ち、部分的に連続したトンネル構造を有するため、水や油の吸収率が大きく、多孔質皮膜層4の表層部4aと作業対象物との界面に水や油の薄層の形成が防止される。   The anti-slip glove of the present invention has a hollow portion 7 surrounded by a porous coating layer, that is, a portion that communicates the fingertip portion Y and the hem portion S with the surface side of the glove (the side that grips the work object). Since it has a continuous tunnel structure, the absorption rate of water and oil is large, and the formation of a thin layer of water or oil at the interface between the surface layer portion 4a of the porous coating layer 4 and the work object is prevented.

また、トンネル構造となっている空洞部7は、水や油の十分な吸収能を有し、たとえ空洞部7が水や油で吸収飽和したとしても、この空洞部7は多孔質皮膜層4で囲まれて形成されているため、水や油を空洞部7の外へ容易に排出することができるので、優れた滑り止め効果を持続することが可能である。   Further, the cavity portion 7 having a tunnel structure has a sufficient absorption capacity for water and oil, and even if the cavity portion 7 is saturated with water and oil, the cavity portion 7 is formed in the porous coating layer 4. Since water and oil can be easily discharged out of the cavity portion 7, it is possible to maintain an excellent anti-slip effect.

更に、手袋の表面側(作業対象物を把持する側)が多孔質皮膜層(表層部4a)からなるため、水や油の吸収率が高められるばかりでなく、作業対象物との接触面積が大きくなり、滑り止め効果の向上が図られる。この効果は、手袋の表面側(表層部4a)を実質的に平坦とすることにより一層高められる。   Furthermore, since the surface side of the glove (side on which the work object is gripped) is composed of a porous coating layer (surface layer portion 4a), not only the water and oil absorption rate is increased, but also the contact area with the work object is increased. This increases the anti-slip effect. This effect is further enhanced by making the surface side (surface layer portion 4a) of the glove substantially flat.

更にまた、指先部分Yと裾部分Sとを連通する凸状部5からなる縦縞模様の表面に多孔質皮膜層4が形成されているため、作業対象物を把持した際に、作業対象物が滑る方向に対し該凸状部5が略垂直方向に押圧作用することになり、その結果、作業対象物に対する摩擦抵抗が高められ、顕著な滑り止め効果が発揮される。   Furthermore, since the porous coating layer 4 is formed on the surface of the vertical stripe pattern composed of the convex portions 5 that communicate the fingertip portion Y and the skirt portion S, when the work object is gripped, the work object is The convex portion 5 presses in a substantially vertical direction with respect to the sliding direction. As a result, the frictional resistance against the work object is increased, and a remarkable anti-slip effect is exhibited.

以下、本発明を実施例を挙げて更に詳細に説明するが、これらは本発明を何ら限定するものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, these do not limit this invention at all.

以下の実施例、比較例において、多孔質皮膜層の表面層の厚みの測定、吸油性及び滑り止めの評価は下記の方法で行った。   In the following examples and comparative examples, the measurement of the thickness of the surface layer of the porous coating layer, the evaluation of oil absorption and anti-slip properties were carried out by the following methods.

(多孔質皮膜層の表面層の厚みの測定方法)
電子顕微鏡として日本電子株式会社製JSM−6060LAを用い、多孔質皮膜層で被覆された手袋の指先部分Yから裾部分Sの方向に3cmの位置で、Y−S方向に対して垂直に切断したときの断面の拡大写真(200倍と500倍)を撮影し、多孔質皮膜層の表面層の厚みを実測した。
(Method for measuring the thickness of the surface layer of the porous coating layer)
JSM-6060LA manufactured by JEOL Ltd. was used as an electron microscope, and was cut perpendicularly to the Y-S direction at a position 3 cm from the fingertip portion Y to the hem portion S of the glove covered with the porous coating layer. An enlarged photograph (200 times and 500 times) of the cross section was taken, and the thickness of the surface layer of the porous coating layer was measured.

(吸油性評価方法)
JIS L1907滴下法を参考にし、手袋より20mm×20mmの正方形に切り取られた試験片を用意し、試験片の10mm上方より、油滴(エマルカットFA−500KS 協同油脂株式会社製)を1滴(約25mg)滴下する。そして、23℃下で油滴が完全に多孔質皮膜層の内部に吸収されるまでの時間を測定した。ここで、油滴が完全に皮膜層内部に吸収される時間とは、「油滴が表面に達したときから、その油滴が特別な反射をしなくなるまでの時間」である。
油滴が完全に皮膜層内部に吸収されるまでの時間が短いほど、油の吸収性に優れることを示し、時間が長いほど油の吸収性に劣ることを示す。
(Oil absorption evaluation method)
Referring to the JIS L1907 dripping method, prepare a test piece cut into a 20mm x 20mm square from a glove, and drop one drop of oil (Emalcut FA-500KS manufactured by Kyodo Yushi Co., Ltd.) 10mm above the test piece. 25 mg) is added dropwise. Then, the time until the oil droplets were completely absorbed inside the porous coating layer at 23 ° C. was measured. Here, the time for the oil droplets to be completely absorbed in the coating layer is “the time from when the oil droplets reach the surface until the oil droplets do not undergo special reflection”.
The shorter the time until oil droplets are completely absorbed into the coating layer, the better the oil absorbability, and the longer the time, the poorer the oil absorbability.

(滑り止め評価方法)
水溶性切削油「エマルカットFA-500KS」(協同油脂株式会社)を20ml計量し、10人の被験者に装着された手袋にとり、左右の手袋で掌部分、指部分などまんべんなくこすり合わせて馴染ませる。
直径4cm 、長さ20cmのステンレス棒を用意し、上記油を馴染ませた手袋で握った時と、指先でつまんだ時の滑り止め効果を下記の基準で5段階評価し、5人の被験者の評価の平均値を表に示す。
5 滑らない。
4 滑りにくい(時折、滑る時がある)。
3 滑り易い。
2 滑る。
1 非常に滑る。
(Anti-slip evaluation method)
Weigh 20 ml of water-soluble cutting oil “Emulcut FA-500KS” (Kyodo Yushi Co., Ltd.) and put it on the gloves worn by 10 subjects, and rub them with the left and right gloves evenly on the palms and fingers.
A stainless steel rod with a diameter of 4 cm and a length of 20 cm was prepared. The anti-slip effect when gripped with the above-mentioned gloves and pinched with the fingertips was evaluated in five levels according to the following criteria. The average value of evaluation is shown in the table.
5 Do not slip.
4 Difficult to slip (sometimes slips).
3 Slippery.
2 Slip.
1 Very slippery.

配合例1
湿式加工用ポリウレタン樹脂「クリスボンMP−812(DIC株式会社製)」をジメチルホルムアミドに溶解して樹脂濃度が5重量%で粘度が30mPa/secのポリウレタン樹脂溶液を作製した。
Formulation Example 1
A polyurethane resin for wet processing “Chrisbon MP-812 (manufactured by DIC Corporation)” was dissolved in dimethylformamide to prepare a polyurethane resin solution having a resin concentration of 5% by weight and a viscosity of 30 mPa / sec.

配合例2
湿式加工用ポリウレタン樹脂「クリスボンMP−812(DIC株式会社製)」をジメチルホルムアミドに溶解して樹脂濃度が7重量%で粘度が110mPa/secのポリウレタン樹脂溶液を作製した。
Formulation Example 2
A polyurethane resin for wet processing “Chrisbon MP-812 (manufactured by DIC Corporation)” was dissolved in dimethylformamide to prepare a polyurethane resin solution having a resin concentration of 7% by weight and a viscosity of 110 mPa / sec.

配合例3
湿式加工用ポリウレタン樹脂「クリスボンMP−812(DIC株式会社製)」をジメチルホルムアミドに溶解して樹脂濃度が10重量%で粘度が200mPa/secのポリウレタン樹脂溶液を作製した。
Formulation Example 3
A polyurethane resin for wet processing “Chrisbon MP-812 (manufactured by DIC Corporation)” was dissolved in dimethylformamide to prepare a polyurethane resin solution having a resin concentration of 10% by weight and a viscosity of 200 mPa / sec.

配合例4
湿式加工用ポリウレタン樹脂「クリスボンMP−812(DIC株式会社製)」をジメチルホルムアミドに溶解して樹脂濃度が12重量%で粘度が410mPa/secのポリウレタン樹脂溶液を作製した。
Formulation Example 4
A polyurethane resin for wet processing “Chrisbon MP-812 (manufactured by DIC Corporation)” was dissolved in dimethylformamide to prepare a polyurethane resin solution having a resin concentration of 12% by weight and a viscosity of 410 mPa / sec.

配合例5
湿式加工用ポリウレタン樹脂「クリスボンMP−812(DIC株式会社製)」をジメチルホルムアミドに溶解して樹脂濃度が13重量%で粘度が960mPa/secのポリウレタン樹脂溶液を作製した。
Formulation Example 5
A polyurethane resin for wet processing “Crisbon MP-812 (manufactured by DIC Corporation)” was dissolved in dimethylformamide to prepare a polyurethane resin solution having a resin concentration of 13% by weight and a viscosity of 960 mPa / sec.

実施例1
ウーリーナイロン糸にて編成された13ゲージのシームレス編手袋を原手として、この原手を平編表目にて浸漬用手型に被せ、上記の配合例2で得られた原料溶液にゆっくりと浸漬し、背抜き状態となるようにポリウレタン樹脂溶液を原手中に含浸付着させた後、ゆっくりと手型を引き上げ、滴下する余分な樹脂溶液を除去した。次いで、これを50℃の温水中に60分間浸漬し、水溶性有機溶媒を水中へ抽出することによってポリウレタンの多孔質皮膜層を形成させた。その後、温水中から手型を取り出し、100 ℃〜140 ℃で30分間乾燥させた。乾燥終了後に放冷したのち、手型から手袋を脱型して滑り止め手袋を得た。得られた滑り止め手袋の電子顕微鏡による拡大写真(45倍)を図3に示す。
Example 1
Using a 13 gauge seamless knitted glove knitted with wooly nylon yarn as a hand, put this hand on a flat knitting face and put it on a dipping hand mold, slowly onto the raw material solution obtained in Formulation Example 2 above. After immersion, the polyurethane resin solution was impregnated and adhered into the original hand so as to be in the unlined state, and then the hand mold was slowly pulled up to remove the dripping excess resin solution. Next, this was immersed in warm water at 50 ° C. for 60 minutes, and a water-soluble organic solvent was extracted into water to form a porous film layer of polyurethane. Thereafter, the hand mold was taken out from the warm water and dried at 100 ° C. to 140 ° C. for 30 minutes. After drying, the glove was removed from the hand mold to obtain a non-slip glove. FIG. 3 shows an enlarged photograph (45 times) of the obtained anti-slip glove using an electron microscope.

実施例2
配合例2で得られた原料溶液の代わりに配合例3で得られた原料溶液を使用したこと以外は、全て実施例1と同様の方法で滑り止め手袋を得た。得られた滑り止め手袋の電子顕微鏡による拡大写真(45倍)を図4に示す。
Example 2
Non-slip gloves were obtained in the same manner as in Example 1 except that the raw material solution obtained in Formulation Example 3 was used instead of the raw material solution obtained in Formulation Example 2. FIG. 4 shows an enlarged photograph (45 times) of the obtained anti-slip glove with an electron microscope.

実施例3
配合例2で得られた原料溶液の代わりに配合例4で得られた原料溶液を使用したこと以外は、全て実施例1と同様の方法で滑り止め手袋を得た。
Example 3
Non-slip gloves were obtained in the same manner as in Example 1 except that the raw material solution obtained in Formulation Example 4 was used instead of the raw material solution obtained in Formulation Example 2.

比較例1
配合例2で得られた原料溶液の代わりに配合例1で得られた原料溶液を使用したこと以外は、全て実施例1と同様の方法で滑り止め手袋を得た。得られた滑り止め手袋の電子顕微鏡による拡大写真(45倍)を図5に示す。
Comparative Example 1
Non-slip gloves were obtained in the same manner as in Example 1 except that the raw material solution obtained in Formulation Example 1 was used instead of the raw material solution obtained in Formulation Example 2. An enlarged photograph (45 times) of the obtained anti-slip glove with an electron microscope is shown in FIG.

比較例2
配合例2で得られた原料溶液の代わりに配合例5で得られた原料溶液を使用したこと以外は、全て実施例1と同様の方法で滑り止め手袋を得た。得られた滑り止め手袋の電子顕微鏡による拡大写真(45倍)を図6に示す。
Comparative Example 2
Non-slip gloves were obtained in the same manner as in Example 1 except that the raw material solution obtained in Formulation Example 5 was used instead of the raw material solution obtained in Formulation Example 2. FIG. 6 shows an enlarged photograph (45 times) of the obtained anti-slip glove using an electron microscope.

比較例3
配合例2で得られた原料溶液の代わりに配合例3で得られた原料溶液を使用し、この原料溶液にゆっくりと浸漬し、背抜き状態となるようにポリウレタン樹脂溶液を原手中に含浸付着させた後、ゆっくりと手型を引き上げ、60秒間、滴下する余分な樹脂溶液を十分に(実施例1の場合に比べ多目に)除去した。
次いで、これを50℃の温水中に60分間浸漬し、水溶性有機溶媒を水中へ抽出することによってポリウレタンの多孔質皮膜層を形成させた。その後、温水中から手型を取り出し、100 ℃〜140 ℃で30分間乾燥させた。乾燥終了後に放冷したのち、手型から手袋を脱型して滑り止め手袋を得た。得られた滑り止め手袋の電子顕微鏡による拡大写真(45倍)を図7に示す。
Comparative Example 3
Instead of the raw material solution obtained in the blending example 2, the raw material solution obtained in the blending example 3 is used, and the polyurethane resin solution is impregnated and adhered in the raw hand so as to be in a back-throw state. After that, the hand mold was slowly pulled up, and the excessive resin solution dripped for 60 seconds was sufficiently removed (as compared with the case of Example 1).
Next, this was immersed in warm water at 50 ° C. for 60 minutes, and a water-soluble organic solvent was extracted into water to form a porous film layer of polyurethane. Thereafter, the hand mold was taken out from the warm water and dried at 100 ° C. to 140 ° C. for 30 minutes. After drying, the glove was removed from the hand mold to obtain a non-slip glove. FIG. 7 shows an enlarged photograph (45 times) of the obtained anti-slip glove with an electron microscope.

比較例4
ウーリーナイロン糸にて編成された13ゲージのシームレス編手袋を原手として、平編裏目にて、すなわち、編み上げられた原手の内側表面が、手袋における表面側となるように浸漬用手型に被せ、上記の配合例で得られた原料溶液にゆっくりと浸漬し、背抜き状態となるようにポリウレタン樹脂溶液を原手中に含浸付着させた後、ゆっくりと手型を引き上げ、滴下する余分な樹脂溶液を除去した。次いで、これを50℃の温水中に60分間浸漬し、水溶性有機溶媒を水中へ抽出することによってポリウレタンの多孔質皮膜層を形成させた。その後、温水中から手型を取り出し、100 ℃〜140 ℃で30分間乾燥させた。乾燥終了後に放冷したのち、手型から手袋を脱型して滑り止め手袋を得た。得られた滑り止め手袋の電子顕微鏡による拡大写真(45倍)を図8に示す。
Comparative Example 4
Using a 13-gauge seamless knitted glove knitted with wooly nylon yarn as the original hand, it is a dipping hand mold so that the inner surface of the knitted raw hand is the surface side of the glove on the back of the flat knitting Cover, slowly soak in the raw material solution obtained in Formulation Example 3 above, impregnate and adhere the polyurethane resin solution into the hand so that it is in a back-stretched state, then slowly pull up the hand mold and drop the excess resin The solution was removed. Next, this was immersed in warm water at 50 ° C. for 60 minutes, and a water-soluble organic solvent was extracted into water to form a porous film layer of polyurethane. Thereafter, the hand mold was taken out from the warm water and dried at 100 ° C. to 140 ° C. for 30 minutes. After drying, the glove was removed from the hand mold to obtain a non-slip glove. FIG. 8 shows an enlarged photograph (45 times) of the obtained anti-slip glove using an electron microscope.

上記実施例1〜3及び比較例1〜4で得られた滑り止め手袋の測定、評価の結果を表1に示す。   Table 1 shows the results of measurement and evaluation of the anti-slip gloves obtained in Examples 1 to 3 and Comparative Examples 1 to 4.

表1の結果と図3〜図8とから、実施例1〜3の滑り止め手袋は、指先部分と裾部分とを連通する凸状部からなる縦縞模様の表面が樹脂の多孔質皮膜層で被覆され、該多孔質皮膜層の内部には空洞部(トンネル構造)が形成され、また、滑り止め層である多孔質皮膜層の表層部が実質的に平坦で作業対象物との接触面積が大きく適度な厚みを有するため、吸油性が良好で、優れた滑り止め効果を有している。
尚、実施例1の手袋では表層部の平坦度が若干低いため作業対象物との接触面積が小さく、一方、実施例3の手袋では油を吸収する表層部の表面積が若干小さく、従って、実施例2の手袋が最も優れている。
From the results of Table 1 and FIGS. 3 to 8, the anti-slip gloves of Examples 1 to 3 have a resin-made porous coating layer with a vertically striped surface composed of convex portions communicating the fingertip portion and the hem portion. A hollow portion (tunnel structure) is formed inside the porous coating layer, and the surface layer portion of the porous coating layer, which is an anti-slip layer, is substantially flat and has a contact area with the work object. Since it has a large and appropriate thickness, it has good oil absorption and has an excellent anti-slip effect.
In addition, in the glove of Example 1, since the flatness of the surface layer portion is slightly low, the contact area with the work object is small, while in the glove of Example 3, the surface area of the surface layer portion that absorbs oil is slightly small. The gloves of Example 2 are the best.

これに対し、比較例1の滑り止め手袋は、樹脂の溶液濃度が小さいことによって、また、比較例3の滑り止め手袋は、樹脂を十分に除去したために樹脂の付着量が少ないことによって、滑り止め層である多孔質皮膜層の表層部の樹脂密度が小さく空洞が多く存在し、かつ該表層部が平坦でなく油を吸収する表面積が極めて大きくなっているため、吸油性がかなり大きい。しかし、作業対象物との接触面積が小さいため、滑り止め効果が小さい。   On the other hand, the anti-slip glove of Comparative Example 1 has a low resin solution concentration, and the anti-slip glove of Comparative Example 3 has a small amount of resin adhering because the resin is sufficiently removed. The resin density of the surface layer portion of the porous coating layer, which is a stopper layer, is small and there are many cavities, and the surface layer portion is not flat and the surface area for absorbing oil is extremely large. However, since the contact area with the work object is small, the anti-slip effect is small.

また、比較例2の滑り止め手袋は、樹脂の溶液濃度が大きいことによって、滑り止め層である多孔質皮膜層の表層部の樹脂密度が極めて大きく空洞が小さく、かつ油を吸収する表面積が極めて小さくなっているため、吸油性が極端に小さい。また、吸油性が極めて小さいことにより、油のほとんどが滑り止め層(表層部)と対象物の界面に存在することで滑り止め効果が著しく小さい。   Further, the anti-slip glove of Comparative Example 2 has a high resin solution concentration, so that the resin density of the surface layer portion of the porous coating layer, which is an anti-slip layer, is extremely large, the cavity is small, and the surface area for absorbing oil is extremely The oil absorption is extremely small because it is small. Further, since the oil absorption is extremely small, most of the oil is present at the interface between the anti-slip layer (surface layer portion) and the object, and thus the anti-slip effect is extremely small.

また、比較例4の滑り止め手袋は、滑り止め層である多孔質皮膜層の表層部の樹脂密度がある程度大きく、また表面積が小さいために吸油性が小さく、実施例2の 3分の2 程度の吸油性である。また、表層部が実質的に平坦で作業対象物との接触面積が大きいが、吸油性が小さいことにより、油の一部が滑り止め層(表層部)と作業対象物の界面に存在することで滑り止め効果が小さくなっている。また、作業対象物であるステンレス棒の滑る方向に対して凸状部が同じ方向(水平方向)であるため摩擦抵抗が小さく、これも滑り止め効果が小さい一因と考えられる。   Further, the anti-slip glove of Comparative Example 4 has a resin density in the surface layer portion of the porous coating layer which is an anti-slip layer to some extent, and also has a low oil absorption due to a small surface area, which is about two-thirds of Example 2. It is oil-absorbing. In addition, the surface layer is substantially flat and the contact area with the work object is large, but due to the low oil absorption, part of the oil is present at the interface between the anti-slip layer (surface layer part) and the work object. The anti-slip effect is small. In addition, since the convex portion is in the same direction (horizontal direction) with respect to the sliding direction of the stainless steel rod as the work object, the frictional resistance is small, which is also considered to be a cause of the small antiskid effect.

以上のとおり、本発明の滑り止め手袋は、手袋の表面側(作業対象物を把持する側)に、指先部分と裾部分とを連通する、多孔質皮膜層に囲まれた空洞部、即ち、部分的に連続したトンネル構造を有するため、水や油の吸収性が大きく、多孔質皮膜層の表層部と作業対象物との界面に水や油の薄層の形成が防止される。従って、水や油等に対して優れた滑り止め効果を有し、特に作業用手袋として有用である。   As described above, the anti-slip glove of the present invention is a cavity surrounded by a porous coating layer that communicates the fingertip portion and the hem portion with the surface side of the glove (the side that grips the work object), that is, Since it has a partially continuous tunnel structure, water and oil absorbability is high, and formation of a thin layer of water or oil at the interface between the surface layer portion of the porous coating layer and the work object is prevented. Therefore, it has an excellent anti-slip effect against water, oil, etc., and is particularly useful as a work glove.

本発明に用いる原手の概略図である。It is a schematic diagram of a hand used in the present invention. 本発明の滑り止め手袋の水平方向の要部概略断面図である。It is a principal part schematic sectional drawing of the horizontal direction of the anti-slip glove of this invention. 実施例1の滑り止め手袋の電子顕微鏡による拡大写真である。It is an enlarged photograph by the electron microscope of the anti-slip | skid glove of Example 1. 実施例2の滑り止め手袋の電子顕微鏡による拡大写真である。It is an enlarged photograph by the electron microscope of the anti-slip | skid glove of Example 2. 比較例1の滑り止め手袋の電子顕微鏡による拡大写真である。It is an enlarged photograph by the electron microscope of the anti-slip glove of the comparative example 1. 比較例2の滑り止め手袋の電子顕微鏡による拡大写真である。It is an enlarged photograph by the electron microscope of the anti-slip | skid glove of the comparative example 2. 比較例3の滑り止め手袋の電子顕微鏡による拡大写真である。It is an enlarged photograph by the electron microscope of the anti-slip glove of the comparative example 3. 比較例4の滑り止め手袋の電子顕微鏡による拡大写真である。It is an enlarged photograph by the electron microscope of the anti-slip | skid glove of the comparative example 4.

符号の説明Explanation of symbols

1 原手
2 平編表目
3 平編裏目
4 多孔質皮膜層
4a 表層部
4b 内層部
5 凸状部
6 凹状部
7 空洞部
Y 手袋の指先部分
S 手袋の裾部分
DESCRIPTION OF SYMBOLS 1 Hands 2 Flat knitting surface 3 Flat knitting back surface 4 Porous film layer 4a Surface layer part 4b Inner layer part 5 Convex part 6 Concave part 7 Cavity part Y Glove finger part S Glove hem part

Claims (8)

平編表目と平編裏目とからなる原手の該平編表目であって指先部分と裾部分とを連通する凸状部からなる縦縞模様の表面がゴム又は熱可塑性樹脂の多孔質皮膜層で被覆され、該多孔質皮膜層の内部に、前記平編表目の凸状部と前記平編裏目とにより形成される凹状部に沿ってゴム又は熱可塑性樹脂の多孔質皮膜層で囲まれた空洞部が形成されていることを特徴とする滑り止め手袋。 The surface of a vertical stripe pattern composed of a convex portion that communicates the fingertip portion and the hem portion of the flat knitted surface composed of a flat knitted surface and a flat knitted surface, and is a porous film made of rubber or thermoplastic resin. The porous coating layer is surrounded by a porous coating layer of rubber or thermoplastic resin along the concave portion formed by the convex portion of the flat knitting surface and the flat knitting back surface. An anti-slip glove characterized in that a hollow portion is formed. 多孔質皮膜層の表層部が実質的に平坦であることを特徴とする請求項1記載の滑り止め手袋。   The anti-slip glove according to claim 1, wherein a surface layer portion of the porous coating layer is substantially flat. 多孔質皮膜層の表層部厚みが1〜300μmであることを特徴とする請求項1又は2記載の滑り止め手袋。   The antiskid glove according to claim 1 or 2, wherein the thickness of the surface layer portion of the porous coating layer is 1 to 300 µm. 熱可塑性樹脂がポリウレタン樹脂であることを特徴とする請求項1〜3のいずれか1項に記載の滑り止め手袋。   The anti-slip glove according to any one of claims 1 to 3, wherein the thermoplastic resin is a polyurethane resin. 平編表目と平編裏目とからなる原手の該平編表目であって指先部分と裾部分とを連通する凸状部からなる縦縞模様の表面に、ゴム又は熱可塑性樹脂の多孔質皮膜層を形成させることを特徴とする請求項1〜3のいずれか1項に記載の滑り止め手袋の製造方法。   Porous rubber or thermoplastic resin on the surface of a vertical stripe pattern consisting of a convex part that communicates the fingertip part and the hem part of the flat knitted face consisting of a flat knitted face and a flat knitted face A film layer is formed, The manufacturing method of the non-slip glove of any one of Claims 1-3 characterized by the above-mentioned. 熱可塑性樹脂の多孔質皮膜層が、親水性溶媒中に溶解した濃度7〜12重量%の熱可塑性樹脂溶液から形成されることを特徴とする請求項5記載の滑り止め手袋の製造方法。   6. The method for producing anti-slip gloves according to claim 5, wherein the porous film layer of the thermoplastic resin is formed from a thermoplastic resin solution having a concentration of 7 to 12% by weight dissolved in a hydrophilic solvent. 熱可塑性樹脂溶液の粘度が100〜800mPa/secであることを特徴とする請求項5又は6記載の滑り止め手袋の製造方法。   The method for producing a non-slip glove according to claim 5 or 6, wherein the viscosity of the thermoplastic resin solution is 100 to 800 mPa / sec. 熱可塑性樹脂がポリウレタン樹脂であることを特徴とする請求項5〜7のいずれか1項に記載の滑り止め手袋の製造方法。   The method for producing a non-slip glove according to any one of claims 5 to 7, wherein the thermoplastic resin is a polyurethane resin.
JP2008312977A 2008-12-09 2008-12-09 Non-slip gloves and manufacturing method thereof Expired - Fee Related JP5384090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312977A JP5384090B2 (en) 2008-12-09 2008-12-09 Non-slip gloves and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312977A JP5384090B2 (en) 2008-12-09 2008-12-09 Non-slip gloves and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010138499A JP2010138499A (en) 2010-06-24
JP5384090B2 true JP5384090B2 (en) 2014-01-08

Family

ID=42348863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312977A Expired - Fee Related JP5384090B2 (en) 2008-12-09 2008-12-09 Non-slip gloves and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5384090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857305A (en) * 2011-10-14 2014-06-11 住友橡胶工业株式会社 Glove manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490190B2 (en) * 2012-02-02 2014-05-14 住友ゴム工業株式会社 Gloves and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263302A (en) * 1986-05-07 1987-11-16 川西工業株式会社 Waterproof glove and its production
JPH06173103A (en) * 1992-12-01 1994-06-21 Hirohisa Kida Non-slipping glove
JP3103966U (en) * 2004-03-11 2004-08-26 川西工業株式会社 Work gloves
JP5071389B2 (en) * 2006-09-04 2012-11-14 ショーワグローブ株式会社 gloves

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857305A (en) * 2011-10-14 2014-06-11 住友橡胶工业株式会社 Glove manufacturing method
CN103857305B (en) * 2011-10-14 2015-11-25 住友橡胶工业株式会社 The manufacture method of gloves

Also Published As

Publication number Publication date
JP2010138499A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP7457378B2 (en) Supported gloves and method for producing the same
JP6385931B2 (en) gloves
EP2143551B1 (en) Gloves having recesses different in size on the surface
JP5951281B2 (en) Gloves and manufacturing method thereof
US8137606B2 (en) Lightweight thin flexible polymer coated glove and a method therefor
EP2932861B1 (en) Method of making latex gloves
CN206836325U (en) Thin wear-resisting support gloves
US8119200B2 (en) Method for manufacturing a flexible and breathable matt finish glove
CN108433220B (en) Preparation method of butyronitrile particle anti-slip gloves
DK170627B1 (en) Laminate for use in the manufacture of a garment for work use, in particular a work glove and method for making the laminate
JP2009525411A (en) High chemical resistant gloves
JP2009518557A (en) Cut-resistant gloves and clothing
CN105848507B (en) Slip-proof glove
JP6172948B2 (en) gloves
WO2015022819A1 (en) Non-slip glove
CN108819065A (en) A kind of preparation method of two times frosting gloves of a time foaming
EP2286682B1 (en) Gloves
JP5384090B2 (en) Non-slip gloves and manufacturing method thereof
JP6564924B1 (en) gloves
AU2009230758B2 (en) Production of coated gloves
JP2023112570A (en) Manufacturing method of support type glove

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees