JP5383947B1 - Ground improvement device - Google Patents

Ground improvement device Download PDF

Info

Publication number
JP5383947B1
JP5383947B1 JP2013154751A JP2013154751A JP5383947B1 JP 5383947 B1 JP5383947 B1 JP 5383947B1 JP 2013154751 A JP2013154751 A JP 2013154751A JP 2013154751 A JP2013154751 A JP 2013154751A JP 5383947 B1 JP5383947 B1 JP 5383947B1
Authority
JP
Japan
Prior art keywords
axis
shaft
excavation
around
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013154751A
Other languages
Japanese (ja)
Other versions
JP2015025273A (en
Inventor
秀一 桑原
義勝 島田
Original Assignee
株式会社マルシン
株式会社島田工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マルシン, 株式会社島田工業 filed Critical 株式会社マルシン
Priority to JP2013154751A priority Critical patent/JP5383947B1/en
Application granted granted Critical
Publication of JP5383947B1 publication Critical patent/JP5383947B1/en
Publication of JP2015025273A publication Critical patent/JP2015025273A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

【課題】シンプルな装置構成で横突出体を横軸の軸回りに回転させることができると共に、装置の耐久性を向上させることが可能な地盤改良装置を提供する。
【解決手段】地盤改良装置100は、掘削軸121及び外側軸122を有する軸体120と、上突出体130と、下突出体140と、縦筒状体150と、横軸160と、横筒状体170と、横突出体180と、を備え、横突出体180における横軸160の軸B回りの回転軌跡が、上突出体130における掘削軸121の軸A回りの回転軌跡と交わると共に、下突出体140における掘削軸121の軸A回りの回転軌跡と交わるように構成して、掘削軸121及び外側軸122を互いに掘削軸121の軸A回りに相対回転させることによって、上突出体130及び下突出体140で横突出体180を押して、横突出体180を横軸160の軸B回りに回転させる。
【選択図】図1
Provided is a ground improvement device capable of rotating a lateral protrusion around a horizontal axis with a simple device configuration and improving the durability of the device.
A ground improvement device includes a shaft body having an excavating shaft and an outer shaft, an upper projecting body, a lower projecting body, a vertical cylindrical body, a horizontal shaft, and a horizontal cylinder. And a rotation locus of the horizontal protrusion 180 around the axis B of the horizontal shaft 160 intersects with a rotation locus of the upper protrusion 130 around the axis A of the excavation shaft 121, The lower protrusion 140 is configured to intersect with the rotation trajectory of the excavation shaft 121 around the axis A, and the upper protrusion 130 is rotated by relatively rotating the excavation shaft 121 and the outer shaft 122 around the axis A of the excavation shaft 121. Then, the horizontal protrusion 180 is pushed by the lower protrusion 140 to rotate the horizontal protrusion 180 around the axis B of the horizontal axis 160.
[Selection] Figure 1

Description

本発明は、地盤改良装置に関する。   The present invention relates to a ground improvement device.

従来、地盤改良装置の技術は公知である(例えば、特許文献1)。   Conventionally, the technique of the ground improvement apparatus is well-known (for example, patent document 1).

特許文献1に記載の地盤改良装置は、掘削軸と、横軸と、横軸が挿通され、横軸の軸回りに回転可能な横筒状体と、を具備していた。そして、ガイド部材を設けて、ガイド部材により、横軸が掘削軸の軸回りに回転することを規制していた。そして、掘削軸に杆体を固定して、横筒状体に横突出体を固定していた。そして、掘削軸をその軸回りに回転させて、杆体を横突出体に当てることにより、横突出体を横軸の軸回りに回転させていた。
そして、上記地盤改良装置は、横突出体の回転を用いて掘削土と固化材の攪拌を行っていた。
The ground improvement device described in Patent Document 1 includes an excavation shaft, a horizontal shaft, and a horizontal cylindrical body that is inserted through the horizontal shaft and is rotatable about the horizontal axis. And a guide member is provided, and the rotation of the horizontal axis around the axis of the excavation shaft is restricted by the guide member. And the frame was fixed to the excavation shaft, and the horizontal protrusion was fixed to the horizontal cylindrical body. Then, the excavation shaft is rotated about the axis, and the horizontal projecting body is rotated about the axis of the horizontal axis by applying the housing to the lateral projection body.
And the said ground improvement apparatus was stirring excavated soil and a solidification material using rotation of a horizontal protrusion.

しかし、上記ガイド部材が、掘削軸と平行に並置されており、掘削軸と略同等の長さを有していたため、装置構成が大掛かりになってしまうおそれがあった。
また、杆体を横突出体に当てて横突出体を回転させる際に、横突出体にかかる負荷が大きくなり、その結果、横突出体が変形、磨耗等しやすくなるおそれがあり、装置の耐久性が低下してしまうおそれがあった。
However, since the guide member is juxtaposed in parallel with the excavation shaft and has a length substantially equal to the excavation shaft, there is a possibility that the apparatus configuration becomes large.
In addition, when rotating the horizontal protrusion with the housing against the horizontal protrusion, the load on the horizontal protrusion increases, and as a result, the horizontal protrusion may be easily deformed, worn, etc. There was a possibility that the property would be lowered.

特開2001―193052号公報Japanese Patent Laid-Open No. 2001-193052

本発明は、シンプルな装置構成で横突出体を横軸の軸回りに回転させることができると共に、装置の耐久性を向上させることが可能な地盤改良装置を提供する。   The present invention provides a ground improvement device capable of rotating a lateral protrusion around an axis of a horizontal axis with a simple device configuration and improving the durability of the device.

請求項1に記載の地盤改良装置は、
掘削軸、及び前記掘削軸が挿通される外側軸を有し、前記掘削軸は前記外側軸内から前記掘削軸の軸方向に突出する突出部を有し、前記掘削軸及び前記外側軸が互いに前記掘削軸の軸回りに相対回転可能に構成される軸体と、
前記外側軸に固定され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される上突出体と、
前記掘削軸の突出部に固定され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される下突出体と、
前記掘削軸が挿通され、前記上突出体及び前記下突出体の間に配置され、前記掘削軸及び前記外側軸に対して前記掘削軸の軸回りに相対回転可能な縦筒状体と、
前記縦筒状体に固定され、前記掘削軸の軸に対して略垂直な軸を有する横軸と、
前記横軸が挿通され、前記横軸の軸回りに回転可能な横筒状体と、
前記横筒状体に固定され、前記横軸の軸方向から見て、前記横軸の軸回り方向に略等間隔を空けて所定数並置される横突出体と、
を備え、
前記横突出体における前記横軸の軸回りの回転軌跡が、前記上突出体における前記掘削軸の軸回りの回転軌跡と交わると共に、前記下突出体における前記掘削軸の軸回りの回転軌跡と交わるように構成して、
前記掘削軸及び前記外側軸を互いに前記掘削軸の軸回りに相対回転させることによって、前記上突出体及び前記下突出体で前記横突出体を押して、前記横突出体を前記横軸の軸回りに回転させる。
The ground improvement device according to claim 1,
A digging shaft and an outer shaft through which the digging shaft is inserted, the digging shaft having a projecting portion projecting in the axial direction of the digging shaft from within the outer shaft, and the digging shaft and the outer shaft are mutually connected A shaft body configured to be relatively rotatable about the axis of the excavation shaft;
An upper projecting body fixed to the outer shaft and juxtaposed in a predetermined number in the direction around the axis of the excavation shaft as viewed from the axial direction of the excavation shaft;
A lower projecting body fixed to the projecting portion of the excavation shaft and juxtaposed at a predetermined number of intervals around the axis of the excavation shaft as viewed from the axial direction of the excavation shaft;
A vertical tubular body through which the excavation shaft is inserted, disposed between the upper projecting body and the lower projecting body, and rotatable relative to the excavation shaft and the outer shaft around the axis of the excavation shaft;
A horizontal axis fixed to the vertical cylindrical body and having an axis substantially perpendicular to the axis of the excavation axis;
A horizontal cylindrical body that is inserted through the horizontal axis and is rotatable about the axis of the horizontal axis;
A laterally projecting body fixed to the horizontal cylindrical body, and juxtaposed in a predetermined number in the direction around the axis of the horizontal axis when viewed from the axial direction of the horizontal axis;
With
A rotation locus around the axis of the horizontal axis in the lateral protrusion intersects with a rotation locus around the axis of the excavation shaft in the upper protrusion, and also intersects with a rotation locus around the axis of the excavation axis in the lower protrusion. Configured as
By rotating the excavating shaft and the outer shaft relative to each other about the axis of the excavating shaft, the upper projecting body and the lower projecting body push the lateral projecting body so that the lateral projecting body is rotated about the axis of the horizontal axis. Rotate to

請求項2に記載の地盤改良装置は、
掘削軸、及び前記掘削軸が挿通される外側軸を有し、前記掘削軸は前記外側軸内から前記掘削軸の軸方向に突出する突出部を有し、前記掘削軸及び前記外側軸が互いに前記掘削軸の軸回りに相対回転可能に構成される軸体と、
前記掘削軸の突出部が挿通され、前記掘削軸に対して前記掘削軸の軸回りに相対回転可能な環体と、
前記掘削軸の突出部に固定され、前記外側軸及び前記環体の間に配置され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される上突出体と、
前記環体に固定され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される下突出体と、
一端が前記外側軸に固定され、他端が前記環体に固定される連結体と、
前記掘削軸が挿通され、前記上突出体及び前記下突出体の間に配置され、前記掘削軸、前記外側軸、及び前記環体に対して前記掘削軸の軸回りに相対回転可能な縦筒状体と、
前記縦筒状体に固定され、前記掘削軸の軸に対して略垂直な軸を有する横軸と、
前記横軸が挿通され、前記横軸の軸回りに回転可能な横筒状体と、
前記横筒状体に固定され、前記横軸の軸方向から見て、前記横軸の軸回り方向に略等間隔を空けて所定数並置される横突出体と、
を備え、
前記横突出体における前記横軸の軸回りの回転軌跡が、前記上突出体における前記掘削軸の軸回りの回転軌跡と交わると共に、前記下突出体における前記掘削軸の軸回りの回転軌跡と交わるように構成して、
前記掘削軸及び前記外側軸を互いに前記掘削軸の軸回りに相対回転させることによって、前記上突出体及び前記下突出体で前記横突出体を押して、前記横突出体を前記横軸の軸回りに回転させる。
The ground improvement device according to claim 2,
A digging shaft and an outer shaft through which the digging shaft is inserted, the digging shaft having a projecting portion projecting in the axial direction of the digging shaft from within the outer shaft, and the digging shaft and the outer shaft are mutually connected A shaft body configured to be relatively rotatable about the axis of the excavation shaft;
An annular body through which the projecting portion of the excavation shaft is inserted and rotatable relative to the excavation shaft around the axis of the excavation shaft;
Fixed to the projecting portion of the excavation shaft, disposed between the outer shaft and the ring body, and a predetermined number of juxtaposed at substantially equal intervals around the axis of the excavation shaft when viewed from the axial direction of the excavation shaft An upper protrusion,
A lower protrusion that is fixed to the ring body and is juxtaposed in a predetermined number in the direction around the axis of the excavation shaft as viewed from the axial direction of the excavation axis;
One end fixed to the outer shaft and the other end fixed to the ring,
A vertical cylinder through which the excavation shaft is inserted and which is disposed between the upper projecting body and the lower projecting body and is relatively rotatable around the axis of the excavation shaft with respect to the excavation shaft, the outer shaft, and the ring body And
A horizontal axis fixed to the vertical cylindrical body and having an axis substantially perpendicular to the axis of the excavation axis;
A horizontal cylindrical body that is inserted through the horizontal axis and is rotatable about the axis of the horizontal axis;
A laterally projecting body fixed to the horizontal cylindrical body, and juxtaposed in a predetermined number in the direction around the axis of the horizontal axis when viewed from the axial direction of the horizontal axis;
With
A rotation locus around the axis of the horizontal axis in the lateral protrusion intersects with a rotation locus around the axis of the excavation shaft in the upper protrusion, and also intersects with a rotation locus around the axis of the excavation axis in the lower protrusion. Configured as
By rotating the excavating shaft and the outer shaft relative to each other about the axis of the excavating shaft, the upper projecting body and the lower projecting body push the lateral projecting body so that the lateral projecting body is rotated about the axis of the horizontal axis. Rotate to

請求項3に記載の地盤改良装置は、
前記横突出体が攪拌翼としての機能を有する構成とし、及び/又は、前記横筒状体に攪拌翼を固定する。
The ground improvement device according to claim 3,
The lateral protrusion has a function as a stirring blade, and / or the stirring blade is fixed to the horizontal cylindrical body.

請求項4に記載の地盤改良装置は、
前記掘削軸及び前記外側軸を互いに前記掘削軸の軸回りに相対回転させる際に、前記掘削軸における前記掘削軸の軸回りの回転速度の絶対値と、前記外側軸における前記掘削軸の軸回りの回転速度の絶対値と、の間に差を設けることによって、前記横突出体を前記掘削軸の軸回りに回転させる。
The ground improvement device according to claim 4,
When rotating the excavation shaft and the outer shaft relative to each other around the axis of the excavation shaft, the absolute value of the rotation speed of the excavation shaft around the axis of the excavation shaft and the axis of the excavation shaft at the outer shaft By making a difference between the absolute value of the rotational speeds of the horizontal rotation body, the lateral projecting body is rotated around the axis of the excavation shaft.

請求項5に記載の地盤改良装置は、
前記横軸が攪拌翼としての機能を有する構成とし、及び/又は、前記縦筒状体に攪拌翼を固定して、
前記掘削軸及び前記外側軸を互いに前記掘削軸の軸回りに相対回転させる際に、前記掘削軸における前記掘削軸の軸回りの回転速度の絶対値と、前記外側軸における前記掘削軸の軸回りの回転速度の絶対値と、の間に差を設けることによって、前記縦筒状体を、前記掘削軸及び前記外側軸とは異なる速度で、前記掘削軸の軸回りに回転させる。
The ground improvement device according to claim 5,
The horizontal axis has a function as a stirring blade, and / or the stirring blade is fixed to the vertical cylindrical body,
When rotating the excavation shaft and the outer shaft relative to each other around the axis of the excavation shaft, the absolute value of the rotation speed of the excavation shaft around the axis of the excavation shaft and the axis of the excavation shaft at the outer shaft By providing a difference between the absolute value of the rotation speed of the vertical axis, the vertical cylindrical body is rotated around the axis of the excavation axis at a speed different from that of the excavation axis and the outer axis.

請求項6に記載の地盤改良装置は、
掘削軸、及び前記掘削軸が挿通される外側軸を有し、前記掘削軸は前記外側軸内から前記掘削軸の軸方向に突出する突出部を有し、前記掘削軸及び前記外側軸が互いに前記掘削軸の軸回りに相対回転可能に構成される軸体と、
前記掘削軸の突出部が挿通され、前記掘削軸に対して前記掘削軸の軸回りに相対回転可能な環体と、
前記外側軸に固定され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される第一上突出体と、
前記掘削軸の突出部に固定され、前記外側軸及び前記環体の間に配置され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される第一下突出体と、
前記掘削軸の突出部に固定され、前記外側軸及び前記環体の間に配置され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される第二上突出体と、
前記環体に固定され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される第二下突出体と、
一端が前記外側軸に固定され、他端が前記環体に固定される連結体と、
前記掘削軸が挿通され、前記第一上突出体及び前記第一下突出体の間に配置され、前記掘削軸、前記外側軸、及び前記環体に対して前記掘削軸の軸回りに相対回転可能な第一縦筒状体と、
前記第一縦筒状体に固定され、前記掘削軸の軸に対して略垂直な軸を有する第一横軸と、
前記第一横軸が挿通され、前記第一横軸の軸回りに回転可能な第一横筒状体と、
前記第一横筒状体に固定され、前記第一横軸の軸方向から見て、前記第一横軸の軸回り方向に略等間隔を空けて所定数並置される第一横突出体と、
前記掘削軸が挿通され、前記第二上突出体及び前記第二下突出体の間に配置され、前記掘削軸、前記外側軸、及び前記環体に対して前記掘削軸の軸回りに相対回転可能な第二縦筒状体と、
前記第二縦筒状体に固定され、前記第一横軸に対して所定間隔を空けて配置され、前記掘削軸の軸に対して略垂直な軸を有する第二横軸と、
前記第二横軸が挿通され、前記第二横軸の軸回りに回転可能な第二横筒状体と、
前記第二横筒状体に固定され、前記第一横軸の軸方向から見て、前記第一横軸の軸回り方向に略等間隔を空けて所定数並置される第二横突出体と、
を備え、
前記第一横突出体における前記第一横軸の軸回りの回転軌跡が、前記第一上突出体における前記掘削軸の軸回りの回転軌跡と交わると共に、前記第一下突出体における前記掘削軸の軸回りの回転軌跡と交わるように構成して、
前記第二横突出体における前記第二横軸の軸回りの回転軌跡が、前記第二上突出体における前記掘削軸の軸回りの回転軌跡と交わると共に、前記第二下突出体における前記掘削軸の軸回りの回転軌跡と交わるように構成して、
前記第一横突出体における前記第一横軸の軸回りの回転軌跡が、前記第二横突出体における前記第二横軸の軸回りの回転軌跡と交わらないように構成して、
前記掘削軸及び前記外側軸を互いに前記掘削軸の軸回りに相対回転させることによって、前記第一上突出体及び前記第一下突出体で前記第一横突出体を押して、前記第一横突出体を前記第一横軸の軸回りに回転させると共に、前記第二上突出体及び前記第二下突出体で前記第二横突出体を押して、前記第二横突出体を前記第二横軸の軸回りに回転させる。
The ground improvement device according to claim 6,
A digging shaft and an outer shaft through which the digging shaft is inserted, the digging shaft having a projecting portion projecting in the axial direction of the digging shaft from within the outer shaft, and the digging shaft and the outer shaft are mutually connected A shaft body configured to be relatively rotatable about the axis of the excavation shaft;
An annular body through which the projecting portion of the excavation shaft is inserted and rotatable relative to the excavation shaft around the axis of the excavation shaft;
A first upper projecting body fixed to the outer shaft and juxtaposed in a predetermined number in the direction around the axis of the excavation shaft as viewed from the axial direction of the excavation shaft;
Fixed to the projecting portion of the excavation shaft, disposed between the outer shaft and the ring body, and a predetermined number of juxtaposed at substantially equal intervals around the axis of the excavation shaft when viewed from the axial direction of the excavation shaft A first lower projecting body,
Fixed to the projecting portion of the excavation shaft, disposed between the outer shaft and the ring body, and a predetermined number of juxtaposed at substantially equal intervals around the axis of the excavation shaft when viewed from the axial direction of the excavation shaft A second upper protrusion,
A second lower projecting body fixed to the ring body and juxtaposed at a predetermined number of intervals around the axis of the excavation shaft as viewed from the axial direction of the excavation shaft;
One end fixed to the outer shaft and the other end fixed to the ring,
The excavation shaft is inserted and disposed between the first upper protrusion and the first lower protrusion, and rotates relative to the excavation shaft, the outer shaft, and the ring body around the excavation axis. Possible first vertical cylindrical body,
A first horizontal axis fixed to the first vertical cylindrical body and having an axis substantially perpendicular to the axis of the excavation axis;
A first horizontal cylindrical body through which the first horizontal axis is inserted and rotatable about the axis of the first horizontal axis;
A first lateral protrusion fixed to the first horizontal cylindrical body and juxtaposed with a predetermined number of portions at substantially equal intervals around the axis of the first horizontal axis when viewed from the axial direction of the first horizontal axis; ,
The excavation shaft is inserted, and is disposed between the second upper protrusion and the second lower protrusion, and rotates relative to the excavation shaft, the outer shaft, and the ring body around the excavation axis. A possible second vertical cylinder;
A second horizontal axis fixed to the second vertical cylindrical body, disposed at a predetermined interval with respect to the first horizontal axis, and having an axis substantially perpendicular to the axis of the excavation axis;
A second horizontal cylindrical body that is inserted through the second horizontal axis and is rotatable about the axis of the second horizontal axis;
A second lateral protrusion fixed to the second horizontal cylindrical body and juxtaposed at a predetermined number of intervals around the axis of the first horizontal axis when viewed from the axial direction of the first horizontal axis; ,
With
The rotation trajectory around the axis of the first horizontal axis in the first lateral protrusion intersects with the rotation trajectory around the axis of the excavation axis in the first upper protrusion, and the excavation axis in the first lower protrusion. Configured to intersect with the rotation trajectory around the axis of
The rotation trajectory of the second horizontal protrusion around the second horizontal axis intersects the rotation trajectory of the second upper protrusion around the excavation axis and the excavation axis of the second lower protrusion. Configured to intersect with the rotation trajectory around the axis of
The rotation trajectory around the axis of the first horizontal axis in the first lateral protrusion is configured not to intersect the rotation trajectory around the axis of the second horizontal axis in the second lateral protrusion.
The first lateral protrusion is pushed by the first upper protrusion and the first lower protrusion by rotating the excavation shaft and the outer shaft relative to each other around the axis of the excavation shaft. The body is rotated about the axis of the first horizontal axis, and the second horizontal protrusion is pushed by the second upper protrusion and the second lower protrusion, and the second horizontal protrusion is moved to the second horizontal axis. Rotate around the axis.

本発明は、シンプルな装置構成で横突出体を横軸の軸回りに回転させることができると共に、装置の耐久性を向上させることが可能であるという効果を奏する。   The present invention has an effect that it is possible to rotate the lateral protrusion around the axis of the horizontal axis with a simple device configuration and to improve the durability of the device.

本発明に係る地盤改良装置の第一実施形態を示す図。The figure which shows 1st embodiment of the ground improvement apparatus which concerns on this invention. (a)図1のX1−X1断面図、(b)図1のY1−Y1断面図。(A) X1-X1 sectional drawing of FIG. 1, (b) Y1-Y1 sectional drawing of FIG. 図1の一部拡大斜視図。FIG. 2 is a partially enlarged perspective view of FIG. 1. 横突出体の取り付け構造を示す斜視図。The perspective view which shows the attachment structure of a horizontal protrusion. 縦筒状体の支持構造の変形例を示す図。The figure which shows the modification of the support structure of a vertical cylindrical body. (a)地盤改良装置の動作を示す図、(a)図5(a)のX1−X1断面図。(A) The figure which shows operation | movement of a ground improvement apparatus, (a) X1-X1 sectional drawing of Fig.5 (a). (a)地盤改良装置の動作を示す図、(a)図6(a)のX1−X1断面図。(A) The figure which shows operation | movement of a ground improvement apparatus, (a) X1-X1 sectional drawing of Fig.6 (a). (a)地盤改良装置の動作を示す図、(a)図7(a)のX1−X1断面図。(A) The figure which shows operation | movement of a ground improvement apparatus, (a) X1-X1 sectional drawing of Fig.7 (a). (a)地盤改良装置の動作を示す図、(a)図8(a)のX1−X1断面図。(A) The figure which shows operation | movement of a ground improvement apparatus, (a) X1-X1 sectional drawing of Fig.8 (a). (a)地盤改良装置の動作を示す図、(a)図9(a)のX1−X1断面図。(A) The figure which shows operation | movement of a ground improvement apparatus, (a) X1-X1 sectional drawing of Fig.9 (a). (a)地盤改良装置の一部拡大斜視図、(b)地盤改良装置を上方から見た断面図。(A) The partial expansion perspective view of a ground improvement apparatus, (b) Sectional drawing which looked at the ground improvement apparatus from upper direction. 中攪拌翼を示す斜視図。The perspective view which shows a middle stirring blade. 地盤改良装置の動作を示す図。The figure which shows operation | movement of a ground improvement apparatus. 本発明に係る地盤改良装置の第二実施形態を示す図。The figure which shows 2nd embodiment of the ground improvement apparatus which concerns on this invention. (a)図13のX2−X2断面図、(b)図13のY2−Y2断面図。(A) X2-X2 sectional drawing of FIG. 13, (b) Y2-Y2 sectional drawing of FIG. 縦筒状体の支持構造の変形例を示す図。The figure which shows the modification of the support structure of a vertical cylindrical body. (a)地盤改良装置の動作を示す図、(a)図15(a)のX2−X2断面図。(A) The figure which shows operation | movement of a ground improvement apparatus, (a) X2-X2 sectional drawing of Fig.15 (a). (a)地盤改良装置の動作を示す図、(a)図16(a)のX2−X2断面図。(A) The figure which shows operation | movement of a ground improvement apparatus, (a) X2-X2 sectional drawing of Fig.16 (a). (a)地盤改良装置の動作を示す図、(a)図17(a)のX2−X2断面図。(A) The figure which shows operation | movement of a ground improvement apparatus, (a) X2-X2 sectional drawing of Fig.17 (a). (a)地盤改良装置の動作を示す図、(a)図18(a)のX2−X2断面図。(A) The figure which shows operation | movement of a ground improvement apparatus, (a) X2-X2 sectional drawing of Fig.18 (a). (a)地盤改良装置の動作を示す図、(a)図19(a)のX2−X2断面図。(A) The figure which shows operation | movement of a ground improvement apparatus, (a) X2-X2 sectional drawing of Fig.19 (a). (a)地盤改良装置の一部拡大斜視図、(b)地盤改良装置を上方から見た断面図。(A) The partial expansion perspective view of a ground improvement apparatus, (b) Sectional drawing which looked at the ground improvement apparatus from upper direction. 中攪拌翼を示す斜視図。The perspective view which shows a middle stirring blade. 地盤改良装置の動作を示す図。The figure which shows operation | movement of a ground improvement apparatus. 本発明に係る地盤改良装置の第三実施形態を示す図。The figure which shows 3rd embodiment of the ground improvement apparatus which concerns on this invention. 地盤改良装置の動作を示す図。The figure which shows operation | movement of a ground improvement apparatus.

[第一実施形態]
以下では、地盤改良装置100について説明する。
[First embodiment]
Below, the ground improvement apparatus 100 is demonstrated.

地盤改良装置100は、地盤を掘削しながら固化材を吐出して、この固化材と掘削土を攪拌して硬化させることで、地盤を改良するものである。
地盤改良装置100は、ベースマシン等により上下動可能に支持されている。
The ground improvement device 100 improves the ground by discharging the solidified material while excavating the ground, and stirring and hardening the solidified material and the excavated soil.
The ground improvement device 100 is supported by a base machine or the like so as to be movable up and down.

図1〜図3に示すように、地盤改良装置100は、回転駆動装置110と、軸体120と、上突出体130・130・・・と、下突出体140・140・・・と、縦筒状体150と、横軸160と、横筒状体170と、横突出体180・180・・・と、を具備する。   As shown in FIGS. 1 to 3, the ground improvement device 100 includes a rotary drive device 110, a shaft body 120, upper projecting bodies 130, 130, and lower projecting bodies 140, 140. The cylindrical body 150, the horizontal shaft 160, the horizontal cylindrical body 170, and the lateral protrusions 180, 180.

回転駆動装置110は、軸体120を回転駆動するための装置である。回転駆動装置110は、例えば、二軸同軸式アースオーガで構成される。回転駆動装置110は、モータ111及び二重歯車機構112を有している。   The rotational drive device 110 is a device for rotationally driving the shaft body 120. The rotation drive device 110 is constituted by, for example, a biaxial coaxial earth auger. The rotation drive device 110 includes a motor 111 and a double gear mechanism 112.

軸体120は、掘削軸121、及び掘削軸121が挿通される外側軸122を有しており、掘削軸121及び外側軸122からなる二重軸構造を有している。   The shaft body 120 includes an excavation shaft 121 and an outer shaft 122 through which the excavation shaft 121 is inserted, and has a double shaft structure including the excavation shaft 121 and the outer shaft 122.

掘削軸121は、上下方向に延在する棒形状を有しており、上下方向に延在する軸Aを有している。外側軸122は、上下が開口する筒形状を有しており、その内部には掘削軸121が挿通されている。   The excavation shaft 121 has a rod shape extending in the vertical direction, and has an axis A extending in the vertical direction. The outer shaft 122 has a cylindrical shape that is open at the top and bottom, and the excavation shaft 121 is inserted through the inside thereof.

掘削軸121及び外側軸122の上端部は、公知の二重歯車機構112を介してモータ111に接続されている。掘削軸121及び外側軸122は、モータ111からの回転駆動力を二重歯車機構112を介して伝達されることにより、掘削軸121の軸A回りに互いに相対回転するように構成されている。なお、掘削軸121及び外側軸122が、掘削軸121の軸A回りに互いに相対回転するとは、掘削軸121の軸A回りの回転において、(1)掘削軸121及び外側軸122が互いに異なる方向(逆方向)に回転すること、(2)掘削軸121及び外側軸122が互いに同一方向に回転するが、その回転速度が互いに異なること、並びに、(3)外側軸122が回転を停止している状態で掘削軸121が回転することをいう。   The upper ends of the excavation shaft 121 and the outer shaft 122 are connected to the motor 111 via a known double gear mechanism 112. The excavation shaft 121 and the outer shaft 122 are configured to rotate relative to each other around the axis A of the excavation shaft 121 by transmitting the rotational driving force from the motor 111 via the double gear mechanism 112. The excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121. (1) The direction in which the excavation shaft 121 and the outer shaft 122 are different from each other in the rotation around the axis A of the excavation shaft 121. (2) the excavation shaft 121 and the outer shaft 122 rotate in the same direction, but their rotational speeds are different from each other, and (3) the outer shaft 122 stops rotating. It means that the excavation shaft 121 rotates in the state of being.

掘削軸121の下側は、外側軸122の下端の開口から下方(掘削軸121の軸A方向)に突出している。以下では、掘削軸121における、外側軸122の下端の開口から突出している部分を、突出部121aと称する。   The lower side of the excavation shaft 121 protrudes downward (in the direction of the axis A of the excavation shaft 121) from the opening at the lower end of the outer shaft 122. Below, the part which protrudes from the opening of the lower end of the outer side axis | shaft 122 in the excavation axis | shaft 121 is called the protrusion part 121a.

外側軸122の外周側面には、上攪拌翼101が固定されている。上攪拌翼101は、略板状の部材であり、外側軸122の外周側面から外方に突出しており、外側軸122と一体回転する。なお、上攪拌翼101を、後述する上突出体130に固定してもよい。   An upper stirring blade 101 is fixed to the outer peripheral side surface of the outer shaft 122. The upper stirring blade 101 is a substantially plate-like member, protrudes outward from the outer peripheral side surface of the outer shaft 122, and rotates integrally with the outer shaft 122. Note that the upper stirring blade 101 may be fixed to an upper protrusion 130 described later.

掘削軸121の突出部121aの外周側面には、下攪拌翼102が固定されている。下攪拌翼102は、略板状の部材であり、掘削軸121の突出部121aの外周側面から外方に突出しており、掘削軸121と一体回転する。下攪拌翼102は、突出部121aの上下中途部に配置されている。なお、下攪拌翼102を、後述する下突出体140に固定してもよい。   A lower stirring blade 102 is fixed to the outer peripheral side surface of the protruding portion 121 a of the excavation shaft 121. The lower stirring blade 102 is a substantially plate-like member, protrudes outward from the outer peripheral side surface of the protrusion 121 a of the excavation shaft 121, and rotates integrally with the excavation shaft 121. The lower stirring blade 102 is disposed in the middle of the upper and lower portions of the protruding portion 121a. Note that the lower stirring blade 102 may be fixed to a lower protrusion 140 described later.

掘削軸121の突出部121aの下端部には掘削翼103が固定されている。また、掘削軸121の突出部121aの下端部には固化材吐出孔(不図示)が形成されている。   The excavation blade 103 is fixed to the lower end portion of the protrusion 121 a of the excavation shaft 121. Further, a solidified material discharge hole (not shown) is formed at the lower end portion of the protruding portion 121 a of the excavation shaft 121.

上突出体130は、外側軸122の外周側面に固定されており、外側軸122と一体回転する。上突出体130は、外側軸122の外周側面から、外側軸122の径方向に突出する棒形状を有している。上突出体130は、掘削軸121の軸A方向(軸Aの延びる方向)から見て、掘削軸121の軸A回り方向に略等間隔(等間隔を含む)を空けて四つ並置されている。本実施形態では、上突出体130・130・130・130は、掘削軸121の軸A方向から見て、掘削軸121の軸A回り方向に90°づつ間隔を空けて並置されている。   The upper protrusion 130 is fixed to the outer peripheral side surface of the outer shaft 122 and rotates integrally with the outer shaft 122. The upper protrusion 130 has a bar shape that protrudes in the radial direction of the outer shaft 122 from the outer peripheral side surface of the outer shaft 122. Four upper projecting bodies 130 are juxtaposed at substantially equal intervals (including equal intervals) around the axis A of the excavation shaft 121 when viewed from the direction of the axis A of the excavation shaft 121 (the direction in which the axis A extends). Yes. In the present embodiment, the upper protrusions 130, 130, 130, and 130 are juxtaposed at intervals of 90 ° in the direction around the axis A of the excavation shaft 121 when viewed from the direction of the axis A of the excavation shaft 121.

下突出体140は、掘削軸121の突出部121aの外周側面に固定されており、掘削軸121と一体回転する。下突出体140は、掘削軸121の突出部121aの外周側面から、掘削軸121の径方向に突出する棒形状を有している。下突出体140は、掘削軸121の軸A方向から見て、掘削軸121の軸A回り方向に略等間隔(等間隔を含む)を空けて四つ並置されている。本実施形態では、下突出体140・140・140・140は、掘削軸121の軸A方向から見て、掘削軸121の軸A回り方向に90°づつ間隔を空けて並置されている。   The lower protrusion 140 is fixed to the outer peripheral side surface of the protrusion 121 a of the excavation shaft 121 and rotates integrally with the excavation shaft 121. The lower protrusion 140 has a rod shape that protrudes in the radial direction of the excavation shaft 121 from the outer peripheral side surface of the protrusion 121 a of the excavation shaft 121. Four lower protrusions 140 are juxtaposed at substantially equal intervals (including equal intervals) in the direction around the axis A of the excavation shaft 121 when viewed from the axis A direction of the excavation shaft 121. In the present embodiment, the lower projecting bodies 140, 140, 140, and 140 are juxtaposed at intervals of 90 ° in the direction around the axis A of the excavation shaft 121 when viewed from the direction of the axis A of the excavation shaft 121.

図3及び図4に示すように、縦筒状体150は、上下両端が開口する筒形状を有している。縦筒状体150には、掘削軸121の突出部121aが挿通されている。縦筒状体150は、掘削軸121及び外側軸122に対して、掘削軸121の軸A回りに相対回転可能に支持されている。縦筒状体150は、上突出体130と下突出体140の間に配置されている。掘削軸121の突出部121aには、縦筒状体150を上下から挟むようにフランジ部121bが形成されている。フランジ部121bは、掘削軸121の突出部121aに一体化されており、縦筒状体150の上下方向の移動(軸A方向の移動)を規制している。
なお、図5に示すように、縦筒状体150に対して、掘削軸121の突出部121a及び外側軸122が挿通するように構成して、外側軸122にフランジ部122bを形成して、当該フランジ部122bにより縦筒状体150の上下方向の移動を規制するように構成してもよい。
As shown in FIGS. 3 and 4, the vertical cylindrical body 150 has a cylindrical shape with both upper and lower ends opened. The protruding portion 121 a of the excavation shaft 121 is inserted into the vertical cylindrical body 150. The vertical cylindrical body 150 is supported so as to be rotatable relative to the excavation shaft 121 and the outer shaft 122 around the axis A of the excavation shaft 121. The vertical tubular body 150 is disposed between the upper projecting body 130 and the lower projecting body 140. A flange portion 121b is formed on the protruding portion 121a of the excavation shaft 121 so as to sandwich the vertical cylindrical body 150 from above and below. The flange portion 121b is integrated with the protruding portion 121a of the excavating shaft 121, and restricts vertical movement (movement in the axis A direction) of the vertical cylindrical body 150.
As shown in FIG. 5, the vertical cylindrical body 150 is configured such that the protruding portion 121 a and the outer shaft 122 of the excavation shaft 121 are inserted, and a flange portion 122 b is formed on the outer shaft 122. You may comprise so that the vertical movement of the vertical cylindrical body 150 may be controlled by the said flange part 122b.

横軸160は、縦筒状体150の外周側面に固定されており、縦筒状体150と一体回転する。横軸160は、縦筒状体150の径方向に突出する棒形状を有しており、掘削軸121の軸Aに対して略垂直(垂直を含む)な軸Bを有している。横軸160は、上突出体130と下突出体140の間に配置されている。   The horizontal axis 160 is fixed to the outer peripheral side surface of the vertical cylindrical body 150 and rotates integrally with the vertical cylindrical body 150. The horizontal axis 160 has a rod shape protruding in the radial direction of the vertical cylindrical body 150, and has an axis B substantially perpendicular (including vertical) to the axis A of the excavation axis 121. The horizontal axis 160 is disposed between the upper protrusion 130 and the lower protrusion 140.

横筒状体170は、水平方向両端が開口する筒形状を有している。横筒状体170には、横軸160が挿通されている。横筒状体170は、横軸160に対して横軸160の軸B回りに相対回転可能に支持されている。横軸160には、横筒状体170が横軸160から抜け落ちることを防止するためのピン161が装着されている。   The horizontal cylindrical body 170 has a cylindrical shape that is open at both ends in the horizontal direction. A horizontal shaft 160 is inserted through the horizontal cylindrical body 170. The horizontal cylindrical body 170 is supported so as to be rotatable relative to the horizontal axis 160 about the axis B of the horizontal axis 160. A pin 161 for preventing the horizontal tubular body 170 from falling off the horizontal shaft 160 is attached to the horizontal shaft 160.

横筒状体170の外周側面には、横攪拌翼104が固定されている。横攪拌翼104は、略板状の部材であり、横筒状体170の外周側面から外方に突出しており、横筒状体170と一体回転する。なお、横攪拌翼104を、後述する横突出体180に固定してもよい。   A horizontal stirring blade 104 is fixed to the outer peripheral side surface of the horizontal cylindrical body 170. The horizontal stirring blade 104 is a substantially plate-like member, protrudes outward from the outer peripheral side surface of the horizontal cylindrical body 170, and rotates integrally with the horizontal cylindrical body 170. In addition, you may fix the horizontal stirring blade 104 to the horizontal protrusion 180 mentioned later.

横突出体180は、横筒状体170の外周側面に固定されており、横筒状体170と一体回転する。横突出体180は、横筒状体170の外周側面から、横筒状体170の径方向に突出する棒形状を有している。横突出体180は、横軸160の軸B方向から見て、横軸160の軸B回り方向に略等間隔(等間隔を含む)を空けて四つ並置されている。本実施形態では、横突出体180・180・180・180は、横軸160の軸B方向から見て、横軸160の軸B回り方向に90°づつ間隔を空けて並置されている。
従って、本実施形態では、突出体130・140・180が、それぞれ同数(四つづつ)設けられている。
The lateral projecting body 180 is fixed to the outer peripheral side surface of the lateral tubular body 170 and rotates integrally with the lateral tubular body 170. The lateral projecting body 180 has a bar shape projecting from the outer peripheral side surface of the lateral tubular body 170 in the radial direction of the lateral tubular body 170. Four lateral protrusions 180 are juxtaposed at substantially equal intervals (including equal intervals) in the direction around the axis B of the horizontal axis 160 when viewed from the axis B direction of the horizontal axis 160. In the present embodiment, the lateral protrusions 180, 180, 180, and 180 are juxtaposed at intervals of 90 ° in the direction around the axis B of the horizontal axis 160 when viewed from the direction of the axis B of the horizontal axis 160.
Therefore, in the present embodiment, the same number (four) of the protrusions 130, 140, and 180 are provided.

なお、本実施形態では、縦筒状体150の外周側面に横軸160を一つ設けたが、これに限定されず、横軸160を複数設けてもよい。この場合、縦筒状体150の外周側面にて、複数の横軸160を掘削軸121の軸A回り方向に間隔を空けて並置して、各横軸160に横筒状体170及び横突出体180をそれぞれ装着することとなる。   In the present embodiment, one horizontal axis 160 is provided on the outer peripheral side surface of the vertical cylindrical body 150. However, the present invention is not limited to this, and a plurality of horizontal axes 160 may be provided. In this case, on the outer peripheral side surface of the vertical cylindrical body 150, a plurality of horizontal shafts 160 are juxtaposed at intervals in the direction around the axis A of the excavation shaft 121, and the horizontal cylindrical bodies 170 and the lateral protrusions are projected on the horizontal shafts 160. Each body 180 is to be worn.

図6(a)〜図10(b)は、掘削軸121及び外側軸122を掘削軸121の軸A回りに互いに逆方向に回転させて、かつ、掘削軸121の回転速度L1の絶対値と、外側軸122の回転速度N1の絶対値との間に差を設けなかったときの、横突出体180の動きを示している(L1=−N1)。
地盤改良装置100は、図6(a)(図6(b))→図7(a)(図7(b))→図8(a)(図8(b))→図9(a)(図9(b))→図10(a)(図10(b))の順に駆動することとする。
6 (a) to 10 (b) show that the excavation shaft 121 and the outer shaft 122 are rotated in directions opposite to each other around the axis A of the excavation shaft 121 and the absolute value of the rotation speed L1 of the excavation shaft 121 is obtained. The movement of the lateral protrusion 180 is shown when no difference is provided between the absolute value of the rotational speed N1 of the outer shaft 122 (L1 = −N1).
The ground improvement device 100 is shown in FIG. 6A (FIG. 6B) → FIG. 7A (FIG. 7B) → FIG. 8A (FIG. 8B) → FIG. 9A. The driving is performed in the order of (FIG. 9B) → FIG. 10A (FIG. 10B).

図6(a)〜図10(b)に示すように、横突出体180における横軸160の軸B回りの回転軌跡は、上突出体130における掘削軸121の軸A回りの回転軌跡と交わると共に、下突出体140における掘削軸121の軸A回りの回転軌跡と交わるように構成されている。
これにより、掘削軸121及び外側軸122が、掘削軸121の軸A回りに互いに相対回転するときに、上突出体130及び下突出体140が横突出体180に接触するように構成されている。
As shown in FIGS. 6A to 10B, the rotation trajectory of the horizontal protrusion 180 around the axis B of the horizontal shaft 160 intersects with the rotation trajectory of the upper protrusion 130 around the axis A of the excavation shaft 121. At the same time, the lower projecting body 140 is configured to intersect with the rotation locus around the axis A of the excavation shaft 121.
Thereby, when the excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121, the upper projecting body 130 and the lower projecting body 140 are configured to contact the lateral projecting body 180. .

図6(a)〜図10(b)に示すように、掘削軸121及び外側軸122が、掘削軸121の軸A回りに互いに相対回転するとき、上突出体130及び下突出体140が横突出体180に接触して、横突出体180を押すことで、横突出体180(横筒状体170)が横軸160の軸B回りに回転するように構成されている。
このとき、横軸160の上側に存在する一本の横突出体180が、隣り合う上突出体130・130の間に入り込んで、上突出体130により一方向P1に押されると共に、横軸160の下側に存在する一本の横突出体180が、隣り合う下突出体140・140の間に入り込んで下突出体140により前記一方向とは反対の方向Q1に押される状態となる(図6(a)参照)。すなわち、横軸160を挟んで互いに反対側に存在する横突出体180・180の内の、一方が上突出体130により一方向P1に押されて、他方が下突出体140により前記一方向P1とは反対の方向Q1に押される状態となる。これにより、横突出体180が横軸160の軸B回りに回転する。そして、次の(下流側の)横突出体180が、次の隣り合う上突出体130・130(下突出体140・140)の間に入り込む。
掘削軸121及び外側軸122が、掘削軸121の軸A回りに互いに相対回転するときには、この一連の動作が繰り返され、これにより、横突出体180が横軸160の軸B回りに回転し続けることとなる。
また、上突出体130及び下突出体140を掘削軸121の軸A回りに互いに相対回転させたときには、横突出体180における横軸160の軸B回りの回転軌跡と、上突出体130における掘削軸121の軸A回りの回転軌跡が交わる箇所において、上突出体130と横突出体180が交互に通過していくと共に、横突出体180における横軸160の軸B回りの回転軌跡と、下突出体140における掘削軸121の軸A回りの回転軌跡が交わる箇所において、下突出体140と横突出体180が交互に通過していく状態となる。
As shown in FIGS. 6A to 10B, when the excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121, the upper protrusion 130 and the lower protrusion 140 are lateral. The horizontal protrusion 180 (horizontal cylindrical body 170) is configured to rotate around the axis B of the horizontal axis 160 by pressing the horizontal protrusion 180 in contact with the protrusion 180.
At this time, one horizontal protrusion 180 existing above the horizontal shaft 160 enters between the adjacent upper protrusions 130 and 130 and is pushed in one direction P1 by the upper protrusion 130, and at the same time the horizontal shaft 160 One lateral projecting body 180 existing on the lower side enters between adjacent lower projecting bodies 140 and 140 and is pushed by the lower projecting body 140 in a direction Q1 opposite to the one direction (see FIG. 6 (a)). That is, one of the lateral protrusions 180 and 180 existing on the opposite sides of the horizontal shaft 160 is pushed in one direction P1 by the upper protrusion 130, and the other is pushed in the one direction P1 by the lower protrusion 140. The state is pushed in the opposite direction Q1. As a result, the lateral protrusion 180 rotates around the axis B of the lateral axis 160. Then, the next (downstream) lateral protrusion 180 enters between the next adjacent upper protrusions 130 and 130 (lower protrusions 140 and 140).
When the excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121, this series of operations is repeated, whereby the lateral protrusion 180 continues to rotate about the axis B of the horizontal shaft 160. It will be.
Further, when the upper projecting body 130 and the lower projecting body 140 are rotated relative to each other around the axis A of the excavation shaft 121, the rotation trajectory of the lateral projecting body 180 around the axis B of the horizontal shaft 160 and the excavation of the upper projecting body 130. The upper projecting body 130 and the lateral projecting body 180 pass alternately at a place where the rotational trajectories of the shaft 121 around the axis A intersect, and the lateral projecting body 180 has a rotational trajectory about the axis B of the lateral axis 160 and the lower part. The lower projecting body 140 and the lateral projecting body 180 pass alternately at a location where the rotation trajectory around the axis A of the excavation shaft 121 in the projecting body 140 intersects.

以上のように構成することで、横軸160の軸A回りの回転を規制しなくても、横突出体180を横軸160の軸B回りに回転させることができる。これにより、シンプルな装置構成で横突出体180を横軸160の軸B回りに回転させることが可能となる。   By configuring as described above, the lateral protrusion 180 can be rotated around the axis B of the horizontal axis 160 without restricting the rotation of the horizontal axis 160 around the axis A. Thereby, it becomes possible to rotate the horizontal protrusion 180 around the axis B of the horizontal axis 160 with a simple device configuration.

また、横突出体180が二つの突出体130・140で押されて回転するように構成されており、これにより、横突出体180にかかる負荷が分散されるように構成されている。さらに、横突出体180及び縦筒状体150が、掘削軸121及び外側軸122に対して、掘削軸121の軸A回りに一体的に相対回転可能に構成されており、これにより、横突出体180は、負荷がかかったときに縦筒状体150と共に掘削軸121の軸A回りに回転して、逃げることができるように構成されている。
従って、横突出体180にかかる負荷を低減でき、装置の耐久性を向上させることが可能となる。
Further, the lateral projecting body 180 is configured to be rotated by being pushed by the two projecting bodies 130 and 140, whereby the load on the lateral projecting body 180 is configured to be distributed. Further, the lateral projecting body 180 and the vertical tubular body 150 are configured to be integrally rotatable relative to the excavation shaft 121 and the outer shaft 122 around the axis A of the excavation shaft 121, thereby The body 180 is configured to rotate around the axis A of the excavation shaft 121 together with the vertical cylindrical body 150 when a load is applied, and to escape.
Therefore, the load applied to the lateral protrusion 180 can be reduced, and the durability of the apparatus can be improved.

なお、上記したように、上突出体130及び下突出体140を掘削軸121の軸A回りに互いに相対回転させることにより、横突出体180を横軸160の軸B回りに回転させることができるのであれば、上突出体130、下突出体140、及び横突出体180の設置数に関しては、本実施形態のように、四つづつに限定しなくてもよく、例えば、突出体130・140・180を三つづつ設けたり、八つづつ設けてもよい。また、例えば、上突出体130及び下突出体140を三つづつ設けて、横突出体180を四つ設けてもよい。
また、上記したように、上突出体130及び下突出体140を掘削軸121の軸A回りに互いに相対回転させることにより、横突出体180を横軸160の軸B回りに回転させることができるのであれば、上突出体130・130・・・間の間隔、下突出体140・140・・・間の間隔、及び横突出体180・180・・・間の間隔に関しては、それぞれ厳密に等間隔である必要はなく、間隔に多少のばらつきがそれぞれあってもよい。
また、上記したように、上突出体130及び下突出体140を掘削軸121の軸A回りに互いに相対回転させることにより、横突出体180を横軸160の軸B回りに回転させることができるのであれば、横軸160の軸Bが掘削軸121の軸Aに対して厳密に垂直である必要がなく、垂直な状態から多少ずれていてもよい。
As described above, by rotating the upper projecting body 130 and the lower projecting body 140 relative to each other about the axis A of the excavation shaft 121, the lateral projecting body 180 can be rotated about the axis B of the horizontal shaft 160. In this case, the number of the upper projecting body 130, the lower projecting body 140, and the lateral projecting body 180 may not be limited to four as in the present embodiment. For example, the projecting bodies 130 and 140 are not limited to four.・ You may provide three 180 or eight. Further, for example, three upper protrusions 130 and three lower protrusions 140 may be provided, and four lateral protrusions 180 may be provided.
Further, as described above, by rotating the upper projecting body 130 and the lower projecting body 140 relative to each other around the axis A of the excavating shaft 121, the lateral projecting body 180 can be rotated about the axis B of the horizontal axis 160. If so, with respect to the distance between the upper protrusions 130, 130..., The distance between the lower protrusions 140, 140. There is no need for the interval, and there may be some variation in the interval.
Further, as described above, by rotating the upper projecting body 130 and the lower projecting body 140 relative to each other around the axis A of the excavating shaft 121, the lateral projecting body 180 can be rotated about the axis B of the horizontal axis 160. In this case, the axis B of the horizontal axis 160 does not have to be strictly perpendicular to the axis A of the excavating shaft 121, and may be slightly deviated from the vertical state.

以下では、地盤改良装置100の動作について説明する。   Below, operation | movement of the ground improvement apparatus 100 is demonstrated.

図6(a)〜図10(b)に示すように、地盤改良装置100は、回転駆動装置110により掘削軸121及び外側軸122を掘削軸121の軸A回りに互いに相対回転させながら、下降することで、掘削翼103で地盤を掘削していく。このとき、掘削軸121及び外側軸122が掘削軸121の軸A回りに互いに相対回転することによって、上攪拌翼101及び下攪拌翼102が、掘削軸121の軸A回りに互いに異なる速度で回転する。また、このとき、掘削軸121(上突出体130)及び外側軸122(下突出体140)の回転により、横突出体180が回転して、横攪拌翼104が横軸160の軸B回りに回転する。地盤改良装置100は、このとき、掘削軸121の下端部の固化材吐出孔から固化材を吐出する。
これにより、掘削土と固化材が、上攪拌翼101及び下攪拌翼102により掘削軸121の軸A回りに攪拌されると共に、横攪拌翼104により横軸160の軸B回りに攪拌(上下に攪拌)されることとなる。
As shown in FIGS. 6A to 10B, the ground improvement device 100 descends while rotating the excavation shaft 121 and the outer shaft 122 around the axis A of the excavation shaft 121 by the rotation drive device 110. By doing so, the ground is excavated by the excavating blade 103. At this time, the excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121, so that the upper stirring blade 101 and the lower stirring blade 102 rotate at different speeds around the axis A of the excavation shaft 121. To do. At this time, due to the rotation of the excavating shaft 121 (upper protruding body 130) and the outer shaft 122 (lower protruding body 140), the horizontal protruding body 180 rotates and the horizontal stirring blade 104 rotates around the axis B of the horizontal axis 160. Rotate. At this time, the ground improvement device 100 discharges the solidified material from the solidified material discharge hole at the lower end of the excavation shaft 121.
As a result, the excavated soil and the solidified material are agitated around the axis A of the excavating shaft 121 by the upper agitating blade 101 and the lower agitating blade 102, and stirred around the axis B of the horizontal axis 160 by the horizontal agitating blade 104 (up and down) Stirring).

なお、掘削軸121及び外側軸122を掘削軸121の軸A回りに互いに相対回転させる際に、掘削軸121の回転速度L1の絶対値と、外側軸122の回転速度N1の絶対値と、の間に差を設けてもよい(|L1|≠|N1|)。例えば、図11(a)及び図11(b)に示すように、回転駆動装置110により、掘削軸121及び外側軸122を、掘削軸121の軸A回りに互いに相対回転させるときに、掘削軸121に関しては高速で回転させて、外側軸122に関しては、掘削軸121の回転方向とは逆方向に低速で回転させる。
この場合、掘削軸121(上突出体130)の回転速度L1の絶対値と、外側軸122(下突出体140)の回転速度N1の絶対値との間に差が存在することにより、縦筒状体150(横突出体180)が、掘削軸121の軸A回りに回転することとなる。その結果、横突出体180(横攪拌翼104)が、横軸160の軸B回りに回転しながら、掘削軸121の軸A回りに回転することとなるので、横攪拌翼104により掘削土と固化材をより良好に攪拌することが可能となる(図11(a)及び図11(b)参照)。
When the excavation shaft 121 and the outer shaft 122 are rotated relative to each other around the axis A of the excavation shaft 121, the absolute value of the rotation speed L1 of the excavation shaft 121 and the absolute value of the rotation speed N1 of the outer shaft 122 are A difference may be provided between them (| L1 | ≠ | N1 |). For example, as shown in FIGS. 11A and 11B, when the excavation shaft 121 and the outer shaft 122 are rotated relative to each other around the axis A of the excavation shaft 121 by the rotation drive device 110, the excavation shaft 121 is rotated at a high speed, and the outer shaft 122 is rotated at a low speed in a direction opposite to the rotation direction of the excavation shaft 121.
In this case, there is a difference between the absolute value of the rotation speed L1 of the excavation shaft 121 (upper protrusion 130) and the absolute value of the rotation speed N1 of the outer shaft 122 (lower protrusion 140), thereby causing the vertical cylinder The shaped body 150 (lateral projecting body 180) rotates about the axis A of the excavation shaft 121. As a result, the laterally projecting body 180 (the horizontal stirring blade 104) rotates around the axis A of the excavating shaft 121 while rotating around the axis B of the horizontal shaft 160. It becomes possible to stir the solidified material better (see FIGS. 11A and 11B).

なお、突出体130・140・180をそれぞれ上攪拌翼・下攪拌翼・横攪拌翼として構成してもよい。このように構成する場合には、上記攪拌翼101・102・104を設けなくてもよい。しかし、このように構成する場合でも、掘削土と固化材をより良好に攪拌することができるようにするために、攪拌翼101・102・104をさらに設けてもよい。また、横筒状体170を横軸160の軸B回りに回転させるための機構(突出体130・140・180等)のサイズについては特に限定されず、例えば、攪拌翼101・102・104の設置スペースを確保しやすくするために、図1、図2(a)、図2(b)等に示すものよりも小型(短め)に構成してもよい。   In addition, you may comprise the protrusions 130, 140, and 180 as an upper stirring blade, a lower stirring blade, and a horizontal stirring blade, respectively. In the case of such a configuration, the stirring blades 101, 102, and 104 may not be provided. However, even in the case of such a configuration, the stirring blades 101, 102, and 104 may be further provided in order to better stir the excavated soil and the solidified material. Further, the size of the mechanism (projection bodies 130, 140, 180, etc.) for rotating the horizontal cylindrical body 170 around the axis B of the horizontal axis 160 is not particularly limited. In order to easily secure the installation space, it may be configured smaller (shorter) than those shown in FIG. 1, FIG. 2 (a), FIG. 2 (b) and the like.

図12及び図13に示すように、縦筒状体150の外周側面(又は横軸160)に、中攪拌翼105を固定してもよい。中攪拌翼105は、略板状の部材であり、縦筒状体150の外周側面から外方に突出しており、縦筒状体150と一体回転する。
そして、掘削軸121及び外側軸122を掘削軸121の軸A回りに互いに相対回転させる際に、掘削軸121の回転速度L1の絶対値と、外側軸122の回転速度N1の絶対値と、の間に差を設けるように構成する(|L1|≠|N1|)。
このように構成すると、掘削軸121及び外側軸122が掘削軸121の軸A回りに互いに相対回転するときに、掘削軸121の回転速度L1の絶対値と、外側軸122の回転速度N1の絶対値との間に差が存在することにより、縦筒状体150が、掘削軸121の軸A回りに回転することとなる。そして、このとき、外側軸122(上攪拌翼101)、縦筒状体150(中攪拌翼105)、及び掘削軸121(下攪拌翼102)が、掘削軸121の軸A回りに、それぞれ異なる速度N1・M1・L1で回転することとなる(図13参照)。
従って、攪拌翼101・105・102を、掘削軸121の軸A回りに、三種類の異なる速度N1・M1・L1でそれぞれ回転させることが可能となるので、掘削土と固化材をより良好に攪拌することが可能となる。
なお、横軸160を中攪拌翼として構成してもよい。このように構成する場合には、上記中攪拌翼105を設けなくてもよい。しかし、このように構成する場合でも、掘削土と固化材をより良好に攪拌することができるようにするために、中攪拌翼105をさらに設けてもよい。
As shown in FIGS. 12 and 13, the middle stirring blade 105 may be fixed to the outer peripheral side surface (or the horizontal axis 160) of the vertical cylindrical body 150. The middle stirring blade 105 is a substantially plate-like member, protrudes outward from the outer peripheral side surface of the vertical cylindrical body 150, and rotates integrally with the vertical cylindrical body 150.
When the excavation shaft 121 and the outer shaft 122 are rotated relative to each other around the axis A of the excavation shaft 121, the absolute value of the rotation speed L1 of the excavation shaft 121 and the absolute value of the rotation speed N1 of the outer shaft 122 are A difference is provided between them (| L1 | ≠ | N1 |).
With this configuration, when the excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121, the absolute value of the rotation speed L1 of the excavation shaft 121 and the absolute value of the rotation speed N1 of the outer shaft 122 are determined. Due to the difference between the values, the vertical cylindrical body 150 rotates around the axis A of the excavation shaft 121. At this time, the outer shaft 122 (upper stirring blade 101), the vertical cylindrical body 150 (middle stirring blade 105), and the excavation shaft 121 (lower stirring blade 102) are different around the axis A of the excavation shaft 121, respectively. The motor rotates at the speeds N1, M1, and L1 (see FIG. 13).
Accordingly, the stirring blades 101, 105, and 102 can be rotated around the axis A of the excavation shaft 121 at three different speeds N1, M1, and L1, respectively, so that the excavated soil and the solidified material can be improved. It becomes possible to stir.
The horizontal axis 160 may be configured as a middle stirring blade. In the case of such a configuration, the middle stirring blade 105 may not be provided. However, even in the case of such a configuration, an intermediate stirring blade 105 may be further provided in order to better stir the excavated soil and the solidified material.

[第二実施形態]
以下では、地盤改良装置200について説明する。
[Second Embodiment]
Below, the ground improvement apparatus 200 is demonstrated.

以下の説明においては、地盤改良装置100との相違点に着目して説明し、地盤改良装置100と同じ構成については、同一符号を付して詳細な説明は省略する。   In the following description, it demonstrates paying attention to difference with the ground improvement apparatus 100, about the same structure as the ground improvement apparatus 100, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図14、図15(a)、及び図15(b)に示すように、地盤改良装置200は、回転駆動装置110と、軸体120と、環体210と、上突出体220・220・・・と、下突出体230・230・・・と、連結体240と、縦筒状体250と、横軸260と、横筒状体270と、横突出体280・280・・・と、を具備する。   As shown in FIG. 14, FIG. 15 (a), and FIG. 15 (b), the ground improvement device 200 includes a rotation driving device 110, a shaft body 120, a ring body 210, and upper protrusions 220, 220,. ..., the lower projecting bodies 230, 230 ..., the connecting body 240, the vertical cylindrical body 250, the horizontal shaft 260, the horizontal cylindrical body 270, and the lateral projecting bodies 280, 280, ... It has.

掘削軸121の突出部121aの外周側面には、内攪拌翼201が固定されている。内攪拌翼201は、略板状の部材であり、掘削軸121の突出部121aの外周側面から外方に突出しており、掘削軸121と一体回転する。内攪拌翼201は、突出部121aの上下中途部に配置されている。なお、内攪拌翼201を、後述する上突出体220に固定してもよい。   An inner stirring blade 201 is fixed to the outer peripheral side surface of the protruding portion 121 a of the excavation shaft 121. The inner stirring blade 201 is a substantially plate-like member, protrudes outward from the outer peripheral side surface of the protruding portion 121 a of the excavation shaft 121, and rotates integrally with the excavation shaft 121. The inner stirring blade 201 is disposed in the middle part of the protrusion 121a. In addition, you may fix the inner stirring blade 201 to the upper protrusion 220 mentioned later.

環体210は、上下両端が開口する筒形状を有している。環体210には、掘削軸121の突出部121aが挿通されている。環体210は、掘削軸121に対して掘削軸121の軸A回りに相対回転可能に支持されている。   The ring body 210 has a cylindrical shape whose upper and lower ends are open. A projecting portion 121 a of the excavation shaft 121 is inserted through the ring body 210. The ring body 210 is supported so as to be rotatable relative to the excavation shaft 121 around the axis A of the excavation shaft 121.

上突出体220は、掘削軸121の突出部121aの外周側面に固定されており、掘削軸121と一体回転する。上突出体220は、掘削軸121の突出部121aの外周側面から、掘削軸121の径方向に突出する棒形状を有している。上突出体220は、掘削軸121の軸A方向から見て、掘削軸121の軸A回り方向に略等間隔(等間隔を含む)を空けて四つ並置されている。上突出体220は、外側軸122と環体210の間に配置されている。本実施形態では、上突出体220・220・220・220は、掘削軸121の軸A方向から見て、掘削軸121の軸A回り方向に90°づつ間隔を空けて並置されている。   The upper protrusion 220 is fixed to the outer peripheral side surface of the protrusion 121 a of the excavation shaft 121 and rotates integrally with the excavation shaft 121. The upper protrusion 220 has a bar shape that protrudes in the radial direction of the excavation shaft 121 from the outer peripheral side surface of the protrusion 121 a of the excavation shaft 121. Four upper projecting bodies 220 are juxtaposed at substantially equal intervals (including equal intervals) in the direction around the axis A of the excavation shaft 121 when viewed from the axis A direction of the excavation shaft 121. The upper projecting body 220 is disposed between the outer shaft 122 and the ring body 210. In the present embodiment, the upper projecting bodies 220, 220, 220, and 220 are juxtaposed at intervals of 90 ° in the direction around the axis A of the excavation shaft 121 when viewed from the axis A direction of the excavation shaft 121.

下突出体230は、環体210の外周側面に固定されており、環体210と一体回転する。下突出体230は、環体210の外周側面から、環体210の径方向に突出する棒形状を有している。下突出体230は、掘削軸121の軸A方向から見て、掘削軸121の軸A回り方向に略等間隔(等間隔を含む)を空けて四つ並置されている。本実施形態では、下突出体230・230・230・230は、掘削軸121の軸A方向から見て、掘削軸121の軸A回り方向に90°づつ間隔を空けて並置されている。   The lower protrusion 230 is fixed to the outer peripheral side surface of the ring body 210 and rotates integrally with the ring body 210. The lower protrusion 230 has a rod shape that protrudes from the outer peripheral side surface of the ring 210 in the radial direction of the ring 210. Four lower protrusions 230 are juxtaposed at substantially equal intervals (including equal intervals) in the direction around the axis A of the excavation shaft 121 when viewed from the axis A direction of the excavation shaft 121. In the present embodiment, the lower projecting bodies 230, 230, 230, and 230 are juxtaposed at intervals of 90 ° in the direction around the axis A of the excavation shaft 121 as viewed from the direction of the axis A of the excavation shaft 121.

連結体240は、屈曲した棒形状を有している。連結体240は、中途部が外方に膨出する形状を有しており、この膨出する部分の内周面には外攪拌翼202が固定されている。連結体240は、一端が外側軸122に固定されており、他端が環体210に固定されており、外側軸122と環体210を連結している。これにより、外側軸122が掘削軸121の軸A回りに回転するときに、連結体240及び環体210が外側軸122と一体回転するように構成されている。そして、連結体240が外側軸122と一体回転するときに、外攪拌翼202が連結体240と共に回転して土壌を攪拌する。なお、外攪拌翼202を、外側軸122、及び/又は、環体210に固定してもよい。   The connecting body 240 has a bent bar shape. The connecting body 240 has a shape in which a midway portion bulges outward, and an outer stirring blade 202 is fixed to the inner peripheral surface of the bulging portion. The connecting body 240 has one end fixed to the outer shaft 122 and the other end fixed to the ring body 210, and connects the outer shaft 122 and the ring body 210. Thus, when the outer shaft 122 rotates around the axis A of the excavation shaft 121, the connecting body 240 and the ring body 210 are configured to rotate integrally with the outer shaft 122. And when the connection body 240 rotates integrally with the outer side axis | shaft 122, the outer stirring blade 202 rotates with the connection body 240, and stirs soil. The outer stirring blade 202 may be fixed to the outer shaft 122 and / or the ring body 210.

図14、及び図22に示すように、縦筒状体250は、上下両端が開口する筒形状を有している。縦筒状体250には、掘削軸121の突出部121aが挿通されている。縦筒状体250は、掘削軸121、外側軸122、及び環体210に対して、掘削軸121の軸A回りに相対回転可能に支持されている。縦筒状体250は、上突出体220と下突出体230の間に配置されている。掘削軸121の突出部121aには、縦筒状体250を上下から挟むようにフランジ部121cが形成されている。フランジ部121cは、掘削軸121の突出部121aに一体化されており、縦筒状体250の上下方向の移動(軸A方向の移動)を規制している。
なお、図16に示すように、縦筒状体250に対して掘削軸121の突出部121a及び環体210が挿通するように構成して、環体210にフランジ部122cを形成して、当該フランジ部122cにより縦筒状体150の上下方向の移動を規制するように構成してもよい。
As shown in FIGS. 14 and 22, the vertical cylindrical body 250 has a cylindrical shape with both upper and lower ends opened. The protruding portion 121 a of the excavation shaft 121 is inserted through the vertical cylindrical body 250. The vertical cylindrical body 250 is supported so as to be rotatable relative to the excavation shaft 121, the outer shaft 122, and the ring body 210 around the axis A of the excavation shaft 121. The vertical tubular body 250 is disposed between the upper projecting body 220 and the lower projecting body 230. A flange portion 121c is formed on the protruding portion 121a of the excavating shaft 121 so as to sandwich the vertical cylindrical body 250 from above and below. The flange portion 121c is integrated with the protruding portion 121a of the excavation shaft 121, and restricts the vertical cylindrical body 250 from moving in the vertical direction (movement in the axis A direction).
In addition, as shown in FIG. 16, it comprises so that the protrusion part 121a of the excavation shaft 121 and the ring body 210 may penetrate with respect to the vertical cylindrical body 250, the flange part 122c is formed in the ring body 210, and the said You may comprise so that the vertical movement of the vertical cylindrical body 150 may be controlled by the flange part 122c.

図14、及び図22に示すように、横軸260は、縦筒状体250の外周側面に固定されており、縦筒状体250と一体回転する。横軸260は、縦筒状体250の径方向に突出する棒形状を有しており、掘削軸121の軸Aに対して略垂直(垂直を含む)な軸Cを有している。横軸260は、上突出体220と下突出体230の間に配置されている。   As shown in FIGS. 14 and 22, the horizontal shaft 260 is fixed to the outer peripheral side surface of the vertical cylindrical body 250 and rotates integrally with the vertical cylindrical body 250. The horizontal axis 260 has a rod shape protruding in the radial direction of the vertical cylindrical body 250, and has an axis C that is substantially perpendicular (including vertical) to the axis A of the excavation axis 121. The horizontal axis 260 is disposed between the upper protrusion 220 and the lower protrusion 230.

横筒状体270は、水平方向両端が開口する筒形状を有している。横筒状体270には、横軸260が挿通されている。横筒状体270は、横軸260に対して横軸260の軸C回りに相対回転可能に支持されている。横軸260には、横筒状体270が横軸260から抜け落ちることを防止するためのピン261が装着されている。   The horizontal cylindrical body 270 has a cylindrical shape that is open at both ends in the horizontal direction. A horizontal shaft 260 is inserted through the horizontal cylindrical body 270. The horizontal cylindrical body 270 is supported so as to be rotatable relative to the horizontal axis 260 about the axis C of the horizontal axis 260. A pin 261 is attached to the horizontal shaft 260 to prevent the horizontal cylindrical body 270 from falling off the horizontal shaft 260.

横筒状体270の外周側面には、横攪拌翼203が固定されている。横攪拌翼203は、略板状の部材であり、横筒状体270の外周側面から外方に突出しており、横筒状体270と一体回転する。なお、横攪拌翼203を、後述する横突出体280に固定してもよい。   A horizontal stirring blade 203 is fixed to the outer peripheral side surface of the horizontal cylindrical body 270. The horizontal stirring blade 203 is a substantially plate-like member, protrudes outward from the outer peripheral side surface of the horizontal cylindrical body 270, and rotates integrally with the horizontal cylindrical body 270. In addition, you may fix the horizontal stirring blade 203 to the horizontal protrusion 280 mentioned later.

横突出体280は、横筒状体270の外周側面に固定されており、横筒状体270と一体回転する。横突出体280は、横筒状体270の外周側面から、横筒状体270の径方向に突出する棒形状を有している。横突出体280は、横軸260の軸C方向から見て、横軸260の軸C回り方向に略等間隔(等間隔を含む)を空けて四つ並置されている。本実施形態では、横突出体280・280・280・280は、横軸260の軸C方向から見て、横軸260の軸C回り方向に90°づつ間隔を空けて並置されている。
従って、本実施形態では、突出体220・230・280が、それぞれ同数(四つづつ)設けられている。
The lateral protrusion 280 is fixed to the outer peripheral side surface of the lateral cylindrical body 270 and rotates integrally with the lateral cylindrical body 270. The lateral projecting body 280 has a bar shape projecting from the outer peripheral side surface of the lateral tubular body 270 in the radial direction of the lateral tubular body 270. Four lateral protrusions 280 are juxtaposed at substantially equal intervals (including equal intervals) in the direction around the axis C of the horizontal axis 260 when viewed from the direction of the axis C of the horizontal axis 260. In the present embodiment, the lateral protrusions 280, 280, 280, and 280 are juxtaposed at intervals of 90 ° in the direction around the axis C of the horizontal axis 260 when viewed from the direction of the axis C of the horizontal axis 260.
Therefore, in the present embodiment, the same number (four) of the protrusions 220, 230, and 280 are provided.

なお、本実施形態では、縦筒状体250の外周側面に横軸260を一つ設けたが、これに限定されず、横軸260を複数設けてもよい。この場合、縦筒状体250の外周側面にて、複数の横軸260を掘削軸121の軸A回り方向に間隔を空けて並置して、各横軸260に横筒状体270及び横突出体280をそれぞれ装着することとなる。   In the present embodiment, one horizontal axis 260 is provided on the outer peripheral side surface of the vertical cylindrical body 250. However, the present invention is not limited to this, and a plurality of horizontal axes 260 may be provided. In this case, on the outer peripheral side surface of the vertical cylindrical body 250, a plurality of horizontal shafts 260 are juxtaposed at intervals in the direction around the axis A of the excavating shaft 121, and the horizontal cylindrical body 270 and the lateral protrusion are projected on each horizontal shaft 260. Each body 280 is to be worn.

図17(a)〜図21(b)は、掘削軸121及び外側軸122を掘削軸121の軸A回りに互いに逆方向に回転させて、かつ、掘削軸121の回転速度L2の絶対値と、外側軸122の回転速度N2の絶対値との間に差を設けなかったときの、横突出体280の動きを示している(L2=−N2)。
地盤改良装置200は、図17(a)(図17(b))→図18(a)(図18(b))→図19(a)(図19(b))→図20(a)(図20(b))→図21(a)(図21(b))の順に駆動することとする。
17 (a) to 21 (b) show that the excavation shaft 121 and the outer shaft 122 are rotated in directions opposite to each other around the axis A of the excavation shaft 121 and the absolute value of the rotation speed L2 of the excavation shaft 121 is obtained. The movement of the lateral protrusion 280 when there is no difference between the absolute value of the rotational speed N2 of the outer shaft 122 (L2 = −N2) is shown.
The ground improvement apparatus 200 is shown in FIG. 17A (FIG. 17B) → FIG. 18A (FIG. 18B) → FIG. 19A (FIG. 19B) → FIG. 20A. The driving is performed in the order of (FIG. 20B) → FIG. 21A (FIG. 21B).

図17(a)〜図21(b)に示すように、横突出体280における横軸260の軸C回りの回転軌跡は、上突出体220における掘削軸121の軸A回りの回転軌跡と交わると共に、下突出体230における掘削軸121の軸A回りの回転軌跡と交わるように構成されている。
これにより、掘削軸121及び外側軸122が、掘削軸121の軸A回りに互いに相対回転するときに、上突出体220及び下突出体230が横突出体280に接触するように構成されている。
As shown in FIGS. 17A to 21B, the rotation trajectory around the axis C of the horizontal shaft 260 in the lateral protrusion 280 intersects with the rotation trajectory around the axis A of the excavation shaft 121 in the upper protrusion 220. At the same time, the lower projecting body 230 is configured to intersect with the rotation locus around the axis A of the excavation shaft 121.
Thereby, when the excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121, the upper projecting body 220 and the lower projecting body 230 are configured to contact the lateral projecting body 280. .

図17(a)〜図21(b)に示すように、掘削軸121及び外側軸122が、掘削軸121の軸A回りに互いに相対回転するとき、上突出体220及び下突出体230が横突出体280に接触して、横突出体280を押すことで、横突出体280(横筒状体270)が横軸260の軸C回りに回転するように構成されている。
このとき、横軸260の上側に存在する一本の横突出体280が、隣り合う上突出体220・220の間に入り込んで、上突出体220により一方向P2に押されると共に、横軸260の下側に存在する一本の横突出体280が、隣り合う下突出体230・230の間に入り込んで、下突出体230により前記一方向とは反対の方向Q2に押される状態となる(図17(a)参照)。すなわち、横軸260を挟んで互いに反対側に存在する横突出体280・280の内の、一方が上突出体220により一方向P2に押されて、他方が下突出体230により前記一方向P2とは反対の方向Q2に押される状態となる。これにより、横突出体280が横軸260の軸C回りに回転する。そして、次の(下流側の)横突出体280が、次の隣り合う上突出体220・220(下突出体230・230)の間に入り込む。
掘削軸121及び外側軸122が、掘削軸121の軸A回りに互いに相対回転するときには、この一連の動作が繰り返され、これにより、横突出体280が横軸260の軸C回りに回転し続けることとなる。
また、上突出体220及び下突出体230を掘削軸121の軸A回りに互いに相対回転させたときには、横突出体280における横軸260の軸C回りの回転軌跡と、上突出体220における掘削軸121の軸A回りの回転軌跡が交わる箇所において、上突出体220と横突出体280が交互に通過していくと共に、横突出体280における横軸260の軸C回りの回転軌跡と、下突出体230における掘削軸121の軸A回りの回転軌跡が交わる箇所において、下突出体230と横突出体280が交互に通過していく状態となる。
As shown in FIGS. 17A to 21B, when the excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121, the upper protrusion 220 and the lower protrusion 230 are lateral. The horizontal protrusion 280 (horizontal cylindrical body 270) is configured to rotate around the axis C of the horizontal axis 260 by pressing the horizontal protrusion 280 in contact with the protrusion 280.
At this time, one horizontal protrusion 280 existing above the horizontal shaft 260 enters between the adjacent upper protrusions 220 and 220 and is pushed in one direction P2 by the upper protrusion 220, and at the same time the horizontal shaft 260 One lateral projecting body 280 existing on the lower side enters between adjacent lower projecting bodies 230 and 230 and is pushed by the lower projecting body 230 in a direction Q2 opposite to the one direction ( FIG. 17 (a)). That is, one of the horizontal protrusions 280 and 280 existing on the opposite sides of the horizontal shaft 260 is pushed in one direction P2 by the upper protrusion 220, and the other is pressed in the one direction P2 by the lower protrusion 230. The state is pushed in the opposite direction Q2. Thereby, the horizontal protrusion 280 rotates around the axis C of the horizontal axis 260. Then, the next (downstream) lateral protrusion 280 enters between the next adjacent upper protrusions 220 and 220 (lower protrusions 230 and 230).
When the excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121, this series of operations is repeated, whereby the lateral protrusion 280 continues to rotate about the axis C of the horizontal shaft 260. It will be.
When the upper projecting body 220 and the lower projecting body 230 are rotated relative to each other around the axis A of the excavation shaft 121, the rotation trajectory of the lateral projection body 280 about the axis C of the horizontal axis 260 and the excavation of the upper projection body 220 are excavated. The upper projecting body 220 and the lateral projecting body 280 pass alternately at the location where the rotational trajectories of the shaft 121 around the axis A intersect, and the lateral projecting body 280 has a rotational trajectory about the axis C of the lateral axis 260 and the lower The lower projecting body 230 and the lateral projecting body 280 are alternately passing at the location where the rotation trajectories of the projecting body 230 around the axis A of the excavation shaft 121 intersect.

以上のように構成することで、横軸160の軸A回りの回転を規制しなくても、横突出体280を横軸260の軸C回りに回転させることができる。これにより、シンプルな装置構成で横突出体280を横軸260の軸C回りに回転させることが可能となる。   With the configuration described above, the lateral protrusion 280 can be rotated about the axis C of the horizontal axis 260 without restricting the rotation of the horizontal axis 160 about the axis A. Thereby, the horizontal protrusion 280 can be rotated around the axis C of the horizontal axis 260 with a simple device configuration.

また、横突出体280が二つの突出体220・230で押されて回転するように構成されており、これにより、横突出体280にかかる負荷が分散されるように構成されている。さらに、横突出体280及び縦筒状体250が、掘削軸121及び外側軸122に対して、掘削軸121の軸A回りに一体的に相対回転可能に構成されており、これにより、横突出体280は、負荷がかかったときに縦筒状体250と共に掘削軸121の軸A回りに回転して、逃げることができるように構成されている。
従って、横突出体280にかかる負荷を低減でき、装置の耐久性を向上させることが可能となる。
Further, the lateral projecting body 280 is configured to be rotated by being pushed by the two projecting bodies 220 and 230, and thereby, the load applied to the lateral projecting body 280 is configured to be distributed. Further, the lateral projecting body 280 and the vertical cylindrical body 250 are configured to be integrally rotatable relative to the excavation shaft 121 and the outer shaft 122 around the axis A of the excavation shaft 121, thereby The body 280 is configured to rotate around the axis A of the excavating shaft 121 together with the vertical cylindrical body 250 when a load is applied, and to escape.
Therefore, the load applied to the lateral protrusion 280 can be reduced, and the durability of the apparatus can be improved.

なお、上記したように、上突出体220及び下突出体230を掘削軸121の軸A回りに互いに相対回転させることにより、横突出体280を横軸260の軸C回りに回転させることができるのであれば、上突出体220、下突出体230、及び横突出体280の設置数に関しては、本実施形態のように、四つづつに限定しなくてもよく、例えば、突出体220・230・280を三つづつ設けたり、八つづつ設けてもよい。また、例えば、上突出体220及び下突出体230を三つづつ設けて、横突出体280を四つ設けてもよい。
また、上記したように、上突出体220及び下突出体230を掘削軸121の軸A回りに互いに相対回転させることにより、横突出体280を横軸260の軸C回りに回転させることができるのであれば、上突出体220・220・・・間の間隔、下突出体230・230・・・間の間隔、及び横突出体280・280・・・間の間隔に関しては、それぞれ厳密に等間隔である必要はなく、間隔に多少のばらつきがそれぞれあってもよい。
また、上記したように、上突出体220及び下突出体230を掘削軸121の軸A回りに互いに相対回転させることにより、横突出体280を横軸260の軸C回りに回転させることができるのであれば、横軸260の軸Cが掘削軸121の軸Aに対して厳密に垂直である必要がなく、垂直な状態から多少ずれていてもよい。
In addition, as described above, the horizontal protrusion 280 can be rotated around the axis C of the horizontal shaft 260 by rotating the upper protrusion 220 and the lower protrusion 230 relative to each other around the axis A of the excavation shaft 121. In this case, the number of the upper projecting body 220, the lower projecting body 230, and the lateral projecting body 280 is not limited to four as in the present embodiment. For example, the projecting bodies 220 and 230 are not limited to four. -Three 280s may be provided, or eight 280s may be provided. Further, for example, three upper protrusions 220 and three lower protrusions 230 may be provided, and four lateral protrusions 280 may be provided.
Further, as described above, by rotating the upper projecting body 220 and the lower projecting body 230 relative to each other around the axis A of the excavating shaft 121, the lateral projecting body 280 can be rotated about the axis C of the horizontal axis 260. , The spacing between the upper protrusions 220, 220..., The spacing between the lower protrusions 230, 230..., And the spacing between the lateral protrusions 280, 280. There is no need for the interval, and there may be some variation in the interval.
Further, as described above, by rotating the upper projecting body 220 and the lower projecting body 230 relative to each other around the axis A of the excavating shaft 121, the lateral projecting body 280 can be rotated about the axis C of the horizontal axis 260. In this case, the axis C of the horizontal axis 260 does not have to be strictly perpendicular to the axis A of the excavation axis 121, and may be slightly deviated from the vertical state.

以下では、地盤改良装置200の動作について説明する。   Below, operation | movement of the ground improvement apparatus 200 is demonstrated.

図17(a)〜図21(b)に示すように、地盤改良装置200は、回転駆動装置110により掘削軸121及び外側軸122を掘削軸121の軸A回りに互いに相対回転させながら、下降することで、掘削翼103で地盤を掘削していく。このとき、掘削軸121及び外側軸122が掘削軸121の軸A回りに互いに相対回転することによって、連結体240(外攪拌翼202)及び内攪拌翼201が、掘削軸121の軸A回りに互いに異なる速度で回転する。また、このとき、掘削軸121(上突出体220)及び外側軸122(下突出体230)の回転により、横突出体280が回転して、横攪拌翼203が横軸260の軸C回りに回転する。地盤改良装置200は、このとき、掘削軸121の下端部の固化材吐出孔から固化材を吐出する。
これにより、掘削土と固化材が、連結体240(外攪拌翼202)及び内攪拌翼201により掘削軸121の軸A回りに攪拌されると共に、横攪拌翼203により横軸260の軸C回りに攪拌(上下に攪拌)されることとなる。
As shown in FIGS. 17A to 21B, the ground improvement device 200 is lowered while the excavation shaft 121 and the outer shaft 122 are rotated relative to each other around the axis A of the excavation shaft 121 by the rotation drive device 110. By doing so, the ground is excavated by the excavating blade 103. At this time, the excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121, so that the connecting body 240 (outer stirring blade 202) and the inner stirring blade 201 move around the axis A of the excavation shaft 121. Rotates at different speeds. At this time, the horizontal protrusion 280 is rotated by the rotation of the excavation shaft 121 (upper protrusion 220) and the outer shaft 122 (lower protrusion 230), and the horizontal stirring blade 203 is rotated about the axis C of the horizontal axis 260. Rotate. At this time, the ground improvement device 200 discharges the solidified material from the solidified material discharge hole at the lower end of the excavation shaft 121.
As a result, the excavated soil and the solidified material are agitated around the axis A of the excavating shaft 121 by the connecting body 240 (outer agitating blade 202) and the inner agitating blade 201, and around the axis C of the horizontal axis 260 by the lateral agitating blade 203. Will be stirred (up and down).

なお、掘削軸121及び外側軸122を掘削軸121の軸A回りに互いに相対回転させる際に、掘削軸121の回転速度L2の絶対値と、外側軸122の回転速度N2の絶対値と、の間に差を設けてもよい(|L2|≠|N2|)。例えば、図22(a)及び図22(b)に示すように、回転駆動装置110により、掘削軸121及び外側軸122を、掘削軸121の軸A回りに互いに相対回転させるときに、掘削軸121に関しては高速で回転させて、外側軸122に関しては、掘削軸121の回転方向とは逆方向に低速で回転させる。
この場合、掘削軸121(上突出体220)の回転速度L2の絶対値と、外側軸122(下突出体230)の回転速度N2の絶対値との間に差が存在することにより、縦筒状体250(横突出体280)が、掘削軸121の軸A回りに回転することとなる。その結果、横突出体280(横攪拌翼203)が、横軸260の軸C回りに回転しながら、掘削軸121の軸A回りに回転することとなるので、横攪拌翼203により掘削土と固化材をより良好に攪拌することが可能となる(図22(a)及び図22(b)参照)。
When the excavation shaft 121 and the outer shaft 122 are rotated relative to each other around the axis A of the excavation shaft 121, the absolute value of the rotation speed L2 of the excavation shaft 121 and the absolute value of the rotation speed N2 of the outer shaft 122 are A difference may be provided between them (| L2 | ≠ | N2 |). For example, as shown in FIGS. 22A and 22B, when the excavation shaft 121 and the outer shaft 122 are rotated relative to each other around the axis A of the excavation shaft 121 by the rotation drive device 110, the excavation shaft 121 is rotated at a high speed, and the outer shaft 122 is rotated at a low speed in a direction opposite to the rotation direction of the excavation shaft 121.
In this case, there is a difference between the absolute value of the rotational speed L2 of the excavating shaft 121 (upper protrusion body 220) and the absolute value of the rotational speed N2 of the outer shaft 122 (lower protrusion body 230). The shaped body 250 (lateral projecting body 280) rotates around the axis A of the excavation shaft 121. As a result, the laterally projecting body 280 (lateral stirring blade 203) rotates around the axis A of the excavating shaft 121 while rotating around the axis C of the horizontal shaft 260. It becomes possible to stir the solidified material better (see FIGS. 22A and 22B).

なお、突出体220・230・280をそれぞれ外攪拌翼・攪拌翼・横攪拌翼として構成してもよい。このように構成する場合には、上記攪拌翼202・201・203を設けなくてもよい。しかし、このように構成する場合でも、掘削土と固化材をより良好に攪拌することができるようにするために、攪拌翼202・201・203をさらに設けてもよい。また、横筒状体270を横軸260の軸C回りに回転させるための機構(突出体220・230・280等)のサイズについては特に限定されず、例えば、攪拌翼101・102・104の設置スペースを確保しやすくするために、図14、図15(a)、図15(b)等に示すものよりも小型(短め)に構成してもよい。   Note that the protrusions 220, 230, and 280 may be configured as outer stirring blades, stirring blades, and horizontal stirring blades, respectively. In the case of such a configuration, the stirring blades 202, 201, and 203 need not be provided. However, even in the case of such a configuration, the stirring blades 202, 201, and 203 may be further provided so that the excavated soil and the solidified material can be stirred more satisfactorily. Further, the size of the mechanism (projection body 220, 230, 280, etc.) for rotating the horizontal cylindrical body 270 around the axis C of the horizontal axis 260 is not particularly limited. In order to easily secure the installation space, it may be configured smaller (shorter) than those shown in FIG. 14, FIG. 15 (a), FIG. 15 (b) and the like.

図23及び図24に示すように、縦筒状体250の外周側面(又は横軸260)に、中攪拌翼204を固定してもよい。中攪拌翼204は、略板状の部材であり、縦筒状体250の外周側面から外方に突出しており、縦筒状体250と一体回転する。
そして、掘削軸121及び外側軸122を掘削軸121の軸A回りに互いに相対回転させる際に、掘削軸121の回転速度L2の絶対値と、外側軸122の回転速度N2の絶対値と、の間に差を設けるように構成する(|L1|≠|N1|)。
このように構成すると、掘削軸121及び外側軸122が掘削軸121の軸A回りに互いに相対回転するときに、掘削軸121の回転速度L2の絶対値と、外側軸122の回転速度N2の絶対値との間に差が存在することにより、縦筒状体250が、掘削軸121の軸A回りに回転することとなる。そして、このとき、外側軸122(外攪拌翼202)、縦筒状体250(中攪拌翼204)、及び掘削軸121(内攪拌翼201)が、掘削軸121の軸A回りに、それぞれ異なる速度L2・M2・N2で回転することとなる(図24参照)。
従って、攪拌翼202・204・201を、掘削軸121の軸A回りに、三種類の異なる速度L2・M2・N2でそれぞれ回転させることが可能となるので、掘削土と固化材をより良好に攪拌することが可能となる。
なお、横軸260を中攪拌翼として構成してもよい。このように構成する場合には、上記中攪拌翼204を設けなくてもよい。しかし、このように構成する場合でも、掘削土と固化材をより良好に攪拌することができるようにするために、中攪拌翼204をさらに設けてもよい。
As shown in FIGS. 23 and 24, the middle stirring blade 204 may be fixed to the outer peripheral side surface (or the horizontal axis 260) of the vertical cylindrical body 250. The middle stirring blade 204 is a substantially plate-like member, protrudes outward from the outer peripheral side surface of the vertical cylindrical body 250, and rotates integrally with the vertical cylindrical body 250.
When the excavation shaft 121 and the outer shaft 122 are rotated relative to each other around the axis A of the excavation shaft 121, the absolute value of the rotation speed L2 of the excavation shaft 121 and the absolute value of the rotation speed N2 of the outer shaft 122 are A difference is provided between them (| L1 | ≠ | N1 |).
With this configuration, when the excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121, the absolute value of the rotation speed L <b> 2 of the excavation shaft 121 and the absolute value of the rotation speed N <b> 2 of the outer shaft 122. Due to the difference between the values, the vertical cylindrical body 250 rotates around the axis A of the excavation shaft 121. At this time, the outer shaft 122 (outer stirring blade 202), the vertical cylindrical body 250 (middle stirring blade 204), and the excavation shaft 121 (inner stirring blade 201) are different around the axis A of the excavation shaft 121. It will rotate at speed L2, M2, and N2 (refer FIG. 24).
Therefore, since the stirring blades 202, 204, and 201 can be rotated around the axis A of the excavation shaft 121 at three different speeds L2, M2, and N2, respectively, the excavated soil and the solidified material can be improved. It becomes possible to stir.
In addition, you may comprise the horizontal axis 260 as a middle stirring blade. In the case of such a configuration, the middle stirring blade 204 may not be provided. However, even in the case of such a configuration, an intermediate stirring blade 204 may be further provided in order to better stir the excavated soil and the solidified material.

[第三実施形態]
以下では、地盤改良装置300について説明する。
[Third embodiment]
Below, the ground improvement apparatus 300 is demonstrated.

以下の説明においては、地盤改良装置100・200との相違点に着目して説明し、地盤改良装置100・200と同じ構成については、同一符号を付して詳細な説明は省略する。   In the following description, it demonstrates paying attention to difference with the ground improvement apparatuses 100 and 200, about the same structure as the ground improvement apparatuses 100 and 200, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

地盤改良装置300は、上記第一実施形態の地盤改良装置100と、第二実施形態の地盤改良装置200を組み合わせた構成を有し、地盤改良装置100・200と同様の作用効果を有する。従って、以下では、地盤改良装置300の構成、作用効果、及び攪拌翼の配置構造についての詳細な説明は省略し、相違点に着目して説明する。   The ground improvement device 300 has a configuration in which the ground improvement device 100 of the first embodiment and the ground improvement device 200 of the second embodiment are combined, and has the same effects as the ground improvement devices 100 and 200. Therefore, in the following, detailed description of the configuration, operational effects, and the arrangement structure of the stirring blades of the ground improvement device 300 will be omitted, and the description will be focused on the differences.

図25に示すように、地盤改良装置300は、回転駆動装置110と、軸体120と上突出体(第一上突出体)130・130・・・と、下突出体(第一下突出体)140・140・・・と、縦筒状体(第一縦筒状体)150と、横軸(第一横軸)160と、横筒状体(第一横筒状体)170と、横突出体(第一横突出体)180・180・・・と、環体210と、上突出体(第二上突出体)220・220・・・と、下突出体(第二下突出体)230・230・・・と、連結体240と、縦筒状体(第二縦筒状体)250と、横軸(第二横軸)260と、横筒状体(第二横筒状体)270と、横突出体(第二横突出体)280・280・・・と、を具備する。   As shown in FIG. 25, the ground improvement device 300 includes a rotation drive device 110, a shaft body 120, upper projecting bodies (first upper projecting bodies) 130, 130..., And lower projecting bodies (first lower projecting bodies). 140, 140..., A vertical cylindrical body (first vertical cylindrical body) 150, a horizontal axis (first horizontal axis) 160, a horizontal cylindrical body (first horizontal cylindrical body) 170, .., A ring 210, an upper protrusion (second upper protrusion) 220, 220, and a lower protrusion (second lower protrusion) , 230, 230..., A connecting body 240, a vertical cylindrical body (second vertical cylindrical body) 250, a horizontal axis (second horizontal axis) 260, and a horizontal cylindrical body (second horizontal cylindrical shape). Body) 270 and laterally projecting bodies (second laterally projecting bodies) 280, 280.

下突出体(第一下突出体)140及び上突出体(第二上突出体)220は、外側軸122と環体210の間に配置されている。
横軸(第一横軸)160及び横軸(第二横軸)260は、互いに所定間隔を空けて配置されている。
前記所定間隔は、掘削軸121及び外側軸122が掘削軸121の軸A回りに互いに相対回転する際に、これに伴って回転する横突出体180と、横突出体280が、互いに衝突しない程度の間隔である。
The lower protrusion (first lower protrusion) 140 and the upper protrusion (second upper protrusion) 220 are disposed between the outer shaft 122 and the ring body 210.
The horizontal axis (first horizontal axis) 160 and the horizontal axis (second horizontal axis) 260 are arranged at a predetermined interval from each other.
The predetermined interval is such that when the excavation shaft 121 and the outer shaft 122 rotate relative to each other around the axis A of the excavation shaft 121, the lateral projecting body 180 and the lateral projecting body 280 do not collide with each other. Is the interval.

以上のように構成する場合において、掘削軸121及び外側軸122を掘削軸121の軸A回りに互いに相対回転させることで、横突出体(第一横突出体)180を横軸(第一横軸)160の軸B回りに回転させると共に、横突出体(第二横突出体)280を横軸(第二横軸)260の軸C回りの回転させることができ、さらに、このときの横突出体180の軸B回りの回転方向と、横突出体280の軸C回りの回転方向と、を互いに逆方向にすることが可能となる(図26の二点鎖線の矢印参照)。これにより、横突出体180・280、及び/又は、横突出体180・280に装着される攪拌翼により、掘削土と固化材をより良好に攪拌することが可能となる。
また、掘削軸121及び外側軸122を掘削軸121の軸A回りに互いに相対回転させる際に、掘削軸121の回転速度の絶対値と、外側軸122の回転速度の絶対値と、の間に差を設けることで、横突出体180・280を掘削軸121の軸A回りに回転させることが可能となる(図26の実線の矢印参照)。これにより、横突出体180・280、及び/又は、横突出体180・280に装着される攪拌翼により、掘削土と固化材をより良好に攪拌することが可能となる。
In the case of the configuration as described above, by rotating the excavation shaft 121 and the outer shaft 122 relative to each other around the axis A of the excavation shaft 121, the lateral projecting body (first lateral projecting body) 180 is The horizontal protrusion (second horizontal protrusion) 280 can be rotated around the axis C of the horizontal axis (second horizontal axis) 260, and the horizontal protrusion at this time can be further rotated. The rotation direction of the protrusion 180 around the axis B and the rotation direction of the horizontal protrusion 280 around the axis C can be opposite to each other (see the two-dot chain arrow in FIG. 26). Thus, the excavated soil and the solidified material can be better stirred by the stirring blades attached to the lateral protrusions 180 and 280 and / or the lateral protrusions 180 and 280.
Further, when the excavation shaft 121 and the outer shaft 122 are rotated relative to each other around the axis A of the excavation shaft 121, the absolute value of the rotation speed of the excavation shaft 121 and the absolute value of the rotation speed of the outer shaft 122 are between By providing the difference, the lateral protrusions 180 and 280 can be rotated around the axis A of the excavation shaft 121 (see solid arrows in FIG. 26). Thus, the excavated soil and the solidified material can be better stirred by the stirring blades attached to the lateral protrusions 180 and 280 and / or the lateral protrusions 180 and 280.

100・200・300 地盤改良装置
120 軸体
121 掘削軸
122 外側軸
130・220 上突出体
140・230 下突出体
150・250 縦筒状体
160・260 横軸
170・270 横筒状体
180・280 横突出体
210 環体
240 連結体
100/200/300 Ground improvement device 120 Shaft body 121 Excavation shaft 122 Outer shaft 130/220 Upper projecting body 140/230 Lower projecting body 150/250 Vertical tubular body 160/260 Horizontal shaft 170/270 Horizontal tubular body 180 / 280 lateral projection 210 ring 240 connection

Claims (6)

掘削軸、及び前記掘削軸が挿通される外側軸を有し、前記掘削軸は前記外側軸内から前記掘削軸の軸方向に突出する突出部を有し、前記掘削軸及び前記外側軸が互いに前記掘削軸の軸回りに相対回転可能に構成される軸体と、
前記外側軸に固定され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される上突出体と、
前記掘削軸の突出部に固定され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される下突出体と、
前記掘削軸が挿通され、前記上突出体及び前記下突出体の間に配置され、前記掘削軸及び前記外側軸に対して前記掘削軸の軸回りに相対回転可能な縦筒状体と、
前記縦筒状体に固定され、前記掘削軸の軸に対して略垂直な軸を有する横軸と、
前記横軸が挿通され、前記横軸の軸回りに回転可能な横筒状体と、
前記横筒状体に固定され、前記横軸の軸方向から見て、前記横軸の軸回り方向に略等間隔を空けて所定数並置される横突出体と、
を備え、
前記横突出体における前記横軸の軸回りの回転軌跡が、前記上突出体における前記掘削軸の軸回りの回転軌跡と交わると共に、前記下突出体における前記掘削軸の軸回りの回転軌跡と交わるように構成して、
前記掘削軸及び前記外側軸を互いに前記掘削軸の軸回りに相対回転させることによって、前記上突出体及び前記下突出体で前記横突出体を押して、前記横突出体を前記横軸の軸回りに回転させる、
地盤改良装置。
A digging shaft and an outer shaft through which the digging shaft is inserted, the digging shaft having a projecting portion projecting in the axial direction of the digging shaft from within the outer shaft, and the digging shaft and the outer shaft are mutually connected A shaft body configured to be relatively rotatable about the axis of the excavation shaft;
An upper projecting body fixed to the outer shaft and juxtaposed in a predetermined number in the direction around the axis of the excavation shaft as viewed from the axial direction of the excavation shaft;
A lower projecting body fixed to the projecting portion of the excavation shaft and juxtaposed at a predetermined number of intervals around the axis of the excavation shaft as viewed from the axial direction of the excavation shaft;
A vertical tubular body through which the excavation shaft is inserted, disposed between the upper projecting body and the lower projecting body, and rotatable relative to the excavation shaft and the outer shaft around the axis of the excavation shaft;
A horizontal axis fixed to the vertical cylindrical body and having an axis substantially perpendicular to the axis of the excavation axis;
A horizontal cylindrical body that is inserted through the horizontal axis and is rotatable about the axis of the horizontal axis;
A laterally projecting body fixed to the horizontal cylindrical body, and juxtaposed in a predetermined number in the direction around the axis of the horizontal axis when viewed from the axial direction of the horizontal axis;
With
A rotation locus around the axis of the horizontal axis in the lateral protrusion intersects with a rotation locus around the axis of the excavation shaft in the upper protrusion, and also intersects with a rotation locus around the axis of the excavation axis in the lower protrusion. Configured as
By rotating the excavating shaft and the outer shaft relative to each other about the axis of the excavating shaft, the upper projecting body and the lower projecting body push the lateral projecting body so that the lateral projecting body is rotated about the axis of the horizontal axis. Rotate to
Ground improvement device.
掘削軸、及び前記掘削軸が挿通される外側軸を有し、前記掘削軸は前記外側軸内から前記掘削軸の軸方向に突出する突出部を有し、前記掘削軸及び前記外側軸が互いに前記掘削軸の軸回りに相対回転可能に構成される軸体と、
前記掘削軸の突出部が挿通され、前記掘削軸に対して前記掘削軸の軸回りに相対回転可能な環体と、
前記掘削軸の突出部に固定され、前記外側軸及び前記環体の間に配置され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される上突出体と、
前記環体に固定され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される下突出体と、
一端が前記外側軸に固定され、他端が前記環体に固定される連結体と、
前記掘削軸が挿通され、前記上突出体及び前記下突出体の間に配置され、前記掘削軸、前記外側軸、及び前記環体に対して前記掘削軸の軸回りに相対回転可能な縦筒状体と、
前記縦筒状体に固定され、前記掘削軸の軸に対して略垂直な軸を有する横軸と、
前記横軸が挿通され、前記横軸の軸回りに回転可能な横筒状体と、
前記横筒状体に固定され、前記横軸の軸方向から見て、前記横軸の軸回り方向に略等間隔を空けて所定数並置される横突出体と、
を備え、
前記横突出体における前記横軸の軸回りの回転軌跡が、前記上突出体における前記掘削軸の軸回りの回転軌跡と交わると共に、前記下突出体における前記掘削軸の軸回りの回転軌跡と交わるように構成して、
前記掘削軸及び前記外側軸を互いに前記掘削軸の軸回りに相対回転させることによって、前記上突出体及び前記下突出体で前記横突出体を押して、前記横突出体を前記横軸の軸回りに回転させる、
地盤改良装置。
A digging shaft and an outer shaft through which the digging shaft is inserted, the digging shaft having a projecting portion projecting in the axial direction of the digging shaft from within the outer shaft, and the digging shaft and the outer shaft are mutually connected A shaft body configured to be relatively rotatable about the axis of the excavation shaft;
An annular body through which the projecting portion of the excavation shaft is inserted and rotatable relative to the excavation shaft around the axis of the excavation shaft;
Fixed to the projecting portion of the excavation shaft, disposed between the outer shaft and the ring body, and a predetermined number of juxtaposed at substantially equal intervals around the axis of the excavation shaft when viewed from the axial direction of the excavation shaft An upper protrusion,
A lower protrusion that is fixed to the ring body and is juxtaposed in a predetermined number in the direction around the axis of the excavation shaft as viewed from the axial direction of the excavation axis;
One end fixed to the outer shaft and the other end fixed to the ring,
A vertical cylinder through which the excavation shaft is inserted and which is disposed between the upper projecting body and the lower projecting body and is relatively rotatable around the axis of the excavation shaft with respect to the excavation shaft, the outer shaft, and the ring body And
A horizontal axis fixed to the vertical cylindrical body and having an axis substantially perpendicular to the axis of the excavation axis;
A horizontal cylindrical body that is inserted through the horizontal axis and is rotatable about the axis of the horizontal axis;
A laterally projecting body fixed to the horizontal cylindrical body, and juxtaposed in a predetermined number in the direction around the axis of the horizontal axis when viewed from the axial direction of the horizontal axis;
With
A rotation locus around the axis of the horizontal axis in the lateral protrusion intersects with a rotation locus around the axis of the excavation shaft in the upper protrusion, and also intersects with a rotation locus around the axis of the excavation axis in the lower protrusion. Configured as
By rotating the excavating shaft and the outer shaft relative to each other about the axis of the excavating shaft, the upper projecting body and the lower projecting body push the lateral projecting body so that the lateral projecting body is rotated about the axis of the horizontal axis. Rotate to
Ground improvement device.
前記横突出体が攪拌翼としての機能を有する構成とし、及び/又は、前記横筒状体に攪拌翼を固定する、
請求項1又は請求項2に記載の地盤改良装置。
The lateral protrusion is configured to have a function as a stirring blade, and / or the stirring blade is fixed to the horizontal cylindrical body,
The ground improvement apparatus of Claim 1 or Claim 2.
前記掘削軸及び前記外側軸を互いに前記掘削軸の軸回りに相対回転させる際に、前記掘削軸における前記掘削軸の軸回りの回転速度の絶対値と、前記外側軸における前記掘削軸の軸回りの回転速度の絶対値と、の間に差を設けることによって、前記横突出体を前記掘削軸の軸回りに回転させる、
請求項1〜請求項3のいずれか一項に記載の地盤改良装置。
When rotating the excavation shaft and the outer shaft relative to each other around the axis of the excavation shaft, the absolute value of the rotation speed of the excavation shaft around the axis of the excavation shaft and the axis of the excavation shaft at the outer shaft By rotating the lateral protrusion around the axis of the excavation shaft by providing a difference between the absolute value of the rotation speed of
The ground improvement apparatus as described in any one of Claims 1-3.
前記横軸が攪拌翼としての機能を有する構成とし、及び/又は、前記縦筒状体に攪拌翼を固定して、
前記掘削軸及び前記外側軸を互いに前記掘削軸の軸回りに相対回転させる際に、前記掘削軸における前記掘削軸の軸回りの回転速度の絶対値と、前記外側軸における前記掘削軸の軸回りの回転速度の絶対値と、の間に差を設けることによって、前記縦筒状体を、前記掘削軸及び前記外側軸とは異なる速度で、前記掘削軸の軸回りに回転させる、
請求項1〜請求項4のいずれか一項に記載の地盤改良装置。
The horizontal axis has a function as a stirring blade, and / or the stirring blade is fixed to the vertical cylindrical body,
When rotating the excavation shaft and the outer shaft relative to each other around the axis of the excavation shaft, the absolute value of the rotation speed of the excavation shaft around the axis of the excavation shaft and the axis of the excavation shaft at the outer shaft By rotating the vertical cylindrical body around the axis of the excavation axis at a speed different from that of the excavation axis and the outer axis, by providing a difference between the absolute value of the rotation speed of
The ground improvement apparatus as described in any one of Claims 1-4.
掘削軸、及び前記掘削軸が挿通される外側軸を有し、前記掘削軸は前記外側軸内から前記掘削軸の軸方向に突出する突出部を有し、前記掘削軸及び前記外側軸が互いに前記掘削軸の軸回りに相対回転可能に構成される軸体と、
前記掘削軸の突出部が挿通され、前記掘削軸に対して前記掘削軸の軸回りに相対回転可能な環体と、
前記外側軸に固定され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される第一上突出体と、
前記掘削軸の突出部に固定され、前記外側軸及び前記環体の間に配置され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される第一下突出体と、
前記掘削軸の突出部に固定され、前記外側軸及び前記環体の間に配置され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される第二上突出体と、
前記環体に固定され、前記掘削軸の軸方向から見て、前記掘削軸の軸回り方向に略等間隔を空けて所定数並置される第二下突出体と、
一端が前記外側軸に固定され、他端が前記環体に固定される連結体と、
前記掘削軸が挿通され、前記第一上突出体及び前記第一下突出体の間に配置され、前記掘削軸、前記外側軸、及び前記環体に対して前記掘削軸の軸回りに相対回転可能な第一縦筒状体と、
前記第一縦筒状体に固定され、前記掘削軸の軸に対して略垂直な軸を有する第一横軸と、
前記第一横軸が挿通され、前記第一横軸の軸回りに回転可能な第一横筒状体と、
前記第一横筒状体に固定され、前記第一横軸の軸方向から見て、前記第一横軸の軸回り方向に略等間隔を空けて所定数並置される第一横突出体と、
前記掘削軸が挿通され、前記第二上突出体及び前記第二下突出体の間に配置され、前記掘削軸、前記外側軸、及び前記環体に対して前記掘削軸の軸回りに相対回転可能な第二縦筒状体と、
前記第二縦筒状体に固定され、前記第一横軸に対して所定間隔を空けて配置され、前記掘削軸の軸に対して略垂直な軸を有する第二横軸と、
前記第二横軸が挿通され、前記第二横軸の軸回りに回転可能な第二横筒状体と、
前記第二横筒状体に固定され、前記第一横軸の軸方向から見て、前記第一横軸の軸回り方向に略等間隔を空けて所定数並置される第二横突出体と、
を備え、
前記第一横突出体における前記第一横軸の軸回りの回転軌跡が、前記第一上突出体における前記掘削軸の軸回りの回転軌跡と交わると共に、前記第一下突出体における前記掘削軸の軸回りの回転軌跡と交わるように構成して、
前記第二横突出体における前記第二横軸の軸回りの回転軌跡が、前記第二上突出体における前記掘削軸の軸回りの回転軌跡と交わると共に、前記第二下突出体における前記掘削軸の軸回りの回転軌跡と交わるように構成して、
前記掘削軸及び前記外側軸を互いに前記掘削軸の軸回りに相対回転させることによって、前記第一上突出体及び前記第一下突出体で前記第一横突出体を押して、前記第一横突出体を前記第一横軸の軸回りに回転させると共に、前記第二上突出体及び前記第二下突出体で前記第二横突出体を押して、前記第二横突出体を前記第二横軸の軸回りに回転させる、
地盤改良装置。
A digging shaft and an outer shaft through which the digging shaft is inserted, the digging shaft having a projecting portion projecting in the axial direction of the digging shaft from within the outer shaft, and the digging shaft and the outer shaft are mutually connected A shaft body configured to be relatively rotatable about the axis of the excavation shaft;
An annular body through which the projecting portion of the excavation shaft is inserted and rotatable relative to the excavation shaft around the axis of the excavation shaft;
A first upper projecting body fixed to the outer shaft and juxtaposed in a predetermined number in the direction around the axis of the excavation shaft as viewed from the axial direction of the excavation shaft;
Fixed to the projecting portion of the excavation shaft, disposed between the outer shaft and the ring body, and a predetermined number of juxtaposed at substantially equal intervals around the axis of the excavation shaft when viewed from the axial direction of the excavation shaft A first lower projecting body,
Fixed to the projecting portion of the excavation shaft, disposed between the outer shaft and the ring body, and a predetermined number of juxtaposed at substantially equal intervals around the axis of the excavation shaft when viewed from the axial direction of the excavation shaft A second upper protrusion,
A second lower projecting body fixed to the ring body and juxtaposed at a predetermined number of intervals around the axis of the excavation shaft as viewed from the axial direction of the excavation shaft;
One end fixed to the outer shaft and the other end fixed to the ring,
The excavation shaft is inserted and disposed between the first upper protrusion and the first lower protrusion, and rotates relative to the excavation shaft, the outer shaft, and the ring body around the excavation axis. Possible first vertical cylindrical body,
A first horizontal axis fixed to the first vertical cylindrical body and having an axis substantially perpendicular to the axis of the excavation axis;
A first horizontal cylindrical body through which the first horizontal axis is inserted and rotatable about the axis of the first horizontal axis;
A first lateral protrusion fixed to the first horizontal cylindrical body and juxtaposed with a predetermined number of portions at substantially equal intervals around the axis of the first horizontal axis when viewed from the axial direction of the first horizontal axis; ,
The excavation shaft is inserted, and is disposed between the second upper protrusion and the second lower protrusion, and rotates relative to the excavation shaft, the outer shaft, and the ring body around the excavation axis. A possible second vertical cylinder;
A second horizontal axis fixed to the second vertical cylindrical body, disposed at a predetermined interval with respect to the first horizontal axis, and having an axis substantially perpendicular to the axis of the excavation axis;
A second horizontal cylindrical body that is inserted through the second horizontal axis and is rotatable about the axis of the second horizontal axis;
A second lateral protrusion fixed to the second horizontal cylindrical body and juxtaposed at a predetermined number of intervals around the axis of the first horizontal axis when viewed from the axial direction of the first horizontal axis; ,
With
The rotation trajectory around the axis of the first horizontal axis in the first lateral protrusion intersects with the rotation trajectory around the axis of the excavation axis in the first upper protrusion, and the excavation axis in the first lower protrusion. Configured to intersect with the rotation trajectory around the axis of
The rotation trajectory of the second horizontal protrusion around the second horizontal axis intersects the rotation trajectory of the second upper protrusion around the excavation axis and the excavation axis of the second lower protrusion. Configured to intersect with the rotation trajectory around the axis of
The first lateral protrusion is pushed by the first upper protrusion and the first lower protrusion by rotating the excavation shaft and the outer shaft relative to each other around the axis of the excavation shaft. The body is rotated about the axis of the first horizontal axis, and the second horizontal protrusion is pushed by the second upper protrusion and the second lower protrusion, and the second horizontal protrusion is moved to the second horizontal axis. Rotate around the axis,
Ground improvement device.
JP2013154751A 2013-07-25 2013-07-25 Ground improvement device Active JP5383947B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013154751A JP5383947B1 (en) 2013-07-25 2013-07-25 Ground improvement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013154751A JP5383947B1 (en) 2013-07-25 2013-07-25 Ground improvement device

Publications (2)

Publication Number Publication Date
JP5383947B1 true JP5383947B1 (en) 2014-01-08
JP2015025273A JP2015025273A (en) 2015-02-05

Family

ID=50036597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013154751A Active JP5383947B1 (en) 2013-07-25 2013-07-25 Ground improvement device

Country Status (1)

Country Link
JP (1) JP5383947B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307459B2 (en) * 2015-02-25 2018-04-04 エポコラム機工株式会社 Ground improvement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890622B2 (en) * 2010-02-24 2012-03-07 守秀 橋本 Ground improvement mixing and stirring device, and ground improvement mixing and stirring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890622B2 (en) * 2010-02-24 2012-03-07 守秀 橋本 Ground improvement mixing and stirring device, and ground improvement mixing and stirring method

Also Published As

Publication number Publication date
JP2015025273A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP2011021470A (en) Sieving, crushing or mixing bucket
JP5383947B1 (en) Ground improvement device
JP2015055048A (en) Excavation agitation device with corotation prevention blade
JP2013249682A (en) Ground agitation device and manufacturing method of ground improvement square column body
JP6555849B2 (en) Ground improvement device
JP6347885B1 (en) Drilling and stirring tools
JP2008057255A (en) Relative agitator for deep mixing processing and deep mixing method of soil stabilization
JP2015063865A (en) Soil improvement device with corotation preventing blade
JP6313899B1 (en) Drilling and stirring tools
JP2905378B2 (en) Excavation stirring method for ground improvement and its excavation stirring apparatus
JP3955860B2 (en) Stirrer
US11319687B1 (en) Ground improvement apparatus
JP4967899B2 (en) Agitation head used for agitation of soil in columnar improvement of ground
JP5248695B2 (en) Ground improvement stirring device
JP5074323B2 (en) Ground improvement stirring device
JP6730049B2 (en) Drilling stirrer
JP2009228246A (en) Drilling and agitation equipment for soil improvement
JP5163846B2 (en) Single-shaft mixing and stirring device for ground improvement
JP6695095B2 (en) Drilling stirrer
JP4151495B2 (en) Shield machine
WO2022009439A1 (en) Drilling and stirring device and method for constructing ground improvement body using same
JP2019138047A (en) Ground improvement method and ground improvement device using mechanical stirring deep layer mixing method
JP5782354B2 (en) Ground improvement device and ground improvement method using the same
JP4873641B2 (en) Ground improvement stirring device
JP7338009B2 (en) soil improvement equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Ref document number: 5383947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250