JP5382676B2 - Method for producing anthocyanidins - Google Patents

Method for producing anthocyanidins Download PDF

Info

Publication number
JP5382676B2
JP5382676B2 JP2007317648A JP2007317648A JP5382676B2 JP 5382676 B2 JP5382676 B2 JP 5382676B2 JP 2007317648 A JP2007317648 A JP 2007317648A JP 2007317648 A JP2007317648 A JP 2007317648A JP 5382676 B2 JP5382676 B2 JP 5382676B2
Authority
JP
Japan
Prior art keywords
group
anthocyanidins
general formula
producing
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007317648A
Other languages
Japanese (ja)
Other versions
JP2009137904A (en
Inventor
久美 吉田
忠雄 近藤
公一 尾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2007317648A priority Critical patent/JP5382676B2/en
Publication of JP2009137904A publication Critical patent/JP2009137904A/en
Application granted granted Critical
Publication of JP5382676B2 publication Critical patent/JP5382676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Saccharide Compounds (AREA)

Description

本発明は、アントシアニジン類の製造方法に関する。   The present invention relates to a method for producing anthocyanidins.

アントシアニンは、アントシアニジンをアグリコンとするフラボノイド配糖体である。アントシアニンは、植物界に広く存在し、花及び果実の色の表現に役立っている。この性質を利用して、アントシアニンは着色料として利用されている。また、アントシアニンは、種々の生理機能を有するポリフェノールとして注目されている。例えば、アントシアニンはポリフェノールの一種として抗酸化性を有することから、生体内酸化ストレスに対する防御因子して利用することが期待されている。その他、アントシアニンは毛細血管透過性抑制作用、視覚改善作用、及び抗糖尿病作用等の機能を有することが報告されている。   Anthocyanins are flavonoid glycosides with anthocyanidins as aglycones. Anthocyanins are widely present in the plant kingdom and are useful for expressing the color of flowers and fruits. Using this property, anthocyanins are used as coloring agents. Anthocyanins are attracting attention as polyphenols having various physiological functions. For example, since anthocyanin has antioxidant properties as a kind of polyphenol, it is expected to be used as a protective factor against in vivo oxidative stress. In addition, it has been reported that anthocyanins have functions such as capillary permeability inhibitory action, visual improvement action, and antidiabetic action.

アントシアニンの供給の多くは、アントシアニンを含む植物からの抽出に頼っている。しかし、この方法では、アントシアニンを含む植物を栽培しなければならず、安定な供給という観点から問題がある。また、アントシアニンを含む植物を栽培すると、時間と手間がかかることから、生産効率が悪いという問題もある。そこで、アントシアニンを安定的且つ効率的に得る方法として、合成反応による製造方法の開発が望まれている。   Many anthocyanin supplies rely on extraction from plants that contain anthocyanins. However, in this method, a plant containing anthocyanins must be cultivated, and there is a problem from the viewpoint of stable supply. In addition, when a plant containing anthocyanins is cultivated, it takes time and labor, and there is a problem that production efficiency is poor. Therefore, development of a production method by a synthetic reaction is desired as a method for stably and efficiently obtaining anthocyanins.

アントシアニンを合成反応により得る方法として、植物より安価で大量に得られる配糖化フラボノールを還元する方法が知られている。例えば、下記非特許文献1及び2並びに特許文献1及び2には、配糖化フラボノールを酸性下、マグネシウム等の金属により還元してアントシアニンを得る方法が記載されている。また、下記非特許文献3及び4には、配糖化フラボノールの電解反応により、アントシアニンを得る方法が記載されている。更に、下記特許文献3及び4には、ヒドリド試薬を用いて、アントシアニンを得る方法が記載されている。   As a method of obtaining anthocyanins by a synthetic reaction, a method of reducing glycosylated flavonols obtained in large quantities at a lower cost than plants is known. For example, Non-Patent Documents 1 and 2 and Patent Documents 1 and 2 below describe methods for obtaining anthocyanins by reducing glycosylated flavonols with metals such as magnesium under acidic conditions. Non-patent documents 3 and 4 listed below describe methods for obtaining anthocyanins by electrolysis of glycosylated flavonols. Further, Patent Documents 3 and 4 below describe methods for obtaining anthocyanins using a hydride reagent.

J. Am. Chem. Soc.(1919) 41, 208-20J. Am. Chem. Soc. (1919) 41, 208-20 Tetrahedron Letters,(1995) 36(26), 4611-14Tetrahedron Letters, (1995) 36 (26), 4611-14 Collection of Czechoslovak Chemical Communication,(1950) 15, 433-6Collection of Czechoslovak Chemical Communication, (1950) 15, 433-6 Bulletin de Liaison-Groupe Polyphenols,(1990) 15, 33-6Bulletin de Liaison-Groupe Polyphenols, (1990) 15, 33-6 特開昭51−121034号公報JP 51-121034 A 特開昭54−134736号公報Japanese Patent Laid-Open No. 54-134736 特開昭55−111418号公報Japanese Patent Laid-Open No. 55-111418 欧州特許公開第490615号公報European Patent Publication No. 490615

しかし、金属による還元反応では、収率が20〜30%程度であり、収率が低いという問題がある。尚、上記非特許文献2では、収率が60%と記載されているが、根拠となるモル吸光係数が誤っており、実際の収率は30%程度である。また、電解反応でも収率が低い上、生成物が種々の構造を有する混合物となる。一方、ヒドリド試薬による方法では、収率が約60〜70%程度と記載されているが、試薬の価格が高く、大スケールでの製造には適さない。   However, the reduction reaction with metal has a problem that the yield is about 20 to 30% and the yield is low. In addition, in the said nonpatent literature 2, although the yield is described as 60%, the molar extinction coefficient used as a basis is wrong and the actual yield is about 30%. In addition, the yield is low even in the electrolytic reaction, and the product becomes a mixture having various structures. On the other hand, in the method using a hydride reagent, the yield is described as about 60 to 70%, but the reagent is expensive and is not suitable for production on a large scale.

本発明の目的は、従来よりも安価且つ高効率で、合成反応によりアントシアニジン類を製造する方法を提供することである。また、本発明の他の目的は、アントシアニジン類の製造方法に用いることができるフラベノール誘導体を提供することである。   An object of the present invention is to provide a method for producing anthocyanidins by a synthetic reaction at a lower cost and higher efficiency than conventional methods. Another object of the present invention is to provide a flavenol derivative that can be used in a method for producing anthocyanidins.

本発明のアントシアニジン類の製造方法は、(1)無酸素雰囲気下において、メタノール溶媒中で塩化水素及び硫酸から選択される酸、並びに亜鉛及びマグネシウムから選択される粉状又は粒状の金属単体の存在下、下記一般式(A)で表されるフラボノール誘導体を還元し、還元生成物を得る工程と、
(2)次いで、上記金属を含まない状態で上記還元生成物を酸化させる工程と、
を有し、
上記工程(1)において、上記フラボノール誘導体を還元することにより、下記一般式(B1)又は(B2)で表されるフラベノール誘導体を生成することを特徴とするアントシアニジン類の製造方法。

Figure 0005382676
(式中、R−ORで表されるアルコキシ基(Rは置換基を有していない炭素数1〜6のアルキル基)又は−OG基である。Rは水素原子又は水酸基である。R、R、R及びRはそれぞれ独立に水素原子、水酸基、アルコキシ基、又は−OG基である。尚、Gは糖鎖である。)
Figure 0005382676
(式中、R−ORで表されるアルコキシ基(Rは置換基を有していない炭素数1〜6のアルキル基)又は−OG基である。R、R、及びRはそれぞれ独立に水素原子、水酸基、又は−OG基である。尚、Gは糖鎖である。) Anthocyanidins production method of the present invention, (1) in an oxygen-free atmosphere, acid selected from hydrogen chloride and sulfuric acid in a methanol solvent, as well as powdered or granular single metal selected from zinc and magnesium A step of reducing a flavonol derivative represented by the following general formula (A) in the presence to obtain a reduction product;
(2) Next, a step of oxidizing the reduction product in a state not containing the metal,
Have
A method for producing anthocyanidins, wherein in the step (1), the flavonol derivative represented by the following general formula (B1) or (B2) is generated by reducing the flavonol derivative.
Figure 0005382676
(Wherein R 3 is an alkoxy group represented by —OR (R is an alkyl group having 1 to 6 carbon atoms which does not have a substituent) or —OG group, and R 5 is a hydrogen atom or a hydroxyl group. R 1 , R 2 , R 4 and R 6 are each independently a hydrogen atom, a hydroxyl group, an alkoxy group, or an —OG group, where G is a sugar chain.
Figure 0005382676
(In the formula, R 3 is an alkoxy group represented by —OR (R is an alkyl group having 1 to 6 carbon atoms which does not have a substituent) or —OG group. R 1 , R 4 , and R 6. Are each independently a hydrogen atom, a hydroxyl group, or an -OG group, where G is a sugar chain.)

本発明によれば、従来の方法よりも高効率で、合成反応によりアントシアニジン類を製造することができる。また、従来の方法よりも安価で且つ容易な方法でアントシアニジン類を製造することができる。   According to the present invention, anthocyanidins can be produced by a synthetic reaction with higher efficiency than conventional methods. In addition, anthocyanidins can be produced by a cheaper and easier method than conventional methods.

(1)アントシアニジン類の製造方法
(A)工程(1)
本発明の製造方法において、上記フラボノール誘導体としては、以下の一般式(A)で表される化合物である。本発明では、合成するアントシアニジン類に応じて種々の種類及び構造のフラボノール誘導体を用いることができる。
(1) Method for producing anthocyanidins (A) Step (1)
In the production method of the present invention, the flavonol derivative is a compound represented by the following general formula (A) . In the present invention, various types and structures of flavonol derivatives can be used depending on the anthocyanidins to be synthesized.

Figure 0005382676
(式中、R−ORで表されるアルコキシ基(Rは置換基を有していない炭素数1〜6のアルキル基)又は−OG基である。Rは水素原子又は水酸基である。R、R、R及びRはそれぞれ独立に水素原子、水酸基、アルコキシ基、又は−OG基である。尚、Gは糖鎖である。)
Figure 0005382676
(Wherein R 3 is an alkoxy group represented by —OR (R is an alkyl group having 1 to 6 carbon atoms which does not have a substituent) or —OG group, and R 5 is a hydrogen atom or a hydroxyl group. R 1 , R 2 , R 4 and R 6 are each independently a hydrogen atom, a hydroxyl group, an alkoxy group, or an —OG group, where G is a sugar chain.

上記一般式(A)において、上記アルコキシ基(−OR,R;炭化水素基)の種類及び構造には限定はない。上記アルコキシ基に含まれている炭化水素基は、直鎖状でもよく、分岐状でもよい。また、上記アルキル基等は、鎖状構造でもよく、環状構造(シクロアルキル基、シクロアルケニル基、及びシクロアルキニル基)でもよい。更に、上記炭化水素基は、飽和炭化水素基でもよく、不飽和炭化水素基でもよい。上記炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基 、アリール基、アリールアルキル基、アリールアルケニル基、及びアリールアルキニル基が挙げられる。尚、上記一般式(A)において、上記アルコキシ基が2以上存在する場合は、各アルコキシ基は同じアルコキシ基でもよく、構造が異なるアルコキシ基でもよい。また、アリール基、アリールアルキル基、アリールアルケニル基、及びアリールアルキニル基に含まれる芳香環は、他の置換基を含んでいてもよい。   In the general formula (A), the type and structure of the alkoxy group (—OR, R: hydrocarbon group) are not limited. The hydrocarbon group contained in the alkoxy group may be linear or branched. The alkyl group or the like may have a chain structure or a cyclic structure (a cycloalkyl group, a cycloalkenyl group, or a cycloalkynyl group). Further, the hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. Examples of the hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an arylalkenyl group, and an arylalkynyl group. In the general formula (A), when two or more alkoxy groups are present, each alkoxy group may be the same alkoxy group or an alkoxy group having a different structure. Moreover, the aromatic ring contained in the aryl group, arylalkyl group, arylalkenyl group, and arylalkynyl group may contain other substituents.

上記炭化水素基の炭素数には特に限定はない。上記炭化水素基の炭素数は通常1〜10、好ましくは1〜6、更に好ましくは1〜4である。更に、上記炭化水素基は、炭素原子及び水素原子のみで構成されていてもよく、あるいは、その構造中に炭素原子及び水素原子以外の原子を1個又は2個以上含んでいてもよい。例えば、上記炭化水素基は、置換基として、炭素原子及び水素原子以外の原子を含む置換基を1種又は2種以上有していてもよい。また、上記アルキル基等は、鎖状構造中又は環状構造中に炭素原子及び水素原子以外の原子を1個又は2個以上含んでいてもよい。上記アルコキシ基として具体的には、例えば、メトキシ基及びエトキシ基が挙げられる。
但し、上記式一般式(A)のR におけるアルコキシ基(−OR、R;炭化水素基)は、アルコキシ基を構成するRが、置換基を有していない炭素数1〜6のアルキル基である。
The number of carbon atoms of the hydrocarbon group is not particularly limited. Carbon number of the said hydrocarbon group is 1-10 normally, Preferably it is 1-6, More preferably, it is 1-4. Furthermore, the hydrocarbon group may be composed of only carbon atoms and hydrogen atoms, or may contain one or more atoms other than carbon atoms and hydrogen atoms in the structure. For example, the hydrocarbon group may have one or more substituents containing atoms other than carbon atoms and hydrogen atoms as substituents. Moreover, the said alkyl group etc. may contain 1 or 2 or more atoms other than a carbon atom and a hydrogen atom in a chain structure or a cyclic structure. Specific examples of the alkoxy group include a methoxy group and an ethoxy group.
However, the alkoxy group (—OR, R: hydrocarbon group) in R 3 of the general formula (A) is an alkyl group having 1 to 6 carbon atoms in which R constituting the alkoxy group does not have a substituent. It is.

上記一般式(A)において、Gは糖鎖である。該糖鎖は酸素原子を介してグリコシド結合している。該糖鎖の構造及び該糖鎖を構成する糖の種類には特に限定はない。上記糖鎖を構成する糖の数には特に限定はないが、通常は1〜4、好ましくは1〜3、更に好ましくは1又は2である。上記糖鎖を構成する糖は、五炭糖でもよく、六炭糖でもよい。更に、上記糖鎖に含まれている水酸基は、他の基により修飾されていてもよい。例えば、上記水酸基は、後述のようにエステル化されていてもよく、アルコキシ化されていてもよい。また、グリコシド結合は通常はβ−結合であるが、α−結合でもよい。   In the above general formula (A), G is a sugar chain. The sugar chain is glycosidic bonded through an oxygen atom. There is no particular limitation on the structure of the sugar chain and the type of sugar constituting the sugar chain. The number of sugars constituting the sugar chain is not particularly limited, but is usually 1 to 4, preferably 1 to 3, and more preferably 1 or 2. The sugar constituting the sugar chain may be a pentose sugar or a hexose sugar. Furthermore, the hydroxyl group contained in the sugar chain may be modified with other groups. For example, the hydroxyl group may be esterified as described later or may be alkoxylated. The glycosidic bond is usually a β-bond, but may be an α-bond.

上記糖として具体的には、例えば、α−D−リボース、β−D−グルコース、β−D−マンノース、β−D−ガラクトース、α−L−ラムノース、β−D−キシロース、β−D−アラビノース、β−D−グルクロン酸、ルチノース、ソフォロース、ゲンチオビオース、ザンブビオース、ラチロース、ラミナリビオノース、ゲンチオトリオース、ロビノビオース、2−グルコシルルチノース、及び2−キシロシルルチノースが挙げられる。 Specific examples of the sugar include, for example, α-D-ribose, β-D-glucose, β-D-mannose, β-D-galactose, α-L-rhamnose, β-D-xylose, β-D- arabinose, beta-D-glucuronic acid, rutinose, sophorose, gentiobiose, Zanbubiosu, Rachirosu, lamina Livio North, gentiotriose, Robinobiosu, 2 G - glucosyl Ruchino scan, and 2 G - is xylosyl Ruchino scan the like.

上記糖は、有機酸が単独又は複数エステル化結合した糖(有機酸結合糖)でもよい。該有機酸の結合位置には特に限定はない。該有機酸の結合位置として具体的には、例えば、糖の2位、3位、及び6位の1又は2以上が挙げられる。通常、該有機酸の結合位置は、糖の6位である。   The sugar may be a sugar (organic acid-bonded sugar) in which an organic acid is singly or plurally esterified. There is no particular limitation on the bonding position of the organic acid. Specific examples of the binding position of the organic acid include one or more of the 2-position, 3-position, and 6-position of the sugar. Usually, the binding position of the organic acid is the 6th position of the sugar.

上記有機酸の種類及び構成には特に限定はない。上記有機酸は芳香族有機酸でもよく、脂肪族有機酸でもよい。上記芳香族有機酸としては、ケイ皮酸類(E体又はZ体)及び安息香酸類が挙げられる。上記ケイ皮酸類及び安息香酸類としては、例えば、ヒドロキシケイ皮酸類(E体又はZ体)及びヒドロキシ安息香酸類が挙げられる。上記ケイ皮酸類として具体的には、例えば、ケイ皮酸、p−クマル酸、コーヒー酸、フェルラ酸、及びシナピン酸が挙げられる。また、上記安息香酸類として具体的には、例えば、安息香酸、p−ヒドロキシ安息香酸及び没食子酸が挙げられる。上記脂肪族有機酸は、モノカルボン酸でもよく、ジカルボン酸でもよい。上記脂肪族有機酸として具体的には、例えば、酢酸、プロピオン酸、酪酸、シュウ酸、マロン酸、コハク酸、及びリンゴ酸が挙げられる。   There is no limitation in particular in the kind and structure of the said organic acid. The organic acid may be an aromatic organic acid or an aliphatic organic acid. Examples of the aromatic organic acid include cinnamic acids (E-form or Z-form) and benzoic acids. Examples of the cinnamic acids and benzoic acids include hydroxycinnamic acids (E-form or Z-form) and hydroxybenzoic acids. Specific examples of the cinnamic acid include cinnamic acid, p-coumaric acid, caffeic acid, ferulic acid, and sinapinic acid. Specific examples of the benzoic acids include benzoic acid, p-hydroxybenzoic acid, and gallic acid. The aliphatic organic acid may be a monocarboxylic acid or a dicarboxylic acid. Specific examples of the aliphatic organic acid include acetic acid, propionic acid, butyric acid, oxalic acid, malonic acid, succinic acid, and malic acid.

上記一般式(A)において、上記−OG基の数及び位置には特に限定はない。上記−OG基の数は通常1〜5、好ましくは1〜4、更に好ましくは1〜3、より好ましくは1〜2である。また、上記−OG基の位置は通常、3位(R)、3’位(R)、5位(R)、5’位(R)、及び7位(R)のうちの1又は2以上である。上記フラボノール誘導体として具体的には、例えば、3,5位、3,7位、3,3’位、3,5,7位、3,5,3’位、及び3,7,3’位が−OG基のフラボノール配糖体が挙げられる。上記フラボノール誘導体として好ましくは、3位又は5位が−OG基であるフラボノール配糖体である。 In the general formula (A), the number and position of the -OG group are not particularly limited. The number of said -OG groups is 1-5 normally, Preferably it is 1-4, More preferably, it is 1-3, More preferably, it is 1-2. Also, the position of the -OG group is usually the 3-position (R 3), 3 'position (R 1), 5-position (R 4), 5' position (R 2), and 7 out of (R 6) 1 or 2 or more. Specific examples of the flavonol derivative include, for example, 3,5, 3,7, 3,3 ′, 3,5,7, 3,5,3 ′, and 3,7,3 ′. Are -OG group flavonol glycosides. The flavonol derivative is preferably a flavonol glycoside in which the 3rd or 5th position is an -OG group.

上記一般式(A)において、上記水酸基の数及び位置には特に限定はない。上記水酸基の数は通常1〜5、好ましくは1〜4、更に好ましくは1〜3、より好ましくは1〜2である。また、上記水酸基の位置は通常、3’位(R)、5位(R)、5’位(R)、及び7位(R)のうちの1又は2以上である。上記フラボノール誘導体として具体的には、例えば、5,7位及び5,7,3’位が水酸基のフラボノール誘導体が挙げられる。 In the general formula (A), the number and position of the hydroxyl groups are not particularly limited. The number of the hydroxyl groups is usually 1 to 5, preferably 1 to 4, more preferably 1 to 3, and more preferably 1 to 2. Further, the position of the hydroxyl group is usually one or more of the 3 ′ position (R 1 ), the 5 position (R 4 ), the 5 ′ position (R 2 ), and the 7 position (R 6 ). Specific examples of the flavonol derivative include flavonol derivatives having hydroxyl groups at the 5,7 and 5,7,3 ′ positions.

上記フラボノール誘導体としてより具体的には、例えば、下記一般式(A1)で表されるフラボノール誘導体が挙げられる。一般式(A1)で表されるフラボノール誘導体として具体的には、例えば、ケルセチン配糖体(ルチン、ケルセチン−3−グルコシド、及びケルセチン−3−ロビノビオシド等)並びにケンフェロール配糖体(ケンフェロール−3−グルコシド及びケンフェロール−3−ロビノビオシド等)が挙げられる。   More specifically, examples of the flavonol derivative include a flavonol derivative represented by the following general formula (A1). Specific examples of the flavonol derivative represented by the general formula (A1) include quercetin glycosides (rutin, quercetin-3-glucoside, quercetin-3-robinobioside, etc.) and kaempferol glycosides (kaempferol- 3-glucoside and kaempferol-3-robinobioside).

Figure 0005382676
(式中、Rは水素原子、水酸基、アルコキシ基、又は−OG基である。Rはアルコキシ基又は−OG基である。R及びRはそれぞれ独立に水酸基、アルコキシ基、又は−OG基である。)
Figure 0005382676
(In the formula, R 1 is a hydrogen atom, a hydroxyl group, an alkoxy group, or an —OG group. R 3 is an alkoxy group or an —OG group. R 4 and R 6 are each independently a hydroxyl group, an alkoxy group, or — OG group.)

工程(1)は無酸素雰囲気下で行う。「無酸素雰囲気」の具体的内容は、本発明の作用効果を阻害しない限り特に限定はない。上記「無酸素雰囲気」は、1種の気体のみでもよく、2種以上の気体を含んでいてもよい。上記「無酸素雰囲気」を構成する気体として具体的には、例えば、窒素ガス、希ガス(ヘリウムガス、ネオンガス、アルゴンガス)、水素ガス、及び二酸化炭素ガスの1種又は2種以上が挙げられる。尚、上記「無酸素雰囲気」とは、雰囲気中に酸素を全く含まないのが通常であるが、本発明の作用効果を阻害しない程度の酸素を含んでいても構わない。上記「無酸素雰囲気」中の酸素濃度は、通常0.1体積%以下(例えば、0〜0.1体積%)、好ましくは0.05体積%以下、更に好ましくは0.01体積%以下(例えば、0.001〜0.01体積%)である。   Step (1) is performed in an oxygen-free atmosphere. The specific content of the “oxygen-free atmosphere” is not particularly limited as long as the effects of the present invention are not impaired. The “oxygen-free atmosphere” may include only one kind of gas or may contain two or more kinds of gases. Specific examples of the gas constituting the “oxygen-free atmosphere” include one or more of nitrogen gas, rare gas (helium gas, neon gas, argon gas), hydrogen gas, and carbon dioxide gas. . The “oxygen-free atmosphere” usually does not contain any oxygen in the atmosphere, but may contain oxygen to the extent that it does not impair the effects of the present invention. The oxygen concentration in the “oxygen-free atmosphere” is usually 0.1% by volume or less (for example, 0 to 0.1% by volume), preferably 0.05% by volume or less, more preferably 0.01% by volume or less ( For example, 0.001 to 0.01% by volume).

上記酸は塩化水素及び硫酸のいずれか一方のみでもよく、両方でもよい。また、上記酸の濃度には特に限定はない。上記酸の濃度は通常1〜20体積%、好ましくは3〜20体積%、更に好ましくは3〜15体積%、より好ましくは5〜12体積%である。   The acid may be either hydrogen chloride or sulfuric acid, or both. The acid concentration is not particularly limited. The concentration of the acid is usually 1 to 20% by volume, preferably 3 to 20% by volume, more preferably 3 to 15% by volume, and more preferably 5 to 12% by volume.

上記金属は、Zn及びMgから選択される粉状又は粒状の金属単体である。本発明では、Zn及びMgのいずれか一方のみを用いてもよく、両方を用いてもよい。 The metal is a powdery or granular simple metal selected from Zn and Mg. In the present invention, only one of Zn and Mg may be used, or both may be used.

工程(1)において、溶媒としてメタノールを用いる。工程(1)において、溶媒中に水が存在しなければ、反応の進行を促進することができる。従って、上記メタノールは、無水メタノールが好ましい。しかし、本発明の作用効果を阻害しない限度であれば、溶媒中に水を含有していてもよい。溶媒中の水の含有量は通常、1体積%以下、好ましくは0.5体積%以下、更に好ましくは0.1体積%以下(例えば、0.01〜0.1体積%)である。   In step (1), methanol is used as a solvent. In step (1), if water is not present in the solvent, the progress of the reaction can be promoted. Therefore, the methanol is preferably anhydrous methanol. However, water may be contained in the solvent as long as the effect of the present invention is not impaired. The content of water in the solvent is usually 1% by volume or less, preferably 0.5% by volume or less, more preferably 0.1% by volume or less (for example, 0.01 to 0.1% by volume).

本発明において、上記フラボノール誘導体、上記酸及び上記金属の添加方法には特に限定はない。例えば、本発明では、上記フラボノール誘導体、上記酸及び上記金属をそれぞれ溶媒に添加することができる。また、上記フラボノール誘導体、上記酸及び上記金属の一部を溶媒に溶解又は懸濁させた液と、残りを溶媒に溶解又は懸濁させた液とを別途調製し、次いで、上記各液を混合してもよい。   In the present invention, the method for adding the flavonol derivative, the acid and the metal is not particularly limited. For example, in the present invention, the flavonol derivative, the acid, and the metal can be added to the solvent. In addition, a solution prepared by dissolving or suspending the flavonol derivative, the acid, and a part of the metal in a solvent and a solution obtained by dissolving or suspending the rest in a solvent are prepared separately, and then the above solutions are mixed May be.

工程(1)の反応条件には特に限定はない。本発明の工程(1)は、通常、短時間で進行する。よって、反応時間は通常1〜10分、好ましくは2〜8分である。また、反応温度は通常−10〜50℃、好ましくは0℃〜30℃である。また、上記フラボノール誘導体は完全に溶解していてもよく、懸濁状態でもよい。更に、上記工程(1)では、適宜攪拌及び超音波照射等の他の操作を行うことができる。例えば、上記フラボノール誘導体を溶解させる等の目的で、反応液に超音波を照射することができる。   There are no particular limitations on the reaction conditions of step (1). Step (1) of the present invention usually proceeds in a short time. Therefore, the reaction time is usually 1 to 10 minutes, preferably 2 to 8 minutes. Moreover, reaction temperature is -10-50 degreeC normally, Preferably it is 0-30 degreeC. The flavonol derivative may be completely dissolved or in a suspended state. Further, in the above step (1), other operations such as stirring and ultrasonic irradiation can be appropriately performed. For example, the reaction solution can be irradiated with ultrasonic waves for the purpose of dissolving the flavonol derivative.

工程(1)において、上記フラボノール誘導体が還元されて還元生成物を生じる。通常、上記還元生成物としては、上記一般式(B1)又は(B2)で表されるフラベノール誘導体である。一般式(B1)及び(B2)中のR、R、R、及びRは、一般式(A1)におけるR、R、R、及びRの説明が妥当する。一般式(B1)又は(B2)で表されるフラベノール誘導体として具体的には、例えば、下記一般式(B1’)又は(B2’)で表されるフラベノール誘導体が挙げられる。尚、本発明の製造方法では、一般式(B1)又は(B2)で表されるフラベノール誘導体から、更に別の還元生成物が生成してもよい。 In step (1), the flavonol derivative is reduced to produce a reduced product. Usually, as the reduction product, a Furabenoru derivative represented by the general formula (B1) or (B2). The description of R 1 , R 3 , R 4 , and R 6 in the general formula (A1) is valid for R 1 , R 3 , R 4 , and R 6 in the general formulas (B1) and (B2). Specific examples of the flavenol derivative represented by the general formula (B1) or (B2) include flavenol derivatives represented by the following general formula (B1 ′) or (B2 ′). In addition, in the manufacturing method of this invention, another reduction | restoration product may produce | generate from the flavenol derivative represented by general formula (B1) or (B2).

Figure 0005382676
(式中、Rは水素原子、水酸基、アルコキシ基、又は−OG基である。Gは糖鎖である。)
Figure 0005382676
(In the formula, R 1 is a hydrogen atom, a hydroxyl group, an alkoxy group, or an —OG group. G is a sugar chain.)

本発明の製造方法では、上記還元生成物(一般式(B1)又は(B2)で表されるフラベノール誘導体等)を反応液から単離することなく、引き続き工程(2)を行ってもよい。また、本発明の製造方法では、反応液を適宜のカラムに通して上記還元生成物をカラムに吸着させ、その後、適宜の溶離液で上記還元生成物を溶出させることにより、上記還元生成物を単離することができる。よって、本発明の製造方法では、上記還元生成物を反応液から単離し、別の溶媒に添加して工程(2)を行ってもよい。   In the production method of the present invention, step (2) may be subsequently performed without isolating the reduction product (flavenol derivative represented by the general formula (B1) or (B2)) from the reaction solution. In the production method of the present invention, the reaction product is passed through an appropriate column to adsorb the reduction product onto the column, and then the reduction product is eluted with an appropriate eluent, thereby reducing the reduction product. It can be isolated. Therefore, in the production method of the present invention, the reduction product may be isolated from the reaction solution and added to another solvent to perform step (2).

(B)工程(2)
工程(2)では、上記金属を含まない状態で上記還元生成物を酸化させる。これにより、アントシアニジン類の収率を高めることができる。この効果は以下のように考えられる。即ち、後述のように、本発明において、フラボノール誘導体からアントシアニジン類への反応は、フラボノール誘導体からフラベノール誘導体への還元反応と、その次のフラベノール誘導体からアントシアニジン類への酸化反応からなると考えられる。後者の酸化反応においてZn等の金属が存在すると、生成したアントシアニジン類が還元又は分解し、その結果、アントシアニジン類の収率が低下すると考えられる(尚、当該説明は、発明者の推測に基づくものであり、何ら本発明を限定する趣旨の説明ではなく、また、本発明を定義する趣旨の説明でもない。)。
(B) Step (2)
In the step (2), the reduction product is oxidized without containing the metal. Thereby, the yield of anthocyanidins can be increased. This effect is considered as follows. That is, as will be described later, in the present invention, the reaction from a flavonol derivative to an anthocyanidin is considered to consist of a reduction reaction from a flavonol derivative to a flavenol derivative and an oxidation reaction from the subsequent flavenol derivative to an anthocyanidin. In the latter oxidation reaction, when a metal such as Zn is present, the produced anthocyanidins are reduced or decomposed, and as a result, the yield of the anthocyanidins is considered to be reduced. It is not an explanation of the purpose of limiting the present invention, nor an explanation of the purpose of defining the present invention.)

工程(2)において、「上記金属を含まない状態」を実現する手段には特に限定はない。上記のように、上記金属として粉末状金属を用いる。よって、本発明では、工程(1)の反応液をろ過することにより、上記金属を除去し、次いで工程(2)を行うことができる。また、上記「上記金属を含まない状態」は、工程(1)の反応液から上記金属を除去する場合だけでなく、工程(1)の反応液から上記還元生成物を単離することも含む。即ち、工程(2)の「上記金属を含まない状態で上記還元生成物を酸化させる」とは、工程(1)の反応液から上記還元生成物を単離し、次いで、単離した上記還元生成物を、上記金属を含まない別の溶媒に添加して、上記還元生成物の酸化を行う場合も含む。   In the step (2), there is no particular limitation on the means for realizing the “state not containing the metal”. As described above, powder metal is used as the metal. Therefore, in this invention, the said metal is removed by filtering the reaction liquid of a process (1), and then a process (2) can be performed. In addition, the “state not containing the metal” includes not only the case where the metal is removed from the reaction solution in the step (1) but also the isolation of the reduction product from the reaction solution in the step (1). . That is, “oxidize the reduction product in a state not containing the metal” in the step (2) means that the reduction product is isolated from the reaction solution in the step (1), and then the isolated reduction product. The case where the product is added to another solvent not containing the metal to oxidize the reduction product is also included.

上記還元生成物を酸化させる方法には特に限定はない。上記還元生成物は、適宜の酸化剤を添加することにより酸化することができる。また、上記還元生成物の酸化は、反応液と酸素含有ガスとを接触させることにより行うこともできる。この方法としてより具体的には、例えば、反応液中に酸素含有ガスを供給する方法、あるいは反応液を適宜攪拌等することにより、反応液と酸素含有ガスとを接触させる方法が挙げられる。上記還元生成物の酸化は、例えば、工程(1)で得られた反応液から上記金属を除去した後、大気中で該反応液を適宜攪拌することにより行うことができる。上記酸素含有ガスの種類には特に限定はない。上記酸素含有ガスは酸素自体でもよく、酸素と他のガスとの混合ガスでもよい。上記酸素含有ガスとしては、例えば、空気が挙げられる。   There is no particular limitation on the method for oxidizing the reduction product. The reduction product can be oxidized by adding an appropriate oxidizing agent. The reduction product can be oxidized by bringing the reaction solution into contact with an oxygen-containing gas. More specifically, examples of this method include a method of supplying an oxygen-containing gas into the reaction solution, or a method of bringing the reaction solution into contact with the oxygen-containing gas by appropriately stirring the reaction solution. The reduction product can be oxidized, for example, by removing the metal from the reaction solution obtained in step (1) and then appropriately stirring the reaction solution in the atmosphere. There is no particular limitation on the type of the oxygen-containing gas. The oxygen-containing gas may be oxygen itself or a mixed gas of oxygen and another gas. Examples of the oxygen-containing gas include air.

工程(2)は通常、酸性条件下で行う。工程(2)を酸性条件下で行うと、生成するアントシアニンの分解を抑制できるので好ましい。より具体的には、上記工程(2)において、反応液のpHを4以下、好ましくは3以下の範囲とすることができる。尚、pHの下限値には特に限定はない。該下限値は、例えば−2、−1、0、1等の適宜の値とすることができる。工程(2)を酸性条件下で行う方法としては、例えば、反応液に適宜の酸(塩化水素等)を添加する方法が挙げられる。   Step (2) is usually performed under acidic conditions. It is preferable to perform the step (2) under acidic conditions because decomposition of the produced anthocyanins can be suppressed. More specifically, in the step (2), the pH of the reaction solution can be adjusted to 4 or less, preferably 3 or less. There is no particular limitation on the lower limit of pH. The lower limit value may be an appropriate value such as −2, −1, 0, 1 or the like. Examples of the method of performing the step (2) under acidic conditions include a method of adding an appropriate acid (hydrogen chloride or the like) to the reaction solution.

工程(2)は通常、大気等の酸素雰囲気で行われる。しかし、工程(2)は、工程(1)と同様に「無酸素雰囲気」で行ってもよい。例えば、「無酸素雰囲気」で工程(1)を行い、引き続き「無酸素雰囲気」で反応液に酸化剤を添加したり、あるいは酸素含有ガスを反応液に吹き込む等の方法により、工程(2)を行うことができる。   Step (2) is usually performed in an oxygen atmosphere such as air. However, step (2) may be performed in an “oxygen-free atmosphere” as in step (1). For example, the step (2) is performed by performing the step (1) in an “oxygen-free atmosphere” and subsequently adding an oxidizing agent to the reaction solution in the “oxygen-free atmosphere” or blowing an oxygen-containing gas into the reaction solution. It can be performed.

工程(2)の反応条件には特に限定はない。工程(2)の反応時間は通常1分〜30時間、好ましくは1〜24時間である。また、反応温度は通常−10〜50℃、好ましくは0℃〜30℃である。   There is no limitation in particular in the reaction conditions of a process (2). The reaction time in step (2) is usually 1 minute to 30 hours, preferably 1 to 24 hours. Moreover, reaction temperature is -10-50 degreeC normally, Preferably it is 0-30 degreeC.

(C)その他
本発明は、必要に応じて他の工程を含んでいてもよい。例えば、工程(2)の終了後、公知の方法、例えば、蒸留、吸着、抽出、及び再結晶等の方法又はこれらの方法を組み合わせて、目的のアントシアニジン類の回収及び精製を行うことができる。
(C) Others The present invention may include other steps as necessary. For example, after the completion of the step (2), the target anthocyanidins can be recovered and purified by a known method, for example, a method such as distillation, adsorption, extraction, and recrystallization, or a combination of these methods.

本明細書において、「アントシアニジン類」とは、アントシアニジン及びアントシアニン(アントシアニジンをアグリコンとする配糖体)を意味する。本発明により製造されるアントシアニジン類としては、以下の一般式(C)で表されるアントシアニジン類が挙げられる。尚、一般式(C)中、R〜Rの内容は、一般式(A)のR〜Rの説明が妥当する。 In the present specification, “anthocyanidins” means anthocyanidins and anthocyanins (glycosides containing anthocyanidins as aglycones). Examples of the anthocyanidins produced according to the present invention include anthocyanidins represented by the following general formula (C). Incidentally, in the general formula (C), and the content of R 1 to R 6 is an explanatory of R 1 to R 6 in the general formula (A) are valid.

Figure 0005382676
(式中、Rはアルコキシ基又は−OG基である。Rは水素原子又は水酸基である。R、R、R及びRはそれぞれ独立に水素原子、水酸基、アルコキシ基、又は−OG基である。尚、Gは糖鎖である。)
Figure 0005382676
(In the formula, R 3 is an alkoxy group or —OG group. R 5 is a hydrogen atom or a hydroxyl group. R 1 , R 2 , R 4 and R 6 are each independently a hydrogen atom, a hydroxyl group, an alkoxy group, or -OG group, where G is a sugar chain.)

上記アントシアニジン類として具体的には、例えば、下記一般式(C1)で表されるアントシアニンが挙げられる。一般式(C1)で表されるアントシアニンとして好ましくは、R及びRのいずれか一方又は両方が−OG基又は水酸基であるアントシアニンである。尚、一般式(C1)中、R、R及びRの内容は、一般式(A1)のR、R及びRの説明が妥当する。一般式(C1)で表されるアントシアニンとしてより具体的には、例えば、シアニジン−3−グルコシド、シアニジン−3−ルチノシド、シアニジン−3,5−ジグルコシド、ペラルゴニジン−3−グルコシド、ペラルゴニジン3−ルチノシド、及びペラルゴニジン−3,5−ジグルコシドが挙げられる。 Specific examples of the anthocyanidins include anthocyanins represented by the following general formula (C1). The anthocyanins represented by the general formula (C1) are preferably anthocyanins in which either one or both of R 4 and R 6 are —OG groups or hydroxyl groups. In the general formula (C1), the description of R 1 , R 4 and R 6 in the general formula (A1) is appropriate for the contents of R 1 , R 4 and R 6 . More specifically, as anthocyanins represented by the general formula (C1), for example, cyanidin-3-glucoside, cyanidin-3-rutinoside, cyanidin-3,5-diglucoside, pelargonidin-3-glucoside, pelargonidin-3-rutinoside, And pelargonidin-3,5-diglucoside.

Figure 0005382676
(式中、R、R及びRはそれぞれ独立に水素原子、水酸基、アルコキシ基、又は−OG基である。尚、Gは糖鎖である。)
Figure 0005382676
(Wherein R 1 , R 4 and R 6 are each independently a hydrogen atom, a hydroxyl group, an alkoxy group, or an —OG group, where G is a sugar chain.)

以下、実施例により本発明を具体的に説明する。尚、本発明は、実施例に示す形態に限られない。本発明の実施形態は、目的及び用途等に応じて、本発明の範囲内で種々変更することができる。   Hereinafter, the present invention will be described specifically by way of examples. In addition, this invention is not restricted to the form shown in the Example. The embodiment of the present invention can be variously modified within the scope of the present invention depending on the purpose and application.

(1)実施例1
反応機構を以下に示す。

Figure 0005382676
(1) Example 1
The reaction mechanism is shown below.
Figure 0005382676

ルチン(1.00g、1.64mmol)及びZn粉末(10.0g)を真空下で乾燥させ、これらを反応器内に収容した。次いで、反応器内にアルゴン(Ar)ガスを導入し、反応器内をArガス雰囲気とした。そして、反応器内に無水メタノール(60ml)を加え、超音波(40KHz)を外部から5分間照射することにより、ルチンを完全に無水メタノールに溶解させた。この溶液の温度を5℃にして、超音波照射下に7%塩化水素−無水メタノール溶液(60ml)を加えた。超音波照射及び攪拌を5分間行った後、乾燥条件下で反応液をろ過してZn粉末を除去し、ろ液を得た。   Rutin (1.00 g, 1.64 mmol) and Zn powder (10.0 g) were dried under vacuum and placed in a reactor. Subsequently, argon (Ar) gas was introduce | transduced in the reactor, and the inside of a reactor was made into Ar gas atmosphere. Then, anhydrous methanol (60 ml) was added to the reactor, and ultrasonic waves (40 KHz) were irradiated from the outside for 5 minutes, whereby rutin was completely dissolved in anhydrous methanol. The temperature of this solution was adjusted to 5 ° C., and a 7% hydrogen chloride-anhydrous methanol solution (60 ml) was added under ultrasonic irradiation. After performing ultrasonic irradiation and stirring for 5 minutes, the reaction solution was filtered under dry conditions to remove Zn powder, and a filtrate was obtained.

上記ろ液を強力に攪拌しながら室温で乾燥空気と接触させると、反応液の色は淡赤色から濃赤色に変化した。攪拌を始めてから3時間後、反応液を水(2.5L)に注ぎ、次いでろ過した。「アンバーライトXAD−7ゲル」(0.5%トリフルオロ酢酸(TFA)水溶液で置換)を充填したカラム(内径5cm、高さ50cm)に、得られたろ液を注ぎ、色素分子をカラムに吸着させた。次いで、0.5%TFA水溶液(2L)でカラムを洗浄した。その後、0.5%TFAを含む90%アセトニトリル水溶液を加えて、カラムに吸着させた色素を溶出した。この色素画分を40℃で減圧下濃縮乾固して、1.00g(収率86%)のシアニジン−3−ルチノシドを得た。   When the filtrate was brought into contact with dry air at room temperature with vigorous stirring, the color of the reaction solution changed from light red to dark red. Three hours after the start of stirring, the reaction solution was poured into water (2.5 L) and then filtered. The obtained filtrate is poured onto a column (inner diameter 5 cm, height 50 cm) packed with “Amberlite XAD-7 gel” (substituted with 0.5% trifluoroacetic acid (TFA) aqueous solution) to adsorb the dye molecules to the column. I let you. The column was then washed with 0.5% aqueous TFA (2 L). Thereafter, 90% acetonitrile aqueous solution containing 0.5% TFA was added to elute the dye adsorbed on the column. This dye fraction was concentrated to dryness at 40 ° C. under reduced pressure to obtain 1.00 g (yield 86%) of cyanidin-3-rutinoside.

色素画分の純度は、ODSカラムを用いた高速液体クロマトグラフィー(HPLC)分析により測定した(図1参照)。HPLC分析条件は以下の通りである。その結果、色素画分の純度は90%以上であった。
カラム:Develosil 「ODS−HG−5」(2.0mm×250mm)
溶媒A:0.5%TFA−10%CHCN水溶液
溶媒B:0.5%TFA−10%CHCN水溶液
溶出条件:リニアグラジエント溶出(0〜15分;溶媒A100%〜80%、15〜25分;溶媒A80%〜50%、25〜35分;溶媒50%〜0%)
流速:0.2ml/min
分析温度:40℃
検出温度:280nm
The purity of the dye fraction was measured by high performance liquid chromatography (HPLC) analysis using an ODS column (see FIG. 1). The HPLC analysis conditions are as follows. As a result, the purity of the dye fraction was 90% or more.
Column: Develosil “ODS-HG-5” (2.0 mm × 250 mm)
Solvent A: 0.5% TFA-10% CH 3 CN aqueous solution Solvent B: 0.5% TFA-10% CH 3 CN aqueous solution Elution condition: Linear gradient elution (0-15 minutes; Solvent A 100% -80%, 15 To 25 minutes; solvent A 80% to 50%, 25 to 35 minutes; solvent 50% to 0%)
Flow rate: 0.2 ml / min
Analysis temperature: 40 ° C
Detection temperature: 280 nm

(2)実施例2
実施例1と同様の方法でルチン(1.00g、1.64mmol)及びZn粉末(10.0g)を反応させ、ろ液1を得た。該ろ液1を3Lの水に注ぎ、次いで、アンバーライトXAD−7ゲル(水で置換)を充填したカラム(内径5cm、高さ50cm)に注ぎ、反応分子を吸着させた。次いで、2Lの水を流してカラムを洗浄し、塩素イオンが検出されなくなったのを確認した後、90%アセトニトリル水溶液(1L)で反応分子を溶出した。減圧下、流出液を濃縮乾固し、4種類の反応生成物の混合物1を得た。
(2) Example 2
Rutin (1.00 g, 1.64 mmol) and Zn powder (10.0 g) were reacted in the same manner as in Example 1 to obtain filtrate 1. The filtrate 1 was poured into 3 L of water, and then poured onto a column (inner diameter 5 cm, height 50 cm) packed with Amberlite XAD-7 gel (replaced with water) to adsorb the reaction molecules. Next, 2 L of water was flowed to wash the column, and after confirming that chlorine ions were no longer detected, the reaction molecules were eluted with 90% acetonitrile aqueous solution (1 L). The effluent was concentrated to dryness under reduced pressure to obtain a mixture 1 of four kinds of reaction products.

分取ODS−HPLCを用い、混合物1をODSカラムに吸着させ、次いでアセトニトリル水溶液のアセトニトリル濃度を5%から50%まで段階的に上げて溶出を行った。その結果、2種類の3,4−フラベノール体(1,2)、2,3−フラベノール体(3)及びシアニジン−3−ルチノシド(4)をそれぞれ、215mg(収率22%)、464mg(収率47%)、100mg(収率10%)、及び178mg(収率15%)得た。混合物1のHPLCクロマトグラムを図2に示す。尚、HPLC分析条件は上記実施例1と同じである。   Using preparative ODS-HPLC, the mixture 1 was adsorbed on an ODS column, and then the elution was performed by gradually increasing the acetonitrile concentration of the acetonitrile aqueous solution from 5% to 50%. As a result, two types of 3,4-flavenol compound (1,2), 2,3-flavenol compound (3), and cyanidin-3-rutinoside (4) were respectively obtained at 215 mg (yield 22%), 464 mg (yield). Yield 47%), 100 mg (yield 10%), and 178 mg (yield 15%). The HPLC chromatogram of mixture 1 is shown in FIG. The HPLC analysis conditions are the same as in Example 1.

上記フラベノール体1〜3の構造は、核磁気共鳴スペクトル分析(H−NMR及び13C−NMR)及び質量分析(FAB−MASS)によって決定した。上記フラベノール体1〜3のH−NMRの分析結果を表1に示す。また、上記フラベノール体1〜3のH−NMR及び13C−NMRのスペクトルチャートを図3〜図8に示す。上記フラベノール体1〜3の質量分析の結果は以下の通りである。尚、質量分析は全てプロトン付加体として測定された。
フラベノール体1(C273315):
実測値;597.1839,計算値;597.1819
フラベノール体2(C273315);
実測値;597.1839,計算値;597.1819
フラベノール体3(C273315);
実測値;597.1817,計算値;597.1819
The structures of the flavenol bodies 1 to 3 were determined by nuclear magnetic resonance spectrum analysis ( 1 H-NMR and 13 C-NMR) and mass spectrometry (FAB-MASS). Table 1 shows the 1 H-NMR analysis results of the flavenol bodies 1 to 3. Moreover, the spectrum chart of 1 H-NMR and 13 C-NMR of the flavenol bodies 1 to 3 is shown in FIGS. The results of mass spectrometry of the flavenol bodies 1 to 3 are as follows. All mass spectrometry was measured as proton adducts.
Flabenol body 1 (C 27 H 33 O 15 ):
Actual value: 597.1839, calculated value: 597.1819
Flabenol body 2 (C 27 H 33 O 15 );
Actual value: 597.1839, calculated value: 597.1819
Flabenol body 3 (C 27 H 33 O 15 );
Actual value: 597.817, calculated value: 597.1819

Figure 0005382676
Figure 0005382676

(3)実施例3
実施例2で得た混合物1(10.1mg)を無水メタノール(0.5ml)に溶解した。該溶液に7%塩化水素−無水メタノール溶液(0.5ml)を加え、乾燥空気下12時間攪拌した。上記実施例1と同じ方法でODSカラムを用いたHPLC分析により、色素画分を分析した。その結果、混合物1に含まれていたフラベノール体が単一のシアニジン−3−ルチノシドへと変換されたことが確認された(図9参照)。
(3) Example 3
Mixture 1 (10.1 mg) obtained in Example 2 was dissolved in anhydrous methanol (0.5 ml). A 7% hydrogen chloride-anhydrous methanol solution (0.5 ml) was added to the solution, and the mixture was stirred under dry air for 12 hours. The dye fraction was analyzed by HPLC analysis using an ODS column in the same manner as in Example 1. As a result, it was confirmed that the flavenol compound contained in the mixture 1 was converted into a single cyanidin-3-rutinoside (see FIG. 9).

(4)実施例4
ルチン(103mg)及びZn粉末(1.07g)を真空下で乾燥させ、これらを反応器内に収容した。次いで、反応器内にArガスを導入し、反応器内をArガス雰囲気とした。そして、反応器内に無水メタノール(5.0ml)を加え、超音波(40KHz)を外部から15分間照射することにより、ルチンを完全に無水メタノールに溶解させた。室温で攪拌下、この溶液に10%濃硫酸−メタノール溶液(5.0ml)を加えた。2時間攪拌した後、反応液をろ過してZn粉末を除去した。ろ過残渣をメタノール(6ml)で洗浄して、このメタノールもろ液に加えた。
(4) Example 4
Rutin (103 mg) and Zn powder (1.07 g) were dried under vacuum and placed in a reactor. Subsequently, Ar gas was introduce | transduced in the reactor and Ar inside was made into Ar gas atmosphere. Then, anhydrous methanol (5.0 ml) was added to the reactor, and ultrasonic waves (40 KHz) were irradiated from the outside for 15 minutes to completely dissolve rutin in anhydrous methanol. A 10% concentrated sulfuric acid-methanol solution (5.0 ml) was added to this solution with stirring at room temperature. After stirring for 2 hours, the reaction solution was filtered to remove Zn powder. The filtration residue was washed with methanol (6 ml) and this methanol was also added to the filtrate.

このろ液を室温下で23時間攪拌して乾燥空気と接触させることにより、酸化を行った。反応液に水(300ml)を加え、直ちに「アンバーライトXAD−7ゲル」(0.5%TFA水溶液で置換)を充填したカラム(内径2cm、高さ25cm)に注ぎ、色素分子を吸着させた。次いで、0.5%TFA水溶液(200ml)でカラムを洗浄した。その後、0.5%TFAを含む90%アセトニトリル水溶液を加えて、カラムに吸着させた色素分子を溶出した。この色素画分を40℃で減圧下濃縮乾固して、色素を106mg得た(収率89%)。色素画分の純度の測定方法は、上記実施例1と同じである。その結果、色素画分の純度は90%以上であった(図10参照)。   The filtrate was stirred at room temperature for 23 hours and contacted with dry air to oxidize. Water (300 ml) was added to the reaction solution and immediately poured onto a column (inner diameter 2 cm, height 25 cm) packed with “Amberlite XAD-7 gel” (substituted with 0.5% TFA aqueous solution) to adsorb the dye molecules. . The column was then washed with 0.5% aqueous TFA (200 ml). Thereafter, a 90% acetonitrile aqueous solution containing 0.5% TFA was added to elute the dye molecules adsorbed on the column. This dye fraction was concentrated to dryness under reduced pressure at 40 ° C. to obtain 106 mg of the dye (yield 89%). The method for measuring the purity of the dye fraction is the same as in Example 1. As a result, the purity of the dye fraction was 90% or more (see FIG. 10).

(5)実施例5
反応機構を以下に示す。

Figure 0005382676
(5) Example 5
The reaction mechanism is shown below.
Figure 0005382676

ケルセチン−3−グルコシド(102mg、0.22mmol)及びZn粉末(1.25g)を真空下で乾燥させ、これらを反応器内に収容した。次いで、反応器内にArガスを導入し、反応器内をArガス雰囲気とした。そして、反応器内に無水メタノールを加え、超音波(40KHz)を外部から5分間照射することにより、ケルセチン−3−グルコシドを完全に無水メタノール中に溶解させた。超音波照射下、室温でこの溶液に10.5%の塩化水素を含む無水メタノール溶液(10ml)を加えた。超音波照射及び攪拌を3時間30分行った後、乾燥条件下で反応液をろ過してZn粉末を除去し、ろ液を得た。   Quercetin-3-glucoside (102 mg, 0.22 mmol) and Zn powder (1.25 g) were dried under vacuum and placed in a reactor. Subsequently, Ar gas was introduce | transduced in the reactor and Ar inside was made into Ar gas atmosphere. And anhydrous methanol was added in the reactor, and the quercetin-3-glucoside was completely dissolved in anhydrous methanol by irradiating ultrasonic waves (40 KHz) from the outside for 5 minutes. An anhydrous methanol solution (10 ml) containing 10.5% hydrogen chloride was added to this solution at room temperature under ultrasonic irradiation. After performing ultrasonic irradiation and stirring for 3 hours and 30 minutes, the reaction solution was filtered under dry conditions to remove Zn powder, and a filtrate was obtained.

上記ろ液を20時間攪拌して室温で乾燥空気と接触させると、反応液の色は淡赤色から濃赤色に変化した。その後、反応液に水(400ml)を加え、直ちに「アンバーライトXAD−7ゲル」(0.5%TFA水溶液で置換)を充填したカラム(内径2cm、高さ25cm)に注ぎ、色素分子を吸着させた。次いで、0.5%TFA水溶液(500ml)でカラムを洗浄した。その後、0.5%TFAを含む90%アセトニトリル水溶液を加えて、カラムに吸着させた色素分子を溶出した。この色素画分を40℃で減圧下濃縮乾固して、シアニジン−3−グルコシドを113mg得た(収率91%)。色素画分の純度の測定方法は、上記実施例1と同じである。その結果、色素画分の純度は95%以上であった(図11参照)。   When the filtrate was stirred for 20 hours and contacted with dry air at room temperature, the color of the reaction solution changed from light red to dark red. Then, water (400 ml) was added to the reaction solution and immediately poured onto a column (inner diameter 2 cm, height 25 cm) packed with “Amberlite XAD-7 gel” (substituted with 0.5% TFA aqueous solution) to adsorb the dye molecules. I let you. The column was then washed with 0.5% aqueous TFA (500 ml). Thereafter, a 90% acetonitrile aqueous solution containing 0.5% TFA was added to elute the dye molecules adsorbed on the column. This dye fraction was concentrated to dryness under reduced pressure at 40 ° C. to obtain 113 mg of cyanidin-3-glucoside (yield 91%). The method for measuring the purity of the dye fraction is the same as in Example 1. As a result, the purity of the dye fraction was 95% or more (see FIG. 11).

(6)実験例6
ルチン(102mg、0.167mmol)及び粒状Mg(326mg)を真空下で乾燥させ、これらを反応器内に収容した。次いで、反応器内にArガスを導入し、反応器内をArガス雰囲気とした。そして、反応器内に無水メタノール(2ml)を加え、ルチンを無水メタノールに溶解させた。この溶液を0℃に冷却して、10%塩化水素−無水メタノール溶液(6ml)を加えた。反応液を室温にしてから30分間攪拌し、乾燥条件下で反応液をろ過して粒状Mgを除去し、ろ液を得た。
(6) Experimental example 6
Rutin (102 mg, 0.167 mmol) and granular Mg (326 mg) were dried under vacuum and these were placed in the reactor. Subsequently, Ar gas was introduce | transduced in the reactor and Ar inside was made into Ar gas atmosphere. And anhydrous methanol (2 ml) was added in the reactor, and rutin was dissolved in anhydrous methanol. The solution was cooled to 0 ° C. and 10% hydrogen chloride-anhydrous methanol solution (6 ml) was added. The reaction solution was allowed to reach room temperature and stirred for 30 minutes, and the reaction solution was filtered under dry conditions to remove particulate Mg and obtain a filtrate.

上記ろ液を乾燥空気中で攪拌しながら、10%塩化水素−無水メタノール溶液(2ml)を加え、室温で16時間攪拌を続けた。その後、反応液に水(300ml)を加え、直ちに「アンバーライトXAD−7ゲル」(0.5%TFA水溶液で置換)を充填したカラム(内径5cm、高さ25cm)に注ぎ、色素分子を吸着させた。次いで、0.5%TFA水溶液(2L)でカラムを洗浄した。その後、0.5%TFAを含む90%アセトニトリル水溶液を加えて、カラムに吸着させた色素を溶出した。上記実施例1と同じ方法でODSカラムを用いたHPLC分析により、色素画分を分析したところ、ほぼ単一のシアニジン−3−ルチノシドのピークを検出した。   While stirring the above filtrate in dry air, 10% hydrogen chloride-anhydrous methanol solution (2 ml) was added, and stirring was continued at room temperature for 16 hours. Then, water (300 ml) was added to the reaction solution, and immediately poured onto a column (inner diameter 5 cm, height 25 cm) packed with “Amberlite XAD-7 gel” (substituted with 0.5% TFA aqueous solution) to adsorb the dye molecules. I let you. The column was then washed with 0.5% aqueous TFA (2 L). Thereafter, 90% acetonitrile aqueous solution containing 0.5% TFA was added to elute the dye adsorbed on the column. When the dye fraction was analyzed by HPLC analysis using an ODS column in the same manner as in Example 1, almost a single cyanidin-3-rutinoside peak was detected.

(5)実施例7
反応機構を以下に示す。

Figure 0005382676
(5) Example 7
The reaction mechanism is shown below.
Figure 0005382676

ケンフェロール−3−(6−O−アセチル)グルコシド(9.75mg,0.020mmol)及びZn粉末(164mg)を真空下に乾燥させ、これらを反応器内に収容した。次いで、反応器内にArガスを導入し、反応器内をArガス雰囲気にした。そして、超音波照射下、0℃で、3.5%塩化水素−無水メタノール溶液(1.2ml)を加えた。超音波照射及び強力な撹拌を7分間行った後、乾燥条件下で反応液をろ過してZn粉末を除去し、ろ液を得た。   Kaempferol-3- (6-O-acetyl) glucoside (9.75 mg, 0.020 mmol) and Zn powder (164 mg) were dried under vacuum and these were placed in a reactor. Subsequently, Ar gas was introduce | transduced in the reactor and the inside of a reactor was made into Ar gas atmosphere. Then, a 3.5% hydrogen chloride-anhydrous methanol solution (1.2 ml) was added at 0 ° C. under ultrasonic irradiation. After 7 minutes of ultrasonic irradiation and strong stirring, the reaction solution was filtered under dry conditions to remove Zn powder, and a filtrate was obtained.

上記ろ液を強力に撹拌しながら室温で乾燥空気と接触させ、3.5時間反応させると、反応液の色は淡赤色から濃い赤色に変化した。反応液を水(30ml)に注ぎ、次いで、これを「アンバーライトXAD−7ゲル」(0.5%TFA水溶液で置換)を充填したカラム(内径1.5cm、高さ17cm)に注ぎ、色素分子をカラムに吸着させた。次いで、0.5%TFA水溶液(250ml)でカラムを洗浄した。その後、0.5%TFAを含む90%アセトニトリル水溶液を加えて、カラムに吸着させた色素を溶出した。色素画分を分取ODS−HPLCで精製した。ODSカラムを用いたHPLC分析の結果、色素画分は、二種類のアントシアニンを含んでいた(図12参照)。得られた色素画分を40℃で減圧下濃縮乾固して、5.8mgのペラルゴニジン−3−(6−O−アセチル)グルコシド(収率50%)及び5.4mgのペラルゴニジン−3−グルコシド(収率50%)を得た。色素画分の純度の測定方法は、上記実施例1と同じである。その結果、色素画分の純度は、いずれの色素も95%以上であった(図12参照)。   When the filtrate was brought into contact with dry air at room temperature with vigorous stirring and reacted for 3.5 hours, the color of the reaction solution changed from light red to dark red. The reaction solution was poured into water (30 ml) and then poured onto a column (inner diameter 1.5 cm, height 17 cm) packed with “Amberlite XAD-7 gel” (substituted with 0.5% TFA aqueous solution) Molecules were adsorbed onto the column. The column was then washed with 0.5% aqueous TFA (250 ml). Thereafter, 90% acetonitrile aqueous solution containing 0.5% TFA was added to elute the dye adsorbed on the column. The dye fraction was purified by preparative ODS-HPLC. As a result of HPLC analysis using an ODS column, the dye fraction contained two types of anthocyanins (see FIG. 12). The obtained pigment fraction was concentrated to dryness at 40 ° C. under reduced pressure to obtain 5.8 mg of pelargonidin-3- (6-O-acetyl) glucoside (yield 50%) and 5.4 mg of pelargonidin-3-glucoside. (Yield 50%) was obtained. The method for measuring the purity of the dye fraction is the same as in Example 1. As a result, the purity of the dye fraction was 95% or more for all the dyes (see FIG. 12).

実施例1の色素画分のHPLCクロマトグラムである。2 is an HPLC chromatogram of a dye fraction of Example 1. 実施例2の混合物1のHPLCクロマトグラムである。2 is an HPLC chromatogram of the mixture 1 of Example 2. フラベノール体1のH−NMRチャートである。1 is a 1 H-NMR chart of flavenol body 1. フラベノール体1の13C−NMRチャートである。It is a 13 C-NMR chart of flavenol body 1. フラベノール体2のH−NMRチャートである。 1 is a 1 H-NMR chart of flavenol body 2. フラベノール体2の13C−NMRチャートである。It is a 13 C-NMR chart of flavenol body 2. フラベノール体3のH−NMRチャートである。 1 is a 1 H-NMR chart of a flavenol body 3. フラベノール体3の13C−NMRチャートである。3 is a 13 C-NMR chart of flavenol body 3. 実施例3の色素画分のHPLCクロマトグラムである。3 is an HPLC chromatogram of a dye fraction of Example 3. 実施例4の色素画分のHPLCクロマトグラムである。2 is an HPLC chromatogram of a dye fraction of Example 4. 実施例5の色素画分のHPLCクロマトグラムである。6 is an HPLC chromatogram of a dye fraction of Example 5. 実施例7の色素画分のHPLCクロマトグラムである。2 is an HPLC chromatogram of a dye fraction of Example 7.

Claims (6)

(1)無酸素雰囲気下において、メタノール溶媒中で塩化水素及び硫酸から選択される酸、並びに亜鉛及びマグネシウムから選択される粉状又は粒状の金属単体の存在下、下記一般式(A)で表されるフラボノール誘導体を還元し、還元生成物を得る工程と、
(2)次いで、上記金属を含まない状態で上記還元生成物を酸化させる工程と、
を有し、
上記工程(1)において、上記フラボノール誘導体を還元することにより、下記一般式(B1)又は(B2)で表されるフラベノール誘導体を生成することを特徴とするアントシアニジン類の製造方法。
Figure 0005382676
(式中、R−ORで表されるアルコキシ基(Rは置換基を有していない炭素数1〜6のアルキル基)又は−OG基である。Rは水素原子又は水酸基である。R、R、R及びRはそれぞれ独立に水素原子、水酸基、アルコキシ基、又は−OG基である。尚、Gは糖鎖である。)
Figure 0005382676
(式中、R−ORで表されるアルコキシ基(Rは置換基を有していない炭素数1〜6のアルキル基)又は−OG基である。R、R、及びRはそれぞれ独立に水素原子、水酸基、又は−OG基である。尚、Gは糖鎖である。)
Under (1) an oxygen-free atmosphere, acid selected from hydrogen chloride and sulfuric acid in a methanol solvent, and the presence of single metal powder or granular selected from zinc and magnesium, the following general formula (A) Reducing the represented flavonol derivative to obtain a reduced product;
(2) Next, a step of oxidizing the reduction product in a state not containing the metal,
Have
A method for producing anthocyanidins, wherein in the step (1), the flavonol derivative represented by the following general formula (B1) or (B2) is generated by reducing the flavonol derivative.
Figure 0005382676
(Wherein R 3 is an alkoxy group represented by —OR (R is an alkyl group having 1 to 6 carbon atoms which does not have a substituent) or —OG group, and R 5 is a hydrogen atom or a hydroxyl group. R 1 , R 2 , R 4 and R 6 are each independently a hydrogen atom, a hydroxyl group, an alkoxy group, or an —OG group, where G is a sugar chain.
Figure 0005382676
(In the formula, R 3 is an alkoxy group represented by —OR (R is an alkyl group having 1 to 6 carbon atoms which does not have a substituent) or —OG group. R 1 , R 4 , and R 6. Are each independently a hydrogen atom, a hydroxyl group, or an -OG group, where G is a sugar chain.)
上記還元生成物が、上記一般式(B1)又は(B2)で表されるフラベノール誘導体である請求項1に記載のアントシアニジン類の製造方法。   The method for producing anthocyanidins according to claim 1, wherein the reduction product is a flavenol derivative represented by the general formula (B1) or (B2). 上記工程(2)において、上記金属を上記工程(1)の反応液から除去し、その後、上記還元生成物を酸化させる請求項1又は2に記載のアントシアニジン類の製造方法。   The method for producing anthocyanidins according to claim 1 or 2, wherein, in the step (2), the metal is removed from the reaction solution in the step (1), and then the reduction product is oxidized. 上記酸化は、反応液と酸素含有ガスとを接触させることにより行う請求項1乃至3のいずれかに記載のアントシアニジン類の製造方法。   The method for producing anthocyanidins according to any one of claims 1 to 3, wherein the oxidation is performed by bringing a reaction solution into contact with an oxygen-containing gas. 上記工程(2)において、反応液のpHが4以下である請求項1乃至4のいずれかに記載のアントシアニジン類の製造方法。   The method for producing anthocyanidins according to any one of claims 1 to 4, wherein in the step (2), the pH of the reaction solution is 4 or less. 上記一般式(A)及び上記一般式(B1)及び(B2)におけるGの糖鎖を構成する糖が、ルチノースである請求項1乃至5のいずれかに記載のアントシアニジン類の製造方法。   The method for producing anthocyanidins according to any one of claims 1 to 5, wherein the sugar constituting the G sugar chain in the general formula (A) and the general formulas (B1) and (B2) is rutinose.
JP2007317648A 2007-12-07 2007-12-07 Method for producing anthocyanidins Active JP5382676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007317648A JP5382676B2 (en) 2007-12-07 2007-12-07 Method for producing anthocyanidins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317648A JP5382676B2 (en) 2007-12-07 2007-12-07 Method for producing anthocyanidins

Publications (2)

Publication Number Publication Date
JP2009137904A JP2009137904A (en) 2009-06-25
JP5382676B2 true JP5382676B2 (en) 2014-01-08

Family

ID=40868918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317648A Active JP5382676B2 (en) 2007-12-07 2007-12-07 Method for producing anthocyanidins

Country Status (1)

Country Link
JP (1) JP5382676B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2636441T3 (en) * 2011-01-27 2017-10-05 Sphaera Pharma Pte. Ltd A novel procedure for the synthesis of polyphenols
CN106366141A (en) * 2016-08-25 2017-02-01 浙江大学 Method for preparing pelargonidin-3-O-glucoside in separated mode
CN106831911A (en) * 2017-02-08 2017-06-13 浙江大学 A kind of method that pelargonin anthocyanin monomer is isolated and purified in the Lei Cong Peng

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121034A (en) * 1975-04-16 1976-10-22 Shiraimatsu Shinyaku Kk Method for preparing anthocyans
JPS54134736A (en) * 1978-04-12 1979-10-19 Shiraimatsu Shinyaku Co Preparing anthocyan
CN1049673C (en) * 1994-04-29 2000-02-23 中国科学院武汉植物研究所 Method of extracting material from

Also Published As

Publication number Publication date
JP2009137904A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
Gryszkiewicz-Wojtkielewicz et al. Approaches towards the synthesis of cephalostatins, ritterazines and saponins from ornithogalum saundersiae-new natural products with cytostatic activity
JP5382676B2 (en) Method for producing anthocyanidins
Tiwari et al. An efficient stereoselective dihydroxylation of glycals using a bimetallic system, RuCl3/CeCl3/NaIO4
Siless et al. Synthesis of steroidal quinones and hydroquinones from bile acids by Barton radical decarboxylation and benzoquinone addition. Studies on their cytotoxic and antifungal activities
Bardone et al. Structure determination of purpuromycin, a new antibiotic
Machida et al. Studies on the Constituents of Gardenia Species. III. New iridoid glycosides from the leaves of Gardenia jasminoides cv. fortuneana H ARA
Hrazdina et al. Oxidation products of acylated anthocyanins under acidic and neutral conditions
NAGAI et al. Studies on the constituents of aceraceae plants. II. Structure of aceroside I, a glucoside of a novel cyclic diarylheptanoid from Acer nikoense Maxim.
Maheshwari et al. Pd-catalyzed direct functionalization of glycals with cycloalkenones: application to the synthesis of chiral phenanthrenones
Alluis et al. Water‐soluble flavonol (= 3‐Hydroxy‐2‐phenyl‐4H‐1‐benzopyran‐4‐one) derivatives: Chemical synthesis, colouring, and antioxidant properties
Lin et al. Flavonol and anthraquinone glycosides from Rhamnus formosana
KR102216702B1 (en) Diosmin preparation method
Yin et al. Convenient Syntheses and Transformations of 2‐C‐Malonyl Carbohydrates
Rodriguez et al. The marine-derived fungus Tinctoporellus sp. CBMAI 1061 degrades the dye Remazol Brilliant Blue R producing anthraquinones and unique tremulane sesquiterpenes
Slimestad et al. Ampelopsin 7-glucoside and other dihydroflavonol 7-glucosides from needles of Picea abies
CA1107278A (en) Process for preparing anthocyans from corresponding flavonoid glycosides
US20160362401A1 (en) Process for total synthesis of flavonoid compounds and isomers thereof
EP1697380B1 (en) The method of manufacturing of 7-ethyl-10-hydroxycamptothecin
Xian-kai et al. 1-Nitroaknadinine from Stephania sutchuenensis
Kumari et al. Formation of hydridocobalt (III) phthalocyanine by reaction of cobalt (II) phthalocyanines with sodium borohydride and its reactions with antioxidant isoflavones
Koóš et al. Synthesis of Novel Enantiopure Amino-and Azidopyran Building Blocks and Their Click Reactions to Multivalent Carbohydrate Mimetics
Pabst et al. An α-ionol disaccharide glycoside from raspberry fruit
Bhardwaj et al. Chemical examination of Prosopis spicigera seeds
Uyakul et al. Lampteroflavin, the first riboflavinyl alpha ribofuranoside as light emitter in the luminous mushroom, L. japonicus
Atopkina et al. Synthesis of 20 S-protopanaxadiol 20-O-β-D-glucopyranoside, a metabolite of Panax ginseng glycosides, and compounds related to it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5382676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350