JP5378064B2 - Operation method of air temperature type vaporizer - Google Patents

Operation method of air temperature type vaporizer Download PDF

Info

Publication number
JP5378064B2
JP5378064B2 JP2009121284A JP2009121284A JP5378064B2 JP 5378064 B2 JP5378064 B2 JP 5378064B2 JP 2009121284 A JP2009121284 A JP 2009121284A JP 2009121284 A JP2009121284 A JP 2009121284A JP 5378064 B2 JP5378064 B2 JP 5378064B2
Authority
JP
Japan
Prior art keywords
heat transfer
frost
transfer tube
finned heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009121284A
Other languages
Japanese (ja)
Other versions
JP2010270797A (en
Inventor
誠 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Plant Construction Co Ltd
Original Assignee
IHI Plant Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Plant Construction Co Ltd filed Critical IHI Plant Construction Co Ltd
Priority to JP2009121284A priority Critical patent/JP5378064B2/en
Publication of JP2010270797A publication Critical patent/JP2010270797A/en
Application granted granted Critical
Publication of JP5378064B2 publication Critical patent/JP5378064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method for an air temperature vaporizer capable of performing continuous operation while removing frost causing the deterioration of heat-transfer performance due to adhesion to a finned heat transfer tube by blowing out and mechanically removing the frost adhered by wind power without stopping the operation of the vaporizer. <P>SOLUTION: In the operation method, the finned heat transfer tube 11 is vertically arranged longitudinally and laterally to let a cryogenic liquefied gas flow from the lower part of the finned heat transfer tube 11 upward. When operating vaporization, the outside air is dropped on the outside of the finned heat transfer tube 11 from the upper part to the lower part so as to evaporate the cryogenic liquefied gas, an ejecting air supply tube 31 is vertically arranged at the center of four finned heat transfer tubes 11 adjoining longitudinally and laterally. Blowing nozzles 32, 33 are provided at the outer periphery of the ejecting air supply tube 31 at a plurality of stages vertically. When the frost adhered to the finned heat transfer tube 11 reaches a predetermined thickness, air is ejected from the blowing nozzle at a frost deposited surface collision speed of 4 m/s or more so that the deposited frost is blown out by air injected from a blow nozzle and an avalanche is caused in the frost deposited to the finned heat transfer tube 11 with the frost blown and to perform continuous vaporization while removing the frost. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、LNG等の空温式気化器の運転方法に係り、特に空温式気化器の伝熱面に付着する霜を効率よく除霜して空温式気化器を連続運転できる空温式気化器の運転方法に関するものである。   The present invention relates to an operation method of an air temperature type vaporizer such as LNG, and in particular, an air temperature at which the air temperature type vaporizer can be continuously operated by efficiently defrosting frost adhering to the heat transfer surface of the air temperature type vaporizer. The present invention relates to a method of operating a vaporizer.

液化天然ガス(LNG)、液体窒素、液体酸素等の低温液体を気化或いは加熱する機器の形式として空温式気化器がある。   There is an air temperature type vaporizer as a type of equipment for vaporizing or heating a low temperature liquid such as liquefied natural gas (LNG), liquid nitrogen, liquid oxygen or the like.

この空温式気化器をLNGサテライト基地に設置されている空温式気化器を例にとって説明すると、空温式気化器は、特許文献1に示されるように、伝熱管の外周に放射状に垂直なフィンを設けたフィン付き伝熱管からなり、このフィン付き伝熱管が、縦横に多数垂直に配置されて構成され、前段のフィン付き伝熱管群で、LNGを気化させ、後段のフィン付き伝熱管群で気化させたNGを常温近くまで過熱するように各フィン付き伝熱管が接続されて構成される。   This air temperature type vaporizer will be described by taking an air temperature type vaporizer installed at an LNG satellite base as an example. As shown in Patent Document 1, the air temperature type vaporizer is vertically perpendicular to the outer periphery of the heat transfer tube. The finned heat transfer tube is provided with a number of fins, and the finned heat transfer tubes are arranged vertically and horizontally, and the LNG is vaporized in the front-stage finned heat-transfer tube group, and the latter-stage finned heat-transfer tube Each finned heat transfer tube is connected so as to heat the NG vaporized in the group to near normal temperature.

すなわち、サテライト基地の貯蔵タンクに貯蔵されたLNGは、下部に配置した入口配管から分配管を通して横方向に配列されたフィン付き伝熱管に、また各列のフィン付き伝熱管から縦方向の配列されたフィン付き伝熱管に供給され、その前段のフィン付き伝熱管群をLNGが上向きに流れ、外気がフィン付き伝熱管間を下向きに流れて、LNGが下向きに流れる空気と熱交換して蒸発し、その前段のフィン付き伝熱管群で蒸発したNGが、縦方向の配列されたフィン付き伝熱管の上部のマニホールドで集合され、後段のフィン付き伝熱管群中で、順次縦方向に配列されたフィン付き伝熱管を上下に蛇行しながら流れて、下部に配置した集合管に集められ、その集合管から出口配管を介して需要系に供給される。   That is, the LNG stored in the storage tank of the satellite base is arranged in the vertical direction from the inlet pipe arranged at the bottom to the finned heat transfer pipe arranged in the horizontal direction through the distribution pipe, and from the finned heat transfer pipe in each row. LNG flows upward through the finned heat transfer tube group in the preceding stage, the outside air flows downward between the finned heat transfer tubes, and the LNG evaporates by exchanging heat with the air flowing downward. The NG evaporated in the finned heat transfer tube group in the preceding stage was collected in the upper manifold of the finned heat transfer tube arranged in the vertical direction, and sequentially arranged in the vertical direction in the finned heat transfer tube group in the subsequent stage. The finned heat transfer pipe flows while meandering up and down, is collected in a collecting pipe arranged at the lower part, and is supplied from the collecting pipe to the demand system through an outlet pipe.

従来のLNGサテライト基地等で使用されているLNGを気化させる空温式気化器では、長時間気化運転しているとフィン付き伝熱管に大気中の水分が凝縮して伝熱面に付着して通常は霜と氷を形成する。   In an air temperature type vaporizer that vaporizes LNG used in conventional LNG satellite bases, etc., if the vaporization operation is performed for a long time, moisture in the atmosphere condenses on the heat transfer tube with fins and adheres to the heat transfer surface. Usually forms frost and ice.

伝熱管やフィンに付着した霜は、厚くなると非常に大きい伝熱抵抗となるので、極度に気化能力を低下させることになる。このために定期的に付着した霜を温水等で加熱融解して除去して裸管とし伝熱能力を回復させている。   Since the frost adhering to the heat transfer tubes and fins becomes a very large heat transfer resistance when it becomes thick, the vaporization ability is extremely reduced. For this purpose, the frost that regularly adheres is removed by heating and melting with warm water or the like to form a bare pipe to restore the heat transfer capability.

また付着霜の除去時は、運転を停止して回復操作を行うので、基地としての能力を維持するために停止器と同能力の気化器を切換使用器として設置して、切換運転を行っている。   Also, when removing the attached frost, the operation is stopped and the recovery operation is performed. Therefore, in order to maintain the capacity as a base, a vaporizer with the same capacity as the stop device is installed as a switching device, and the switching operation is performed. Yes.

従って、LNGサテライト基地では切換器として1基以上の再生用待機気化器が設置されている。更に、故障に備えて予備の気化器が設置されているのが一般的である。空温式LNGの気化器では、通常伝熱管への着霜による性能低下の為に4時間ごとに予備器と切換えて運転している。   Therefore, at least one regeneration standby vaporizer is installed as a switch at the LNG satellite base. Furthermore, a spare carburetor is generally installed in case of failure. The air temperature type LNG vaporizer is operated by switching to a spare unit every 4 hours for performance degradation due to frost formation on normal heat transfer tubes.

一般に、着霜厚の増加は、フィンプレートを持った伝熱管では空気流が強く当たるフィンの先端部分が他の部分よりも大きい。フィンヘの着霜厚は、通常の外気の流下速度(約1m/s前後)では、先端の両面で約20mmとなっている。このために中央の流下空気がフィンの先端よりも内側のフィンプレート及び伝熱管の表面へ流入することが阻害され、伝熱性能を低下させる要因となっている。   In general, the increase in the frosting thickness is greater in the tip portion of the fin where the air flow is strongly applied in the heat transfer tube having the fin plate than in other portions. The frosting thickness on the fins is about 20 mm on both sides of the tip at a normal outside air flow speed (about 1 m / s). For this reason, the flow of air at the center is prevented from flowing into the fin plate and the surface of the heat transfer tube inside the tips of the fins, and this is a factor that deteriorates the heat transfer performance.

また、伝熱管の付着霜を融解するために使用する温水は、温水器或いはボイラーで発生させたスチームで温水を作り、伝熱管に散水してその顕熱で融解している。しかし、散水しても、大気の湿度が低い場合及び気温が低い場合は、温水の熱が大気への気化熱或いは伝熱で、温水の保有熱の半分位が失われることがあり、熱効率が高いとは云えない。   Moreover, the hot water used to melt the adhering frost on the heat transfer tubes is made with steam generated by a water heater or a boiler, sprayed on the heat transfer tubes, and melted by the sensible heat. However, even if the water is sprayed, if the humidity of the atmosphere is low or the temperature is low, the heat of the hot water may be lost by heat or heat transfer to the atmosphere, and about half of the heat stored in the hot water may be lost. It's not expensive.

さらに、融霜用の温水は熱の有効利用のために循環使用するのが一般的であるが、使用済みの温水は、大気その他の原因で汚染されるので直接温水器で加熱することは出来ない。この場合、温水器の加熱水と融霜用温水は別系統として温水器の加熱水で融霜用温水を間接加熱して使用するため、設備費、維持費及び燃料費が必要となり年間の経費が高価になる。   Furthermore, hot water for melting frost is generally circulated for effective use of heat, but used hot water is contaminated by the atmosphere and other causes, so it cannot be heated directly with a water heater. Absent. In this case, the heating water for the water heater and the warm water for frost are used as separate systems by indirectly heating the hot water for frost with the heating water for the water heater, so that equipment costs, maintenance costs, and fuel costs are required. Becomes expensive.

温水による着霜の融解除霜は、通常4時間間隔で行っているので、気象条件により着霜が厚くならなく、伝熱性能が劣化しない場合でも除霜運転を自動的に行うために、無駄に温水を使用して運転費用を増大させる原因となっている。   Defrosting frost with warm water is usually performed at intervals of 4 hours, so it is not necessary to perform defrosting operation automatically even if the frost does not thicken due to weather conditions and heat transfer performance does not deteriorate. This increases the operating cost by using hot water.

特開2008−274975号公報JP 2008-274975 A 特開昭57−122272号公報Japanese Patent Laid-Open No. 57-122272 特開平08−5207号公報Japanese Patent Laid-Open No. 08-5207

一方特許文献2,3では、冷却器に付着した霜の除霜手段として、伝熱面に高速噴流やコンプレッサからの圧縮空気を30m/secの風速で吹き付けて、伝熱面に付着した霜を強制的に吹き飛ばして除霜することが提案されている。   On the other hand, in Patent Documents 2 and 3, as defrosting means for frost adhered to the cooler, a high-speed jet or compressed air from a compressor is blown onto the heat transfer surface at a wind speed of 30 m / sec, and frost adhering to the heat transfer surface is removed. It has been proposed to defrost by forcibly blowing.

しかしながら、小型の冷却器では圧縮空気などで除霜することは可能であるが、LNG気化器などの空温式気化器では、縦横幅が約2m、高さが4〜5mもあり、また伝熱管内径20mm、フィン幅約50mm、フィン先端の外径135mmであり、特許文献2,3の技術を用いて着霜した霜を圧縮空気で吹き飛ばすことは、大量の圧縮空気を必要とし実質的に不可能である。   However, a small cooler can be defrosted with compressed air or the like, but an air temperature type vaporizer such as an LNG vaporizer has a vertical and horizontal width of about 2 m and a height of 4 to 5 m. The inner diameter of the heat tube is 20 mm, the fin width is about 50 mm, and the outer diameter of the fin tip is 135 mm. Blowing off the frost formed using the techniques of Patent Documents 2 and 3 with compressed air substantially requires a large amount of compressed air. Impossible.

そこで、本発明の目的は、上記課題を解決し、フィン付き伝熱管に付着して伝熱性の劣化の原因となる霜の除去を気化器の運転を停止することなく、風力により付着した霜を吹飛ばして機械的に除去して連続運転できる空温式気化器の運転方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, and to remove frost that adheres to the finned heat transfer tube and causes deterioration of heat transfer without stopping the operation of the vaporizer, An object of the present invention is to provide an operation method of an air temperature type carburetor which can be blown away and mechanically removed for continuous operation.

上記目的を達成するために請求項1の発明は、フィン付き伝熱管を縦横に垂直に立設し、その各フィン付き伝熱管の下部から上方に低温液化ガスを流すと共にフィン付き伝熱管の外側に上部から下部に外気を降下させて低温液化ガスを蒸発させて気化運転する空温式気化器の運転方法において、縦横に隣接する4本のフィン付き伝熱管の中央に、フィン付き伝熱管の下部から上部に延びる噴出空気供給管を立設し、その噴出空気供給管の外周に吹出ノズルを上下方向に複数段設け、フィン付き伝熱管に付着した霜による伝熱劣化を、NGの温度で検出し、そのNGの温度が設定温度(−40〜−50℃)以下に降下したときに、上記吹出ノズルから着霜面の衝突速度が4m/s以上になるように空気を噴射し、その吹出ノズルで噴射された空気で着霜した霜を吹き飛ばすと共にその吹き飛ばされた霜で、フィン付き伝熱管に付着した霜に雪崩を発生させて除霜しながら連続気化運転を行うことを特徴とする空温式気化器の運転方法である。 In order to achieve the above object, according to the first aspect of the present invention, finned heat transfer tubes are erected vertically and horizontally, and a low-temperature liquefied gas is allowed to flow upward from the lower portion of each finned heat transfer tube and the outside of the finned heat transfer tube. In the operation method of the air temperature type vaporizer in which the outside air is lowered from the upper part to the lower part to evaporate the low-temperature liquefied gas and vaporized, the finned heat transfer tube is placed in the center of the four finned heat transfer tubes adjacent vertically and horizontally. A jet air supply pipe extending from the lower part to the upper part is erected, and a plurality of jet nozzles are provided in the vertical direction on the outer periphery of the jet air supply pipe to prevent heat transfer deterioration due to frost adhering to the finned heat transfer pipe at an NG temperature. When the temperature of the NG drops below the set temperature (−40 to −50 ° C.) , air is injected from the blow nozzle so that the collision speed of the frosting surface is 4 m / s or more. Sky jetted by blowout nozzle Operation of an air-temperature type vaporizer characterized by blowing off the frost that has been frosted at the same time and generating avalanche on the frost attached to the heat transfer tube with fins, and performing continuous vaporization operation while defrosting. Is the method.

請求項の発明は、低温液化ガスがLNGであり、フィン付き伝熱管の長さが4〜5mであり、噴出空気供給管の外周の吹出ノズルが数m間隔で2或いは3段形成される請求項記載の空温式気化器の運転方法である。 In the invention of claim 2 , the low-temperature liquefied gas is LNG, the length of the finned heat transfer tube is 4 to 5 m, and the blowing nozzles on the outer periphery of the blowing air supply pipe are formed in two or three stages at intervals of several meters. It is a driving | running method of the air temperature type vaporizer | carburetor of Claim 1 .

請求項の発明は、内径20〜25mmの伝熱管の外周に、幅40〜80mmのフィンプレートを45度の角度で8枚設けてフィン付き伝熱管を構成し、そのフィン付き伝熱管を150〜200mm間隔で縦横に複数本立設し、縦横に隣接するフィン付き伝熱管の中心に内径20〜25mmの噴出空気供給管を立設すると共に、噴出空気供給管の下端から1.5m、3m、4mの位置に吹出ノズルを形成した請求項記載の空温式気化器の運転方法である。 According to the invention of claim 3 , a finned heat transfer tube is formed by providing eight fin plates with a width of 40 to 80 mm at an angle of 45 degrees on the outer periphery of a heat transfer tube having an inner diameter of 20 to 25 mm. A plurality of vertical and horizontal erected pipes at intervals of ˜200 mm, and a jet air supply pipe having an inner diameter of 20 to 25 mm is erected at the center of the finned heat transfer pipes adjacent to the vertical and horizontal sides, and 1.5 m, 3 m, The operation method of the air temperature type | mold vaporizer of Claim 2 which formed the blowing nozzle in the position of 4 m.

請求項の発明は、吹出ノズルは、隣接する4本のフィン付き伝熱管に向けて下向きに空気を噴射する伝熱管用吹出ノズルと、横又は縦方向で隣接するフィン付き伝熱管のフィン間に向けて空気が当たるように噴射するフィン用吹出ノズルからなる請求項記載の空温式気化器の運転方法である。 According to the invention of claim 4 , the blowout nozzle is between the fins of the heat transfer tube blowing nozzle for injecting air downward toward the four adjacent finned heat transfer tubes and the fins of the finned heat transfer tubes adjacent in the horizontal or vertical direction. The operation method of the air temperature type | mold vaporizer of Claim 3 which consists of a blowing nozzle for fins injected so that air may hit toward.

本発明によれば、フィン付き伝熱管に付着した霜を除霜する際に、気化器運転を停止することなく、噴出空気供給管の高さ方向に複数段設けた吹出ノズルから4m/s以上の着霜面衝突速度で空気を、短時間(数秒)噴射することで、その位置の霜を吹き飛ばし、その霜で下方の霜に雪崩を発生させて霜を削り落とすことで簡単に除霜でき、伝熱性能を回復することにより、気化器の連続運転が可能となる。また気化器の設備費や除霜のためのランニングコストも低減することができる。   According to the present invention, when defrosting the frost adhered to the finned heat transfer tube, it is 4 m / s or more from the blow nozzle provided in a plurality of stages in the height direction of the blown air supply pipe without stopping the vaporizer operation. By blowing air at a frosting surface collision speed for a short time (several seconds), the frost at that position is blown away, and an avalanche is generated in the frost below and the frost is scraped off. By recovering the heat transfer performance, the vaporizer can be operated continuously. Moreover, the installation cost of a vaporizer and the running cost for defrosting can also be reduced.

本発明の一実施の形態を示し、(a)はフィン付き伝熱管の断面図、(b)は左側面図、(c)は正面図、(d)は平面図である。1 shows an embodiment of the present invention, in which (a) is a cross-sectional view of a finned heat transfer tube, (b) is a left side view, (c) is a front view, and (d) is a plan view. (a)は、図1におけるフィン付き伝熱管と噴射空気供給管の配置を示す断面図、(b)は噴射空気供給管の斜視図である。(A) is sectional drawing which shows arrangement | positioning of the heat exchanger tube with a fin in FIG. 1, and an injection air supply pipe, (b) is a perspective view of an injection air supply pipe. (a)は2列のフィン付き伝熱管と噴射空気供給管に噴出空気を供給する空気供給系を示す図、(b)はフィン付き伝熱管に空気を吹き付ける模式図である。(A) is a figure which shows the air supply system which supplies blown air to a heat transfer tube with two rows of fins, and an injection air supply pipe, (b) is a schematic diagram which blows air on the heat transfer tube with a fin. 本発明において、除霜運転を行う際の除霜運転システムを示す図である。In this invention, it is a figure which shows the defrost operation system at the time of performing a defrost operation. 本発明において、フィン付き伝熱管の表面の温度をパラメータとしたときの冷気降下速度と着霜密度の関係を示す図である。In this invention, it is a figure which shows the relationship between the cool air fall speed | rate and frost density when the surface temperature of a finned heat exchanger tube is made into a parameter. 本発明において、フィン付き伝熱管の着霜冷却面温度と着霜密度の関係を示す図である。In this invention, it is a figure which shows the relationship between the frost formation cooling surface temperature and frost formation density of a heat exchanger tube with a fin. 本発明において、風速と霜の厚さ(霜の成長)の関係を示す図である。In this invention, it is a figure which shows the relationship between a wind speed and the thickness (frost growth) of frost. 本発明において、フィン付き伝熱管に付着した霜の厚さと総括伝熱係数の関係を示す図である。In this invention, it is a figure which shows the relationship between the thickness of the frost adhering to the heat exchanger tube with a fin, and an overall heat transfer coefficient.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

先ず図1より、本発明の空温式気化器の運転方法に用いる空温式気化器10とその除霜装置30を説明する。   First, the air temperature type vaporizer 10 and its defrosting device 30 used in the operation method of the air temperature type vaporizer of the present invention will be described with reference to FIG.

図1(a)に示すように、フィン付き伝熱管11は、内径20〜25mm、図示では内径20mmの伝熱管12の外周に45度の角度で放射状に垂直なフィン13が設けられて構成される。この例においてはフィン13は8枚で、そのフィン幅が40〜80mm、図示では50mmで、伝熱管12の長さ(5m)に沿って設けられる。   As shown in FIG. 1 (a), the finned heat transfer tube 11 is configured by providing fins 13 that are radially vertical at an angle of 45 degrees on the outer periphery of a heat transfer tube 12 having an inner diameter of 20 to 25 mm, in the drawing, an inner diameter of 20 mm. The In this example, the number of fins 13 is eight, and the fin width is 40 to 80 mm, which is 50 mm in the drawing, and is provided along the length (5 m) of the heat transfer tube 12.

空温式気化器10は、図1(b)〜図1(d)に示すように、フィン付き伝熱管11が、間隔150〜200mmで、縦横に多数垂直に配置されて構成され、前段のフィン付き伝熱管群11Fで、LNGを気化させ、後段のフィン付き伝熱管群11Rで気化させたNGを常温近くまで過熱するように各フィン付き伝熱管11が接続される。   As shown in FIGS. 1 (b) to 1 (d), the air temperature type vaporizer 10 is configured with a plurality of finned heat transfer tubes 11 arranged vertically and horizontally at intervals of 150 to 200 mm. Each finned heat transfer tube 11 is connected so that LNG is vaporized by the finned heat transfer tube group 11F and the NG vaporized by the finned heat transfer tube group 11R is heated to near room temperature.

すなわち、サテライト基地の貯蔵タンクの底部に接続された払出管(図示せず)と接続する入口配管14が配置され、その入口配管14に、図1(b)に示すように左右方向に延びる分配管15が接続され、その入口側である前段の分配管15と対向する出口側である後段に集合管16が配置されると共にその集合管16に出口配管17が接続される。   That is, an inlet pipe 14 connected to a discharge pipe (not shown) connected to the bottom of the storage tank of the satellite base is arranged, and the inlet pipe 14 has a portion extending in the left-right direction as shown in FIG. A pipe 15 is connected, and a collecting pipe 16 is arranged at the rear stage on the outlet side facing the front-side distribution pipe 15 on the inlet side, and an outlet pipe 17 is connected to the collecting pipe 16.

分配管15には、後段側に延びる下部マニホールド18がフィン付き伝熱管11の配置間隔に合わせて接続され、その下部マニホールド18にフィン付き伝熱管11が、図では出口側にかけて4列接続され、そのフィン付き伝熱管11の上部に上部マニホールド19が接続され、これにより前段のフィン付き伝熱管群11Fが構成される。   A lower manifold 18 extending to the rear stage side is connected to the distribution pipe 15 according to the arrangement interval of the finned heat transfer tubes 11, and the finned heat transfer tubes 11 are connected to the lower manifold 18 in four rows toward the outlet side in the figure, The upper manifold 19 is connected to the upper part of the finned heat transfer tube 11, thereby configuring the finned heat transfer tube group 11 </ b> F.

上部マニホールド19は、接続管20を介して後段のフィン付き伝熱管群11Rの前段側のフィン付き伝熱管11の上部に連結され、そのフィン付き伝熱管11の下端がベンド管21を介して次段のフィン付き伝熱管11に接続され、その次段のフィン付き伝熱管11の上部がベンド管21を介してさらに次段のフィン付き伝熱管11に接続され、以後同様に上下でベンド管21にてフィン付き伝熱管11が接続され、最終段のフィン付き伝熱管11の下端が継ぎ手管22を介して集合管16に接続されて、後段のフィン付き伝熱管群11Rが構成される。   The upper manifold 19 is connected to the upper part of the finned heat transfer tube 11 on the front stage side of the rear finned heat transfer tube group 11R through the connecting pipe 20, and the lower end of the finned heat transfer tube 11 is connected to the next through the bend pipe 21. The finned heat transfer tube 11 is connected to the next finned heat transfer tube 11, and the upper portion of the next finned heat transfer tube 11 is connected to the next finned heat transfer tube 11 via the bend tube 21. The finned heat transfer tubes 11 are connected to each other, and the lower ends of the finned heat transfer tubes 11 at the final stage are connected to the collecting tube 16 via the joint tubes 22 to form the finned heat transfer tube group 11R at the subsequent stage.

なお、詳細は省くが各フィン付き伝熱管11同士は、適宜その下部と中間と上部が連結部材で相互に一体に連結された構造体とされる。   Although not described in detail, the finned heat transfer tubes 11 have a structure in which a lower part, an intermediate part, and an upper part are appropriately connected to each other by a connecting member.

貯蔵タンクからのLNGは、入口配管14から分配管15を通し、下部マニホールド18にて、フィン付き伝熱管群11Fに供給される。すなわち、横方向に配列されたフィン付き伝熱管11とその列のフィン付き伝熱管11から縦方向の配列されたフィン付き伝熱管11にLNGが供給される。このフィン付き伝熱管群11Fに供給されるLNGにより周囲の空気が冷却されることで、外気がフィン付き伝熱管群11Fのフィン付き伝熱管11間を下向きに流れ(下降速度;1〜2m/s程度)、その間にLNGと熱交換して、LNGを蒸発する。この際、各フィン付き伝熱管11の下端から所定の高さまでがLNGの気化領域となり、その気化領域で蒸発したNGが伝熱管12の上方に流れ、そのNGが上昇する間に過熱される。   The LNG from the storage tank is supplied from the inlet pipe 14 through the distribution pipe 15 to the finned heat transfer pipe group 11F through the lower manifold 18. That is, LNG is supplied from the finned heat transfer tubes 11 arranged in the horizontal direction and the finned heat transfer tubes 11 in the row to the finned heat transfer tubes 11 arranged in the vertical direction. The ambient air is cooled by the LNG supplied to the finned heat transfer tube group 11F, so that the outside air flows downward between the finned heat transfer tubes 11 of the finned heat transfer tube group 11F (lowering speed; 1 to 2 m / second). In the meantime, heat is exchanged with LNG to evaporate LNG. At this time, the LNG vaporization region extends from the lower end of each finned heat transfer tube 11 to a predetermined height, and NG evaporated in the vaporization region flows above the heat transfer tube 12 and is heated while the NG rises.

フィン付き伝熱管群11Fの各フィン付き伝熱管11で蒸発したNGは、上部マニホールド19で集合され、接続配管20より後段のフィン付き伝熱管群11R中で、順次ベンド管21で直列に接続された縦方向のフィン付き伝熱管11を上下に蛇行しながら流れ、その間に大気温度近くまで過熱され、下部に配置した集合管16に集められ、その集合管16より出口配管17を介して需要系に供給される。   The NG evaporated in the finned heat transfer tube 11F of the finned heat transfer tube group 11F is collected in the upper manifold 19 and sequentially connected in series by the bend tube 21 in the finned heat transfer tube group 11R downstream from the connection pipe 20. The vertical finned heat transfer pipe 11 flows while meandering up and down, while being heated up to near the atmospheric temperature, collected in a collecting pipe 16 disposed in the lower part, and from the collecting pipe 16 through an outlet pipe 17 to a demand system. To be supplied.

本発明においては、この空温式気化器10の各フィン付き伝熱管11の間、特に前段のフィン付き伝熱管群11Fの全部の各フィン付き伝熱管11の間と後段のフィン付き伝熱管群11Rの前段側の一部又は全部の各フィン付き伝熱管11の間に、除霜装置30の噴出空気供給管31を設け、その噴出空気供給管31から各フィン付き伝熱管11に向けて除霜用空気を吹き付けることで、フィン付き伝熱管11に付着した霜を除霜して伝熱性能を回復することにより、連続気化運転を可能とするものである。   In the present invention, between the finned heat transfer tubes 11 of the air temperature type vaporizer 10, in particular, between all the finned heat transfer tubes 11F of the front finned heat transfer tube group 11F and the latter finned heat transfer tube group. An ejection air supply pipe 31 of the defrosting device 30 is provided between some or all of the finned heat transfer tubes 11 on the front stage side of 11R, and removed from the ejection air supply tube 31 toward the finned heat transfer tubes 11. By blowing frost air, the frost adhering to the finned heat transfer tube 11 is defrosted to recover the heat transfer performance, thereby enabling continuous vaporization operation.

以下に噴出空気供給管31からなる除霜装置30について説明する。   Below, the defrosting apparatus 30 which consists of the ejection air supply pipe | tube 31 is demonstrated.

(1)本発明の除霜装置30は、フィン付き伝熱管11に付着した霜を、運転を停止することなく、風力により霜を吹き飛ばして機械的に除去するものである。   (1) The defroster 30 of the present invention mechanically removes frost adhering to the finned heat transfer tube 11 by blowing off the frost with wind power without stopping the operation.

(2)空温式気化器10での、加熱は空気の冷却による自然対流(下降流)による伝熱が主体となっているので、下降速度も比較的遅く、1〜2m/s程度である。風速と着霜密度の関係を、図4により説明する。   (2) Since the heating in the air temperature type vaporizer 10 is mainly due to heat transfer by natural convection (downflow) due to cooling of the air, the descending speed is also relatively slow, about 1-2 m / s. . The relationship between the wind speed and the frost density will be described with reference to FIG.

図5は、フィン付き伝熱管11の伝熱面温度が−110℃(▲印)、−75℃(■印)、−40℃(●印)のときに、下降速度0.5m/s〜1.1m/sのときの着霜密度の関係を実験で求めたものである。   FIG. 5 shows that when the heat transfer surface temperature of the finned heat transfer tube 11 is −110 ° C. (▲), −75 ° C. (■), −40 ° C. (●), the descending speed is 0.5 m / s. The relationship of the frost formation density at 1.1 m / s was obtained by experiment.

この図4で、伝熱面温度が低ければ、着霜密度が小さく、また下降速度が遅くなると着霜密度も軽くなり、1〜2m/s程度の低速では着霜密度は、氷の密度の約1/5と非常に軽くなることがわかる。   In FIG. 4, if the heat transfer surface temperature is low, the frost density is small, and if the descending speed is slow, the frost density is also light. At low speeds of about 1 to 2 m / s, the frost density is the density of ice. It turns out that it becomes very light with about 1/5.

通常フィン付き伝熱管11は、長さが約5mあり、その高さ方向で伝熱面の温度が相違すると共に上部からの初期風速と下部の終期速度も相違する。そこで図6に、伝熱面としての着霜冷却面温度と着霜密度の関係を示した。   Usually, the finned heat transfer tube 11 has a length of about 5 m, the temperature of the heat transfer surface is different in the height direction, and the initial wind speed from the upper part and the final speed of the lower part are also different. FIG. 6 shows the relationship between the frost cooling surface temperature as the heat transfer surface and the frost density.

図6においては、●印は初期風速が0.6m/s、■印は終期速度が0.9m/sである。   In FIG. 6, the ● mark indicates an initial wind speed of 0.6 m / s, and the ▪ mark indicates an end speed of 0.9 m / s.

通常、LNGの主体的気化温度の領域は−145℃〜−40℃であり、この温度領域では、図5より、伝熱面としての着霜冷却面温度に対する着霜密度変化は少ないことがわかる。   Usually, the region of the main vaporization temperature of LNG is −145 ° C. to −40 ° C., and in this temperature region, it is understood from FIG. 5 that the frost density change with respect to the frost cooling surface temperature as the heat transfer surface is small. .

また、図7は、下降速度の風速とフィン付き伝熱管11の霜の厚さ(4時間での霜の成長)の関係の一例を示したもので、風速2m以下では霜の厚さが4mm以下となることがわかる。   FIG. 7 shows an example of the relationship between the wind speed at the descending speed and the frost thickness (frost growth in 4 hours) of the finned heat transfer tube 11. When the wind speed is 2 m or less, the frost thickness is 4 mm. It turns out that it becomes the following.

以上より、下降速度1〜2m/s程度では、霜の成長が平均4mm以下と薄くまた、霜の密度も非常に軽いことがわかる。従って、フィン付き伝熱管11への霜の付着力も弱いので、除霜装置30にて約4m/s以上の着霜面への衝突風を当てると付着している霜が吹飛ばされると共に、その位置の下方に雪崩れが発生して下端まで霜が削り落とされ、霜の全て、或いは2mm程度の霜が残るだけとなる。   From the above, it can be seen that at a descending speed of about 1 to 2 m / s, the growth of frost is as thin as an average of 4 mm or less and the density of frost is very light. Accordingly, the adhesion force of frost to the finned heat transfer tube 11 is also weak, so when the impinging wind against the frosting surface of about 4 m / s or more is applied by the defrosting device 30, the attached frost is blown off, An avalanche occurs below the position and the frost is scraped off to the lower end, leaving only all of the frost or about 2 mm of frost.

よって、噴射空気で伝熱管面の着霜を飛ばすことにより伝熱性能の回復を図ることが出来る。   Therefore, the heat transfer performance can be recovered by blowing frost on the heat transfer tube surface with the jet air.

(3)伝熱管上の着霜厚さが2mm迄は、着霜により総括伝熱係数は裸管より大きくなり、その後徐々に霜厚の増加に反比例して小さくなる。   (3) When the frost formation thickness on the heat transfer tube is up to 2 mm, the overall heat transfer coefficient becomes larger than that of the bare tube due to frost formation, and then gradually decreases in inverse proportion to the increase in frost thickness.

図8はフィン付き伝熱管11に付着した霜の厚さと総括伝熱係数[kW/m2K]の関係を求めたものである。 FIG. 8 shows the relationship between the thickness of frost adhered to the finned heat transfer tube 11 and the overall heat transfer coefficient [kW / m 2 K].

この図8より、裸管より霜が付着した方が総括伝熱係数が高く、1mmで総括伝熱係数が最大となり、2mmで裸管と同じ総括伝熱係数となり、その後は漸次小さくなり、10mm厚では、裸管の1/5となる。   From FIG. 8, the overall heat transfer coefficient is higher when frost adheres than the bare pipe, the overall heat transfer coefficient is maximum at 1 mm, the same overall heat transfer coefficient as that of the bare pipe at 2 mm, and then gradually decreases to 10 mm. The thickness is 1/5 of the bare tube.

ここで、着霜厚の増加速度は略時間に比例するので、従来実施されている4時間切換えの気化器と同じ空温式気化器を用いた場合は、2時間以内に、除霜装置30で、一回空気を吹き付けて霜を除去することにより運転を停止することなく運転を続けることが出来ることがわかる。   Here, since the increasing speed of the frosting thickness is approximately proportional to the time, when the same air temperature type vaporizer as the conventional four-hour switching vaporizer is used, the defrosting device 30 is within two hours. Thus, it can be seen that the operation can be continued without stopping the operation by blowing air once to remove the frost.

(4)空温式気化器の設計の平均の総括熱伝達係数は、最終着霜厚で、約3.5kW/m2Kである。これに相当する霜厚は、約11mmである。従って、(3)項のように除霜すれば設計総括伝熱係数以上となるので、(3)項に示したような時間間隔で除霜すれば気化器の連続運転が可能になる。 (4) The average overall heat transfer coefficient of the air temperature carburetor design is about 3.5 kW / m 2 K at the final frost thickness. The corresponding frost thickness is about 11 mm. Therefore, if the defrosting is performed as described in the item (3), the overall heat transfer coefficient becomes equal to or higher than the design overall heat transfer coefficient.

上記(1)〜(4)の知見に基づき、噴出空気供給管31により、上下方向で2又は3段の空気吹出ノズルを設けて、そのノズルより、着霜面衝突風速4m/s以上、15m/s以下の空気を、2時間に1回程度吹き付けることで、ノズル位置のフィン付き伝熱管11に付着した霜を吹き飛ばし、その吹き飛ばされた霜が落下するにおいて、吹き付け部より下方に付着している霜も雪崩現象となって、容易に下端の霜まで削り落とすことが可能となる。   Based on the knowledge of the above (1) to (4), the blown air supply pipe 31 is provided with two or three stages of air blowing nozzles in the vertical direction, and the frosting surface collision wind speed is 4 m / s or more and 15 m from the nozzles. By blowing the air below / s about once every 2 hours, the frost attached to the finned heat transfer tube 11 at the nozzle position is blown off, and when the blown off frost falls, it adheres below the blowing part. The frost that has become an avalanche phenomenon can be easily scraped off to the frost at the lower end.

この本発明の除霜装置30を図2、図3により説明する。   The defrosting device 30 of the present invention will be described with reference to FIGS.

先ず、除霜装置30は、開閉弁34が接続された空気総供給管(200A)35に、主空気供給管(150A)36が接続され、その主空気供給管36がフィン付き伝熱管11、特に前段のフィン付き伝熱管群11Fの下部を横断するように設けられると共にフィン付き伝熱管11の列の中間に延びるように空気供給ヘッダ37が設けられ、その空気供給ヘッダ37に噴射空気供給管31が垂直に起立するように設けられて構成される。   First, in the defrosting device 30, a main air supply pipe (150A) 36 is connected to a total air supply pipe (200A) 35 to which an on-off valve 34 is connected, and the main air supply pipe 36 is connected to the heat transfer pipe 11 with fins, In particular, an air supply header 37 is provided so as to traverse the lower part of the finned heat transfer tube group 11 </ b> F at the front stage and extend in the middle of the row of the finned heat transfer tubes 11, and a jet air supply pipe is provided in the air supply header 37. 31 is provided and configured to stand vertically.

この噴射空気供給管31をさらに説明すると、先ず、図2(a)に示すように、フィン付き伝熱管11が、縦横間隔150mmにされて配置され、フィン外径が132mmとすると、噴射空気供給管31は、そのフィン付き伝熱管11の配列の中央に垂直に配置され、その噴射空気供給管31の外径は、伝熱管12の外径と同じかやや径が大きく形成される。   The blast air supply pipe 31 will be further described. First, as shown in FIG. 2 (a), when the finned heat transfer pipe 11 is arranged with a vertical and horizontal interval of 150 mm and the fin outer diameter is 132 mm, the blast air supply is provided. The tube 31 is disposed perpendicularly to the center of the arrangement of the finned heat transfer tubes 11, and the outer diameter of the jet air supply tube 31 is formed to be the same as or slightly larger than the outer diameter of the heat transfer tube 12.

図2(b)は、噴射空気供給管31の斜視図を示したもので、その噴射空気供給管31の上端部に上下方向で3段、円周方向に4個の吹出ノズル32と直径方向に2個の吹出ノズル33が形成される。この吹出ノズル32、33は、噴射空気供給管31に穿孔して形成するがノズル形状のものを取り付けるようにしてもよい。   FIG. 2B shows a perspective view of the blast air supply pipe 31. The upper end of the blast air supply pipe 31 has three stages in the vertical direction and four blowout nozzles 32 in the circumferential direction and the diameter direction. Two blow-off nozzles 33 are formed in the same manner. The blowout nozzles 32 and 33 are formed by drilling in the blast air supply pipe 31, but nozzle-shaped ones may be attached.

フィン付き伝熱管11の高さが4.5〜5m場合、フィン付き伝熱管11の下端から1段目の吹出ノズル32、33が1.5mに、2段目の吹出ノズル32、33が約3m、3段目の吹出ノズル32、33が約4mの高さになるように配置される。   When the height of the finned heat transfer tube 11 is 4.5 to 5 m, the first stage nozzles 32 and 33 from the lower end of the finned heat transfer tube 11 are 1.5 m, and the second stage nozzles 32 and 33 are approximately 3 m and 3rd stage blowing nozzles 32 and 33 are arranged to be about 4 m high.

また、吹出ノズル32、33は、伝熱管12に向かう伝熱管側吹出ノズル32の孔径が3mmで周方向に4箇所設けられると共に、フィン13の間に吹き出されるフィン側吹出ノズル33が孔径2mmで、直径方向で対向するように2箇所設けられる。吹出ノズル32、33は、孔径が重ならないように上下に離して配置される。   The blow nozzles 32 and 33 are provided at four locations in the circumferential direction with a hole diameter of the heat transfer pipe side blow nozzle 32 toward the heat transfer pipe 12 of 3 mm, and the fin side blow nozzle 33 blown between the fins 13 has a hole diameter of 2 mm. Thus, two locations are provided so as to face each other in the diameter direction. The blowing nozzles 32 and 33 are arranged apart from each other so that the hole diameters do not overlap.

このフィン側吹出ノズル33は、フィン13間で対向する噴射空気供給管31の両方にノズル33が位置すると吹出空気がフィン13間で衝突するため、図2(a)に示すようにフィン13間で隣接する噴射空気供給管31のフィン側吹出ノズル33は、互いに直交する方向に噴射するようにその向きを変えて配置し、吹出風が干渉しないようにすることで、フィン13の先端に付着し厚くなる傾向にある霜を容易に吹き飛ばすことができる。   The fin side blowing nozzle 33 collides between the fins 13 as shown in FIG. 2A because the blown air collides between the fins 13 when the nozzles 33 are positioned on both of the jet air supply pipes 31 facing each other between the fins 13. The fin-side blowing nozzles 33 of the adjacent jet air supply pipes 31 are arranged in different directions so as to jet in directions orthogonal to each other, and are prevented from interfering with the blown wind, so that they adhere to the tips of the fins 13. The frost that tends to be thick can be easily blown away.

また、伝熱管側吹出ノズル32は、伝熱管12の縦横の配列方向に対して45度傾斜したフィン13に向くよう、さらに、図3(b)に示すように斜め下方に、例えば約5度傾斜するように設けることで、伝熱管12やフィン13に付着した霜に当って吹き飛ばす際に、伝熱管12やフィン13に沿って雪崩を起きやすくする。さらにフィン側吹出ノズル33は、図2(b)に示したように、伝熱管側吹出ノズル32の位置よりもやや高くなる位置に設けることで、伝熱管側吹出ノズル32の吹出風に影響されずに吹き出すことができ、対向したフィン13の先端に付着した霜を吹き飛ばし、その吹き飛ばされた霜と、伝熱管側吹出ノズル32で吹き飛ばされた霜とがフィン13の面で合流し、伝熱管12とフィン13の面で霜の雪崩現象を発生させ、これによりフィン付き伝熱管11の全面に付着した霜を下方に向けて削り落とすことが可能となる。   Further, the heat transfer tube side blowing nozzle 32 faces the fins 13 inclined by 45 degrees with respect to the vertical and horizontal arrangement directions of the heat transfer tubes 12, and further obliquely downward as shown in FIG. By providing it so as to incline, avalanche is likely to occur along the heat transfer tubes 12 and the fins 13 when blown off against the frost attached to the heat transfer tubes 12 and the fins 13. Further, as shown in FIG. 2B, the fin-side blowing nozzle 33 is provided at a position slightly higher than the position of the heat transfer tube side blowing nozzle 32, thereby being influenced by the blowing air from the heat transfer tube side blowing nozzle 32. The frost adhered to the tips of the fins 13 facing each other is blown away, and the blown frost and the frost blown off by the heat transfer tube side blowing nozzle 32 are merged on the surface of the fin 13 to form a heat transfer tube. A frost avalanche phenomenon is generated on the surfaces of the fins 12 and the fins 13, whereby the frost attached to the entire surface of the finned heat transfer tube 11 can be scraped downward.

伝熱管側吹出ノズル32の伝熱管12の衝突速度は、衝突時の空気速度が、4m/s以上、15m/s以下になるように噴出の初速を決める。   The collision speed of the heat transfer tube 12 of the heat transfer tube side blowing nozzle 32 determines the initial speed of ejection so that the air speed at the time of the collision is 4 m / s or more and 15 m / s or less.

LNGサテライト基地でのLNGの主体的気化温度の領域は−145℃〜−80℃である。この間の霜の密度の変化は図6に示したように初期と終期の速度差による霜の密度差は約20%であり、空気を吹出ノズル32,33で高さ方向に複数段設けて噴射することで、雪崩現象を発生させて除霜が行える。   The region of the main vaporization temperature of LNG at the LNG satellite station is -145 ° C to -80 ° C. As shown in FIG. 6, the change in frost density during this period is approximately 20% due to the difference in speed between the initial stage and the final stage, and air is ejected by providing a plurality of stages in the height direction with the blowing nozzles 32 and 33. By doing so, an avalanche phenomenon is generated and defrosting can be performed.

図4は、本発明の除霜運転を行う際の除霜運転システムを示す図である。   FIG. 4 is a diagram showing a defrosting operation system when performing the defrosting operation of the present invention.

図4は、前段のフィン付き伝熱管群11Fの縦方向のフィン付き伝熱管11を示し、LNGが、払出管40、制御弁41を通し、入口配管14から分配管15を介して、下部マニホールド18に供給され、下部マニホールド18より各フィン付き伝熱管11の下部より供給され、そこで降下する外気でLNGが過熱されてNGとなり、そのNGが上部マニホールド19、接続管20を介して、後段のフィン付き伝熱管群11Rのフィン付き伝熱管11であるNG過熱管に、供給される。   FIG. 4 shows the finned heat transfer tube 11 in the longitudinal direction of the finned heat transfer tube group 11F in the preceding stage, and the LNG passes through the discharge tube 40 and the control valve 41, and passes through the inlet pipe 14 and the distribution pipe 15 through the lower manifold. 18 is supplied from the lower manifold 18 from the lower part of each finned heat transfer tube 11, and LNG is overheated by the outside air descending there to become NG, and the NG is passed through the upper manifold 19 and the connecting pipe 20 to the subsequent stage. It is supplied to the NG superheater tube which is the heat transfer tube 11 with fins of the heat transfer tube group 11R with fins.

また、除霜用空気は、除霜装置30で説明したように、開閉弁34から空気総供給管35、主空気供給管36から空気供給ヘッダ37に供給され、各空気供給ヘッダ37から縦方向に配列された噴射空気供給管31に供給され、その噴射空気供給管31の吹出ノズル32,33から吹き出されるように構成されている。   Further, as described in the defrosting device 30, the defrosting air is supplied from the open / close valve 34 to the total air supply pipe 35 and from the main air supply pipe 36 to the air supply header 37, and from each air supply header 37 in the vertical direction. Are supplied to the blast air supply pipes 31, and are blown out from the blow nozzles 32 and 33 of the blast air supply pipe 31.

ここで、後段のフィン付き伝熱管群11Rのフィン付き伝熱管11に流入するNGの温度が、接続管20或いはその下流に接続したNG温度調節計(TIRC)42で検知され、そのNG温度調節計42で予め設定した温度(フィン付き伝熱管11に着霜する霜の厚さが4mm程度となる温度で、−50〜−40℃の範囲内で設定されるNG設定温度)以下に降下した時点で、開閉弁34を短時間(約3秒、2〜4秒)開いて、各噴射空気供給管31の吹出ノズル32,33から空気を吹き出して除霜運転を行うことで、適切な除霜運転を行うことができる。このNG温度調節計42は、横方向に整列した接続管20のいずれか1つ、特に熱交換率の低くなる中央部に設けるのがよいが、幅方向で温度が相違する場合には、複数の接続管42に設けるようにしてもよい。このNG温度調節計42を複数設けた場合には、いずれかのNG温度調節計42がNG設定温度となった時に、開閉弁34を開くようにする。   Here, the temperature of NG flowing into the finned heat transfer tube 11 of the finned heat transfer tube group 11R in the subsequent stage is detected by the connecting tube 20 or the NG temperature controller (TIRC) 42 connected downstream thereof, and the NG temperature adjustment is performed. The temperature dropped below the temperature set in advance by a total of 42 (the temperature at which the thickness of the frost frosted on the finned heat transfer tube 11 is about 4 mm and the NG set temperature set within a range of −50 to −40 ° C.). At that time, the on-off valve 34 is opened for a short time (about 3 seconds, 2 to 4 seconds), and air is blown out from the blowing nozzles 32 and 33 of each of the jet air supply pipes 31 to perform a defrosting operation. Frost operation can be performed. The NG temperature controller 42 is preferably provided in any one of the connecting pipes 20 aligned in the lateral direction, particularly in the central portion where the heat exchange rate is low. The connecting pipe 42 may be provided. When a plurality of the NG temperature controllers 42 are provided, the opening / closing valve 34 is opened when any of the NG temperature controllers 42 reaches the NG set temperature.

除霜運転が開始される際のフィン付き伝熱管11に着霜する霜の厚さが4mm程度であり、3段の吹出ノズル32,33から空気を吹き出すことで、霜の雪崩現象を発生させて効果的に除霜を行うことが可能となる。   The thickness of the frost that forms on the heat transfer tube 11 with fins when the defrosting operation is started is about 4 mm, and air is blown out from the three-stage blowing nozzles 32 and 33 to cause an avalanche phenomenon of frost. Thus, defrosting can be performed effectively.

この雪崩よる除霜をさらに説明する。   This defrosting due to avalanche will be further described.

先ず、表1は、気化器を模した実験装置で着霜除去に必要に吹出ガス(窒素ガス)の噴射量を着霜温度別に求めた結果を示したものである。   First, Table 1 shows the result of obtaining the injection amount of the blown gas (nitrogen gas) for each frost temperature necessary for frost removal by an experimental device that simulates a vaporizer.

この実験装置は、直径14mmの円筒とし、その円筒を−40〜−150℃の範囲で、冷却した状態で、霜を厚さ4mmに成長させて、噴射ノズル径3mm、ノズル長20mm、ノズルと円筒面距離を100mmとし、ノズルからの噴射ガスが円筒の中央に直角に当たるように噴射し、霜が除去できたときの、噴射ガス量、噴射速度Uo、噴射ガスの広がり平均速度Uxを示したものである。   This experimental apparatus is a cylinder with a diameter of 14 mm, and the cylinder is cooled in the range of −40 to −150 ° C., and frost is grown to a thickness of 4 mm. The nozzle diameter is 3 mm, the nozzle length is 20 mm, the nozzle The cylinder surface distance was set to 100 mm, and the injection gas from the nozzle was injected so as to be perpendicular to the center of the cylinder, and when the frost could be removed, the injection gas amount, the injection speed Uo, and the spread average speed Ux of the injection gas were shown. Is.

Figure 0005378064
Figure 0005378064

表1より、着霜表面温度が−40℃ではより、噴射速度は大きいが、温度が低くなる程噴射速度は遅くて済むことがわかる。   From Table 1, it can be seen that when the frost surface temperature is −40 ° C., the injection speed is higher, but the lower the temperature, the lower the injection speed.

ここで、LNGをフィン付き伝熱管11の下部から入れる気化器の場合のLNGの気化と着霜の過程は次のようになる。   Here, the process of LNG vaporization and frost formation in the case of the vaporizer which puts LNG from the lower part of the finned heat exchanger tube 11 is as follows.

最初は伝熱管12の下部は急激に冷却されて伝熱管12の表面温度は−70℃以下となり、着霜は低い温度での凝固となるために比較的密度が軽く弱い結合のものとなる。このとき上部の伝熱管12は伝熱面積が大きくなっているので、殆ど常温に近い温度になっている。時間の経過と共に下部の伝熱管12の着霜厚が増加するためにLNGへの入熱が減少するので伝熱管12内の気化領域が上方に移行し温度が低下する。従って、上方の着霜の密度も軽くなり結合強度も弱くなる。   Initially, the lower part of the heat transfer tube 12 is rapidly cooled, the surface temperature of the heat transfer tube 12 becomes −70 ° C. or less, and frost formation is solidified at a low temperature, so that the density is relatively light and weak. At this time, since the heat transfer area of the upper heat transfer tube 12 is large, the temperature is almost close to room temperature. As the frost formation thickness of the lower heat transfer tube 12 increases with the passage of time, the heat input to the LNG decreases, so the vaporization region in the heat transfer tube 12 moves upward and the temperature decreases. Accordingly, the density of frosting on the upper side is lightened and the bonding strength is also weakened.

図5、図6から分るように霜の密度は、着霜面の温度が高いほど大きくなる。このために霜の結合力も高くなるので、除霜可能なの空気噴出速度も表1に示したように大きくなる。   As can be seen from FIGS. 5 and 6, the density of frost increases as the temperature of the frosting surface increases. For this reason, since the binding force of frost also becomes high, the air ejection speed | velocity which can be defrosted also becomes large as shown in Table 1.

前段フィン付き伝熱管群11Fの伝熱管12の出口付近は最終的には、気化ガスの温度が通常約−40℃になる時点を、後段フィン付き伝熱管群11Rへの切換時としている。この時の前段フィン付き伝熱管群11Fの伝熱管12の上部伝熱管12の着霜表面温度は、内部がガスヘの伝熱のために伝熱性が蒸発領域よりも劣るので温度差が大きくなるので高くなる。その温度は−20℃〜−30℃と推定され得るので気化領域の着霜密度よりも重くなり、付着強度も高くなるが、着霜厚は薄い。   In the vicinity of the outlet of the heat transfer tube 12 of the front-stage finned heat transfer tube group 11F, the time when the temperature of the vaporized gas is normally about −40 ° C. is the time when switching to the rear-stage finned heat transfer tube group 11R. At this time, the frosting surface temperature of the upper heat transfer tube 12 of the heat transfer tube 12 of the heat transfer tube group 11F with the previous stage fins is inferior to the evaporation region because of the heat transfer to the gas inside, so the temperature difference increases. Get higher. Since the temperature can be estimated to be −20 ° C. to −30 ° C., it becomes heavier than the frost density in the vaporized region and the adhesion strength is increased, but the frost thickness is thin.

気化器10は、通常伝熱管の下端から3/4〜2/3の高さまでが、逐次気化領域に移行して使用され、残りの上部管は気化ガスの過熱に使われている。このような伝熱管12の特性から考えると気化能力は、伝熱管12の下部の気化領域の伝熱性能を除霜すれば向上することが分る。   The vaporizer 10 is normally used by shifting from the lower end of the heat transfer tube to a height of 3/4 to 2/3 to the vaporization region successively, and the remaining upper tube is used for heating the vaporized gas. Considering such characteristics of the heat transfer tube 12, it can be seen that the vaporization ability is improved by defrosting the heat transfer performance in the vaporization region below the heat transfer tube 12.

これにより気温が高い場合は、上部の加熱領域の着霜は、伝熱管12の表面の付着霜が下流からの内部ガスの高温度で融解してその上の付着霜と共に脱落する。融解した水が管表面に沿って落下するとより低温の伝熱面に触れるので凍結して薄い氷膜として付着する。しかし、薄い氷は霜に比較して熱伝達が大きいので伝熱抵抗としては問題にならないと考えられる。又、この氷膜は伝熱管12の気化領域の上昇により極度に低温になるために、付着伝熱面との温度膨張差で剥離崩落することが確認されているので、この面からも熱抵抗としては大きな問題とはならない。   Accordingly, when the temperature is high, the frost formation in the upper heating region is caused by the adhering frost on the surface of the heat transfer tube 12 being melted at the high temperature of the internal gas from the downstream and falling off with the adhering frost thereon. When the melted water falls along the tube surface, it touches the lower heat transfer surface and freezes to adhere as a thin ice film. However, since thin ice has a larger heat transfer than frost, it is considered not to be a problem as a heat transfer resistance. Moreover, since this ice film becomes extremely low temperature due to the rise of the vaporization region of the heat transfer tube 12, it has been confirmed that the ice film peels and collapses due to a difference in temperature expansion from the attached heat transfer surface. As such, it is not a big problem.

気化領域の内部LNGの温度は−70℃以下の低温なので着霜の結合力は小さく、噴出空気で吹飛ばし易く崩落(雪崩)を起し易い。   Since the temperature of the internal LNG in the vaporization region is a low temperature of −70 ° C. or less, the binding force of frost formation is small, and it is easy to blow off with the blown air and to cause collapse (avalanche).

従って、伝熱管12のこの温度に相当する高さの位置の着霜に雪崩を発生させれば、気化器の能力が殆ど回復するものと考えられる。   Therefore, it is considered that if the avalanche is generated in the frost at a height corresponding to this temperature of the heat transfer tube 12, the ability of the vaporizer is almost recovered.

以上の考えから、例えば長さが5mの伝熱管12の場合、噴出空気の衝突高さは約3〜3.5mとし、更に除霜を確実にするために、その位置から上方に約1mの位置と、下方に1.5mの位置に衝突するように吹出ノズル32,33を設けることで、雪崩現象を確実にすることができる。   From the above consideration, for example, in the case of the heat transfer tube 12 having a length of 5 m, the collision height of the blown air is about 3 to 3.5 m, and further about 1 m upward from the position to ensure defrosting. The avalanche phenomenon can be ensured by providing the blowing nozzles 32 and 33 so as to collide with the position and the position of 1.5 m below.

気化領域の着霜は、遅い衝突風速(約4.1m/s)で除霜が可能であるが、本発明では加熱領域(−40℃)の着霜でも除去可能な衝突風速(約6.2m/s)とする。但し、これに限定するものではない。   The frosting in the vaporization region can be defrosted at a slow collision wind speed (about 4.1 m / s). However, in the present invention, the collision wind speed (about 6.3 ° C.) that can be removed even by frosting in the heating region (−40 ° C.). 2 m / s). However, the present invention is not limited to this.

この噴出空気の速度は、着霜面と噴出点の距離から噴出空気の着霜面への衝突速度が、除霜の可能な表1に示してある速度以上になるように噴出速度を決める。   The speed of the blown air is determined so that the collision speed of the blown air to the frosting surface is equal to or higher than the speed shown in Table 1 where defrosting is possible from the distance between the frosting surface and the jetting point.

気化器の運転中は伝熱管で囲まれた空間を空気が下降しているので、崩落した霜が空気に同伴されて落下し易い状態にある。   During the operation of the vaporizer, the air is descending through the space surrounded by the heat transfer tubes, so that the collapsed frost is easily brought along with the air.

このように本発明においては、噴射空気供給管31の吹出ノズル32,33よりフィン付き伝熱管11の高さ方向に複数段吹き付けること、特にLNGの気化領域の近傍で空気を吹き付けることで、霜の雪崩を発生させることで、フィン付き伝熱管11に付着した霜をほぼ全て除去することができ、気化器を連続運転することが可能となる。   As described above, in the present invention, blasting is performed by blowing a plurality of stages in the height direction of the finned heat transfer tube 11 from the blowing nozzles 32 and 33 of the blast air supply tube 31, particularly by blowing air in the vicinity of the LNG vaporization region. By generating an avalanche of this, almost all the frost adhering to the finned heat transfer tube 11 can be removed, and the vaporizer can be continuously operated.

サテライト基地で、NGの需要が10トン/hであるとすると空温式気化器10は、従来15台設置し、10台で気化運転し、残りの5台を切り換え用とするが、本発明では、連続運転可能なため、1台のみ非常用とし設置し、空温式気化器10を11台とすることができる。また5トン/hでは、従来8台設置し、5台を気化運転し、残りの3台を切り換え用としているが、本発明では非常用の1台を含めて6台の気化器10ですみ、設備費を大幅に低くすることができる。また運転中の除霜は、僅かな空気で除霜できるため、従来のような散水装置も不要で、その設備もまた除霜のランニングコストも下げることができる。   Assuming that the demand for NG is 10 tons / h at the satellite base, 15 air temperature type carburetors 10 are conventionally installed and vaporized with 10 units, and the remaining 5 units are used for switching. Then, since continuous operation is possible, only one unit can be installed as an emergency and 11 air temperature vaporizers 10 can be installed. Also, at 5 tons / h, 8 units are installed in the past, 5 units are vaporized, and the remaining 3 units are used for switching. However, in the present invention, 6 vaporizers 10 including 1 emergency unit are sufficient. Equipment costs can be greatly reduced. In addition, since defrosting during operation can be performed with a slight amount of air, a conventional watering device is not required, and the equipment and the running cost of defrosting can be reduced.

10 空温式気化器
11 フィン付き伝熱管
12 伝熱管
13 フィン
30 除霜装置
31 噴出空気供給管
32,33 吹出ノズル
DESCRIPTION OF SYMBOLS 10 Air temperature type vaporizer 11 Heat transfer pipe with fin 12 Heat transfer pipe 13 Fin 30 Defroster 31 Blowing air supply pipe 32,33 Blowing nozzle

Claims (4)

フィン付き伝熱管を縦横に垂直に立設し、その各フィン付き伝熱管の下部から上方に低温液化ガスを流すと共にフィン付き伝熱管の外側に上部から下部に外気を降下させて低温液化ガスを蒸発させて気化運転する空温式気化器の運転方法において、縦横に隣接する4本のフィン付き伝熱管の中央に、フィン付き伝熱管の下部から上部に延びる噴出空気供給管を立設し、その噴出空気供給管の外周に吹出ノズルを上下方向に複数段設け、フィン付き伝熱管に付着した霜による伝熱劣化を、NGの温度で検出し、そのNGの温度が設定温度(−40〜−50℃)以下に降下したときに、上記吹出ノズルから着霜面の衝突速度が4m/s以上になるように空気を噴射し、その吹出ノズルで噴射された空気で着霜した霜を吹き飛ばすと共にその吹き飛ばされた霜で、フィン付き伝熱管に付着した霜に雪崩を発生させて除霜しながら連続気化運転を行うことを特徴とする空温式気化器の運転方法。 The finned heat transfer tubes are erected vertically and horizontally, and a low-temperature liquefied gas is allowed to flow upward from the lower part of each finned heat-transfer tube and the outside air is lowered from the upper part to the lower part of the finned heat-transfer tube. In the operation method of the air temperature type vaporizer that performs the vaporization operation by evaporating, a jet air supply pipe extending from the lower part to the upper part of the finned heat transfer pipe is installed at the center of the four finned heat transfer pipes adjacent vertically and horizontally, A plurality of blow nozzles are provided in the vertical direction on the outer periphery of the blown air supply pipe, heat transfer deterioration due to frost adhering to the finned heat transfer pipe is detected by the temperature of the NG, and the temperature of the NG is set to a set temperature (-40 to 40). −50 ° C.) When the air pressure drops below, the air is injected from the blowing nozzle so that the collision speed of the frosting surface is 4 m / s or more, and the frost formed by the air injected from the blowing nozzle is blown off. With that blow Been frost, the method of operating air temperature vaporizer, characterized in that the continuous vaporization operation while defrosting by generating avalanche frost adhering to the heat pipe heat transfer finned. 低温液化ガスがLNGであり、フィン付き伝熱管の長さが4〜5mであり、噴出空気供給管の外周の吹出ノズルが数m間隔で2或いは3段形成される請求項記載の空温式気化器の運転方法。 A low-temperature liquefied gas is LNG, a 4~5m length of finned heat transfer tubes, air temperature according to claim 1, wherein the outer peripheral blowing nozzles of the jet air supply pipe is formed 2 or 3-stage by the number-m intervals How to operate the vaporizer. 内径20〜25mmの伝熱管の外周に、幅40〜80mmのフィンプレートを45度の角度で8枚設けてフィン付き伝熱管を構成し、そのフィン付き伝熱管を150〜200mm間隔で縦横に複数本立設し、縦横に隣接するフィン付き伝熱管の中心に内径20〜25mmの噴出空気供給管を立設すると共に、噴出空気供給管の下端から1.5m、3m、4mの位置に吹出ノズルを形成した請求項記載の空温式気化器の運転方法。 Eight fin plates with a width of 40 to 80 mm are provided on the outer periphery of a heat transfer tube with an inner diameter of 20 to 25 mm at an angle of 45 degrees to constitute a heat transfer tube with fins, and a plurality of heat transfer tubes with fins are arranged vertically and horizontally at intervals of 150 to 200 mm. Standing up and installing a blown air supply pipe having an inner diameter of 20 to 25 mm at the center of the finned heat transfer pipes vertically and horizontally, and a blow nozzle at positions 1.5 m, 3 m and 4 m from the lower end of the blown air supply pipe The operating method of the air temperature type | mold vaporizer of Claim 2 formed. 吹出ノズルは、隣接する4本のフィン付き伝熱管に向けて下向きに空気を噴射する伝熱管用吹出ノズルと、横又は縦方向で隣接するフィン付き伝熱管のフィン間に向けて空気が当たるように噴射するフィン用吹出ノズルからなる請求項記載の空温式気化器の運転方法。 The blowing nozzle is such that air hits between the fins of the heat transfer tube adjacent to the horizontal or vertical direction and the blow nozzle for the heat transfer tube that injects air downward toward the adjacent four finned heat transfer tubes. The operation method of the air temperature type | mold vaporizer of Claim 3 which consists of a blowing nozzle for fins which injects into a pipe.
JP2009121284A 2009-05-19 2009-05-19 Operation method of air temperature type vaporizer Active JP5378064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121284A JP5378064B2 (en) 2009-05-19 2009-05-19 Operation method of air temperature type vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121284A JP5378064B2 (en) 2009-05-19 2009-05-19 Operation method of air temperature type vaporizer

Publications (2)

Publication Number Publication Date
JP2010270797A JP2010270797A (en) 2010-12-02
JP5378064B2 true JP5378064B2 (en) 2013-12-25

Family

ID=43419001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121284A Active JP5378064B2 (en) 2009-05-19 2009-05-19 Operation method of air temperature type vaporizer

Country Status (1)

Country Link
JP (1) JP5378064B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103807601A (en) * 2014-02-27 2014-05-21 张家港市华机环保新能源科技有限公司 LNG (Liquefied Natural Gas) air bath gasification device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147477A (en) * 2010-12-23 2011-08-10 中国原子能科学研究院 Liquid nitrogen adding method and device
CN103292153B (en) * 2012-02-27 2015-08-26 中煤能源黑龙江煤化工有限公司 A kind of liquid oxygen system
CN110822698A (en) * 2019-11-14 2020-02-21 珠海格力电器股份有限公司 Heat exchange assembly, condenser and air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4422977B2 (en) * 2003-04-24 2010-03-03 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer and operation method thereof
JP2009030765A (en) * 2007-07-30 2009-02-12 Toho Gas Co Ltd Liquefied natural gas vaporizing device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103807601A (en) * 2014-02-27 2014-05-21 张家港市华机环保新能源科技有限公司 LNG (Liquefied Natural Gas) air bath gasification device
CN103807601B (en) * 2014-02-27 2015-12-23 张家港市华机环保新能源科技有限公司 LNG air bath gasifier

Also Published As

Publication number Publication date
JP2010270797A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5378064B2 (en) Operation method of air temperature type vaporizer
KR20150103328A (en) Intermittent de-icing during continuous regasification of a cryogenic fluid using ambient air
CN107923676A (en) The refrigeration system of evaporative condenser and the subsidiary evaporative condenser
JP2008064326A (en) Frost formation decreasing device for cooler
KR101126022B1 (en) Apparatus for eliminating white-smoke
JP3850737B2 (en) Air heat source liquefied natural gas vaporizer
CN104654671A (en) Refrigerating frostless evaporator
US20100236574A1 (en) Cleaning system and method for air-cooled condenser bundles
JP2008208760A (en) Defrosting method and defrosting device of pre-cooling gas turbine system
CN112254389A (en) Ice maker suitable for making transparent ice blocks
JP7287024B2 (en) Cooling system
CN109806697A (en) A kind of flue gas slurries condensate formula disappears white system and method
CN102072608B (en) Heating device for defroster of refrigeration system and power supply device thereof
JPH1123137A (en) Defrosting device in continuous freezer and method for defrosting of same
US8402774B2 (en) Spraying water under ambient air cryogenic vaporizers
CN201126291Y (en) Refrigerator
KR101108029B1 (en) Heat Pump
CN201517872U (en) Over-entering and down-out evaporator
CN105571013A (en) Heat supply and haze removal all-in-one machine and haze removal method thereof
CN217273517U (en) LNG vaporizer defroster
US8707716B1 (en) Re-circulating defrosting heat exchanger
JP2009030765A (en) Liquefied natural gas vaporizing device and method
CN205245390U (en) Heating removes haze all -in -one
CN100485292C (en) Transparent ice making device
CN103292153A (en) Liquid oxygen system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5378064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250