JP5376219B2 - Valve timing control device - Google Patents

Valve timing control device Download PDF

Info

Publication number
JP5376219B2
JP5376219B2 JP2009065698A JP2009065698A JP5376219B2 JP 5376219 B2 JP5376219 B2 JP 5376219B2 JP 2009065698 A JP2009065698 A JP 2009065698A JP 2009065698 A JP2009065698 A JP 2009065698A JP 5376219 B2 JP5376219 B2 JP 5376219B2
Authority
JP
Japan
Prior art keywords
phase
rotating body
displacement
control device
timing control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009065698A
Other languages
Japanese (ja)
Other versions
JP2010216407A (en
Inventor
滋 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2009065698A priority Critical patent/JP5376219B2/en
Publication of JP2010216407A publication Critical patent/JP2010216407A/en
Application granted granted Critical
Publication of JP5376219B2 publication Critical patent/JP5376219B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve opening/closing timing control device certainly restricting a relative rotational phase to a predetermined phase suited for starting of an internal combustion engine when the internal combustion engine is stopped or started. <P>SOLUTION: This valve opening/closing timing control device includes: a drive rotor 2; a driven rotor 3; a fluid pressure chamber 4; a partition section 32 partitioning the fluid pressure chamber 4 into an advance chamber 41 and a retard chamber 42; a working fluid supply/discharge mechanism 7 supplying and discharging working fluid with respect to the fluid pressure chamber 4; a lock mechanism 6 restricting the relative rotational phase of the drive rotor 2 and the driven rotor 3 to the predetermined phase suited for the starting of the internal combustion engine, between a most advance angle phase and a most retard angle phase; and a phase displacement regulation mechanism 5 provided to at least one of the drive rotor 2 and driven rotor 3 separately from the lock mechanism 6 and regulating the displacement of the relative rotational phase to the other side from any one of an advance side and a retard side other than the predetermined phase. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、内燃機関のクランクシャフトと同期して回転する駆動側回転体に対する従動側回転体の相対回転位相を制御する弁開閉時期制御装置に関する。   The present invention relates to a valve opening / closing timing control device that controls a relative rotation phase of a driven side rotating body with respect to a driving side rotating body that rotates in synchronization with a crankshaft of an internal combustion engine.

従来、特許文献1に示すごとく、相対回転位相を内燃機関の始動に適した最進角位相と最遅角位相との間の所定位相に固定可能なロック機構と、相対回転位相を所定位相と最進角位相との間に規制する相対回転規制手段とを備えた弁開閉時期制御装置があった。上述の相対回転規制手段は、駆動側回転体又は従動側回転体の一方に配設された係止部材と、他方の回転体に形成され、相対回転位相が所定位相と最進角位相との間にあるときに、係止部材が係入可能な係合溝とを備えている。   Conventionally, as shown in Patent Document 1, a lock mechanism capable of fixing a relative rotation phase to a predetermined phase between a most advanced angle phase and a most retarded angle phase suitable for starting an internal combustion engine, and a relative rotation phase as a predetermined phase. There has been a valve opening / closing timing control device provided with relative rotation restricting means for restricting between the most advanced angle phase. The above-mentioned relative rotation restricting means is formed on the locking member disposed on one of the driving side rotating body or the driven side rotating body and the other rotating body, and the relative rotation phase is a predetermined phase and a most advanced angle phase. An engaging groove into which the locking member can be engaged is provided.

この技術では、駆動側回転体から従動側回転体への回転伝達経路に流体圧室及び仕切部が介在しているため、従動側回転体には常に遅角側への力が作用する。内燃機関停止直前に相対回転位相が所定位相よりも進角側にある場合は、係止部材が係合溝に係入しており、この状態で内燃機関を停止すると、上述の遅角側への力により相対回転位相は所定位相となる。結果、ロック機構によって、相対回転位相は所定位相に拘束される。   In this technique, since the fluid pressure chamber and the partitioning portion are interposed in the rotation transmission path from the drive-side rotator to the driven-side rotator, a force toward the retard side always acts on the driven-side rotator. If the relative rotational phase is on the advance side with respect to the predetermined phase immediately before the internal combustion engine is stopped, the locking member is engaged in the engagement groove, and when the internal combustion engine is stopped in this state, the above-mentioned retard side is reached. Due to this force, the relative rotational phase becomes a predetermined phase. As a result, the relative rotational phase is constrained to a predetermined phase by the lock mechanism.

一方、内燃機関停止直前に相対回転位相が所定位相よりも遅角側にある場合は、係止部材が係合溝に係入しないため、相対回転位相は所定位相に拘束されない。しかし、この技術では、内燃機関始動時に進角室と遅角室とが共にドレインに連通されるため、カム変動トルクにより従動側回転体が駆動側回転体に対して大きくバタつく。このバタつきによって係止部材が係止溝に係入し、相対回転位相が所定位相よりも遅角側へ変位するのが規制される。その結果、ロック機構によって相対回転位相が所定位相に拘束され、内燃機関の始動を所定位相で行うことができるとされていた。   On the other hand, when the relative rotation phase is on the retard side from the predetermined phase immediately before the internal combustion engine is stopped, the locking member is not engaged with the engagement groove, and therefore the relative rotation phase is not constrained to the predetermined phase. However, in this technique, both the advance chamber and the retard chamber are communicated with the drain when the internal combustion engine is started, so that the driven-side rotating body largely fluctuates with respect to the driving-side rotating body due to cam fluctuation torque. Due to this fluttering, the locking member is engaged with the locking groove, and the relative rotation phase is restricted from being displaced from the predetermined phase toward the retard side. As a result, the relative rotational phase is constrained to a predetermined phase by the lock mechanism, and the internal combustion engine can be started at the predetermined phase.

また、特許文献2のごとく、相対回転位相を所定位相に固定可能なロック機構と、相対回転位相が所定位相に対して進角側及び遅角側の何れの側にあるのかを判定する位相判定機構とを備え、内燃機関の停止時又は始動時に位相判定機構による判定結果と反対の側に相対回転位相を変位させる能動ロック操作を実施する弁開閉時期制御装置があった。このロック機構は、駆動側回転体又は従動側回転体の一方に配設されたロック片と、他方の回転体上に形成され、ロック片が係止可能な係止溝とを有している。さらに、ロック片による係止深度が係止溝よりも浅い係止補助溝が、係止溝の進角側及び遅角側の端部から、各々進角側及び遅角側向かって延設されている。   Further, as in Patent Document 2, a lock mechanism capable of fixing the relative rotational phase to a predetermined phase and a phase determination for determining whether the relative rotational phase is on the advance side or the retard side with respect to the predetermined phase. And a valve opening / closing timing control device that performs an active lock operation to displace the relative rotational phase on the side opposite to the determination result by the phase determination mechanism when the internal combustion engine is stopped or started. The lock mechanism includes a lock piece disposed on one of the driving side rotating body and the driven side rotating body, and a locking groove formed on the other rotating body and capable of locking the lock piece. . Further, a locking auxiliary groove whose locking depth by the lock piece is shallower than the locking groove extends from the advance side and the retard side end of the locking groove toward the advance side and the retard side, respectively. ing.

この技術によると、能動ロック操作の実施にも拘らず、機械的な誤差等によってロック片と係止溝とが僅かに位置ずれした場合でも、補助係止溝の何れか一方にロック片が係止されることが十分期待できる。即ち、相対回転位相を所定位相に近似した位相範囲内に保持できる。結果、内燃機関始動時に生じる振動等によって相対回転位相が変動し、ロック片は自然と補助係止溝に隣接する係止溝に係止される。   According to this technique, even when the active locking operation is performed, even if the locking piece and the locking groove are slightly displaced due to a mechanical error or the like, the locking piece is engaged with one of the auxiliary locking grooves. It can be expected to be stopped. That is, the relative rotational phase can be maintained within a phase range that approximates a predetermined phase. As a result, the relative rotational phase fluctuates due to vibration or the like generated when the internal combustion engine is started, and the lock piece is naturally locked in the locking groove adjacent to the auxiliary locking groove.

特開平11−311107(0025及び0027〜0029段落、図2から5)JP 11-311107 (paragraphs 0025 and 0027 to 0029, FIGS. 2 to 5) 特開2007−132272(0009及び0010段落、図3及び6)JP 2007-132272 (paragraphs 0009 and 0010, FIGS. 3 and 6)

しかし、特許文献1の技術では、相対回転位相が所定位相よりも遅角側にある状態で内燃機関が停止してしまうと、上述の遅角側への力が働いているため、カム変動トルクに基づくバタつきによって相対回転位相が所定位相よりも進角側に変位せず、係止部材が係止溝に係入しない虞がある。これでは、ロック機構は相対回転位相を所定位相に拘束できない。また、特に内燃機関低温時は、カム変動トルクに基づく遅角側への変位力が大きいため、係止部材が係止溝に係入しない可能性が高まってしまう。さらに、係止部材の突出部分に係止溝の周方向の端面が当接する構成であるため、両者の衝突時に、突出部分には剪断応力・曲げ応力が掛かる。これにより、係止部材が変形・損耗すると、係止部材と係止溝の端面が当接したときの位相が、所定位相から位置ずれしてしまう虞がある。   However, in the technique of Patent Document 1, if the internal combustion engine stops in a state where the relative rotational phase is on the retarded side with respect to the predetermined phase, the above-described retarded side force is applied, so that the cam fluctuation torque The relative rotation phase is not displaced to the advance side from the predetermined phase due to the fluttering based on the above, and there is a possibility that the locking member is not engaged with the locking groove. With this, the lock mechanism cannot restrict the relative rotational phase to a predetermined phase. In particular, when the internal combustion engine is at a low temperature, the displacement force toward the retard side based on the cam fluctuation torque is large, so that the possibility that the locking member does not engage with the locking groove increases. Furthermore, since the circumferential end face of the locking groove is in contact with the protruding portion of the locking member, the protruding portion is subjected to shear stress / bending stress when they collide. As a result, when the locking member is deformed or worn, the phase when the locking member and the end surface of the locking groove abut may be displaced from the predetermined phase.

特許文献2の技術では、補助係止溝によって段階的に相対回転位相を拘束する構成であるため、拘束が成されるまでに時間がかかる虞がある。また、補助係止溝は径方向に深度を有するため、その深度が、例えば、1mm程度になる等の制約がある。このため、ロック片と補助係止溝との係止の信頼性が低くなる虞がある。   In the technique of Patent Document 2, since the relative rotation phase is constrained stepwise by the auxiliary locking groove, there is a possibility that it takes time until the constraining is performed. Further, since the auxiliary locking groove has a depth in the radial direction, there is a restriction that the depth is, for example, about 1 mm. For this reason, there exists a possibility that the reliability of latching with a lock piece and an auxiliary latching groove may become low.

本発明は上記実情に鑑み、内燃機関の停止時又は始動時に、駆動側回転体と従動側回転体とを内燃機関の始動に適した相対回転位相で確実に拘束できる弁開閉時期制御装置を提供することを目的としている。   In view of the above circumstances, the present invention provides a valve opening / closing timing control device capable of reliably restraining a driving side rotating body and a driven side rotating body at a relative rotational phase suitable for starting an internal combustion engine when the internal combustion engine is stopped or started. The purpose is to do.

本発明に係る弁開閉時期制御装置の第1特徴構成は、内燃機関のクランクシャフトに対して同期回転する駆動側回転体と、前記駆動側回転体に対して同軸上に配置され、前記内燃機関の吸気弁及び排気弁の何れかを開閉するカムシャフトと同期回転する従動側回転体と、前記駆動側回転体と前記従動側回転体とで形成された流体圧室と、前記流体圧室を進角室と遅角室とに仕切るよう前記駆動側回転体及び前記従動側回転体の何れかに設けられた仕切部と、前記流体圧室に対して作動流体を供給及び排出する作動流体給排機構と、前記駆動側回転体と前記従動側回転体との相対回転位相を、最進角位相と最遅角位相との間の前記内燃機関の始動に適した所定位相に拘束可能なロック機構と、前記ロック機構とは独立して前記駆動側回転体及び前記従動側回転体の少なくとも一方に設けられ、前記所定位相よりも進角側又は遅角側の何れか一方側から前記所定位相よりも進角側又は遅角側の何れか他方側への前記相対回転位相の変位を規制可能である位相変位規制機構、とを備え、前記位相変位規制機構が、前記駆動側回転体の側の第一部位と前記従動側回転体の側の第二部位との間に出退すると共に、突出して前記第一部位と前記第二部位とで挟持されたとき、前記相対回転位相が前記所定位相となる厚みを有する変位規制部材と、を備えた点にある。 A first characteristic configuration of a valve timing control apparatus according to the present invention is a drive-side rotator that rotates synchronously with a crankshaft of an internal combustion engine, and is arranged coaxially with the drive-side rotator. A driven-side rotator that rotates synchronously with a camshaft that opens and closes either the intake valve or the exhaust valve, a fluid pressure chamber formed by the drive-side rotator and the driven-side rotator, and the fluid pressure chamber. A partition provided in one of the drive-side rotator and the driven-side rotator to partition the advance chamber and the retard chamber, and a working fluid supply for supplying and discharging a working fluid to and from the fluid pressure chamber An exhaust mechanism and a lock capable of restraining the relative rotational phase of the driving side rotating body and the driven side rotating body to a predetermined phase suitable for starting the internal combustion engine between the most advanced angle phase and the most retarded angle phase. Independent of the mechanism and the lock mechanism, It is provided on at least one of the driven-side rotator, and the one of the advance side and the retard side from the predetermined phase to the other side of the advance side and the retard side from the predetermined phase. A phase displacement regulating mechanism capable of regulating displacement of a relative rotational phase , wherein the phase displacement regulating mechanism includes a first part on the driving side rotating body side and a second part on the driven side rotating body side. And a displacement regulating member having a thickness that causes the relative rotational phase to become the predetermined phase when protruding and sandwiched between the first part and the second part. .

本構成のように、ロック機構とは独立して駆動側回転体及び従動側回転体の少なくとも一方に設けられ、所定位相よりも進角側又は遅角側の何れか一方側から所定位相よりも進角側又は遅角側の何れか他方側への相対回転位相の変位を規制可能である位相変位規制機構を備えれば、所定位相での相対回転位相がなされずに内燃機関が停止した場合であっても、次回の内燃機関の始動時に、例えば、所定位相よりも進角側から所定位相よりも遅角側の何れか他方側へ相対回転位相が変位しようとしたとき、瞬間的であっても相対回転位相は所定位相で確実に一旦停止する。このように、相対回転位相が所定位相に位置決めされた状態でロック機構が作動でき、相対回転位相の所定位相への拘束の確実性が向上する。   As in this configuration, it is provided on at least one of the driving side rotating body and the driven side rotating body independently from the lock mechanism, and from the predetermined phase from either the advance side or the retard side from the predetermined phase. If the internal combustion engine is stopped without the relative rotational phase at the specified phase, provided with a phase displacement regulating mechanism that can regulate the displacement of the relative rotational phase to either the advance side or the retard side However, when the internal combustion engine is started next time, for example, when the relative rotational phase is going to be displaced from the advance side to the other side of the predetermined phase from the advance side, it is instantaneous. However, the relative rotation phase is surely stopped once at a predetermined phase. In this way, the lock mechanism can be operated in a state where the relative rotational phase is positioned at the predetermined phase, and the certainty of restraining the relative rotational phase to the predetermined phase is improved.

本構成のように、第一部位と第二部位とで変位規制部材が挟持される構成であれば、変位規制部材には圧縮応力のみが発生し、剪断応力・曲げ応力は発生しない。このため、変位規制部材の耐久性が向上すると共に、第二部位が変位規制部材に当接したとき、相対回転位相は確実に所定位相となる。結果、ロック機構による拘束の確実性がより向上する。また、一回の当接で相対回転位相の拘束が可能であるため、段階的に拘束を行うロック機構と比べて、迅速な拘束が可能となる。If the displacement regulating member is sandwiched between the first part and the second part as in this configuration, only the compressive stress is generated in the displacement regulating member, and no shear stress / bending stress is generated. For this reason, the durability of the displacement restricting member is improved, and when the second part comes into contact with the displacement restricting member, the relative rotational phase is surely a predetermined phase. As a result, the certainty of restraint by the lock mechanism is further improved. In addition, since the relative rotational phase can be restricted by a single contact, it can be restrained more quickly than a lock mechanism that restricts in stages.

本発明に係る弁開閉時期制御装置の第2特徴構成は、前記作動流体給排機構による前記位相変位規制機構に対する作動流体の供給及び排出の少なくとも何れかによって、前記位相変位規制機構が規制及びその解除の少なくとも何れかを行う点にある。   A second characteristic configuration of the valve timing control device according to the present invention is that the phase displacement regulating mechanism is regulated and controlled by at least one of supply and discharge of the working fluid to and from the phase displacement regulating mechanism by the working fluid supply / discharge mechanism. The point is to perform at least one of the cancellations.

本構成であれば、位相変位規制機構専用の規制・解除機構を別途に備える必要がない。また、位相変位規制機構が相対回転位相の制御に連係するため、信頼性の高い弁開閉時期制御装置とすることができる。   With this configuration, it is not necessary to separately provide a restriction / cancellation mechanism dedicated to the phase displacement restriction mechanism. Further, since the phase displacement regulating mechanism is linked to the control of the relative rotational phase, a highly reliable valve opening / closing timing control device can be obtained.

本発明に係る弁開閉時期制御装置の第特徴構成は、前記変位規制部材が前記カムシャフトの径方向に出退する点にある。 A third characteristic configuration of the valve opening / closing timing control device according to the present invention is that the displacement regulating member moves in and out in a radial direction of the camshaft.

第一部材と第二部材とはカムシャフトの周方向に相対移動するため、両部材はカムシャフトの軸方向に長く延在させた方が部材の剛性が高い。変位規制部材がカムシャフトの軸方向に出退する構成であると、駆動側回転体及び従動側回転体を軸方向に大きくせざるを得ない。本構成であれば、第一部位と第二部位と変位規制部材とを、駆動側回転体と従動側回転体との径方向のスペースに効率良く配置することができる。   Since the first member and the second member move relative to each other in the circumferential direction of the camshaft, the rigidity of the members is higher when both members are elongated in the axial direction of the camshaft. If the displacement restricting member is configured to protrude and retract in the axial direction of the camshaft, the driving side rotating body and the driven side rotating body must be enlarged in the axial direction. If it is this structure, a 1st site | part, a 2nd site | part, and a displacement control member can be efficiently arrange | positioned in the radial space of a drive side rotary body and a driven side rotary body.

本発明に係る弁開閉時期制御装置の第特徴構成は、前記変位規制部材が、前記カムシャフトの径方向内側に突出するよう付勢されつつ、前記駆動側回転体に配設されている点にある。 According to a fourth characteristic configuration of the valve opening / closing timing control device according to the present invention, the displacement restricting member is arranged on the driving side rotating body while being urged so as to protrude radially inward of the camshaft. It is in.

本構成のように、変位規制部材が、径方向の内側に突出するよう付勢されつつ、駆動側回転体に配設されていると、駆動側回転体の回転に基づく遠心力を利用して、変位規制部材を引退した状態を保持させることができる。即ち、変位規制部材は、一旦作動流体給排機構からの作動流体供給により引退させれば、遠心力により引退した状態を保持する。このように、引退状態を保持させるための制御が必要ないため、位相変位規制機構が簡易な構成となる。   When the displacement restricting member is urged to protrude radially inward as in this configuration and is disposed on the driving side rotating body, the centrifugal force based on the rotation of the driving side rotating body is utilized. The state where the displacement regulating member is retracted can be maintained. That is, once the displacement regulating member is retracted by supplying the working fluid from the working fluid supply / discharge mechanism, the displacement restricting member maintains the state of being retracted by the centrifugal force. Thus, since control for maintaining the retirement state is not required, the phase displacement regulating mechanism has a simple configuration.

本発明に係る弁開閉時期制御装置の第特徴構成は、前記相対回転位相を進角側へ付勢する付勢機構を備えると共に、前記変位規制部材は前記相対回転位相の遅角側への変位を規制する点にある。 A fifth characteristic configuration of the valve timing control device according to the present invention includes an urging mechanism that urges the relative rotation phase toward an advance side, and the displacement restricting member moves toward a retard side of the relative rotation phase. It is in the point which regulates displacement.

本構成であれば、相対回転位相が所定位相よりも遅角側にある状態で内燃機関が停止されても、相対回転位相は少なくとも所定位相を超えて進角側へ変位する。その結果、相対回転位相が所定位相となったときに、ロック機構による拘束が可能となる。したがって、相対回転位相が所定位相よりも遅角側にあってロック機構による拘束ができない、といった問題は生じない。また、駆動側回転体の回転が低下すれば、変位規制部材が径方向内側に突出し、相対回転位相は少なくとも所定位相よりも進角側にある。このため、仮に、ロック機構による拘束がなされなくとも、次の内燃機関の始動を相対回転位相が所定位相よりも進角側にある状態で行える。   According to this configuration, even when the internal combustion engine is stopped in a state where the relative rotational phase is on the retarded angle side with respect to the predetermined phase, the relative rotational phase exceeds at least the predetermined phase and is displaced to the advanced angle side. As a result, when the relative rotational phase becomes a predetermined phase, it is possible to restrain the lock mechanism. Therefore, there is no problem that the relative rotation phase is on the retard side with respect to the predetermined phase and the lock mechanism cannot be restrained. Further, if the rotation of the driving side rotating body is reduced, the displacement regulating member protrudes radially inward, and the relative rotation phase is at least on the advance side with respect to the predetermined phase. Therefore, even if the lock mechanism is not restrained, the next internal combustion engine can be started in a state where the relative rotational phase is on the advance side with respect to the predetermined phase.

本発明に係る弁開閉時期制御装置の第特徴構成は、前記付勢機構による付勢力が、前記カムシャフトの回転時のカム変動トルクに基づく遅角側への変位力よりも大きい点にある。 A sixth characteristic configuration of the valve timing control device according to the present invention is that the urging force by the urging mechanism is larger than the displacement force to the retard side based on the cam fluctuation torque during the rotation of the camshaft. .

通常、例えば、内燃機関の吸気弁は閉弁するように常時スプリング等によって付勢されており、カムが吸気弁を押し下げる最中には、カムシャフトは遅角側へ付勢される。また、カムが吸気弁を押し下げきった後には、カムシャフトは進角側へ付勢される。即ち、カム変動トルクによって、カムシャフトは進角側と遅角側とにバタつく。ただし、カムと吸気弁との間、及び、吸気弁とスプリングとの間には摺動摩擦抵抗があるため、遅角側へのバタつきの方が大きい。よって、カム変動トルクに基づく変位力は、相対回転位相を遅角側へ変位させるよう、カムシャフト及び従動側回転体に作用する。   Normally, for example, the intake valve of an internal combustion engine is always urged by a spring or the like so as to close, and the camshaft is urged to the retard side while the cam pushes down the intake valve. Further, after the cam has pushed down the intake valve, the camshaft is biased toward the advance side. That is, the camshaft flutters between the advance side and the retard side due to the cam fluctuation torque. However, since there is sliding friction resistance between the cam and the intake valve and between the intake valve and the spring, the fluttering toward the retard side is larger. Therefore, the displacement force based on the cam fluctuation torque acts on the camshaft and the driven-side rotator so as to displace the relative rotation phase toward the retard side.

本構成のように、付勢機構による付勢力が、カム変動トルクに基づく遅角側への変位力よりも大きいと、内燃機関停止時に、相対回転位相を確実に所定位相よりも進角側にすることができる。   If the urging force by the urging mechanism is larger than the displacement force to the retarded side based on the cam fluctuation torque as in this configuration, the relative rotational phase is reliably set to the advanced side with respect to the predetermined phase when the internal combustion engine is stopped. can do.

本発明に係る弁開閉時期制御装置の第特徴構成は、最進角位相から最遅角位相の範囲に対応する周長を有する凹部を前記駆動側回転体の内周面に沿って形成し、前記第二部位が前記凹部に沿って摺動するよう構成してある点にある。 According to a seventh characteristic configuration of the valve timing control device of the present invention, a concave portion having a circumferential length corresponding to a range from the most advanced angle phase to the most retarded angle phase is formed along the inner circumferential surface of the drive side rotating body. The second portion is configured to slide along the concave portion.

本構成であれば、凹部の形成が容易であり、位相変位規制機構の構成が簡易となる。また、凹部を構成する面を、変位規制部材が出退するのを案内する面として利用できる。このとき、凹部は第一部材として機能する。   With this configuration, it is easy to form the recess, and the configuration of the phase displacement regulating mechanism is simplified. Moreover, the surface which comprises a recessed part can be utilized as a surface which guides that a displacement control member withdraws / withdraws. At this time, the recess functions as the first member.

本発明に係る弁開閉時期制御装置の第特徴構成は、隣り合う前記流体圧室の間に前記凹部が形成され、前記カムシャフトの径方向における前記凹部の高さが、前記カムシャフトの径方向における前記流体圧室の高さよりも低くなるように設定されている点にある。 According to an eighth feature of the valve timing control apparatus of the present invention, the recess is formed between the fluid pressure chambers adjacent to each other, and the height of the recess in the radial direction of the camshaft is equal to the diameter of the camshaft. It is in the point set so that it may become lower than the height of the said fluid pressure chamber in the direction.

本構成であれば、凹部の径方向外側にスペースができるので、そのスペースに位相変位規制機構を配設可能である。即ち、位相変位規制機構を備えても、不要に弁開閉時期制御装置が大きくならない。   With this configuration, a space is formed on the outer side in the radial direction of the recess, and therefore the phase displacement regulating mechanism can be disposed in the space. That is, even if the phase displacement regulating mechanism is provided, the valve opening / closing timing control device does not become unnecessarily large.

本発明に係る弁開閉時期制御装置の第特徴構成は、前記第二部位によって隔てられた前記凹部の進角側の第一空間と、遅角側の第二空間とを連通するリーク路を備えた点にある。 A ninth characteristic configuration of the valve timing control device according to the present invention includes a leak path that communicates the first space on the advance side of the recess and the second space on the retard side that are separated by the second part. It is in the point prepared.

上述したように、変位規制部材は作動流体の供給によって引退する。凹部と第二部位とは相対回転するため、作動流体が第一空間に滞留すると従動側回転体の回転が阻害される。本構成のようにリーク路を備えると、相対回転位相が第一空間側、即ち進角側へ変位するとき、凹部の進角側と第二部材との圧力により第一空間に滞留した作動流体は第二空間に戻される。よって、相対回転位相の進角側への変位が阻害されることがない。   As described above, the displacement regulating member is retreated by supplying the working fluid. Since the concave portion and the second portion rotate relative to each other, the rotation of the driven side rotating body is hindered when the working fluid stays in the first space. When the leak path is provided as in this configuration, the working fluid stays in the first space due to the pressure of the advance side of the recess and the second member when the relative rotational phase is displaced to the first space side, that is, the advance side. Is returned to the second space. Therefore, the displacement of the relative rotational phase toward the advance side is not hindered.

本発明に係る弁開閉時期制御装置の第10特徴構成は、前記リーク路を、前記カムシャフトの径方向における前記凹部の外周面、及び、前記カムシャフトの径方向における前記第二部位の外周面の少なくとも何れか一方に備えた点にある。 According to a tenth characteristic configuration of the valve timing control device according to the present invention, the leak path includes an outer peripheral surface of the concave portion in the radial direction of the camshaft and an outer peripheral surface of the second portion in the radial direction of the camshaft. It is in the point prepared for at least one of these.

内燃機関運転時に駆動側回転体は回転しているため、遠心力によって、第一空間に残留した作動流体は凹部の外周面に押し遣られる。本構成であれば、作動流体がリーク路に流入し易い。   Since the driving side rotating body is rotating during operation of the internal combustion engine, the working fluid remaining in the first space is pushed to the outer peripheral surface of the recess by centrifugal force. With this configuration, the working fluid easily flows into the leak path.

弁開閉時期制御装置の縦断側面図である。It is a vertical side view of a valve opening / closing timing control device. 弁開閉時期制御装置の縦断正面図である。It is a vertical front view of a valve opening / closing timing control device. 位相変位規制機構周辺の分解斜視図である。It is a disassembled perspective view around a phase displacement regulating mechanism. 突起部周辺を示す斜視図である。It is a perspective view which shows a protrusion part periphery. エンジン通常運転時の弁開閉時期制御装置を示す図である。It is a figure which shows the valve opening / closing timing control apparatus at the time of engine normal operation. エンジン通常運転時の弁開閉時期制御装置を示す図である。It is a figure which shows the valve opening / closing timing control apparatus at the time of engine normal operation. エンジン停止時の弁開閉時期制御装置を示す図である。It is a figure which shows the valve opening / closing timing control apparatus at the time of an engine stop. エンジン停止時の弁開閉時期制御装置を示す図である。It is a figure which shows the valve opening / closing timing control apparatus at the time of an engine stop. 図7から遅角制御した弁開閉時期制御装置を示す図である。It is a figure which shows the valve opening / closing timing control apparatus which carried out the retard control from FIG. 図9から進角制御した弁開閉時期制御装置を示す図である。FIG. 10 is a diagram showing a valve opening / closing timing control device that is advanced from FIG. 9. 別実施形態の突起部周辺を示す斜視図である。It is a perspective view which shows the protrusion part periphery of another embodiment. 別実施形態の突起部周辺を示す斜視図である。It is a perspective view which shows the protrusion part periphery of another embodiment.

以下、本発明に係る弁開閉時期制御装置を自動車のエンジンの吸気弁用として適用した例を図面に基づいて説明する。   Hereinafter, an example in which the valve timing control device according to the present invention is applied to an intake valve of an automobile engine will be described with reference to the drawings.

(全体構成)
この弁開閉時期制御装置1は、図1、2に示すごとく、エンジンの不図示のクランクシャフトに対して同期回転する駆動側回転部材としてのハウジング2と、ハウジング2に対して同軸上に配置され、カムシャフト101と同期回転する従動側回転部材としての内部ロータ3とを備えている。また、弁開閉時期制御装置1は、相対回転位相をエンジン始動に適した所定位相(以下、「中間ロック位相」と称する)にロックするロック機構6と、ハウジング2と内部ロータ3とに挟持されることにより、相対回転位相が中間ロック位相よりも遅角側に変位するのを規制する変位規制部材を有する位相変位規制機構5とを備えている。
(overall structure)
As shown in FIGS. 1 and 2, the valve opening / closing timing control device 1 is disposed coaxially with the housing 2 as a drive side rotating member that rotates synchronously with a crankshaft (not shown) of the engine. The internal rotor 3 is provided as a driven side rotating member that rotates synchronously with the camshaft 101. Further, the valve opening / closing timing control device 1 is sandwiched between a lock mechanism 6 that locks the relative rotation phase to a predetermined phase suitable for engine start (hereinafter referred to as “intermediate lock phase”), the housing 2 and the internal rotor 3. Thus, a phase displacement restricting mechanism 5 having a displacement restricting member that restricts the relative rotational phase from being displaced more retarded than the intermediate lock phase is provided.

中間ロック位相は、最進角位相と最遅角位相との間の位相であって、エンジンを始動することが可能な限界位相である。エンジンの始動が中間ロック位相で行い、エンジン始動後のアイドリング時に中間ロック位相よりも遅角側に相対回転位相を変位させると、排気ガスの排出抑制、エンジンの燃費や出力の向上等を図ることができる。   The intermediate lock phase is a phase between the most advanced angle phase and the most retarded angle phase, and is a limit phase capable of starting the engine. If the engine is started with the intermediate lock phase and the relative rotational phase is displaced to the retard side of the intermediate lock phase when idling after the engine is started, exhaust gas emission suppression, engine fuel efficiency and output will be improved, etc. Can do.

内部ロータ3は、カムシャフト101の先端部に一体的に組付けられており、カムシャフト101と同一軸心で同期回転する。即ち、内部ロータ3の径方向・周方向・軸方向は、カムシャフト101の径方向・周方向・軸方向と一致する。なお、図示はしないが、カムシャフト101は、エンジンのシリンダヘッドに回転自在に組み付けられている。   The internal rotor 3 is integrally assembled with the tip of the camshaft 101 and rotates synchronously with the same axis as the camshaft 101. That is, the radial direction, the circumferential direction, and the axial direction of the inner rotor 3 coincide with the radial direction, the circumferential direction, and the axial direction of the camshaft 101. Although not shown, the camshaft 101 is rotatably assembled to the engine cylinder head.

ハウジング2は、カムシャフト101が接続される側のリアプレート22と、カムシャフト101が接続される側とは反対側のフロントプレート23と、タイミングスプロケット24が外周に形成された外部ロータ21とを備えている。外部ロータ21を内部ロータ3に外装し、外部ロータ21をフロントプレート23とリアプレート22で挟み込んである。そして、ボルト25でフロントプレート23と外部ロータ21とリアプレート22とを締結してある。ハウジング2は、内部ロータ3に対して一定の範囲内で相対回転可能である。   The housing 2 includes a rear plate 22 on the side to which the camshaft 101 is connected, a front plate 23 on the side opposite to the side to which the camshaft 101 is connected, and an external rotor 21 having a timing sprocket 24 formed on the outer periphery. I have. The outer rotor 21 is externally mounted on the inner rotor 3, and the outer rotor 21 is sandwiched between the front plate 23 and the rear plate 22. The front plate 23, the external rotor 21, and the rear plate 22 are fastened with bolts 25. The housing 2 is rotatable relative to the inner rotor 3 within a certain range.

また、ハウジング2の径方向・周方向・軸方向は、内部ロータ3の径方向・周方向・軸方向と一致する。よって、以降の記載において、「径方向」と「周方向」と「軸方向」との語句は、カムシャフト101とハウジング2と内部ロータ3とに共通するものとして使用する。   The radial direction, circumferential direction, and axial direction of the housing 2 coincide with the radial direction, circumferential direction, and axial direction of the internal rotor 3. Therefore, in the following description, the terms “radial direction”, “circumferential direction”, and “axial direction” are used as common to the camshaft 101, the housing 2, and the internal rotor 3.

タイミングスプロケット24とクランクシャフトに取付けたギアとの間には、動力伝達部材102が架設されている。動力伝達部材102は、例えば、タイミングチェーンやタイミングベルトである。クランクシャフトが回転駆動すると、動力伝達部材102を介してタイミングスプロケット24にその回転駆動力が伝達され、ハウジング2が図2に示す駆動方向Sに回転駆動する。ハウジング2の回転駆動に伴い、内部ロータ3が回転駆動してカムシャフト101が回転する。結果、カムシャフト101に設けられたカムがエンジンの吸気弁を押し下げて開弁させる。   A power transmission member 102 is installed between the timing sprocket 24 and a gear attached to the crankshaft. The power transmission member 102 is, for example, a timing chain or a timing belt. When the crankshaft is rotationally driven, the rotational driving force is transmitted to the timing sprocket 24 through the power transmission member 102, and the housing 2 is rotationally driven in the driving direction S shown in FIG. As the housing 2 rotates, the inner rotor 3 rotates and the camshaft 101 rotates. As a result, the cam provided on the camshaft 101 pushes down the intake valve of the engine to open it.

図示はしないが、上述したように、通常、相対回転位相を遅角側へ変位させるよう、カム変動トルクに基づく変位力がカムシャフト101及び内部ロータ3に作用する。 Although not shown, as described above, typically, so as to displace the relative rotational phase to the retarded angle side, it acts on the displacement force painter Mushafuto 101 and the internal rotor 3 based on the cam fluctuation torque.

図2に示すごとく、径方向内側に突出する複数個の突出部21bを、外部ロータ21に周方向に沿って互いに離間させて形成してある。突出部21bと内部ロータ3とにより流体圧室4が形成されている。本実施形態では、流体圧室4を三箇所形成してあるが、これに限られるものではない。   As shown in FIG. 2, a plurality of projecting portions 21 b projecting radially inward are formed on the outer rotor 21 so as to be separated from each other along the circumferential direction. A fluid pressure chamber 4 is formed by the protruding portion 21 b and the internal rotor 3. In the present embodiment, three fluid pressure chambers 4 are formed, but the present invention is not limited to this.

流体圧室4に面する内部ロータ3の外周面3aには、径方向に沿ってベーン溝31が形成されている。ベーン溝31に、仕切部としてのベーン32が挿入されている。ベーン32によって、流体圧室4は駆動方向Sに沿って進角室41と遅角室42とに仕切られている。ベーン32は、図1に示すごとく、スプリング33によって、径方向外側に付勢されている。   A vane groove 31 is formed along the radial direction on the outer peripheral surface 3 a of the inner rotor 3 facing the fluid pressure chamber 4. A vane 32 as a partition portion is inserted into the vane groove 31. The fluid pressure chamber 4 is partitioned into an advance chamber 41 and a retard chamber 42 along the drive direction S by the vane 32. As shown in FIG. 1, the vane 32 is biased radially outward by a spring 33.

図1、2に示すごとく、進角油路43を内部ロータ3に形成し、進角室41に連通してある。また、遅角油路44を内部ロータ3に形成し、遅角室42に連通してある。図1に示すごとく、進角油路43及び遅角油路44は、後述する作動流体給排機構7に接続されている。   As shown in FIGS. 1 and 2, an advance oil passage 43 is formed in the inner rotor 3 and communicates with the advance chamber 41. A retard oil passage 44 is formed in the inner rotor 3 and communicates with the retard chamber 42. As shown in FIG. 1, the advance oil passage 43 and the retard oil passage 44 are connected to a working fluid supply / discharge mechanism 7 described later.

作動流体給排機構7によって、進角室41及び遅角室42に作動流体を供給又は排出し、ハウジング2と内部ロータ3との相対回転位相を、進角方向S1又は遅角方向S2へ変位させ、或いは、任意の位相で保持する。この作動流体が、いわゆる作動油に相当する。進角方向S1とは、ベーン32が外部ロータ21に対して相対移動し、進角室41の容積が大きくなる方向であり、図中に矢印S1で示してある。遅角方向S2とは、遅角室42の容積が大きくなる方向であり、図中に矢印S2で示してある。   The working fluid supply / discharge mechanism 7 supplies or discharges the working fluid to the advance chamber 41 and the retard chamber 42, and displaces the relative rotational phase between the housing 2 and the internal rotor 3 in the advance direction S1 or the retard direction S2. Or held at an arbitrary phase. This working fluid corresponds to so-called working oil. The advance angle direction S1 is a direction in which the vane 32 moves relative to the external rotor 21 and the volume of the advance angle chamber 41 increases, and is indicated by an arrow S1 in the drawing. The retardation direction S2 is a direction in which the volume of the retardation chamber 42 increases, and is indicated by an arrow S2 in the figure.

ハウジング2と内部ロータ3とが相対回転可能な一定の範囲は、流体圧室4の内部でベーン32が変位可能な範囲に対応する。遅角室42の容積が最大となるのが最遅角位相であり、進角室41の容積が最大となるのが最進角位相である。即ち、相対回転位相は最進角位相と最遅角位相との間で変位可能である。   A certain range in which the housing 2 and the inner rotor 3 can be rotated relative to each other corresponds to a range in which the vane 32 can be displaced inside the fluid pressure chamber 4. It is the most retarded phase that the volume of the retard chamber 42 is maximized, and the most advanced angle phase that the volume of the advance chamber 41 is maximized. That is, the relative rotational phase can be displaced between the most advanced phase and the most retarded phase.

図1に示すごとく、内部ロータ3とフロントプレート23とに亘ってトーションスプリング26を設けてある。内部ロータ3及びハウジング2は、トーションスプリング26により、相対回転位相が進角方向S1に変位するよう付勢される。トーションスプリング26の不勢力は、少なくとも相対回転位相が最遅角位相と中間ロック位相との間にあるときは、上述のカム変動トルクに基づく遅角側への変位力よりも大きくなるよう設定してある。このため、エンジン停止直後に、相対回転位相が最遅角位相と中間ロック位相との間にある場合、弁開閉時期制御装置1は、相対回転位相が少なくとも中間ロック位相よりも進角側の位相となるよう動作する。   As shown in FIG. 1, a torsion spring 26 is provided across the inner rotor 3 and the front plate 23. The internal rotor 3 and the housing 2 are biased by the torsion spring 26 so that the relative rotational phase is displaced in the advance angle direction S1. The inactive force of the torsion spring 26 is set to be larger than the displacement force to the retard side based on the cam fluctuation torque described above, at least when the relative rotational phase is between the most retarded phase and the intermediate lock phase. It is. For this reason, immediately after the engine is stopped, when the relative rotation phase is between the most retarded phase and the intermediate lock phase, the valve opening / closing timing control device 1 determines that the relative rotation phase is at least an advanced angle phase with respect to the intermediate lock phase. It works to become.

(作動流体給排機構)
作動流体給排機構7の構成について簡単に説明する。作動流体給排機構7は、図1に示すごとく、エンジンにより駆動されて作動油の供給を行うポンプ71と、進角油路43及び遅角油路44に対する作動油の供給及び排出を制御する流路切換弁72と、作動油を貯留するオイルパン73とを備えている。
(Working fluid supply / discharge mechanism)
The configuration of the working fluid supply / discharge mechanism 7 will be briefly described. As shown in FIG. 1, the working fluid supply / discharge mechanism 7 controls the supply and discharge of the working oil to the pump 71 that is driven by the engine and supplies the working oil, and the advance oil passage 43 and the retard oil passage 44. A flow path switching valve 72 and an oil pan 73 for storing hydraulic oil are provided.

ポンプ71は、クランクシャフトの駆動力が伝達されることにより駆動する機械式の油圧ポンプである。ポンプ71は、オイルパン73に貯留された作動油を吸入し、その作動油を下流側へ吐出する。   The pump 71 is a mechanical hydraulic pump that is driven by transmission of the driving force of the crankshaft. The pump 71 sucks the hydraulic oil stored in the oil pan 73 and discharges the hydraulic oil to the downstream side.

流路切換弁72は、ECU8(エンジンコントロールユニット)による給電量制御に基づいて動作する。流路切換弁72の切換えとポンプ71の制御とによって、進角室41への作動油供給・遅角室42からの作動油排出、進角室41からの作動油排出・遅角室42かへの作動油供給、進角室41及び遅角室42への作動油給排遮断の三種類の制御が可能である。進角室41への作動油供給・遅角室42からの作動油排出を行う制御が「進角制御」である。進角制御を行うと、ベーン32は外部ロータ21に対して進角方向S1に相対移動し、相対回転位相は進角側へ変位する。進角室41からの作動油排出・遅角室42かへの作動油供給を行う制御が「遅角制御」である。遅角制御を行うと、ベーン32は外部ロータ21に対して遅角方向S2に相対移動し、相対回転位相は遅角側へ変位する。進角室41及び遅角室42への作動油の給排を遮断する制御を行うと、ベーン32は相対移動せず、相対回転位相をある任意の位相で保持できる。   The flow path switching valve 72 operates based on power supply amount control by the ECU 8 (engine control unit). By switching the flow path switching valve 72 and controlling the pump 71, the hydraulic oil is supplied to the advance chamber 41 and discharged from the retard chamber 42, and the hydraulic oil is discharged from the advance chamber 41 and the retard chamber 42. Three types of control are possible: hydraulic oil supply to the hydraulic chamber, hydraulic oil supply / discharge cutoff to the advance chamber 41 and the retard chamber 42. Control for supplying hydraulic oil to the advance chamber 41 and discharging hydraulic oil from the retard chamber 42 is “advance control”. When the advance angle control is performed, the vane 32 moves relative to the external rotor 21 in the advance angle direction S1, and the relative rotation phase is displaced toward the advance angle side. Control for discharging hydraulic oil from the advance chamber 41 and supplying hydraulic oil to the retard chamber 42 is “retard control”. When the retard control is performed, the vane 32 moves relative to the external rotor 21 in the retard direction S2, and the relative rotation phase is displaced toward the retard side. When the control for shutting off the supply and discharge of the hydraulic oil to and from the advance chamber 41 and the retard chamber 42 is performed, the vane 32 does not move relatively, and the relative rotation phase can be maintained at an arbitrary phase.

(ロック機構)
ロック機構6は、図2に示すごとく、外部ロータ21に配設され、径方向に出退可能なロック部材63と、内部ロータ3の外周面3aに形成され、ロック部材63が突入可能なロック溝62とを備えている。ロック部材63は、スプリング64によって径方向内側に付勢されている。ロック溝62は、ロック部材63が突入できるようロック部材63よりも僅かに大きい。ロック部材63がロック溝62に突入すると、相対回転位相は中間ロック位相に拘束され、ロック部材63がロック溝62から引退すると、拘束が解除されて相対回転位相の変位が許容される。
(Lock mechanism)
As shown in FIG. 2, the lock mechanism 6 is provided on the outer rotor 21 and is formed on the outer peripheral surface 3 a of the inner rotor 3. And a groove 62. The lock member 63 is urged radially inward by a spring 64. The lock groove 62 is slightly larger than the lock member 63 so that the lock member 63 can enter. When the lock member 63 enters the lock groove 62, the relative rotational phase is constrained to the intermediate lock phase, and when the lock member 63 is retracted from the lock groove 62, the restraint is released and the displacement of the relative rotational phase is allowed.

ロック溝62には、内部ロータ3に形成したロック油路61が接続されている。ロック機構6と隣り合う進角室41とロック油路61とは、内部ロータ3の外周面3aに形成した溝である進角室連通路65によって連通されている。ロック部材63がロック溝62に突入すると、ロック溝62と進角室連通路65とは遮断される。ロック部材63が引退すると、ロック溝62と進角室連通路65とは連通する。   A lock oil passage 61 formed in the inner rotor 3 is connected to the lock groove 62. The advance chamber 41 adjacent to the lock mechanism 6 and the lock oil passage 61 are communicated by an advance chamber communication passage 65 that is a groove formed in the outer peripheral surface 3 a of the internal rotor 3. When the lock member 63 enters the lock groove 62, the lock groove 62 and the advance chamber communication passage 65 are blocked. When the lock member 63 is retracted, the lock groove 62 and the advance chamber communication passage 65 communicate with each other.

ロック油路61は、上述の隣り合う進角室41への進角油路43を兼ねており、進角制御を行うとロック油路61には作動油が供給される。この作動油の油圧によって、ロック部材63が径方向外側に押圧され、その押圧力がスプリング64の付勢力より大きくなったとき、ロック部材63はロック溝62から引退し、中間ロック位相への拘束が解除される。拘束解除後は、ロック油路61と進角室連通路65とが連通し、進角制御を行えば上述の隣接する進角室41に対して作動油が供給される。   The lock oil passage 61 also serves as the advance oil passage 43 to the adjacent advance chamber 41 described above, and hydraulic oil is supplied to the lock oil passage 61 when the advance angle control is performed. When the lock member 63 is pressed radially outward by the hydraulic pressure of the hydraulic oil and the pressing force becomes larger than the urging force of the spring 64, the lock member 63 is retracted from the lock groove 62 and restrained to the intermediate lock phase. Is released. After the restraint is released, the lock oil passage 61 and the advance chamber communication passage 65 communicate with each other, and if the advance angle control is performed, the hydraulic oil is supplied to the adjacent advance chamber 41 described above.

(位相変位規制機構)
位相変位規制機構5は、図2に示すごとく、外部ロータ21に形成された第一部位としての凹部52と、内部ロータ3に形成された第二部位としての突起部53と、外部ロータ21に配設された変位規制部材51と、外部ロータ21に形成され、変位規制部材51を収容する収容部54とを備えている。
(Phase displacement regulating mechanism)
As shown in FIG. 2, the phase displacement regulating mechanism 5 includes a recess 52 as a first part formed in the external rotor 21, a protrusion 53 as a second part formed in the internal rotor 3, and the external rotor 21. The provided displacement regulating member 51 and an accommodating portion 54 that is formed in the external rotor 21 and accommodates the displacement regulating member 51 are provided.

凹部52は、図2に示すごとく、外部ロータ21の内周面21aに沿いつつ、軸方向全域に亘って形成されている。凹部は、図3に示すごとく、進角側の端面52aと、遅角側の端面52bと、外周面52cとを備えている。   As shown in FIG. 2, the recess 52 is formed over the entire axial direction along the inner peripheral surface 21 a of the outer rotor 21. As shown in FIG. 3, the concave portion includes an end surface 52 a on the advance side, an end surface 52 b on the retard side, and an outer peripheral surface 52 c.

突起部53は、図4に示すごとく、内部ロータ3の外周面3aに沿いつつ、径方向外側に板状に突起するよう形成してある。突起部53は、外部ロータ21と接する部分(図1参照)の軸方向全域に亘って形成してある。突起部53は、進角側の側面53aと、遅角側の側面53bと、外周面53cとを備えている。   As shown in FIG. 4, the protrusion 53 is formed so as to protrude in a plate shape radially outward along the outer peripheral surface 3 a of the inner rotor 3. The protrusion 53 is formed over the entire area in the axial direction of the portion (see FIG. 1) in contact with the external rotor 21. The protrusion 53 includes an advanced angle side surface 53a, a retarded angle side surface 53b, and an outer peripheral surface 53c.

図2に示すごとく、径方向における突起部53の突出高さは、凹部52の高さH2よりも僅かに低く設定してある。外部ロータ21と内部ロータ3とは、突起部53が凹部52の内部に位置するよう組み付けてある。内部ロータ3が外部ロータ21に対して相対回転すれば、突起部53の外周面53cと凹部52の外周面52cとは互いに摺動する。また、凹部52と内部ロータ3の外周面3aとによって形成される空間は、例えば、図6に示すごとく、突起部53によって進角側の第一空間57と遅角側の第二空間58とに隔てられている。   As shown in FIG. 2, the protruding height of the protruding portion 53 in the radial direction is set slightly lower than the height H <b> 2 of the recessed portion 52. The outer rotor 21 and the inner rotor 3 are assembled so that the protrusion 53 is positioned inside the recess 52. When the inner rotor 3 rotates relative to the outer rotor 21, the outer peripheral surface 53c of the protrusion 53 and the outer peripheral surface 52c of the recess 52 slide with each other. Further, the space formed by the recess 52 and the outer peripheral surface 3a of the inner rotor 3 is, for example, as shown in FIG. 6, the first space 57 on the advance side and the second space 58 on the retard side by the protrusion 53. It is separated by.

相対回転位相が最進角位相となったとき、突起部53の側面53aが凹部52の端面52aに到達し、相対回転位相が最遅角位相となったとき、側面53bが端面52bに到達するよう、凹部52の周方向の周長を設定してある。即ち、凹部52の周長は最進角位相から最遅角位相の範囲に対応している。ただし、側面53a と端面52a 、及び、側面53bと端面52bとは接触する必要はない。   When the relative rotational phase becomes the most advanced angle phase, the side surface 53a of the protrusion 53 reaches the end surface 52a of the recess 52, and when the relative rotational phase becomes the most retarded phase, the side surface 53b reaches the end surface 52b. As such, the circumferential length of the recess 52 is set. That is, the circumferential length of the recess 52 corresponds to the range from the most advanced phase to the most retarded phase. However, the side surface 53a and the end surface 52a and the side surface 53b and the end surface 52b do not need to contact each other.

凹部52の径方向の高さH2は、全域に亘って一定の高さであり、流体圧室4の径方向の高さH1よりも低く設定してある。収容部54は、外部ロータ21において凹部52の径方向外側に形成してある。収容部54は、外部ロータ21の軸方向全域に亘って形成されている。収容部54の側面54aは、凹部52の端面52bを径方向外側に延長して形成してある。このように、凹部52よりも径方向外側のスペースを有効に利用し、収容部54を形成してある。したがって、位相変位規制機構5が周方向に不要に大きくならず、流体圧室4やロック機構6の周方向の配置に与える影響を軽減できる。   The height H2 in the radial direction of the recess 52 is a constant height over the entire region, and is set lower than the height H1 in the radial direction of the fluid pressure chamber 4. The accommodating portion 54 is formed on the outer side of the concave portion 52 in the outer rotor 21. The accommodating portion 54 is formed over the entire axial direction of the external rotor 21. The side surface 54a of the housing portion 54 is formed by extending the end surface 52b of the recess 52 radially outward. In this way, the space 54 on the outer side in the radial direction than the recess 52 is effectively used to form the accommodating portion 54. Therefore, the phase displacement regulating mechanism 5 does not become unnecessarily large in the circumferential direction, and the influence on the circumferential arrangement of the fluid pressure chamber 4 and the lock mechanism 6 can be reduced.

変位規制部材51は、図3に示すごとく、収容部54の内部空間よりも僅かに小さい板状の部材であり、収容部54に配設されている。変位規制部材51は、その側面51bを収容部54の側面54a及び凹部52の端面52bに沿わせて径方向に出退可能である。変位規制部材51はスプリング59によって、径方向内側へ突出するよう付勢されている。変位規制部材51は、先端部51cが内部ロータ3の外周面3aに当接するまで突出する。変位規制部材51の径方向外側には、スプリング59を係合させるための切欠部51dを形成してあるが、変位規制部材51が突出したときでも切欠部51dは収容部54に収まっている。   As shown in FIG. 3, the displacement regulating member 51 is a plate-like member that is slightly smaller than the internal space of the housing portion 54, and is disposed in the housing portion 54. The displacement regulating member 51 can be withdrawn and withdrawn in the radial direction with its side surface 51 b along the side surface 54 a of the accommodating portion 54 and the end surface 52 b of the recess 52. The displacement regulating member 51 is urged by a spring 59 so as to protrude inward in the radial direction. The displacement regulating member 51 protrudes until the front end portion 51 c contacts the outer peripheral surface 3 a of the internal rotor 3. A notch 51d for engaging the spring 59 is formed on the radially outer side of the displacement restricting member 51, but the notch 51d is accommodated in the accommodating portion 54 even when the displacement restricting member 51 protrudes.

変位規制部材51は、作動流体給排機構7からの作動流体の供給により収容部54に引退する。図4に示すごとく、作動流体給排機構7からの作動流体を給排するための規制油路55を内部ロータ3に形成している。内部ロータ3の外周面3aにおいて、規制解除溝56を突起部53よりも遅角側に周方向に沿って形成してある。規制解除溝56の幅は規制油路55の外径よりも僅かに広く設定し、規制解除溝56に規制油路55を開放してある。   The displacement regulating member 51 is retracted to the accommodating portion 54 by supplying the working fluid from the working fluid supply / discharge mechanism 7. As shown in FIG. 4, a restriction oil passage 55 for supplying and discharging the working fluid from the working fluid supply and discharge mechanism 7 is formed in the internal rotor 3. On the outer peripheral surface 3 a of the internal rotor 3, a restriction release groove 56 is formed along the circumferential direction on the retard side with respect to the protrusion 53. The width of the restriction release groove 56 is set slightly wider than the outer diameter of the restriction oil passage 55, and the restriction oil passage 55 is opened to the restriction release groove 56.

図1に示すごとく、規制油路55は遅角油路44から分岐しており、遅角制御が行われると規制油路55にも作動油が供給される。結果、規制解除溝56にも作動油が供給される。規制解除溝56が作動油で満たされ、その作動油の油圧がスプリング59の付勢力よりも大きくなると、図7から図9のように、変位規制部材51は収容部54に引退する。また、作動油が排出されると、変位規制部材51はスプリング59の付勢力によって突出する。図4に示すごとく、規制解除溝56は外周面3aにおいて軸方向中央付近に形成されており、変位規制部材51にはバランス良く油圧が掛かる。   As shown in FIG. 1, the restriction oil passage 55 is branched from the retardation oil passage 44, and hydraulic oil is also supplied to the restriction oil passage 55 when the retardation control is performed. As a result, hydraulic oil is also supplied to the restriction release groove 56. When the restriction release groove 56 is filled with the hydraulic oil and the hydraulic pressure of the hydraulic oil becomes larger than the urging force of the spring 59, the displacement regulating member 51 is retracted to the accommodating portion 54 as shown in FIGS. When the hydraulic oil is discharged, the displacement regulating member 51 protrudes due to the urging force of the spring 59. As shown in FIG. 4, the restriction release groove 56 is formed near the center in the axial direction on the outer peripheral surface 3 a, and the displacement restricting member 51 is hydraulically applied in a well-balanced manner.

変位規制部材51が一旦引退し、ハウジング2の回転数が高まると、径方向外側への遠心力が作用し、変位規制部材51は引退した状態を保持する。ただし、ハウジング2がどの程度の速度で回転すればこのような遠心力が発生するかは、スプリング59の付勢力の強弱や変位規制部材51の重さを調整して決定する。   When the displacement restricting member 51 is once retracted and the rotational speed of the housing 2 is increased, a centrifugal force outward in the radial direction acts, and the displacement restricting member 51 maintains the retracted state. However, at what speed the housing 2 rotates, such a centrifugal force is generated by adjusting the strength of the urging force of the spring 59 and the weight of the displacement regulating member 51.

変位規制部材51が突出していると、変位規制部材51が障害となり、内部ロータ3はそれ以上遅角方向S2に相対回転できない。このとき、変位規制部材51は、凹部52の端面52bと突起部53の側面53bとに挟持されている。この状態において相対回転位相が中間ロック位相と一致するように、変位規制部材51の周方向の厚みtを設定してある。即ち、変位規制部材51の周方向の厚みtは、最遅角位相と中間ロック位相との位相差に対応している。   If the displacement restricting member 51 protrudes, the displacement restricting member 51 becomes an obstacle, and the inner rotor 3 cannot further rotate in the retarding direction S2. At this time, the displacement regulating member 51 is sandwiched between the end surface 52 b of the recess 52 and the side surface 53 b of the protrusion 53. In this state, the thickness t in the circumferential direction of the displacement restricting member 51 is set so that the relative rotational phase matches the intermediate lock phase. That is, the circumferential thickness t of the displacement regulating member 51 corresponds to the phase difference between the most retarded phase and the intermediate lock phase.

このように、位相変位規制機構5は、ロック機構6とは独立して駆動側回転体に設けられ、中間ロック位相よりも進角側から中間ロック位相よりも遅角側への相対回転位相の変位を規制する。変位規制部材51が挟持されて変位規制を行う構成であるため、突起部53が勢い良く変位規制部材51に衝突しても、変位規制部材51には圧縮応力のみが作用し、剪断応力・曲げ応力は作用しない。よって、変位規制部材51の耐久性が向上すると共に、突起部53が変位規制部材51に当接したとき、相対回転位相は確実に中間ロック位相となる。また、側面51a及び側面53bといった広い面同士での当接で変位規制がなされるため、位相規制の信頼性が高い。   As described above, the phase displacement regulating mechanism 5 is provided on the drive side rotating body independently of the lock mechanism 6, and has a relative rotational phase from the advance side to the retard side of the intermediate lock phase from the intermediate lock phase. Regulate displacement. Since the displacement regulating member 51 is sandwiched to regulate the displacement, only the compressive stress acts on the displacement regulating member 51 even if the projection 53 collides with the displacement regulating member 51 vigorously. Stress does not work. Therefore, the durability of the displacement restricting member 51 is improved, and when the protrusion 53 comes into contact with the displacement restricting member 51, the relative rotation phase surely becomes the intermediate lock phase. In addition, since displacement is regulated by contact between wide surfaces such as the side surface 51a and the side surface 53b, the reliability of phase regulation is high.

図2に示すごとく、位相変位規制機構5はボルト25の近傍に、ボルト25と略同心円上に形成されている。このため、変位規制部材51が突出しているときの突起部53と側面51aとの衝突による衝撃、及び、変位規制部材51が引退しているときの突起部53と端面52bとの衝突による衝撃によって、突出部21bのうちボルト25と位相変位規制機構5との間の部分が損傷することを軽減できる。   As shown in FIG. 2, the phase displacement regulating mechanism 5 is formed in the vicinity of the bolt 25 and substantially concentrically with the bolt 25. For this reason, due to the impact caused by the collision between the projection 53 and the side surface 51a when the displacement regulating member 51 protrudes, and the impact caused by the collision between the projection 53 and the end surface 52b when the displacement regulating member 51 is retracted. Further, it is possible to reduce damage to the portion between the bolt 25 and the phase displacement regulating mechanism 5 in the protruding portion 21b.

規制解除溝56は、突起部53の側面53bから周方向遅角側に、ある程度の周長を有して延在している。このため、図8に示す状態から遅角制御が行われると、規制解除溝56と第二空間58とが作動油で満たされる。その油圧が上昇すると、図6に示すごとく変位規制部材51は引退する。即ち、手前の段階から前もって変位規制部材51を引退させられる。よって、突起部53が変位規制部材51に干渉せず、相対回転位相は円滑に中間ロック位相を超えて遅角側へ変位する。この場合においては、遅角制御を行っている一方で、第二空間58の作動油の油圧は突起部53に対して進角側に作用する。しかし、凹部52が一つであるのに対して流体圧室4は三箇所存在する。しかも、凹部52の高さH2よりも流体圧室4の高さH1の方が高い。よって、ベーン32三箇所に作用する遅角側への力の方が、突起部53に作用する進角側への力よりも各段に大きい。結果、突起部53に進角側への力が作用しても、遅角制御に支障はない。   The restriction release groove 56 extends from the side surface 53b of the protrusion 53 to the circumferential retard side with a certain circumferential length. For this reason, when the retard control is performed from the state shown in FIG. 8, the restriction release groove 56 and the second space 58 are filled with the hydraulic oil. When the hydraulic pressure rises, the displacement regulating member 51 is retracted as shown in FIG. That is, the displacement restricting member 51 is retracted in advance from the previous stage. Therefore, the protrusion 53 does not interfere with the displacement regulating member 51, and the relative rotational phase smoothly exceeds the intermediate lock phase and is displaced to the retard side. In this case, while the retard angle control is performed, the hydraulic pressure of the hydraulic oil in the second space 58 acts on the advance side with respect to the protrusion 53. However, there are three fluid pressure chambers 4 for one recess 52. Moreover, the height H1 of the fluid pressure chamber 4 is higher than the height H2 of the recess 52. Therefore, the retarding force acting on the three locations of the vane 32 is greater in each step than the advancing force acting on the protrusion 53. As a result, even if a force toward the advance side acts on the protrusion 53, there is no problem in the retard control.

(リーク路)
ハウジング2と内部ロータ3とは、互いに相対回転するため、凹部52と突起部53とには多少の隙間がある。このため、第二空間58に供給された作動油が第一空間57に漏洩する可能性がある。漏洩した作動油が第一空間57に残留すると、進角制御がされたときに、漏洩した作動油が側面53aと端面52aとに挟持され、最進角位相付近への変位が阻害される。そこで、図4に示すごとく、突起部53の外周面53cの中央付近には、第一空間57と第二空間58とを連通するリーク路としての溝53dを形成してある。このため、第一空間57に漏洩した作動油は、進角制御に基づき、突起部53の側面53aと凹部52の端面52aとに挟持・押圧されて、リーク路を介して第二空間58に漏れ戻ることができる。したがって、最進角位相付近への進角制御を適正に行うことができる。ただし、溝53dは、変位規制部材51を引退させるための油圧を確保できる程度の小さな溝である。
(Leak road)
Since the housing 2 and the inner rotor 3 rotate relative to each other, there is a slight gap between the recess 52 and the protrusion 53. For this reason, the hydraulic oil supplied to the second space 58 may leak into the first space 57. If the leaked hydraulic oil remains in the first space 57, when the advance angle control is performed, the leaked hydraulic oil is sandwiched between the side surface 53a and the end surface 52a, and the displacement to the vicinity of the most advanced angle phase is inhibited. Therefore, as shown in FIG. 4, a groove 53 d is formed near the center of the outer peripheral surface 53 c of the protrusion 53 as a leak path that connects the first space 57 and the second space 58. Therefore, the hydraulic oil leaked into the first space 57 is sandwiched and pressed between the side surface 53a of the projection 53 and the end surface 52a of the recess 52 based on the advance angle control, and enters the second space 58 via the leak path. The leak can be returned. Therefore, the advance angle control to the vicinity of the most advanced angle phase can be appropriately performed. However, the groove 53d is a small groove that can secure a hydraulic pressure for retracting the displacement regulating member 51.

カムシャフト101回転時には、遠心力によって漏洩した作動油は凹部52の外周面52cに押し遣られる。リーク路を径方向外側に形成しているので、作動油は溝53dに流入し易い。   When the camshaft 101 rotates, the hydraulic oil leaked by the centrifugal force is pushed to the outer peripheral surface 52 c of the recess 52. Since the leak path is formed radially outward, the hydraulic oil easily flows into the groove 53d.

(弁開閉時期制御装置の動作)
以下に、弁開閉時期制御装置1に動作を説明する。
(Operation of valve timing control device)
Hereinafter, the operation of the valve timing control apparatus 1 will be described.

エンジン通常運転中は、図5、6に示すごとく、ロック部材63はロック溝62から引退しており、相対回転位相は自在に変位可能である。エンジンの運転状態に応じて、進角制御と遅角制御と位相を保持する制御とを行っている。この間、変位規制部材51は通常は遠心力により引退している。仮に、遠心力によって変位規制部材が引退状態に保持されなくても、進角側への変位である進角制御時に変位規制部材51が突出しても支障はない。また、遅角側への変位である遅角制時には、その遅角制御によって変位規制部材51が引退するため支障はない。   During normal engine operation, as shown in FIGS. 5 and 6, the lock member 63 is retracted from the lock groove 62, and the relative rotational phase can be freely displaced. The advance angle control, the retard angle control, and the control for maintaining the phase are performed in accordance with the operating state of the engine. During this time, the displacement regulating member 51 is normally retracted by centrifugal force. Even if the displacement restricting member is not held in the retracted state by the centrifugal force, there is no problem even if the displacement restricting member 51 protrudes during the advance angle control that is the displacement toward the advance angle side. Further, at the time of retarding control, which is the displacement toward the retarding side, there is no problem because the displacement regulating member 51 is retracted by the retarding control.

エンジンを停止するときの動作は、エンジン停止直前の相対回転位相の状態により場合分けして説明する。エンジンを停止すると、進角室41、遅角室42、第二空間58から作動油が排出され、作動油の油圧は作用しない。ただし、カムシャフト101の回転が完全に停止するまでは、上述のカム変動トルクに基づく遅角側への変位力が作用する。   The operation when the engine is stopped will be described according to the state of the relative rotation phase immediately before the engine is stopped. When the engine is stopped, the hydraulic oil is discharged from the advance chamber 41, the retard chamber 42, and the second space 58, and the hydraulic pressure of the hydraulic oil does not act. However, until the rotation of the camshaft 101 is completely stopped, a displacement force toward the retard side based on the cam fluctuation torque described above acts.

エンジン停止直前に、図5に示すごとく、相対回転位相が中間ロック位相よりも遅角側にある場合、エンジンを停止すると、カム変動トルクに基づく遅角側への変位力に勝るトーションスプリング26の付勢力により、相対回転位相は中間ロック位相を越えて進角側へ変位する。このとき、変位規制部材51は突起部53に阻害されて、凹部52に突出できていない。その後中間ロック位相となったときに、ロック部材63がロック溝62に突入し、相対回転位相が中間ロック位相に拘束される。同時に、突起部53が収容部54から位置ずれし、規制部材も突出する。即ち、弁開閉時期制御装置1は図7に示す状態で停止する。   As shown in FIG. 5, immediately before the engine is stopped, when the relative rotational phase is on the retarded side with respect to the intermediate lock phase, when the engine is stopped, the torsion spring 26 is superior to the retarding force on the retarded side based on the cam fluctuation torque. Due to the urging force, the relative rotation phase exceeds the intermediate lock phase and is displaced to the advance side. At this time, the displacement regulating member 51 is blocked by the protrusion 53 and cannot protrude into the recess 52. Thereafter, when the intermediate lock phase is reached, the lock member 63 enters the lock groove 62, and the relative rotational phase is constrained to the intermediate lock phase. At the same time, the protruding portion 53 is displaced from the accommodating portion 54, and the regulating member also protrudes. That is, the valve opening / closing timing control device 1 stops in the state shown in FIG.

仮に、カム変動トルクに基づくバタつき等によって、中間ロック位相時にロック部材63がロック溝62に突入できなかった場合は、図8に示すごとく、相対回転位相が中間ロック位相よりも進角側の状態で弁開閉時期制御装置1は停止する。   If the lock member 63 cannot enter the lock groove 62 during the intermediate lock phase due to fluttering or the like based on cam fluctuation torque, as shown in FIG. 8, the relative rotation phase is more advanced than the intermediate lock phase. In this state, the valve opening / closing timing control device 1 stops.

エンジン停止直前に、図6に示すごとく、相対回転位相が中間ロック位相よりも進角側にある場合、エンジンを停止すると、図8に示すごとく、先ず変位規制部材51が凹部52に突出する。中間ロック位相よりも進角側において、トーションスプリング26の付勢力がカム変動トルクに基づく遅角側への変位力よりも大きいときは、そのまま、相対回転位相は中間ロック位相よりも進角側で停止し、ロック機構6による拘束はされない。   Immediately before the engine is stopped, as shown in FIG. 6, when the relative rotational phase is on the advance side of the intermediate lock phase, when the engine is stopped, the displacement regulating member 51 first protrudes into the recess 52 as shown in FIG. 8. When the urging force of the torsion spring 26 is larger than the displacement force to the retard side based on the cam fluctuation torque on the advance side of the intermediate lock phase, the relative rotation phase is on the advance side of the intermediate lock phase as it is. It stops and is not restrained by the lock mechanism 6.

中間ロック位相よりも進角側において、カム変動トルクに基づく遅角側への変位力がトーションスプリング26の付勢力よりも大きいときは、カムが完全停止するまでの間に、相対回転位相は遅角側へ変位する。突起部53が変位規制部材51に当接するに至ると、カム変動トルクに基づく変位力によって、突起部53が変位規制部材51の側面51aに押付けられる。相対回転位相が中間ロック位相に位置決めされ、ロッ部材がロック溝62に突入し、相対回転位相が中間ロック位相に拘束される。即ち、弁開閉時期制御装置1は図7に示す状態で停止する。   When the displacement force to the retard side based on the cam fluctuation torque is larger than the biasing force of the torsion spring 26 on the advance side from the intermediate lock phase, the relative rotation phase is delayed until the cam is completely stopped. Displace to the corner side. When the projection 53 comes into contact with the displacement regulating member 51, the projection 53 is pressed against the side surface 51 a of the displacement regulating member 51 by a displacement force based on the cam fluctuation torque. The relative rotation phase is positioned at the intermediate lock phase, the lock member enters the lock groove 62, and the relative rotation phase is constrained to the intermediate lock phase. That is, the valve opening / closing timing control device 1 stops in the state shown in FIG.

以上より、エンジンが完全に停止すると、図7に示すごとく、相対回転位相が中間ロック位相に拘束されつつ変位規制部材51も突出している状態か、図8に示すごとく、相対回転位相が中間ロック位相よりも進角側でありつつ変位規制部材51が突出している状態かの何れの状態で弁開閉時期制御装置1は停止する。何れにせよ、変位規制部材51が突出する。   As described above, when the engine is completely stopped, as shown in FIG. 7, the relative rotation phase is constrained to the intermediate lock phase and the displacement restricting member 51 is projected, or the relative rotation phase is set to the intermediate lock as shown in FIG. The valve opening / closing timing control device 1 stops in any state where the displacement regulating member 51 protrudes while being on the advance side of the phase. In any case, the displacement regulating member 51 protrudes.

エンジン再始動時の動作を説明する。図7に示すごとく、相対回転位相が中間ロック位相に拘束されつつ変位規制部材51も突出している状態でエンジンが再始動された場合は、エンジンは中間ロック位相で適切に始動できる。   The operation when the engine is restarted will be described. As shown in FIG. 7, when the engine is restarted in a state where the relative rotation phase is constrained to the intermediate lock phase and the displacement restricting member 51 protrudes, the engine can be appropriately started in the intermediate lock phase.

その後、遅角制御を行い、図9に示すごとく、変位規制部材51を引退させる。しばらくすると、カムシャフト101の回転数が高まり、変位規制部材51は遠心力によって引退した状態に保持されるようになる。さらに、進角制御を行い、図10に示すごとく、ロック部材63をロック溝62から引退させ、相対回転位相の拘束を解除する。その後は、エンジンの運転状態に応じて、進角制御と遅角制御と位相を保持する制御とを行って、相対回転位相をエンジンの運転状態に応じた位相に変位させる。   Thereafter, retardation control is performed, and the displacement regulating member 51 is retreated as shown in FIG. After a while, the rotation speed of the camshaft 101 increases, and the displacement regulating member 51 is held in a retreated state by centrifugal force. Further, advance angle control is performed, and as shown in FIG. 10, the lock member 63 is retracted from the lock groove 62, and the restriction on the relative rotation phase is released. Thereafter, advance angle control, retard angle control, and control for maintaining the phase are performed according to the operating state of the engine, and the relative rotational phase is displaced to a phase according to the operating state of the engine.

図8に示すごとく、相対回転位相が中間ロック位相よりも進角側でありつつ変位規制部材51が突出している状態でエンジンが再始動された場合は、カム変動トルクに基づく変位力により、相対回転位相は遅角側へ変位し、突起部53が変位規制部材51の側面51aに当接する。相対回転位相は中間ロック位相よりも遅角側へは変位しない。このとき、多少のバタつきはあるものの、突起部53が変位規制部材51の側面51aに衝突した瞬間に相対回転位相が中間ロック位相で停止するため、従来技術のように相対回転位相が中間ロック位相を挟んで遅角側及び進角側にバタつく場合よりも、ロック機構6による拘束がなされやすい。よって、図7に示すごとく、ロック部材63はロック溝62に突入し、相対回転位相が中間ロック位相に拘束される。さらに、仮に、ロック機構6による拘束がなされなかったとしても、少なくとも相対回転位相が中間ロック位相よりも進角側にあるため、エンジンの始動自体に支障はない。その後の動作は、上述した動作と同様であるため説明を省略する。   As shown in FIG. 8, when the engine is restarted in a state in which the displacement restricting member 51 protrudes while the relative rotational phase is on the advance side with respect to the intermediate lock phase, the displacement force based on the cam fluctuation torque causes relative displacement. The rotational phase is displaced to the retarded angle side, and the protrusion 53 contacts the side surface 51 a of the displacement regulating member 51. The relative rotation phase is not displaced to the retard side from the intermediate lock phase. At this time, although there is some flutter, the relative rotation phase stops at the intermediate lock phase at the moment when the projection 53 collides with the side surface 51a of the displacement regulating member 51. The lock mechanism 6 is more easily constrained than when the phase is fluttered toward the retard side and the advance side with respect to the phase. Therefore, as shown in FIG. 7, the lock member 63 enters the lock groove 62, and the relative rotation phase is constrained to the intermediate lock phase. Furthermore, even if the lock mechanism 6 is not restrained, at least the relative rotational phase is on the advance side with respect to the intermediate lock phase, so there is no problem in starting the engine itself. Subsequent operations are the same as the above-described operations, and thus description thereof is omitted.

本実施形態において、ロック機構6のスプリング64の付勢力が位相変位規制機構5のスプリング59の付勢力よりも大きくなるよう、スプリング64及びスプリング59を設定してある。例えば、作動油が高温であり、その粘性が低い状態においてエンジンを始動すると、位相変位規制機構5及びロック機構6とを解除する油圧が確保し難い。したがって、変位規制部材51とロック63とがカムシャフト101の回転による遠心力によって引退することがある。この場合、本構成によると、ロック機構6が解除される前に位相変位規制機構5が解除される。よって、ロック部材63が引退すれば、位相変位規制機構5による規制がされないため、相対回転位相を中間ロック位相よりも遅角側に変位させることができる。その結果、例えば、エンジンアイドリング時における排気ガスの排出抑制や燃費改善を速やかに行うことができる。   In the present embodiment, the spring 64 and the spring 59 are set so that the urging force of the spring 64 of the lock mechanism 6 is larger than the urging force of the spring 59 of the phase displacement regulating mechanism 5. For example, when the engine is started in a state where the hydraulic oil is high temperature and its viscosity is low, it is difficult to ensure the hydraulic pressure for releasing the phase displacement regulating mechanism 5 and the lock mechanism 6. Therefore, the displacement regulating member 51 and the lock 63 may be retreated due to the centrifugal force caused by the rotation of the camshaft 101. In this case, according to this configuration, the phase displacement restriction mechanism 5 is released before the lock mechanism 6 is released. Therefore, if the lock member 63 is retracted, the phase displacement regulation mechanism 5 is not regulated, so that the relative rotation phase can be displaced to the retard side from the intermediate lock phase. As a result, for example, it is possible to quickly suppress exhaust gas emission and improve fuel efficiency during engine idling.

上述の実施形態においては、流体圧室4とは別途に凹部52を形成して位相変位規制機構5を構成したが、これに限られるものではない。例えば、図示はしないが、ある流体圧室4を凹部52に、及び、ベーン32を突起部53に見立てて位相変位規制機構5を構成しても良い。この場合は、流体圧室4の径方向の高さH1を低くするか、もしくは、外部ロータ21を径方向外側に拡張する等して、収容部54を形成するスペースを確保する。あるいは、位相変位規制機構5の配置や変位規制部材51の突出方向等を変更して備えても良い。   In the above embodiment, the recess 52 is formed separately from the fluid pressure chamber 4 to configure the phase displacement restricting mechanism 5, but the present invention is not limited to this. For example, although not shown, the phase displacement regulating mechanism 5 may be configured with the fluid pressure chamber 4 as a recess 52 and the vane 32 as a projection 53. In this case, a space for forming the accommodating portion 54 is secured by decreasing the radial height H1 of the fluid pressure chamber 4 or expanding the external rotor 21 radially outward. Or you may change and arrange | position the arrangement | positioning of the phase displacement control mechanism 5, the protrusion direction of the displacement control member 51, etc.

本実施形態においては、規制油路55を遅角油路44から分岐して備えたが、進角油路43及び遅角油路44から独立した油路としても良い。少なくとも、ロック機構6に連通する油路と異なる油路であれば、弁開閉時期制御装置1を適切に動作させることができる。   In the present embodiment, the restriction oil passage 55 is branched from the retard oil passage 44, but may be an oil passage independent of the advance oil passage 43 and the retard oil passage 44. If the oil passage is different from at least the oil passage communicating with the lock mechanism 6, the valve opening / closing timing control device 1 can be appropriately operated.

本実施形態においては、一つのポンプ71のみを備えたが、内燃機関とは異なる動力により駆動されて位相変換機構に作動流体を供給する第二ポンプを備えても良い。第二ポンプを備えると、ポンプ71からの作動油供給量が不足したとき、その不足を補うことができる。   Although only one pump 71 is provided in the present embodiment, a second pump that is driven by power different from that of the internal combustion engine and supplies the working fluid to the phase conversion mechanism may be provided. When the second pump is provided, when the hydraulic oil supply amount from the pump 71 is insufficient, the shortage can be compensated.

(別実施形態)
上述の実施形態では、リーク路は突起部53の外周面53cに形成したが、これに限られるものではない。例えば、図11に示すごとく、リーク路を凹部52の外周面52cに形成しても良い。この場合、リーク路としての溝52dは、外周面52cの周方向全域に亘って形成する。
(Another embodiment)
In the above-described embodiment, the leak path is formed on the outer peripheral surface 53c of the protrusion 53. However, the present invention is not limited to this. For example, as shown in FIG. 11, the leak path may be formed on the outer peripheral surface 52 c of the recess 52. In this case, the groove 52d as a leak path is formed over the entire circumferential direction of the outer peripheral surface 52c.

また、図12に示すごとく、突起部53の外周面53cの出隅を面取りしてリーク路としての面取部53eを形成しても良い。図示はしないが、凹部52の外周面52cの出隅を面取りしても良い。これらの場合は、リーク路の位置に応じて規制解除溝56の位置を外部ロータ21の出隅付近に変更すると加工が容易である。   Also, as shown in FIG. 12, the protruding corner of the outer peripheral surface 53c of the protrusion 53 may be chamfered to form a chamfered portion 53e as a leak path. Although not shown, the protruding corner of the outer peripheral surface 52c of the recess 52 may be chamfered. In these cases, if the position of the restriction release groove 56 is changed to the vicinity of the protruding corner of the external rotor 21 according to the position of the leak path, the processing is easy.

上述の実施形態においては、弁開閉時期制御装置1を吸気弁用として適用した例を示したが、排気弁用の弁開閉時期制御装置1であっても良い。ただし、この場合、吸気弁と排気弁とに必要とされる弁開閉時期が異なるため、油圧の制御や油路の構成を変更する必要がある。   In the above-described embodiment, an example in which the valve opening / closing timing control device 1 is applied to an intake valve has been described. However, the valve opening / closing timing control device 1 for an exhaust valve may be used. However, in this case, since the valve opening / closing timing required for the intake valve and the exhaust valve is different, it is necessary to change the control of the hydraulic pressure and the configuration of the oil passage.

本発明は、内燃機関の停止時又は始動時に、内燃機関の始動に適した所定位相に相対回転位相を確実に拘束でき、自動車等のエンジンの吸気弁及び排気弁の開閉時期の制御を行う弁開閉時期制御装置に適用することができる。   The present invention is a valve that can reliably restrain the relative rotational phase to a predetermined phase suitable for starting an internal combustion engine when the internal combustion engine is stopped or started, and controls the opening and closing timings of an intake valve and an exhaust valve of an engine such as an automobile. The present invention can be applied to an opening / closing timing control device.

1 弁開閉時期制御装置
2 ハウジング(駆動側回転体)
3 内部ロータ(従動側回転体)
4 流体圧室
5 位相変位規制機構
6 ロック機構
7 作動流体給排機構
21a 内周面
26 トーションスプリング(付勢機構)
32 ベーン(仕切部)
41 進角室
42 遅角室
51 変位規制部材
52 凹部(第一部位)
52c 外周面
53 突起部(第二部位)
53c 外周面
53d 溝(リーク路)
57 第一空間
58 第二空間
101 カムシャフト
t 厚み
H1 高さ
H2 高さ
1 Valve opening / closing timing control device 2 Housing (drive side rotating body)
3 Internal rotor (driven rotor)
4 Fluid pressure chamber 5 Phase displacement regulating mechanism 6 Lock mechanism 7 Working fluid supply / discharge mechanism 21a Inner peripheral surface 26 Torsion spring (biasing mechanism)
32 Vane (partition)
41 Advance chamber 42 Delay chamber 51 Displacement restricting member 52 Recessed portion (first portion)
52c Outer peripheral surface 53 Protrusion (second part)
53c Outer peripheral surface 53d Groove (leakage path)
57 1st space 58 2nd space 101 Camshaft t Thickness H1 Height H2 Height

Claims (10)

内燃機関のクランクシャフトに対して同期回転する駆動側回転体と、
前記駆動側回転体に対して同軸上に配置され、前記内燃機関の吸気弁及び排気弁の何れかを開閉するカムシャフトと同期回転する従動側回転体と、
前記駆動側回転体と前記従動側回転体とで形成された流体圧室と、
前記流体圧室を進角室と遅角室とに仕切るよう前記駆動側回転体及び前記従動側回転体の何れかに設けられた仕切部と、
前記流体圧室に対して作動流体を供給及び排出する作動流体給排機構と、
前記駆動側回転体と前記従動側回転体との相対回転位相を、最進角位相と最遅角位相との間の前記内燃機関の始動に適した所定位相に拘束可能なロック機構と、
前記ロック機構とは独立して前記駆動側回転体及び前記従動側回転体の少なくとも一方に設けられ、前記所定位相よりも進角側又は遅角側の何れか一方側から前記所定位相よりも進角側又は遅角側の何れか他方側への前記相対回転位相の変位を規制可能である位相変位規制機構、とを備え
前記位相変位規制機構が、前記駆動側回転体の側の第一部位と前記従動側回転体の側の第二部位との間に出退すると共に、突出して前記第一部位と前記第二部位とで挟持されたとき、前記相対回転位相が前記所定位相となる厚みを有する変位規制部材と、を備えた弁開閉時期制御装置。
A drive side rotating body that rotates synchronously with the crankshaft of the internal combustion engine;
A driven-side rotating body that is coaxially disposed with respect to the driving-side rotating body and that rotates synchronously with a camshaft that opens and closes either the intake valve or the exhaust valve of the internal combustion engine;
A fluid pressure chamber formed by the driving side rotating body and the driven side rotating body;
A partition provided in any one of the driving side rotating body and the driven side rotating body to partition the fluid pressure chamber into an advance chamber and a retard chamber;
A working fluid supply and discharge mechanism for supplying and discharging a working fluid to and from the fluid pressure chamber;
A lock mechanism capable of constraining a relative rotation phase between the driving side rotating body and the driven side rotating body to a predetermined phase suitable for starting the internal combustion engine between a most advanced angle phase and a most retarded angle phase;
Independently of the lock mechanism, it is provided on at least one of the drive side rotating body and the driven side rotating body, and advances from the predetermined phase toward the predetermined phase from either the advance side or the retard side. with the to either the other side of the corner side or the retarding side is possible restrict the displacement of the relative rotational phase phase displacement restriction mechanism, a city,
The phase displacement restricting mechanism protrudes and retracts between a first part on the driving side rotating body side and a second part on the driven side rotating body side, and protrudes to protrude from the first part and the second part. And a displacement regulating member having a thickness such that the relative rotational phase becomes the predetermined phase when sandwiched between the valve opening and closing timing control device.
前記作動流体給排機構による前記位相変位規制機構に対する作動流体の供給及び排出の少なくとも何れかによって、前記位相変位規制機構が規制及びその解除の少なくとも何れかを行う請求項1に記載の弁開閉時期制御装置。   2. The valve opening / closing timing according to claim 1, wherein the phase displacement restriction mechanism performs at least one of restriction and release thereof by at least one of supply and discharge of the working fluid to and from the phase displacement restriction mechanism by the working fluid supply / discharge mechanism. Control device. 前記変位規制部材が前記カムシャフトの径方向に出退する請求項1又は2に記載の弁開閉時期制御装置。 The valve opening / closing timing control device according to claim 1 or 2 , wherein the displacement regulating member moves in and out in a radial direction of the camshaft. 前記変位規制部材が、前記カムシャフトの径方向内側に突出するよう付勢されつつ、前記駆動側回転体に配設されている請求項に記載の弁開閉時期制御装置。 The valve opening / closing timing control device according to claim 3 , wherein the displacement regulating member is disposed on the driving-side rotating body while being urged so as to protrude radially inward of the camshaft. 前記相対回転位相を進角側へ付勢する付勢機構を備えると共に、前記変位規制部材は前記相対回転位相の遅角側への変位を規制する請求項1から4の何れか一項に記載の弁開閉時期制御装置。 Provided with a biasing mechanism for biasing the relative rotational phase to the advanced angle side, the displacement regulating member according to any one of 4 claims 1 to regulate the displacement of the retard side of the relative rotational phase Valve timing control device. 前記付勢機構による付勢力が、前記カムシャフトの回転時のカム変動トルクに基づく遅角側への変位力よりも大きい請求項に記載の弁開閉時期制御装置。 6. The valve opening / closing timing control device according to claim 5 , wherein an urging force by the urging mechanism is larger than a displacement force toward the retard side based on a cam fluctuation torque during rotation of the camshaft. 最進角位相から最遅角位相の範囲に対応する周長を有する凹部を前記駆動側回転体の内周面に沿って形成し、
前記第二部位が前記凹部に沿って摺動するよう構成してある請求項1から6の何れか一項に記載の弁開閉時期制御装置。
Forming a concave portion having a circumference corresponding to a range from the most advanced angle phase to the most retarded angle phase along the inner circumferential surface of the drive side rotating body;
The valve opening / closing timing control device according to any one of claims 1 to 6 , wherein the second portion is configured to slide along the recess.
隣り合う前記流体圧室の間に前記凹部が形成され、
前記カムシャフトの径方向における前記凹部の高さが、前記カムシャフトの径方向における前記流体圧室の高さよりも低くなるように設定されている請求項に記載の弁開閉時期制御装置。
The recess is formed between the adjacent fluid pressure chambers,
The valve opening / closing timing control device according to claim 7 , wherein the height of the concave portion in the radial direction of the camshaft is set to be lower than the height of the fluid pressure chamber in the radial direction of the camshaft.
前記第二部位によって隔てられた前記凹部の進角側の第一空間と、遅角側の第二空間とを連通するリーク路を備えた請求項7又は8に記載の弁開閉時期制御装置。 9. The valve opening / closing timing control device according to claim 7, further comprising a leak path that communicates the first space on the advance side of the concave portion and the second space on the retard side separated by the second portion. 9. 前記リーク路を、前記カムシャフトの径方向における前記凹部の外周面、及び、前記カムシャフトの径方向における前記第二部位の外周面の少なくとも何れか一方に備えた請求項に記載の弁開閉時期制御装置。 The valve opening / closing according to claim 9 , wherein the leak path is provided on at least one of an outer peripheral surface of the concave portion in the radial direction of the camshaft and an outer peripheral surface of the second portion in the radial direction of the camshaft. Timing control device.
JP2009065698A 2009-03-18 2009-03-18 Valve timing control device Expired - Fee Related JP5376219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065698A JP5376219B2 (en) 2009-03-18 2009-03-18 Valve timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065698A JP5376219B2 (en) 2009-03-18 2009-03-18 Valve timing control device

Publications (2)

Publication Number Publication Date
JP2010216407A JP2010216407A (en) 2010-09-30
JP5376219B2 true JP5376219B2 (en) 2013-12-25

Family

ID=42975494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065698A Expired - Fee Related JP5376219B2 (en) 2009-03-18 2009-03-18 Valve timing control device

Country Status (1)

Country Link
JP (1) JP5376219B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155711A (en) * 2012-01-31 2013-08-15 Aisin Seiki Co Ltd Valve opening/closing timing control apparatus
JP6264845B2 (en) * 2013-03-11 2018-01-24 アイシン精機株式会社 Valve timing control device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147435B2 (en) * 1998-01-30 2008-09-10 アイシン精機株式会社 Valve timing control device
JP3918971B2 (en) * 1998-04-27 2007-05-23 アイシン精機株式会社 Valve timing control device
JP2003343217A (en) * 2002-05-23 2003-12-03 Mitsubishi Electric Corp Valve-timing adjusting device
JP4609714B2 (en) * 2005-05-19 2011-01-12 アイシン精機株式会社 Valve timing control device
JP4605473B2 (en) * 2005-12-27 2011-01-05 アイシン精機株式会社 Valve timing control device
JP4531705B2 (en) * 2006-01-24 2010-08-25 アイシン精機株式会社 Valve timing control device
JP5120635B2 (en) * 2008-07-09 2013-01-16 アイシン精機株式会社 Valve timing control device
JP5067628B2 (en) * 2008-05-20 2012-11-07 アイシン精機株式会社 Valve timing control device

Also Published As

Publication number Publication date
JP2010216407A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5582363B2 (en) Valve timing control device
JP5360511B2 (en) Valve timing control device
JP5321911B2 (en) Valve timing control device
JP5403341B2 (en) Valve timing control device
JP4784844B2 (en) Valve timing control device
JP2010084756A (en) Valve opening/closing timing control device
JP4609714B2 (en) Valve timing control device
EP2474713B1 (en) Control device for hydraulic variable valve timing mechanism
JP2010209780A (en) Variable valve train for internal combustion engine
JP4423679B2 (en) Valve timing adjustment device
JP4043823B2 (en) Valve timing adjustment device
JP5376219B2 (en) Valve timing control device
JP5067628B2 (en) Valve timing control device
EP2778356B1 (en) Valve timing control apparatus
JPWO2013108544A1 (en) Valve timing control device
JP6141435B2 (en) Control device for valve timing adjusting device
JP5120635B2 (en) Valve timing control device
JP6264845B2 (en) Valve timing control device
JP2005233049A (en) Valve opening/closing timing control device
JP6171423B2 (en) Valve timing control device
JP6115201B2 (en) Valve timing control device
JP6104392B2 (en) Valve timing adjustment device
JP2003343217A (en) Valve-timing adjusting device
JP4062224B2 (en) Valve timing control device
JP2014051895A (en) Valve opening and closing time control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R151 Written notification of patent or utility model registration

Ref document number: 5376219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees