JP5376142B2 - Nonaqueous electrolyte and lithium battery using the same - Google Patents

Nonaqueous electrolyte and lithium battery using the same Download PDF

Info

Publication number
JP5376142B2
JP5376142B2 JP2009142330A JP2009142330A JP5376142B2 JP 5376142 B2 JP5376142 B2 JP 5376142B2 JP 2009142330 A JP2009142330 A JP 2009142330A JP 2009142330 A JP2009142330 A JP 2009142330A JP 5376142 B2 JP5376142 B2 JP 5376142B2
Authority
JP
Japan
Prior art keywords
battery
lithium
mass
electrolyte
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009142330A
Other languages
Japanese (ja)
Other versions
JP2010027608A (en
Inventor
浩司 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009142330A priority Critical patent/JP5376142B2/en
Publication of JP2010027608A publication Critical patent/JP2010027608A/en
Application granted granted Critical
Publication of JP5376142B2 publication Critical patent/JP5376142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte which has an excellent battery property such as a high temperature storage property in using the battery at a high voltage, and a cycle property, and a lithium battery using the same. <P>SOLUTION: There are provided a nonaqueous electrolyte including 0.001 to 5 mass% of an organic peroxide represented by a formula (I) based on an amount of the nonaqueous electrolyte in the nonaqueous electrolyte where an electrolyte salt is dissolved in a nonaqueous solvent, and a lithium battery using the same. In the formula, R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>and R<SP>4</SP>represent a hydrogen atom, a straight or a branched 1-8C alkyl group, and the sum of the carbon number of R<SP>1</SP>and R<SP>2</SP>and the sum of the carbon number of R<SP>3</SP>and R<SP>4</SP>are 4 or larger, respectively. R<SP>1</SP>and R<SP>2</SP>, and R<SP>3</SP>and R<SP>4</SP>may form a ring mutually. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電池を高電圧で使用した際の高温保存特性やサイクル特性等の電池特性に優れた非水電解液、及びそれを用いたリチウム電池に関する。   The present invention relates to a non-aqueous electrolyte excellent in battery characteristics such as high-temperature storage characteristics and cycle characteristics when a battery is used at a high voltage, and a lithium battery using the same.

近年、リチウム二次電池は、携帯電話やノート型パソコン等の小型電子機器等の駆動用電源や、電気自動車や電力貯蔵用の電源として広く使用されている。
リチウム二次電池は、主にリチウムを吸蔵放出可能な材料を含む正極及び負極、リチウム塩を含む非水電解液から構成されている。その非水電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネート類が使用されている。
リチウム二次電池の負極としては、リチウム金属、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金等)、炭素材料が知られている。特に、炭素材料のうち、例えばコークス、黒鉛(人造黒鉛、天然黒鉛)等のリチウムを吸蔵・放出することが可能な炭素材料を用いた非水系電解液二次電池が広く実用化されている。
上記の負極材料はリチウム金属と同等の低い電位でリチウムと電子を貯蔵・放出するために、特に高温下において、多くの溶媒が還元分解を受ける可能性を有しており、負極材料の種類に拠らず負極上で電解液中の溶媒が一部還元分解してしまい、分解物が負極の表面に沈着して抵抗を増大させたり溶媒の分解によりガスが発生して電池を膨れさせたりすることによりリチウムイオンの移動が妨げられ、サイクル特性等の電池特性を低下させる問題があった。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as driving power sources for small electronic devices such as mobile phones and laptop computers, electric vehicles, and power storage sources.
The lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of inserting and extracting lithium, and a non-aqueous electrolyte containing a lithium salt. As the non-aqueous electrolyte, carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) are used.
As a negative electrode of a lithium secondary battery, lithium metal, a metal compound capable of inserting and extracting lithium (metal simple substance, oxide, alloy with lithium, etc.) and a carbon material are known. In particular, non-aqueous electrolyte secondary batteries using carbon materials that can occlude and release lithium such as coke and graphite (artificial graphite, natural graphite) are widely put into practical use.
Since the above negative electrode materials store and release lithium and electrons at a low potential equivalent to that of lithium metal, many solvents have the possibility of undergoing reductive decomposition, particularly at high temperatures. Regardless of this, the solvent in the electrolyte solution is partially reduced and decomposed on the negative electrode, and the decomposition product is deposited on the surface of the negative electrode to increase the resistance, or gas is generated due to the decomposition of the solvent and the battery is swollen. As a result, the movement of lithium ions is hindered, and there is a problem that battery characteristics such as cycle characteristics are deteriorated.

一方、正極材料として用いられるLiCoO、LiMn、LiNiO、LiFePOといったリチウムを吸蔵・放出可能な材料は、リチウム基準で3.5V以上の高い電圧でリチウムと電子を貯蔵・放出するために、多くの溶媒が酸化分解を受ける可能性を有しており、正極材料の種類に拠らず正極上で電解液中の溶媒が一部酸化分解してしまい、分解物が正極の表面に沈着して抵抗を増大させたり溶媒の分解によりガスが発生して電池を膨れさせたりすることによりリチウムイオンの移動が妨げられ、サイクル特性等の電池特性を低下させる問題があった。 On the other hand, materials capable of inserting and extracting lithium such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , and LiFePO 4 used as positive electrode materials store and release lithium and electrons at a high voltage of 3.5 V or more based on lithium. Therefore, many solvents have the possibility of undergoing oxidative decomposition, and the solvent in the electrolyte solution partially oxidatively decomposes on the positive electrode regardless of the type of the positive electrode material, and the decomposition product is on the surface of the positive electrode. Lithium ion migration is hindered by increasing the resistance and increasing the resistance or by generating gas due to the decomposition of the solvent and causing the battery to swell, thereby degrading the battery characteristics such as cycle characteristics.

以上のように、正極上や負極上で非水電解液が分解するときの分解物やガスにより、リチウムイオンの移動を阻害したり、電池が膨れたりすることで電池性能を低下させていた。そのような状況にも関わらず、リチウム二次電池が搭載されている電子機器の多機能化はますます進み、電力消費量が増大する流れにある。そのため、リチウム二次電池の高容量化はますます進んでおり、電極の密度を高めたり、電池内の無駄な空間容積を減らす等、電池内の非水電解液の占める体積が小さくなっている。従って、少しの非水電解液の分解で、高温での電池の性能が低下しやすい状況にある。   As described above, the battery performance is degraded by inhibiting the migration of lithium ions or swelling of the battery due to decomposition products or gas generated when the nonaqueous electrolyte is decomposed on the positive electrode or the negative electrode. In spite of such a situation, electronic devices equipped with lithium secondary batteries are becoming more and more multifunctional and power consumption is increasing. As a result, the capacity of lithium secondary batteries has been increasing, and the volume occupied by non-aqueous electrolyte in the battery has become smaller, such as increasing the electrode density and reducing the useless space volume in the battery. . Therefore, the performance of the battery at high temperature is likely to deteriorate with a slight decomposition of the non-aqueous electrolyte.

また、リチウム一次電池として、例えば、二酸化マンガンやフッ化黒鉛を正極とし、リチウム金属を負極とするリチウム一次電池が知られており、高いエネルギー密度であることから広く使用されているが、長期保存中の内部抵抗の増加を抑制し、高温での長期保存性能を向上させることが求められている。
さらに、近年、電気自動車用又はハイブリッド電気自動車用の新しい電源として、出力密度の点から、活性炭等を電極に用いる電気二重層キャパシタ、エネルギー密度と出力密度の両立の観点から、リチウムイオン二次電池と電気二重層キャパシタの蓄電原理を組み合わせた、ハイブリッドキャパシタ(リチウムの吸蔵・放出による容量と電気二重層容量の両方を活用する非対称型キャパシタ)と呼ばれる蓄電装置の開発が行われ、高温でのサイクル特性や高温保存特性等の電池性能の向上が求められている。
In addition, as a lithium primary battery, for example, a lithium primary battery using manganese dioxide or graphite fluoride as a positive electrode and lithium metal as a negative electrode is known and widely used because of its high energy density, but it is stored for a long time. It is required to suppress an increase in internal resistance and improve long-term storage performance at high temperatures.
Furthermore, in recent years, as a new power source for electric vehicles or hybrid electric vehicles, from the viewpoint of output density, an electric double layer capacitor using activated carbon or the like as an electrode, a lithium ion secondary battery from the viewpoint of coexistence of energy density and output density Developed a power storage device called a hybrid capacitor (asymmetric capacitor that utilizes both the capacity of lithium storage and release and the electric double layer capacity), which combines the storage principle of an electric double layer capacitor and a cycle at high temperatures. Improvements in battery performance such as characteristics and high-temperature storage characteristics are demanded.

特許文献1には、クメンパーオキサイド(ジクミルパーオキサイド)やm−クロロ過安息香酸等の有機過酸化物を添加した非水電解液を用いたリチウム二次電池が開示され、負極活物質にシリコンやシリコン含有合金を用いた場合にサイクル特性が改善できることが示されている。   Patent Document 1 discloses a lithium secondary battery using a nonaqueous electrolytic solution to which an organic peroxide such as cumene peroxide (dicumyl peroxide) or m-chloroperbenzoic acid is added. It has been shown that cycle characteristics can be improved when silicon or silicon-containing alloys are used.

国際公開WO2005/088761号公報International Publication WO2005 / 088761

本発明は、電池を高電圧で使用した際の高温保存特性やサイクル特性等の電池特性に優れた非水電解液、及びそれを用いたリチウム電池を提供することを目的とする。   An object of the present invention is to provide a nonaqueous electrolytic solution excellent in battery characteristics such as high-temperature storage characteristics and cycle characteristics when the battery is used at a high voltage, and a lithium battery using the same.

本発明者らは、上記従来技術の非水電解液の性能について詳細に検討した。その結果、特許文献1の非水電解液では、サイクル特性は決して満足のいくものではなく、また、高温保存後の抵抗増加を抑制する効果が無かった。   The present inventors have examined in detail the performance of the above-described prior art non-aqueous electrolyte. As a result, in the non-aqueous electrolyte of Patent Document 1, the cycle characteristics were never satisfactory, and there was no effect of suppressing an increase in resistance after high-temperature storage.

そこで発明者らは、上記課題を解決するために鋭意研究を重ね、環内に二つのペルオキシ構造(−O−O−)を有する六員環の有機過酸化物を非水電解液に特定量含有させることにより高温保存特性やサイクル特性等の電池特性に優れたリチウム電池が得られることを見出し、本発明を完成した。
すなわち、本発明は、下記の(1)、(2)を提供するものである。
(1)非水溶媒に電解質塩が溶解されている非水電解液において、下記一般式(I)で表される有機過酸化物を非水電解液に対して0.001〜5質量%含有することを特徴とする非水電解液。
Accordingly, the inventors have conducted extensive research to solve the above-mentioned problems, and specified a specific amount of a six-membered organic peroxide having two peroxy structures (—O—O—) in the ring in the non-aqueous electrolyte. It has been found that a lithium battery excellent in battery characteristics such as high-temperature storage characteristics and cycle characteristics can be obtained by inclusion, and the present invention has been completed.
That is, the present invention provides the following (1) and (2).
(1) In a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, the organic peroxide represented by the following general formula (I) is contained in an amount of 0.001 to 5% by mass with respect to the non-aqueous electrolyte. A non-aqueous electrolyte characterized by:

Figure 0005376142
Figure 0005376142

(式中、R、R、R及びRは、それぞれ水素原子又は炭素数1〜8の直鎖もしくは分枝のアルキル基を表し、R及びRの炭素数の和並びにR及びRの炭素数の和がそれぞれ4以上である。但し、R及びR並びにR及びRはそれぞれ互いに環を形成してもよい。)
(2)正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液からなるリチウム次電池において、下記一般式(I)で表される有機過酸化物を非水電解液に対して0.001〜5質量%含有することを特徴とするリチウム電池。
(Wherein R 1 , R 2 , R 3 and R 4 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms, and the sum of R 1 and R 2 carbon atoms and R 3 and the sum of the carbon numbers of R 4 are each 4 or more, provided that R 1 and R 2 and R 3 and R 4 may each form a ring.
(2) In a lithium secondary battery comprising a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent, the organic peroxide represented by the following general formula (I) is reduced with respect to the non-aqueous electrolyte solution. 0.001 to 5% by mass of a lithium battery.

Figure 0005376142
Figure 0005376142

(式中、R、R、R及びRは前記と同じである。) (Wherein R 1 , R 2 , R 3 and R 4 are the same as described above.)

本発明によれば、(1)高温保存特性やサイクル特性等の電池特性に優れた非水電解液、及び(2)それを用いたリチウム電池を提供することができる。   According to the present invention, (1) a non-aqueous electrolyte excellent in battery characteristics such as high-temperature storage characteristics and cycle characteristics, and (2) a lithium battery using the non-aqueous electrolyte can be provided.

以下に、本発明の有機過酸化物を含有する非水電解液、並びにそれを用いたリチウム電池について詳述する。   Below, the nonaqueous electrolyte containing the organic peroxide of this invention and a lithium battery using the same are explained in full detail.

〔非水電解液〕
本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、環内に二つのペルオキシ構造(−O−O−)を有する六員環の有機過酸化物を該非水電解液の質量に対して0.001〜5質量%含有することを特徴とする。
[Non-aqueous electrolyte]
The non-aqueous electrolyte of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, and a six-membered organic peroxide having two peroxy structures (—O—O—) in the ring. Is contained in an amount of 0.001 to 5% by mass with respect to the mass of the non-aqueous electrolyte.

〔有機過酸化物〕
本発明の有機過酸化物は下記の一般式(I)で表される。
[Organic peroxide]
The organic peroxide of the present invention is represented by the following general formula (I).

Figure 0005376142
(式中、R、R、R及びRは、それぞれ水素原子または炭素数1〜8の直鎖もしくは分枝のアルキル基を表し、R及びRの炭素数の和並びにR及びRの炭素数の和がそれぞれ4以上である。但し、R及びR並びにR及びRはそれぞれ互いに環を形成してもよい。)
Figure 0005376142
(Wherein R 1 , R 2 , R 3 and R 4 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms, and the sum of R 1 and R 2 carbon atoms and R 3 and the sum of the carbon numbers of R 4 are each 4 or more, provided that R 1 and R 2 and R 3 and R 4 may each form a ring.

一般式(I)で表される有機過酸化物としては特に制限はされないが、具体的には、3,6−ジ−n−ブチル−1,2,4,5−テトロキサン(R=R=水素原子、R=R=n−ブチル基)、3,6−ジ−n−ペンチル−1,2,4,5−テトロキサン(R=R=水素原子、R=R=n−ペンチル基)、3,6−ジ−n−ヘキシル−1,2,4,5−テトロキサン(R=R=水素原子、R=R=n−ヘキシル基)、3,6−ジ−n−ヘプチル−1,2,4,5−テトロキサン(R=R=水素原子、R=R=n−ヘプチル基)、3,6−ジ−n−オクチル−1,2,4,5−テトロキサン(R=R=水素原子、R=R=n−オクチル基)、3,6−ジメチル−3,6−ジ−n−プロピル−1,2,4,5−テトロキサン(R=R=メチル基、R=R=n−プロピル基)、3,6−ジメチル−3,6−ジ−n−ブチル−1,2,4,5−テトロキサン(R=R=メチル基、R=R=n−ブチル基)、3,6−ジメチル−3,6−ジ−n−ペンチル−1,2,4,5−テトロキサン(R=R=メチル基、R=R=n−ペンチル基)、3,6−ジメチル−3,6−ジ(3−メチル−n−ブチル)−1,2,4,5−テトロキサン(R=R=メチル基、R=R=3−メチル−n−ブチル基)、3,6−ジメチル−3,6−ジ−n−ヘキシル−1,2,4,5−テトロキサン(R=R=メチル基、R=R=n−ヘキシル基)、3,6−ジエチル−3,6−ジ−n−ブチル−1,2,4,5−テトロキサン(R=R=エチル基、R=R=n−ブチル基)、3,6−ジエチル−3,6−ジ−n−ペンチル−1,2,4,5−テトロキサン(R=R=エチル基、R=R=n−ペンチル基)、3,6−ジエチル−3,6−ジ(2−メチル−n−ブチル)−1,2,4,5−テトロキサン(R=R=エチル基、R=R=2−メチル−n−ブチル基)、3,3,6,6−テトラ−n−プロピル−1,2,4,5−テトロキサン(R=R=R=R=n−プロピル基)、6,7,13,14−テトラオキサジスピロ[4.2.4.2]テトラデカン(R及びR並びにR及びRはそれぞれ互いにシクロペンタン環を形成する)、7,8,15,16−テトラオキサジスピロ[5.2.5.2]ヘキサデカン(R及びR並びにR及びRはそれぞれ互いにシクロヘキサン環を形成する)、8,9,17,18−テトラオキサジスピロ[6.2.6.2]オクトデカン(R及びR並びにR及びRはそれぞれ互いにシクロヘプタン環を形成する)、13,14,27,28−テトラオキサジスピロ[11.2.11.2]オクタコサン(R及びR並びにR及びRはそれぞれ互いにシクロドデカン環を形成する)、6,7,14,15−テトラオキサジスピロ[4.2.5.2]ペンタデカン(R及びRは互いにシクロペンタン環を形成し、R及びRは互いにシクロヘキサン環を形成する)、7,8,16,17−テトラオキサジスピロ[5.2.6.2]ヘプタデカン(R及びRは互いにシクロヘキサン環を形成し、R及びRは互いにシクロヘプタン環を形成する)、6,7,14,15−テトラオキサジスピロ[4.2.5.2]ペンタデカン(R及びRは互いにシクロペンタン環を形成し、R及びRは互いにシクロヘキサン環を形成する)、6,7,20,21−テトラオキサジスピロ[4.2.11.2]ヘニコサン(R及びRは互いにシクロペンタン環を形成し、R及びRは互いにシクロドデカン環を形成する)、7,8,21,22−テトラオキサジスピロ[5.2.11.2]ドコサン(R及びRは互いにシクロヘキサン環を形成し、R及びRは互いにシクロドデカン環を形成する)などが高温保存特性やサイクル特性がより向上するので好ましい。
及びRの炭素数の和並びにR及びRの炭素数の和は同じであっても異なっていてもよいが、ともに4以上であり、5以上が更に好ましい。また、前記炭素数の和の上限としては、ともに12以下であることが好ましく、9以下であることが更に好ましい。
中でも、R及びR並びにR及びRが環を形成しているものが特に好ましく、7,8,15,16−テトラオキサジスピロ[5.2.5.2]ヘキサデカン(R及びR並びにR及びRはそれぞれ互いにシクロヘキサン環を形成する)が最も好ましい。
The organic peroxide represented by the general formula (I) is not particularly limited, but specifically, 3,6-di-n-butyl-1,2,4,5-tetroxane (R 1 = R 3 = hydrogen atom, R 2 = R 4 = n-butyl group), 3,6-di-n-pentyl-1,2,4,5-tetroxane (R 1 = R 3 = hydrogen atom, R 2 = R 4 = n-pentyl group), 3,6-di-n-hexyl-1,2,4,5-tetroxane (R 1 = R 3 = hydrogen atom, R 2 = R 4 = n-hexyl group), 3 , 6-Di-n-heptyl-1,2,4,5-tetroxane (R 1 = R 3 = hydrogen atom, R 2 = R 4 = n-heptyl group), 3,6-di-n-octyl- 1,2,4,5-tetroxane (R 1 = R 3 = hydrogen atom, R 2 = R 4 = n-octyl group), 3,6-dimethyl-3,6-di -N-propyl-1,2,4,5-tetroxane (R 1 = R 3 = methyl group, R 2 = R 4 = n-propyl group), 3,6-dimethyl-3,6-di-n- Butyl-1,2,4,5-tetroxane (R 1 = R 3 = methyl group, R 2 = R 4 = n-butyl group), 3,6-dimethyl-3,6-di-n-pentyl-1 , 2,4,5-tetroxane (R 1 = R 3 = methyl group, R 2 = R 4 = n-pentyl group), 3,6-dimethyl-3,6-di (3-methyl-n-butyl) -1,2,4,5-tetroxane (R 1 = R 3 = methyl group, R 2 = R 4 = 3-methyl-n-butyl group), 3,6-dimethyl-3,6-di-n- Hexyl-1,2,4,5-tetroxane (R 1 = R 3 = methyl group, R 2 = R 4 = n-hexyl group), 3,6-diethyl-3 , 6-Di-n-butyl-1,2,4,5-tetroxane (R 1 = R 3 = ethyl group, R 2 = R 4 = n-butyl group), 3,6-diethyl-3,6- Di-n-pentyl-1,2,4,5-tetroxane (R 1 = R 3 = ethyl group, R 2 = R 4 = n-pentyl group), 3,6-diethyl-3,6-di (2 - methyl -n- butyl) -1,2,4,5-tetroxane (R 1 = R 3 = ethyl, R 2 = R 4 = 2- methyl -n- butyl group), 3,3,6,6 - tetra -n- propyl-1,2,4,5-tetroxane (R 1 = R 2 = R 3 = R 4 = n- propyl group), 6,7,13,14- tetramethyl oxadiazole spiro [4. 2.4.2] tetradecane (R 1 and R 2 and R 3 and R 4 form a cyclopentane ring each other), 7,8, 5,16- tetra-oxa-di-spiro [5.2.5.2] hexadecane (R 1 and R 2 and R 3 and R 4 form a cyclohexane ring each other), 8,9,17,18- tetraoxa Dispiro [6.2.6.2] octodecane (R 1 and R 2 and R 3 and R 4 each form a cycloheptane ring with each other), 13, 14, 27, 28-tetraoxadispiro [11. 2.11.2] octacosane (R 1 and R 2 and R 3 and R 4 each form a cyclododecane ring each other), 6,7,14,15-tetraoxadispiro [4.2.5.2 ] pentadecane (R 1 and R 2 are a cyclopentane ring to form together, R 3 and R 4 form a mutually cyclohexane ring), 7,8,16,17- tetramethyl oxadiazole spiro [5 2.6.2] heptadecane (R 1 and R 2 together form a cyclohexane ring, R 2 and R 4 to each other form a cycloheptane ring), 6,7,14,15- tetramethyl oxadiazole spiro [4 2.5.2] pentadecane (R 1 and R 2 together form a cyclopentane ring and R 3 and R 4 together form a cyclohexane ring), 6,7,20,21-tetraoxadispiro [ 4.2.11.2] henicosan (R 1 and R 2 together form a cyclopentane ring and R 2 and R 4 together form a cyclododecane ring), 7,8,21,22-tetraoxadi spiro [5.2.11.2] docosane (R 1 and R 2 are a cyclohexane ring to form together, R 2 and R 4 together form a cyclododecane ring) such as the high-temperature storage characteristics and cycle characteristics Preferable to further improve.
The sum of the carbon numbers of R 1 and R 2 and the sum of the carbon numbers of R 3 and R 4 may be the same or different, but both are 4 or more, and more preferably 5 or more. Moreover, as an upper limit of the sum total of the said carbon number, it is preferable that both are 12 or less, and it is still more preferable that it is 9 or less.
Among these, those in which R 1 and R 2 and R 3 and R 4 form a ring are particularly preferable, and 7,8,15,16-tetraoxadispiro [5.2.5.2] hexadecane (R 1 And R 2 and R 3 and R 4 each form a cyclohexane ring with each other).

〔有機過酸化物の含有量〕
本発明の非水電解液において、非水電解液中に含有される一般式(I)で表される有機過酸化物の含有量は、5質量%を超えると、電極上に過度に被膜が形成されるため高温保存特性やサイクル特性等の電池特性が低下する場合があり、また、0.001質量%に満たないと被膜の形成が十分でないために、高温保存特性やサイクル特性等の電池特性を改善する効果が得られなくなる場合がある。したがって、該化合物の含有量は、非水電解液の質量に対して0.001質量%以上であり、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、その上限は5質量%以下であり、3質量%以下がより好ましく、2質量%以下が更に好ましい。
一般式(I)で表される有機過酸化物を添加することにより高温保存特性やサイクル特性等の電池特性を改善できることが分かった。その理由は必ずしも明らかではないが、以下の理由によると考えられる。本発明の有機過酸化物は、ペルオキシ基を一つしか有していないジクミルパーオキサイドやm−クロロ安息香酸に比べ、二つのペルオキシ基(−O−O−)が環状構造に含まれていることで、分解後に正極上には高い酸化状態の被膜が形成されるため非水電解液の過剰な酸化分解を抑制し、負極上にも酸素濃度の高い被膜が形成され、被膜中をリチウムイオンが移動しやすくなるためと考えられる。
[Content of organic peroxide]
In the nonaqueous electrolytic solution of the present invention, when the content of the organic peroxide represented by the general formula (I) contained in the nonaqueous electrolytic solution exceeds 5% by mass, an excessive film is formed on the electrode. As a result, battery characteristics such as high-temperature storage characteristics and cycle characteristics may be deteriorated, and if the amount is less than 0.001% by mass, a film is not sufficiently formed. The effect of improving the characteristics may not be obtained. Therefore, the content of the compound is 0.001% by mass or more with respect to the mass of the nonaqueous electrolytic solution, preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 0.1% by mass. % Or more is more preferable. Moreover, the upper limit is 5 mass% or less, 3 mass% or less is more preferable, and 2 mass% or less is still more preferable.
It has been found that battery characteristics such as high temperature storage characteristics and cycle characteristics can be improved by adding the organic peroxide represented by the general formula (I). The reason is not necessarily clear, but is considered to be due to the following reason. The organic peroxide of the present invention contains two peroxy groups (—O—O—) in the cyclic structure as compared with dicumyl peroxide and m-chlorobenzoic acid having only one peroxy group. As a result, a highly oxidized film is formed on the positive electrode after decomposition, so that excessive oxidative decomposition of the non-aqueous electrolyte is suppressed, and a film with a high oxygen concentration is formed on the negative electrode. This is probably because ions easily move.

〔非水溶媒〕
本発明の非水電解液に使用される非水溶媒としては、環状カーボネート類、鎖状カーボネート類、鎖状エステル類、エーテル類、アミド類、リン酸エステル類、スルホン類、ラクトン類、ニトリル類、S=O結合含有化合物等が挙げられる。
環状カーボネート類としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、4−フルオロ−1,3−ジオキソラン−2−オン(FEC)、トランス又はシス−4,5−ジフルオロ−1,3−ジオキソラン−2−オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)等が挙げられる。これらの中でも、VC、VEC、FEC、DFECから選ばれる少なくとも1種を使用すると高温保存特性やサイクル特性等の電池特性が一段と向上するので好ましい。
これらの溶媒は1種類で使用してもよいが、2種類以上を組み合わせて使用した場合は、高温保存特性やサイクル特性等の電池特性を改善する効果がさらに向上するので好ましく、3種類以上が特に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPC、FECとPC、ECとVC、FECとVC、PCとVC、ECとPCとVC、FECとPCとVC、FECとECとPCとVC等が挙げられる。
環状カーボネートの含有量は、特に制限はされないが、非水溶媒の総容量に対して、10〜40容量%の範囲で用いるのが好ましい。該含有量が10容量%未満であると電解液の電気伝導度が低下し、サイクル特性が低下する傾向があり、40容量%を超えると高温保存特性やサイクル特性等の電池特性が低下する傾向がある。特に、PCが5〜10容量%含まれていると高温保存特性が良好となるので好ましい。
[Nonaqueous solvent]
Examples of the nonaqueous solvent used in the nonaqueous electrolytic solution of the present invention include cyclic carbonates, chain carbonates, chain esters, ethers, amides, phosphate esters, sulfones, lactones, and nitriles. , S═O bond-containing compounds and the like.
Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), 4-fluoro-1,3-dioxolan-2-one (FEC), trans or cis-4,5-difluoro -1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinyl ethylene carbonate (VEC) and the like. Among these, use of at least one selected from VC, VEC, FEC, and DFEC is preferable because battery characteristics such as high-temperature storage characteristics and cycle characteristics are further improved.
These solvents may be used alone, but when two or more kinds are used in combination, the effect of improving battery characteristics such as high-temperature storage characteristics and cycle characteristics is further improved, and preferably three or more kinds. Particularly preferred. Preferred combinations of these cyclic carbonates include EC and PC, FEC and PC, EC and VC, FEC and VC, PC and VC, EC and PC and VC, FEC and PC and VC, FEC and EC and PC and VC. Etc.
Although content in particular of cyclic carbonate is not restrict | limited, It is preferable to use in the range of 10-40 volume% with respect to the total volume of a nonaqueous solvent. When the content is less than 10% by volume, the electric conductivity of the electrolyte solution tends to be lowered and the cycle characteristics tend to be lowered. When the content exceeds 40% by volume, battery characteristics such as high-temperature storage characteristics and cycle characteristics tend to be lowered. There is. In particular, when 5 to 10% by volume of PC is contained, it is preferable because high temperature storage characteristics are improved.

鎖状カーボネート類としては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート等の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、ジブチルカーボネート等の対称鎖状カーボネートが挙げられ、特に非対称鎖状カーボネートを含むと高温保存特性や低温サイクル特性等の電池特性が向上する傾向があるので好ましい。
これらの鎖状カーボネート類は1種類で使用してもよいが、2種類以上を組み合わせて使用すると、高温保存特性やサイクル特性等の電池特性が向上するので好ましい。
鎖状カーボネートの含有量は、特に制限されないが、非水溶媒の総容量に対して、60〜90容量%の範囲で用いるのが好ましい。該含有量が60容量%未満であると電解液の粘度が上昇し、90容量%を超えると電解液の電気伝導度が低下し、高温保存特性やサイクル特性等の電池特性が低下する傾向があるので上記範囲であることが好ましい。
環状カーボネート類と鎖状カーボネート類の割合は、高温保存特性やサイクル特性等の電池特性の向上の観点から、環状カーボネート類:鎖状カーボネート類(容量比)が10:90〜40:60が好ましく、15:85〜35:65がより好ましく、20:80〜30:70が特に好ましい。
Examples of chain carbonates include asymmetric chain carbonates such as methyl ethyl carbonate (MEC), methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, and ethyl propyl carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), and dipropyl. Examples include symmetric chain carbonates such as carbonate and dibutyl carbonate. In particular, inclusion of asymmetric chain carbonates is preferable because battery characteristics such as high-temperature storage characteristics and low-temperature cycle characteristics tend to be improved.
These chain carbonates may be used alone, but it is preferable to use a combination of two or more types because battery characteristics such as high-temperature storage characteristics and cycle characteristics are improved.
The content of the chain carbonate is not particularly limited, but it is preferably used in the range of 60 to 90% by volume with respect to the total volume of the nonaqueous solvent. When the content is less than 60% by volume, the viscosity of the electrolytic solution increases. When the content exceeds 90% by volume, the electrical conductivity of the electrolytic solution decreases, and battery characteristics such as high-temperature storage characteristics and cycle characteristics tend to decrease. Therefore, the above range is preferable.
The ratio of cyclic carbonates to chain carbonates is preferably 10:90 to 40:60 in terms of cyclic carbonates: chain carbonates (capacity ratio) from the viewpoint of improving battery characteristics such as high-temperature storage characteristics and cycle characteristics. 15:85 to 35:65 is more preferable, and 20:80 to 30:70 is particularly preferable.

その他の非水溶媒としては、プロピオン酸メチル、ピバリン酸メチル、ピバリン酸ブチル、ピバリン酸ヘキシル、ピバリン酸オクチル、シュウ酸ジメチル、シュウ酸エチルメチル、シュウ酸ジエチル等の鎖状エステル類、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、1,3−ジオキサン、1,4−ジオキサン等の環状エーテル類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタン等の鎖状エーテル類、ジメチルホルムアミド等のアミド類、リン酸トリメチル、リン酸トリブチル、リン酸トリオクチル等のリン酸エステル類、スルホラン等のスルホン類、γ−ブチロラクトン、γ−バレロラクトン、α−アンゲリカラクトン等のラクトン類、スクシノニトリル、グルタロニトリル、アジポニトリル等のニトリル類や1,3−プロパンスルトン、エチレンサルファイト、1,2−シクロヘキサンジオールサイクリックサルファイト、5−ビニル−ヘキサヒドロ1,3,2−ベンゾジオキサチオール−2−オキシド、1,4−ブタンジオールジメタンスルホネート、1,3−ブタンジオールジメタンスルホネート、ジビニルスルホン、ビス(2−ビニルスルホニルエチル)エーテル等のS=O結合含有化合物が挙げられる。   Other nonaqueous solvents include chain esters such as methyl propionate, methyl pivalate, butyl pivalate, hexyl pivalate, octyl pivalate, dimethyl oxalate, ethyl methyl oxalate, diethyl oxalate, tetrahydrofuran, -Cyclic ethers such as methyltetrahydrofuran, 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, etc. Chain ethers, amides such as dimethylformamide, phosphate esters such as trimethyl phosphate, tributyl phosphate, trioctyl phosphate, sulfones such as sulfolane, γ-butyrolactone, γ-valerolactone, α-angelica lactone Lactones such as succinonitrile, glutaronite , Nitriles such as adiponitrile, 1,3-propane sultone, ethylene sulfite, 1,2-cyclohexanediol cyclic sulfite, 5-vinyl-hexahydro 1,3,2-benzodioxathiol-2-oxide, Examples thereof include S═O bond-containing compounds such as 1,4-butanediol dimethanesulfonate, 1,3-butanediol dimethanesulfonate, divinylsulfone, and bis (2-vinylsulfonylethyl) ether.

上記の非水溶媒のうち、特にエーテル類、ニトリル類、S=O結合含有化合物を化合物(I)と併用すると、高温保存特性やサイクル特性等の電池特性が向上するので好ましい。化合物(I)と併用するこれらの化合物の添加量は、5質量%を超えるとサイクル特性が低下したり、高温保存特性を向上する効果が得られない場合があり、また、0.1質量%に満たないと高温保存特性やサイクル特性等の電池特性を改善する効果が十分に得られない場合がある。したがって、該含有量は、非水電解液の質量に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましい。また、その上限は5質量%以下が好ましく、3質量%以下がより好ましい。   Of the above non-aqueous solvents, ethers, nitriles, and S═O bond-containing compounds are preferably used in combination with the compound (I) because battery characteristics such as high-temperature storage characteristics and cycle characteristics are improved. When the addition amount of these compounds used in combination with compound (I) exceeds 5% by mass, the cycle characteristics may be deteriorated or the effect of improving the high-temperature storage characteristics may not be obtained. If it does not satisfy this condition, the effect of improving battery characteristics such as high-temperature storage characteristics and cycle characteristics may not be sufficiently obtained. Therefore, the content is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more with respect to the mass of the nonaqueous electrolytic solution. Moreover, the upper limit is preferably 5% by mass or less, and more preferably 3% by mass or less.

上記の非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネート類と鎖状カーボネート類の組合せ、環状カーボネート類と鎖状カーボネート類とラクトン類との組合せ、環状カーボネート類と鎖状カーボネート類と鎖状エステル類との組合せ、環状カーボネート類と鎖状カーボネート類とエーテル類の組合せ、環状カーボネート類と鎖状カーボネート類とニトリル類との組合せ、環状カーボネート類と鎖状カーボネート類とS=O結合含有化合物との組合せ等が挙げられる。
これらの中でも、少なくとも環状カーボネート類と鎖状カーボネート類を組合せた非水溶媒を用いると、高温保存特性やサイクル特性等の電池特性を改善する効果を向上するために好ましい。より具体的には、EC、PC、VC、FECから選ばれる1種以上の環状カーボネート類と、DMC、MEC、DECから選ばれる1種以上の鎖状カーボネート類との組合せが挙げられる。
The above non-aqueous solvents are usually used as a mixture in order to achieve appropriate physical properties. The combination includes, for example, a combination of cyclic carbonates and chain carbonates, a combination of cyclic carbonates, chain carbonates and lactones, a combination of cyclic carbonates, chain carbonates and chain esters, cyclic Examples include combinations of carbonates, chain carbonates, and ethers, combinations of cyclic carbonates, chain carbonates, and nitriles, combinations of cyclic carbonates, chain carbonates, and S = O bond-containing compounds. .
Among these, it is preferable to use a non-aqueous solvent combining at least a cyclic carbonate and a chain carbonate in order to improve the effect of improving battery characteristics such as high-temperature storage characteristics and cycle characteristics. More specifically, a combination of one or more cyclic carbonates selected from EC, PC, VC, and FEC and one or more chain carbonates selected from DMC, MEC, and DEC can be given.

〔電解質塩〕
本発明に使用される電解質としては、LiPF、LiBF、LiClO等のLi塩、LiN(SOCF、LiN(SO、LiCF3SO3、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso−C7、LiPF(iso−C7)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF(SONLi、(CF(SONLi等の環状のフッ化アルキレン鎖を含有するリチウム塩、ビス[オキサレート−O,O’]ホウ酸リチウムやジフルオロ[オキサレート−O,O’]ホウ酸リチウム等のオキサレート錯体をアニオンとするリチウム塩が挙げられる。これらの中でも、特に好ましい電解質塩は、LiPF、LiBF、LiN(SOCF、LiN(SOである。これらの電解質塩は、1種単独で又は2種以上を組み合わせて使用することができる。
[Electrolyte salt]
Examples of the electrolyte used in the present invention include Li salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC ( SO 2 CF 3) 3, LiPF 4 (CF 3) 2, LiPF 3 (C 2 F 5) 3, LiPF 3 (CF 3) 3, LiPF 3 (iso-C 3 F 7) 3, LiPF 5 (iso- Lithium salts containing a chain-like fluorinated alkyl group such as C 3 F 7 ) and cyclic fluorination such as (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 NLi Lithium salt containing an alkylene chain, lithium salt having an oxalate complex such as lithium bis [oxalate-O, O ′] lithium borate or difluoro [oxalate-O, O ′] lithium borate as an anion Is mentioned. Among these, particularly preferable electrolyte salts are LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2 . These electrolyte salts can be used singly or in combination of two or more.

これらの電解質塩の好適な組合せとしては、LiPFを含み、更にLiBF、LiN(SOCF及びLiN(SOから選ばれる少なくとも1種を含む組合せが挙げられる。好ましくは、LiPFとLiBFとの組合せ、LiPFとLiN(SOCFとの組合せ、LiPFとLiN(SOとの組合せ等が挙げられる。LiPF:[LiBF又はLiN(SOCF又はLiN(SO] (モル比)が70:30よりもLiPFの割合が低い場合、及び99:1よりもLiPFの割合が高い場合にはサイクル特性が低下する場合がある。したがって、LiPF:[LiBF又はLiN(SOCF又はLiN(SO] (モル比)は、70:30〜99:1の範囲が好ましく、80:20〜98:2の範囲がより好ましい。上記範囲の組合せで使用することにより、高温保存特性やサイクル特性等の電池特性を改善する効果を更に向上させることができる。
電解質塩は任意の割合で混合することができるが、LiPFと組み合わせて使用する場合のLiBF、LiN(SOCF及びLiN(SOを除く他の電解質塩が全電解質塩に占める割合(モル分率)は、0.01%に満たないと高温保存特性の向上効果が乏しく、45%を超えると高温保存特性は低下する場合がある。したがって、その割合(モル分率)は、好ましくは0.01〜45%、より好ましくは0.03〜20%、更に好ましくは0.05〜10%、最も好ましくは0.05〜5%である。
これら全電解質塩が溶解されて使用される濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.5M以上がより好ましく、0.7M以上が最も好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.5M以下が更に好ましく、1.2M以下が最も好ましい。
A preferable combination of these electrolyte salts includes a combination including LiPF 6 and further including at least one selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2. It is done. Preferably, a combination of LiPF 6 and LiBF 4 , a combination of LiPF 6 and LiN (SO 2 CF 3 ) 2 , a combination of LiPF 6 and LiN (SO 2 C 2 F 5 ) 2 and the like can be mentioned. LiPF 6 : [LiBF 4 or LiN (SO 2 CF 3 ) 2 or LiN (SO 2 C 2 F 5 ) 2 ] (molar ratio) when the ratio of LiPF 6 is lower than 70:30, and from 99: 1 However, when the ratio of LiPF 6 is high, the cycle characteristics may deteriorate. Therefore, LiPF 6 : [LiBF 4 or LiN (SO 2 CF 3 ) 2 or LiN (SO 2 C 2 F 5 ) 2 ] (molar ratio) is preferably in the range of 70:30 to 99: 1, and 80:20 A range of ˜98: 2 is more preferred. By using in a combination of the above ranges, the effect of improving battery characteristics such as high-temperature storage characteristics and cycle characteristics can be further improved.
The electrolyte salt can be mixed in any proportion, but other electrolytes except LiBF 4 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 when used in combination with LiPF 6. If the ratio of the salt to the total electrolyte salt (molar fraction) is less than 0.01%, the effect of improving the high-temperature storage characteristics is poor, and if it exceeds 45%, the high-temperature storage characteristics may deteriorate. Therefore, the ratio (molar fraction) is preferably 0.01 to 45%, more preferably 0.03 to 20%, still more preferably 0.05 to 10%, and most preferably 0.05 to 5%. is there.
The concentration used by dissolving all the electrolyte salts is usually preferably 0.3M or more, more preferably 0.5M or more, and most preferably 0.7M or more with respect to the non-aqueous solvent. Moreover, the upper limit is preferably 2.5M or less, more preferably 2.0M or less, further preferably 1.5M or less, and most preferably 1.2M or less.

〔その他の添加剤〕
本発明の非水電解液には、芳香族化合物を含有させることにより、過充電時の電池の安全性を確保することができる。かかる芳香族化合物の好適例としては、シクロヘキシルベンゼン、フルオロシクロヘキシルベンゼン化合物(1−フルオロ−2−シクロヘキシルベンゼン、1−フルオロ−3−シクロヘキシルベンゼン、1−フルオロ−4−シクロヘキシルベンゼン)、tert−ブチルベンゼン、tert−アミルベンゼン、1−フルオロ−4−tert−ブチルベンゼン、1,3−ジ−tert−ブチルベンゼン、ビフェニル、ターフェニル(o−、m−、p−体)、ジフェニルエーテル、フルオロベンゼン、ジフルオロベンゼン(o−、m−、p−体)、2,4−ジフルオロアニソール、ターフェニルの部分水素化物(1,2−ジシクロヘキシルベンゼン、2−フェニルビシクロヘキシル、1,2−ジフェニルシクロヘキサン、o−シクロヘキシルビフェニル)等が挙げられる。
これらの芳香族化合物は、非水電解液の質量に対して0.1〜10質量%添加されていることが好ましい。これらの芳香族化合物は、1種類で使用してもよく、また2種類以上を組み合わせて使用してもよい。
[Other additives]
By containing an aromatic compound in the nonaqueous electrolytic solution of the present invention, the safety of the battery during overcharge can be ensured. Preferable examples of such aromatic compounds include cyclohexylbenzene, fluorocyclohexylbenzene compounds (1-fluoro-2-cyclohexylbenzene, 1-fluoro-3-cyclohexylbenzene, 1-fluoro-4-cyclohexylbenzene), tert-butylbenzene. , Tert-amylbenzene, 1-fluoro-4-tert-butylbenzene, 1,3-di-tert-butylbenzene, biphenyl, terphenyl (o-, m-, p-isomer), diphenyl ether, fluorobenzene, difluoro Benzene (o-, m-, p-isomer), 2,4-difluoroanisole, partially hydrogenated terphenyl (1,2-dicyclohexylbenzene, 2-phenylbicyclohexyl, 1,2-diphenylcyclohexane, o-cyclohexyl) Biff Yl) and the like.
These aromatic compounds are preferably added in an amount of 0.1 to 10% by mass relative to the mass of the non-aqueous electrolyte. These aromatic compounds may be used alone or in combination of two or more.

〔非水電解液の製造〕
本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液の質量に対して、前記一般式(I)で表される有機過酸化物を0.001〜5質量%溶解させることにより得ることができる。
この際、用いる非水溶媒及び電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
本発明の非水電解液には、例えば、空気や二酸化炭素を含ませることにより、長期サイクル特性や充電保存特性等の電池特性を更に向上させることができる。
本発明においては、高温における充放電特性向上の観点から、非水電解液中に二酸化炭素を溶解させた電解液を用いることが特に好ましい。二酸化炭素の溶解量は、非水電解液の質量に対して0.001質量%以上が好ましく、0.05質量%以上がより好ましく、0.2質量%以上がより好ましく、非水電解液に二酸化炭素を飽和するまで溶解させることが最も好ましい。
本発明の非水電解液は、リチウム一次電池及びリチウム二次電池用電解液として好適に使用することができる。更に、本発明の非水電解液は、電気二重層キャパシタ用電解液やハイブリッドキャパシタ用電解液としても使用できる。これらの中でも、本発明の非水電解液は、リチウム二次電池用として用いることが最も適している。
[Production of non-aqueous electrolyte]
The nonaqueous electrolytic solution of the present invention includes, for example, the organic nonoxidation represented by the general formula (I) with respect to the electrolyte salt and the mass of the nonaqueous electrolytic solution mixed with the nonaqueous solvent. It can be obtained by dissolving 0.001 to 5% by mass of the product.
At this time, it is preferable to use a nonaqueous solvent and a compound to be added to the electrolytic solution that are purified in advance and have as few impurities as possible within a range that does not significantly reduce productivity.
Battery characteristics such as long-term cycle characteristics and charge storage characteristics can be further improved by including, for example, air or carbon dioxide in the nonaqueous electrolytic solution of the present invention.
In the present invention, it is particularly preferable to use an electrolytic solution in which carbon dioxide is dissolved in a nonaqueous electrolytic solution from the viewpoint of improving charge / discharge characteristics at high temperatures. The dissolved amount of carbon dioxide is preferably 0.001% by mass or more, more preferably 0.05% by mass or more, more preferably 0.2% by mass or more, based on the mass of the non-aqueous electrolyte. Most preferably, the carbon dioxide is dissolved until saturation.
The nonaqueous electrolytic solution of the present invention can be suitably used as an electrolytic solution for a lithium primary battery and a lithium secondary battery. Furthermore, the nonaqueous electrolytic solution of the present invention can also be used as an electrolytic solution for electric double layer capacitors and an electrolytic solution for hybrid capacitors. Among these, the nonaqueous electrolytic solution of the present invention is most suitable for use in a lithium secondary battery.

〔リチウム電池〕
本発明のリチウム電池は、リチウム一次電池及びリチウム二次電池を総称するものであって、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、ニッケルを含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独又は2種以上を組み合わせて用いることができる。
このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiMn、LiNiO、LiCo1−xNi(0.01<x<1)、LiCo1/3Ni1/3Mn1/3、LiNi1/2Mn3/2、LiCo0.98Mg0.02等が挙げられる。また、LiCoOとLiMn、LiCoOとLiNiO、LiMnとLiNiOのように併用してもよい。
〔Lithium battery〕
The lithium battery of the present invention is a generic term for a lithium primary battery and a lithium secondary battery, and comprises the non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent. Components other than the non-aqueous electrolyte, such as a positive electrode and a negative electrode, can be used without particular limitation.
For example, as the positive electrode active material for a lithium secondary battery, a composite metal oxide with lithium containing cobalt, manganese, and nickel is used. These positive electrode active materials can be used singly or in combination of two or more.
Examples of such a lithium composite metal oxide include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 <x <1), LiCo 1/3 Ni 1/3. Examples thereof include Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 , and LiCo 0.98 Mg 0.02 O 2 . Moreover, LiCoO 2 and LiMn 2 O 4, LiCoO 2 and LiNiO 2, may be used in combination as LiMn 2 O 4 and LiNiO 2.

また、過充電時の安全性やサイクル特性を向上したり、4.3V以上の充電電位での使用を可能にするために、リチウム複合金属酸化物の一部は他元素で置換してもよい。例えば、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等の少なくとも1種以上の元素で置換したり、Oの一部をSやFで置換したり、又はこれらの他元素を含有する化合物を被覆することもできる。
これらの中では、LiCoO、LiMn、LiNiOのような満充電状態における正極の充電電位がLi基準で4.3V以上で使用可能なリチウム複合金属酸化物が好ましく、LiCo1−x(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cuから表される少なくとも1種類以上の元素、0.001≦x≦0.05)、LiCo1/3Ni1/3Mn1/3、LiNi1/2Mn3/2のような4.4V以上で使用可能なリチウム複合酸化物がより好ましい。高充電電圧のリチウム遷移金属複合酸化物を使用すると、充電時における電解液との反応により高温保存特性やサイクル特性等の電池特性が低下しやすいが、本発明に係るリチウム二次電池ではこれらの電池特性の低下を抑制することができる。
In addition, in order to improve safety and cycle characteristics during overcharge, or to enable use at a charging potential of 4.3 V or higher, a part of the lithium composite metal oxide may be substituted with another element. . For example, a part of cobalt, manganese, nickel is replaced with at least one element such as Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La, etc. , A part of O may be substituted with S or F, or a compound containing these other elements may be coated.
Among these, lithium composite metal oxides such as LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 that can be used at a charged potential of the positive electrode in a fully charged state of 4.3 V or more on the basis of Li are preferable, and LiCo 1-x M x O 2 (where M is at least one element represented by Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, 0.001 ≦ x ≦ 0.05) ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 and other lithium composite oxides usable at 4.4 V or higher are more preferable. When a lithium transition metal composite oxide having a high charging voltage is used, battery characteristics such as high-temperature storage characteristics and cycle characteristics are likely to deteriorate due to a reaction with the electrolyte during charging. However, in the lithium secondary battery according to the present invention, A decrease in battery characteristics can be suppressed.

更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。その具体例としては、LiFePO、LiCoPO、LiNiPO、LiMnPO等が挙げられる。
これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等から選ばれる1種以上の元素で置換したり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO又はLiMnPOが好ましい。
また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
Furthermore, lithium-containing olivine-type phosphate can also be used as the positive electrode active material. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like.
Some of these lithium-containing olivine-type phosphates may be substituted with other elements, and some of iron, cobalt, nickel, and manganese are replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, and Nb. , Cu, Zn, Mo, Ca, Sr, W and Zr can be substituted with one or more elements selected from these, or can be coated with a compound or carbon material containing these other elements. Among these, LiFePO 4 or LiMnPO 4 is preferable.
Moreover, lithium containing olivine type | mold phosphate can also be mixed with the said positive electrode active material, for example, and can be used.

また、リチウム一次電池用正極としては、CuO、CuO、AgO、AgCrO、CuS、CuSO、TiO、TiS、SiO、SnO、V、V12、VOx、Nb、Bi、BiPb,Sb、CrO、Cr、MoO、WO、SeO、MnO、Mn、Fe、FeO、Fe、Ni、NiO、CoO、CoOなどの、一種もしくは二種以上の金属元素の酸化物あるいはカルコゲン化合物、SO、SOClなどの硫黄化合物、一般式(CFx)nで表されるフッ化炭素(フッ化黒鉛)などが挙げられる。中でも、MnO、V、フッ化黒鉛などが好ましい。 As the positive electrode for lithium primary battery, CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4, CuS, CuSO 4, TiO 2, TiS 2, SiO 2, SnO, V 2 O 5, V 6 O 12 , VOx, Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 , Oxides of one or more metal elements such as Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO, or sulfur compounds such as chalcogen compounds, SO 2 , and SOCl 2 And fluorocarbon (fluorinated graphite) represented by the general formula (CFx) n. Among these, MnO 2 , V 2 O 5 , graphite fluoride and the like are preferable.

正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類等が挙げられる。また、グラファイト類とカーボンブラック類を適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1〜10質量%が好ましく、特に2〜5質量%が好ましい。   The conductive agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause chemical changes. Examples thereof include graphite such as natural graphite (flaky graphite and the like) and artificial graphite, and carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black. Further, graphites and carbon blacks may be appropriately mixed and used. 1-10 mass% is preferable and, as for the addition amount to the positive mix of a electrically conductive agent, 2-5 mass% is especially preferable.

正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1−メチル−2−ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃〜250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
正極の集電体を除く部分の密度は、通常は1.5g/cm以上であり、電池の容量をさらに高めるため、好ましくは2g/cm以上であり、さらに好ましくは、3g/cm以上であり、特に好ましくは、3.6g/cm以上である。
The positive electrode is composed of a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene. Mixing with a binder such as copolymer (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpolymer, etc., and adding a high boiling point solvent such as 1-methyl-2-pyrrolidone to knead and mix Then, this positive electrode mixture was applied to a current collector aluminum foil, a stainless steel lath plate, etc., dried and pressure-molded, and then subjected to vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. It can be manufactured by heat treatment.
The density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, for further increasing the capacity of the battery, it is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 More preferably, it is 3.6 g / cm 3 or more.

リチウム二次電池用負極活物質としては、リチウム金属やリチウム合金、及びリチウムを吸蔵・放出することが可能な炭素材料や金属化合物等を1種単独又は2種以上を組み合わせて用いることができる。
これらの中では、リチウムイオンの吸蔵・放出能力において人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することが好ましく、格子面(002)の面間隔(d002)が0.340nm(ナノメータ)以下、特に0.335〜0.337nmである黒鉛型結晶構造を有する炭素材料を使用することが特に好ましい。高結晶性の炭素材料を使用すると、充電時において非水電解液と反応しやすく、高温保存特性やサイクル特性等の電池特性が低下する傾向があるが、本発明に係るリチウム二次電池では非水電解液との反応を抑制することができる。また、高結晶性の炭素材料が低結晶性の炭素材料によって被膜されていると非水電解液の分解が一段と抑制されるので好ましい。
また、負極活物質としてのリチウムを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも1種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。中でも、Si、Ge及びSnから選ばれる少なくとも1種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも1種の元素を含むものが電池を高容量化できるので特に好ましい。
負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃〜250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
負極活物質に黒鉛を用いた場合、負極の集電体を除く部分の密度は、通常は1.4g/cm以上であり、電池の容量をさらに高めるため、好ましくは、1.6g/cm以上であり、特に好ましくは、1.7g/cm以上である。
As the negative electrode active material for a lithium secondary battery, lithium metal, a lithium alloy, a carbon material capable of inserting and extracting lithium, a metal compound, and the like can be used singly or in combination of two or more.
Among these, it is preferable to use a highly crystalline carbon material such as artificial graphite or natural graphite in terms of the ability to occlude and release lithium ions, and the lattice spacing ( 002 ) spacing (d 002 ) is 0.340 nm ( It is particularly preferable to use a carbon material having a graphite-type crystal structure of nanometers) or less, particularly 0.335 to 0.337 nm. When a highly crystalline carbon material is used, it tends to react with the non-aqueous electrolyte during charging, and battery characteristics such as high-temperature storage characteristics and cycle characteristics tend to deteriorate. However, the lithium secondary battery according to the present invention has non-reactivity. Reaction with the water electrolyte can be suppressed. In addition, it is preferable that the highly crystalline carbon material is coated with the low crystalline carbon material because decomposition of the nonaqueous electrolytic solution is further suppressed.
Examples of the metal compound capable of inserting and extracting lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, and Cu. , Zn, Ag, Mg, Sr, Ba, and other compounds containing at least one metal element. These metal compounds may be used in any form such as a simple substance, an alloy, an oxide, a nitride, a sulfide, a boride, and an alloy with lithium, but any of a simple substance, an alloy, an oxide, and an alloy with lithium. Is preferable because the capacity can be increased. Among these, those containing at least one element selected from Si, Ge and Sn are preferable, and those containing at least one element selected from Si and Sn are particularly preferable because the capacity of the battery can be increased.
The negative electrode is kneaded using the same conductive agent, binder, and high-boiling solvent as in the production of the positive electrode, and then the negative electrode mixture is applied to the copper foil of the current collector. After being dried and pressure-molded, it can be produced by heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
When graphite is used as the negative electrode active material, the density of the portion excluding the current collector of the negative electrode is usually 1.4 g / cm 3 or more, and preferably 1.6 g / cm 3 in order to further increase the battery capacity. 3 or more, particularly preferably 1.7 g / cm 3 or more.

また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。   Moreover, lithium metal or a lithium alloy is mentioned as a negative electrode active material for lithium primary batteries.

リチウム二次電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート式電池等を適用できる。
電池用セパレータのとしては、特に制限はされないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層又は積層の多孔性フィルム、織布、不織布等を使用できる。
The structure of the lithium secondary battery is not particularly limited, and a coin battery, a cylindrical battery, a square battery, a laminate battery, or the like having a single-layer or multi-layer separator can be applied.
Although it does not restrict | limit especially as a separator for batteries, The porous film of monolayer or lamination | stacking of polyolefin, such as a polypropylene and polyethylene, a woven fabric, a nonwoven fabric, etc. can be used.

本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも長期間にわたり優れたサイクル特性を有しており、更に、4.4Vにおいてもサイクル特性は良好であり、ガス発生量も抑制される。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることが出来るが、本願発明におけるリチウム二次電池は、2.0V以上とすることが出来る。電流値については特に限定されないが、通常0.1〜3Cの定電流放電で使用される。また、本発明におけるリチウム二次電池は、−40〜100℃、好ましくは0〜80℃で充放電することができる。
一般に、角型電池、ラミネート式電池等においては、構造的にガスの発生により電池が膨れやすいが、本発明の非水電解液を用いたリチウム二次電池はガス発生による膨れを抑制できる。
The lithium secondary battery of the present invention has excellent cycle characteristics over a long period of time even when the end-of-charge voltage is 4.2 V or higher, particularly 4.3 V or higher. Furthermore, even at 4.4 V, the cycle characteristics are It is good and the gas generation amount is also suppressed. The end-of-discharge voltage is usually 2.8 V or more, and further 2.5 V or more, but the lithium secondary battery in the present invention can be 2.0 V or more. Although it does not specifically limit about an electric current value, Usually, it is used by 0.1-3C constant current discharge. Moreover, the lithium secondary battery in this invention can be charged / discharged at -40-100 degreeC, Preferably it is 0-80 degreeC.
In general, in a square battery, a laminated battery, and the like, the battery is structurally easy to swell due to the generation of gas, but the lithium secondary battery using the non-aqueous electrolyte of the present invention can suppress the swell due to gas generation.

本発明においては、リチウム二次電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。   In the present invention, as a countermeasure against an increase in internal pressure of the lithium secondary battery, a method of providing a safety valve on the battery lid or incising a member such as a battery can or a gasket can be employed. Further, as a safety measure for preventing overcharge, the battery lid can be provided with a current interruption mechanism that senses the internal pressure of the battery and interrupts the current.

実施例1〜10、比較例1〜3
〔リチウムイオン二次電池の作製〕
LiCo1/3Ni1/3Mn1/3(正極活物質);94質量%、アセチレンブラック(導電剤);3質量%を混合し、予めポリフッ化ビニリデン(結着剤);3質量%を1−メチル−2−ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、帯状の正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cmであった。また、人造黒鉛(d002=0.335nm、負極活物質)95質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1−メチル−2−ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、帯状の負極シートを作製した。負極の集電体を除く部分の密度は1.7g/cmであった。そして、正極シート、微孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表1に記載の組成の非水電解液に、同じく表1記載の有機過酸化物を所定量添加して調整した非水電解液を加えて、それぞれ実施例1〜10および比較例1〜3の2032型コイン電池を作製した。
Examples 1-10, Comparative Examples 1-3
[Production of lithium ion secondary battery]
LiCo 1/3 Ni 1/3 Mn 1/3 O 2 (positive electrode active material); 94% by mass, acetylene black (conductive agent); 3% by mass are mixed, and polyvinylidene fluoride (binder); 3% in advance. % Was added to the solution dissolved in 1-methyl-2-pyrrolidone and mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, and cut into a predetermined size to produce a belt-like positive electrode sheet. The density of the portion excluding the current collector of the positive electrode was 3.6 g / cm 3 . Further, 95% by mass of artificial graphite (d 002 = 0.335 nm, negative electrode active material) is added to a solution in which 5% by mass of polyvinylidene fluoride (binder) is previously dissolved in 1-methyl-2-pyrrolidone. And mixed to prepare a negative electrode mixture paste. This negative electrode mixture paste was applied to one side of a copper foil (current collector), dried and pressurized, and cut into a predetermined size to produce a strip-shaped negative electrode sheet. The density of the portion excluding the current collector of the negative electrode was 1.7 g / cm 3 . And it laminated | stacked in order of the positive electrode sheet | seat, the separator made from a microporous polyethylene film, and the negative electrode sheet | seat, and also added the organic peroxide of Table 1 similarly to the nonaqueous electrolyte of the composition of Table 1, and adjusted it. A non-aqueous electrolyte was added to prepare 2032 type coin batteries of Examples 1 to 10 and Comparative Examples 1 to 3, respectively.

〔サイクル特性の評価〕
上記の方法で作製したコイン電池を用いて60℃の恒温槽中、1Cの定電流及び定電圧で終止電圧4.3Vまで3時間充電し、次に1Cの定電流下終止電圧3.0Vまで放電することを1サイクルとし、これを100サイクルに達するまで繰り返した。そして、以下の式により100サイクル後の放電容量維持率を求めた。
放電容量維持率(%)=(100サイクル目の放電容量/1サイクル目の放電容量)×100
電池の作製条件及び電池特性を表1に示す。
[Evaluation of cycle characteristics]
Using the coin battery produced by the above method, in a constant temperature bath at 60 ° C., charge at a constant current of 1C and a constant voltage for 3 hours to a final voltage of 4.3V, and then to a final voltage of 3.0V under a constant current of 1C. Discharging was defined as one cycle, and this was repeated until 100 cycles were reached. And the discharge capacity maintenance factor after 100 cycles was calculated | required with the following formula | equation.
Discharge capacity retention ratio (%) = (discharge capacity at the 100th cycle / discharge capacity at the first cycle) × 100
Table 1 shows battery fabrication conditions and battery characteristics.

〔保存特性の評価〕
上記と同じ組成の非水電解液を使用した別のコイン電池を用いて25℃の恒温槽中1Cの定電流及び定電圧で終止電圧4.3Vまで3時間充電し、次に1Cの定電流下終止電圧3.0Vまで放電した。この放電時の平均の放電電圧を保存前の平均放電電圧とした。再び1Cの定電流及び定電圧で終止電圧4.3Vまで3時間充電し、60℃の恒温槽に入れ、4.3Vに保持した状態で3日間保存を行った。その後、25℃の恒温槽に入れ、一旦1Cの定電流下終止電圧3.0Vまで放電し、再び1Cの定電流及び定電圧で終止電圧4.3Vまで3時間充電し、次に1Cの定電流下終止電圧3.0Vまで放電した。この放電時の平均の放電電圧を保存後の平均放電電圧とした。そして、非水電解液に7,8,15,16−テトラオキサジスピロ[5.2.5.2]ヘキサデカンを加えなかったこと以外は実施例と同様にコイン電池を作製し電池特性を評価した比較例1を基準とする以下の式により、保存後の平均放電電圧低下率を求めた。
平均放電電圧低下率(相対値)(%)=(保存前の平均放電電圧−保存後の平均放電電圧)/(比較例1の保存前の平均放電電圧−比較例1の保存後の平均放電電圧)×100
電池の作製条件及び電池特性を表1に示す。
[Evaluation of storage characteristics]
Using another coin battery using a non-aqueous electrolyte of the same composition as described above, charging was performed at a constant current of 1C and a constant voltage in a constant temperature bath at 25 ° C for 3 hours to a final voltage of 4.3V, and then a constant current of 1C. The battery was discharged to a lower end voltage of 3.0V. The average discharge voltage at the time of this discharge was taken as the average discharge voltage before storage. The battery was charged again with a constant current and a constant voltage of 1 C to a final voltage of 4.3 V for 3 hours, placed in a thermostat at 60 ° C., and stored at 4.3 V for 3 days. After that, put it in a constant temperature bath at 25 ° C., discharge once to a final voltage of 3.0 V under a constant current of 1 C, charge again to a final voltage of 4.3 V with a constant current and constant voltage of 1 C for 3 hours, and then to a constant voltage of 1 C. The battery was discharged to a final voltage of 3.0 V under the current. The average discharge voltage at the time of this discharge was taken as the average discharge voltage after storage. A coin battery was prepared and the battery characteristics were evaluated in the same manner as in Example except that 7,8,15,16-tetraoxadispiro [5.2.5.2] hexadecane was not added to the nonaqueous electrolyte. The average discharge voltage drop rate after storage was determined according to the following formula based on the comparative example 1.
Average discharge voltage drop rate (relative value) (%) = (average discharge voltage before storage−average discharge voltage after storage) / (average discharge voltage before storage in Comparative Example 1−average discharge after storage in Comparative Example 1) Voltage) x 100
Table 1 shows battery fabrication conditions and battery characteristics.

Figure 0005376142
Figure 0005376142

実施例11、比較例4
実施例3、比較例1で用いた正極活物質に変えて、LiFePO(正極活物質)を用いて、正極シートを作製した。LiFePO;90質量%、アセチレンブラック(導電剤);5質量%を混合し、予めポリフッ化ビニリデン(結着剤);5質量%を1−メチル−2−ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに裁断し、帯状の正極シートを作製したこと、サイクル特性の評価及び保存特性の評価の際の充電終止電圧を3.8V、放電終止電圧を2.0Vとしたこと以外は、実施例3、比較例1と同様にしてコイン電池を作製し電池評価を行った。結果を表2に示す。なお、保存後の平均放電電圧低下率は、比較例4を基準にして計算した値である。
Example 11, Comparative Example 4
A positive electrode sheet was produced using LiFePO 4 (positive electrode active material) instead of the positive electrode active material used in Example 3 and Comparative Example 1. LiFePO 4 ; 90% by mass, acetylene black (conducting agent); 5% by mass were mixed, and a solution in which 5% by mass of polyvinylidene fluoride (binder) was previously dissolved in 1-methyl-2-pyrrolidone was mixed. In addition, the mixture was mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied onto an aluminum foil (current collector), dried, pressurized and cut into a predetermined size to produce a strip-like positive electrode sheet, cycle characteristics evaluation and storage characteristics. A coin battery was produced and evaluated in the same manner as in Example 3 and Comparative Example 1 except that the charge end voltage at the time of evaluation was 3.8 V and the discharge end voltage was 2.0 V. The results are shown in Table 2. The average discharge voltage drop rate after storage is a value calculated based on Comparative Example 4.

Figure 0005376142
Figure 0005376142

実施例12、比較例5
実施例3、比較例1において、負極活物質を人造黒鉛に替えてSiを用い、Si(負極活物質)を75質量%、人造黒鉛(導電剤)を10質量%、アセチレンブラック(導電剤)10質量%、ポリフッ化ビニリデン(結着剤)を5質量%の割合で混合し、これに1−メチル−2−ピロリドン溶剤を加えて混合したものを銅箔集電体上に塗布し、乾燥、加圧処理して所定の大きさに裁断し、帯状の負極シートを作製したこと以外は、実施例3、比較例1と同様にして非水電解液を調製してコイン電池を作製し、電池特性を測定した。結果を表3に示す。
Example 12, Comparative Example 5
In Example 3 and Comparative Example 1, Si was used in place of artificial graphite as the negative electrode active material, 75% by mass of Si (negative electrode active material), 10% by mass of artificial graphite (conductive agent), acetylene black (conductive agent) 10% by mass and 5% by mass of polyvinylidene fluoride (binder) are mixed, and 1-methyl-2-pyrrolidone solvent is added to the mixture, and the mixture is applied onto a copper foil current collector and dried. In addition to the above, the non-aqueous electrolyte was prepared in the same manner as in Example 3 and Comparative Example 1 except that a strip-shaped negative electrode sheet was prepared by pressure treatment and cutting into a predetermined size, and a coin battery was prepared. Battery characteristics were measured. The results are shown in Table 3.

Figure 0005376142
Figure 0005376142

上記実施例1〜10のリチウム二次電池は何れも、本発明の有機過酸化物を添加しない比較例1、ジクミルパーオキサイド、m−クロロ過安息香酸などの環内に二つのペルオキシ構造(−O−O−)を有する六員環の有機過酸化物を添加した比較例2、比較例3のリチウム二次電池に比べ、高温保存特性やサイクル特性等の電池特性が顕著に向上している。
また、実施例11と比較例4の対比、実施例12と比較例5の対比から、正極にリチウム含有オリビン型リン酸鉄塩を用いた場合や、負極にSiを用いた場合にも同様な効果がみられる。従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
In any of the lithium secondary batteries of Examples 1 to 10, Comparative Example 1 in which the organic peroxide of the present invention is not added, dicumyl peroxide, m-chloroperbenzoic acid and the like have two peroxy structures ( Compared to the lithium secondary batteries of Comparative Example 2 and Comparative Example 3 to which a six-membered ring organic peroxide having —O—O—) was added, battery characteristics such as high-temperature storage characteristics and cycle characteristics were significantly improved. Yes.
Further, from the comparison between Example 11 and Comparative Example 4 and the comparison between Example 12 and Comparative Example 5, the same applies when lithium-containing olivine-type iron phosphate is used for the positive electrode or Si is used for the negative electrode. The effect is seen. Therefore, it is clear that the effect of the present invention is not an effect dependent on a specific positive electrode or negative electrode.

更に、本発明の非水電解液は、リチウム一次電池の高温保存特性を改善する効果も有する。   Furthermore, the non-aqueous electrolyte of the present invention has an effect of improving the high temperature storage characteristics of the lithium primary battery.

本発明の非水電解液を用いたリチウム電池は、高温保存特性やサイクル特性等の電池特性に優れる。   The lithium battery using the non-aqueous electrolyte of the present invention is excellent in battery characteristics such as high-temperature storage characteristics and cycle characteristics.

Claims (2)

非水溶媒に電解質塩が溶解されているリチウム電池用非水電解液において、下記一般式(I)で表される有機過酸化物を非水電解液に対して0.001〜5質量%含有することを特徴とするリチウム電池用非水電解液。
Figure 0005376142
(式中、R、R、R及びRは、それぞれ水素原子または炭素数1〜8の直鎖もしくは分枝のアルキル基を表し、R及びRの炭素数の和並びにR及びRの炭素数の和がそれぞれ4以上である。但し、R及びR並びにR及びRはそれぞれ互いに環を形成してもよい。)
In a non-aqueous electrolyte for a lithium battery in which an electrolyte salt is dissolved in a non-aqueous solvent, the organic peroxide represented by the following general formula (I) is contained in an amount of 0.001 to 5% by mass with respect to the non-aqueous electrolyte. A non-aqueous electrolyte for a lithium battery .
Figure 0005376142
(Wherein R 1 , R 2 , R 3 and R 4 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms, and the sum of R 1 and R 2 carbon atoms and R 3 and the sum of the carbon numbers of R 4 are each 4 or more, provided that R 1 and R 2 and R 3 and R 4 may each form a ring.
正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液からなるリチウム電池において、下記一般式(I)で表される有機過酸化物を非水電解液に対して0.001〜5質量%含有することを特徴とするリチウム電池。
Figure 0005376142
(式中、R、R、R及びRは前記と同じである。)
In a lithium battery comprising a non-aqueous electrolyte in which an electrolyte salt is dissolved in a positive electrode, a negative electrode, and a non-aqueous solvent, an organic peroxide represented by the following general formula (I) Lithium battery characterized by containing -5 mass%.
Figure 0005376142
(Wherein R 1 , R 2 , R 3 and R 4 are the same as described above.)
JP2009142330A 2008-06-17 2009-06-15 Nonaqueous electrolyte and lithium battery using the same Expired - Fee Related JP5376142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142330A JP5376142B2 (en) 2008-06-17 2009-06-15 Nonaqueous electrolyte and lithium battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008157913 2008-06-17
JP2008157913 2008-06-17
JP2009142330A JP5376142B2 (en) 2008-06-17 2009-06-15 Nonaqueous electrolyte and lithium battery using the same

Publications (2)

Publication Number Publication Date
JP2010027608A JP2010027608A (en) 2010-02-04
JP5376142B2 true JP5376142B2 (en) 2013-12-25

Family

ID=41733202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142330A Expired - Fee Related JP5376142B2 (en) 2008-06-17 2009-06-15 Nonaqueous electrolyte and lithium battery using the same

Country Status (1)

Country Link
JP (1) JP5376142B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738511B (en) * 2012-01-09 2016-06-22 宁德新能源科技有限公司 Lithium ion battery and electrolyte thereof
JP6020204B2 (en) * 2012-01-27 2016-11-02 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP6160113B2 (en) * 2013-02-19 2017-07-12 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
CN104885290B (en) * 2013-01-28 2018-06-08 株式会社杰士汤浅国际 Non-aqueous electrolyte secondary battery
JP6186744B2 (en) * 2013-02-22 2017-08-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
CN108615942A (en) * 2018-03-30 2018-10-02 惠州市大道新材料科技有限公司 Application containing (fluoro) methylene-disulfonic acid lithium salts and preparation method thereof and in nonaqueous electrolytic solution

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910303B2 (en) * 2004-05-26 2012-04-04 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
CN101894975B (en) * 2004-12-16 2011-09-14 U芝加哥阿谷尼有限公司 Long life lithium batteries with stabilized electrodes

Also Published As

Publication number Publication date
JP2010027608A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5610052B2 (en) Nonaqueous electrolyte for lithium battery and lithium battery using the same
US10263287B2 (en) Non-aqueous electrolyte solution and electricity storage device in which same is used
JP6575521B2 (en) Non-aqueous electrolyte and power storage device using the same
JP5392259B2 (en) Nonaqueous electrolyte and lithium battery using the same
JP6866183B2 (en) Non-aqueous electrolyte and storage device using it
JP6777087B2 (en) Non-aqueous electrolyte and storage device using it
JP6222106B2 (en) Non-aqueous electrolyte and power storage device using the same
JP5545219B2 (en) Nonaqueous electrolyte and lithium battery using the same
JP5708491B2 (en) Lithium secondary battery and non-aqueous electrolyte used therefor
JP5392261B2 (en) Nonaqueous electrolyte and lithium battery using the same
JP6737280B2 (en) Non-aqueous electrolyte for power storage device and power storage device using the same
JP5428274B2 (en) Nonaqueous electrolyte and lithium battery using the same
JP5070780B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5376142B2 (en) Nonaqueous electrolyte and lithium battery using the same
JP2011171282A (en) Nonaqueous electrolyte and electrochemical element using the same
KR20120125254A (en) Nonaqueous eletrolyte and electrochemical element using the same
JP5682665B2 (en) Nonaqueous electrolyte and lithium battery using the same
JP2015103360A (en) Nonaqueous electrolyte and electricity storage device including the same
JP5444894B2 (en) Nonaqueous electrolyte and lithium battery using the same
JP2022024391A (en) Nonaqueous electrolyte solution, and power storage device arranged by use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees