JP5372129B2 - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP5372129B2
JP5372129B2 JP2011280720A JP2011280720A JP5372129B2 JP 5372129 B2 JP5372129 B2 JP 5372129B2 JP 2011280720 A JP2011280720 A JP 2011280720A JP 2011280720 A JP2011280720 A JP 2011280720A JP 5372129 B2 JP5372129 B2 JP 5372129B2
Authority
JP
Japan
Prior art keywords
ferrite
heating coil
coil
heating
heat generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011280720A
Other languages
Japanese (ja)
Other versions
JP2012059717A (en
Inventor
哲也 松田
正夫 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011280720A priority Critical patent/JP5372129B2/en
Publication of JP2012059717A publication Critical patent/JP2012059717A/en
Application granted granted Critical
Publication of JP5372129B2 publication Critical patent/JP5372129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating cooker that solves the problem occurring when many rod-like high permeability materials are arranged and the high permeability materials are densely arranged at the center in a radial direction of the heating coils such that an airflow path for the heating coils disappears thereby making it impossible to cool the heating coils. <P>SOLUTION: The induction heating cooker comprises circular heating coils 2 heating a cooking vessel and including a first coil body 21 provided at the center and a second coil body 22 provided on a circumference of the first coil body 21 leaving a ring-shaped gap, a drive circuit energizing the heating coils 2, and a plurality of high permeability materials 49 radially provided on one side of the heating coils 2. The high permeability material 49 has a recess part 49b on an upper part at a position just below the first coil body 21. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

この発明は誘導加熱調理器に関し、さらに詳細には加熱コイルの冷却性を確保しつつ加熱コイルの半径方向の発熱密度を均一化した誘導加熱調理器に関する。   The present invention relates to an induction heating cooker, and more particularly to an induction heating cooker in which the heat generation density in the radial direction of the heating coil is made uniform while ensuring the cooling performance of the heating coil.

IHクッキングヒータや炊飯器などの誘導加熱調理器では、円形状の加熱コイルに数十kHzの交流の電流を通電し、導電体からなる鍋や釜などの調理器具に流れる電流で調理器具を加熱する。調理器具に対する発熱効率を向上させるため、加熱コイルの下にフェライトなどの高透磁率部材を配置して加熱コイルが発生する磁束を集める方法が採られるが、高価なフェライトの量を極力少なくするために、一般に径方向に沿って棒状のフェライトを複数配置する。例えば、IHクッキングヒータにおいてフェライトの幅を径方向に沿って一定の形状としたものを十字状に配置し、中心部を空隙としたものがある(例えば、特許文献1参照)。一方、IH炊飯器において径方向に沿って一定の割合で幅を増大させた棒状のフェライトを十字状に配置し、中心部を空隙としたものがある(例えば、特許文献2参照)。また、上記特許文献1の第7図には、調理器具の温度分布を均一化するために幅が一定のブロック状のフェライトを、発熱密度の低い中心部近傍と最外周部に分割配値した例が示されている。   In an induction heating cooker such as an IH cooking heater or rice cooker, a circular heating coil is energized with an alternating current of several tens of kHz, and the cooking utensil is heated by a current flowing through a cooking utensil such as a pot or kettle made of a conductor. . In order to improve the heat generation efficiency for cooking utensils, a method of collecting high magnetic permeability members such as ferrite under the heating coil and collecting the magnetic flux generated by the heating coil is taken, but in order to minimize the amount of expensive ferrite In general, a plurality of rod-shaped ferrites are arranged along the radial direction. For example, there is an IH cooking heater in which a ferrite having a constant width along the radial direction is arranged in a cross shape and a central portion is a gap (see, for example, Patent Document 1). On the other hand, there is an IH rice cooker in which rod-like ferrites whose width is increased at a constant rate along the radial direction are arranged in a cross shape and the center is a gap (see, for example, Patent Document 2). Moreover, in FIG. 7 of the said patent document 1, in order to make the temperature distribution of a cooking appliance uniform, block-shaped ferrite with a fixed width | variety was divided and distributed to the center part vicinity and outermost periphery part with a low heat generation density. An example is shown.

特開昭59−25194号公報(第2頁、第1図、第7図)JP 59-25194 (page 2, FIG. 1, FIG. 7) 特開2003−332034号公報(第1頁、図3)Japanese Patent Laying-Open No. 2003-332034 (first page, FIG. 3)

フェライトの幅を径方向に沿って一定にした場合、例えば半径100mmの調理器具(鍋)底の半径方向の発熱密度を計算すると、図17の参考図に示すように、調理器具底面中心部からの距離R=0の中心部近傍と外周部近傍が低く、中心部と外周部との中間部が高い曲線となる。従って、中心部近傍と外周部分にフェライトを極力多く配置して磁束を集中させることで半径方向の温度分布を均一化することが考えられる。上記特許文献1の第1図に示された従来技術では全体的な発熱効率は改善されるものの、フェライトが半径方向に均一断面であるため温度分布の均一化は困難である。上記特許文献1の第7図に示された従来技術では、中心部近傍と外周部分にフェライトが配設されているので、一定の温度分布の均一化は期待できるものの、フェライトが径方向に分割されており、幅も一様なので細かく鍋の発熱密度分布を調整できない。またフェライトを多数箇所に分散して設置するので組立に手間を要する課題があった。   When the width of the ferrite is made constant along the radial direction, for example, when the heat generation density in the radial direction of the bottom of the cooking utensil (pan) having a radius of 100 mm is calculated, as shown in the reference diagram of FIG. In the distance R = 0, the vicinity of the central portion and the vicinity of the outer peripheral portion are low, and the intermediate portion between the central portion and the outer peripheral portion is high. Therefore, it is conceivable to make the temperature distribution in the radial direction uniform by arranging as much ferrite as possible in the vicinity of the central portion and the outer peripheral portion to concentrate the magnetic flux. Although the overall heat generation efficiency is improved by the conventional technique shown in FIG. 1 of Patent Document 1, it is difficult to make the temperature distribution uniform because ferrite has a uniform cross section in the radial direction. In the prior art shown in FIG. 7 of Patent Document 1 above, ferrite is arranged in the vicinity of the central portion and the outer peripheral portion, so that a uniform temperature distribution can be expected, but the ferrite is divided in the radial direction. Since the width is uniform, the heat density distribution of the pan cannot be finely adjusted. In addition, since ferrite is dispersed and installed in many places, there is a problem that requires time for assembly.

また、上記特許文献2に示された従来技術では半径方向に沿ってR=0の中心部に近づくにつれて、フェライトの幅が細くなっているため、半径方向に沿った発熱密度分布は、発熱密度のピークより内側のR=0近傍では更に発熱密度が低下する問題があった。なお、参考までに中心部の発熱効率のみに着目して発熱効率を上げるためには、図18の参考図に示すように、円形状の加熱コイル100に対し、フェライトなどの高透磁率部材200をR=0近傍で埋め尽くす必要があり、このような構成では加熱コイル1の冷却が困難になるという課題もあった。   In the prior art disclosed in Patent Document 2, since the width of the ferrite becomes narrower as it approaches the central portion of R = 0 along the radial direction, the heat generation density distribution along the radial direction is the heat generation density. In the vicinity of R = 0 inside the peak, there was a problem that the heat generation density further decreased. For reference, in order to increase the heat generation efficiency by paying attention only to the heat generation efficiency at the center, as shown in the reference diagram of FIG. 18, a high permeability member 200 such as ferrite is used for the circular heating coil 100. There is also a problem that it is difficult to cool the heating coil 1 with such a configuration.

この発明は上記のような従来技術の課題を解消するためになされたもので、発熱効率を高めつつ径方向に沿った発熱密度分布が均一化され、しかも加熱コイルの中心部の冷却を図ることができる誘導加熱調理器を提供することを目的としている。   The present invention has been made to solve the above-described problems of the prior art, and can improve the heat generation efficiency while uniforming the heat generation density distribution along the radial direction and cooling the central portion of the heating coil. It aims at providing the induction heating cooking appliance which can do.

この発明に係る誘導加熱調理器は、中心部に設けられた第1のコイル体及びこの第1のコイル体の外周囲にリング状の間隙を介して配設された第2のコイル体からなる調理器具を加熱するための円形状の加熱コイルと、この加熱コイルに電流を通電する駆動回路と、上記加熱コイルの一側に放射状に配置された複数の高透磁率部材を備えた誘導加熱調理器において、上記高透磁率部材は、上記加熱コイルの下面と隙間を介して配置されるとともに、上記第1のコイル体の直下に対応する位置の上部に凹部が設けられ、上記凹部により形成される空間を上記隙間に連通して冷却用風路としたことを特徴とするものである。
An induction heating cooker according to the present invention includes a first coil body provided at the center and a second coil body disposed around the outer periphery of the first coil body via a ring-shaped gap. Induction heating cooking comprising a circular heating coil for heating a cooking utensil, a drive circuit for passing current to the heating coil, and a plurality of high permeability members arranged radially on one side of the heating coil The high-permeability member is disposed with a gap between the lower surface of the heating coil and the lower surface of the heating coil, and a recess is provided at an upper portion corresponding to a position directly below the first coil body. The space to be communicated with the gap is a cooling air passage .

この発明においては、高透磁率部材を、上記加熱コイルの下面と隙間を介して配置するとともに、上記第1のコイル体の直下に対応する位置の上部に凹部を設け、上記凹部により形成される空間を上記隙間に連通して冷却用風路としたことにより、高透磁率部材の量を最適にしながら発熱効率を高めつつ、半径方向に対する発熱密度分布を均一化し、加熱コイルの半径方向中心部を冷却する風路も確保することができる。

In the present invention, the high magnetic permeability member is disposed through the clearance from the lower surface of the heating coil, and a recess is provided at an upper portion corresponding to a position directly below the first coil body, and is formed by the recess. The space is connected to the gap to provide a cooling air passage so that the heat generation efficiency is improved while optimizing the amount of the high magnetic permeability member, and the heat generation density distribution in the radial direction is made uniform, and the central portion of the heating coil in the radial direction. It is also possible to secure an air path for cooling the air.

実施の形態1.
図1はこの発明の実施の形態1による誘導加熱調理器の要部を模式的に説明する図であり、(a)は高透磁率部材の形状及び加熱コイルに対する配置を示す背面図、(b)は高透磁率部材を示す平面図、図2は図1(a)の側面断面図である。図において、誘導加熱調理器1は、円形状の加熱コイル2、この加熱コイル2に高周波電流を通電する駆動回路3、及び加熱コイル2の背面側(下側)に放射状に配設された複数(この例では8本)の高透磁率部材としてのフェライト4などを備えて構成され、周方向に隣接するフェライト4の間の空間は加熱コイル2を冷却するための風路5を形成している。鍋や釜などの調理器具6は、加熱コイル2の上部に設けられた図示省略している天板の上に載置される。なお、高透磁率部材としては一般にフェライトが用いられるので、以下特に区別を要しない限りフェライトと称する。
Embodiment 1 FIG.
FIG. 1 is a diagram schematically illustrating a main part of an induction heating cooker according to Embodiment 1 of the present invention. FIG. 1 (a) is a rear view showing the shape of a high permeability member and the arrangement with respect to a heating coil. ) Is a plan view showing the high magnetic permeability member, and FIG. 2 is a side sectional view of FIG. In the figure, an induction heating cooker 1 includes a circular heating coil 2, a drive circuit 3 for supplying a high-frequency current to the heating coil 2, and a plurality of radial coils disposed on the back side (lower side) of the heating coil 2. (In this example, eight) are configured to include ferrite 4 as a high permeability member, and a space between adjacent ferrites 4 in the circumferential direction forms an air passage 5 for cooling the heating coil 2. Yes. A cooking utensil 6 such as a pot or a pot is placed on a top plate (not shown) provided on the top of the heating coil 2. In addition, since ferrite is generally used as the high magnetic permeability member, hereinafter, it is referred to as ferrite unless particularly distinguished.

上記各フェライト4は、加熱コイル2の中心軸θに平行な方向の厚さが略一様で、半径方向には、最内周部Aと中間部Bは幅が狭く、即ち小断面積部4a、4bとして構成され、これら最内周部Aと中間部Bとの間の中心部近傍に、該小断面積部4a、4bよりも幅が広く、即ち断面積が大きく形成された第1の大断面積部4cが形成されている。そして、フェライト4は中間部Bの小断面積部4bから最外周部Cに向けて幅広に形成され、最外周部Cも第2の大断面積部4dとして構成された例えば1本の棒状に形成されている。   Each ferrite 4 has a substantially uniform thickness in a direction parallel to the central axis θ of the heating coil 2, and the innermost peripheral portion A and the intermediate portion B are narrow in the radial direction, that is, a small cross-sectional area portion. 4a and 4b are formed in the vicinity of the central part between the innermost peripheral part A and the intermediate part B. The first part is wider than the small cross-sectional area parts 4a and 4b, that is, has a larger cross-sectional area. The large cross-sectional area 4c is formed. The ferrite 4 is formed to be wide from the small cross-sectional area portion 4b of the intermediate portion B toward the outermost peripheral portion C, and the outermost peripheral portion C is also configured as a second large cross-sectional area portion 4d, for example, in a single rod shape. Is formed.

また、隣接するフェライト4の小断面積部4a相互の間には風路5を構成する所定の空隙5aが設けられ、加熱コイル2の外側から中心に至るまで風路5が放射状に確保されている。上記中間部Bの小断面積部4bは図17に示す半径方向の発熱密度分布における略ピーク付近に対応する位置に設定され、第1の大断面積部4cはそれより中心部側に、第2の大断面積部4dは発熱密度が低い最外周部C位置に対応するように設けられている。なお、本書において中間部Bは最内周部Aと最外周部Cの間の部分を意味しており、寸法的に2分の1付近の位置のみに限定されるものではない。その他の構成は従来装置と同様である。   Further, a predetermined gap 5a constituting the air path 5 is provided between the small cross-sectional areas 4a of the adjacent ferrites 4, and the air path 5 is radially secured from the outside to the center of the heating coil 2. Yes. The small cross-sectional area 4b of the intermediate part B is set at a position corresponding to the vicinity of the peak in the radial heat generation density distribution shown in FIG. 17, and the first large cross-sectional area 4c is closer to the central part than the first peak. The large sectional area portion 4d of 2 is provided so as to correspond to the outermost peripheral portion C position where the heat generation density is low. In this document, the intermediate part B means a part between the innermost peripheral part A and the outermost peripheral part C, and is not limited to a position in the vicinity of a half in dimension. Other configurations are the same as those of the conventional apparatus.

次に、上記のように構成された実施の形態1の動作について説明する。駆動回路3により加熱コイル2に高周波電流を通電すると、加熱コイル2のまわりに磁束が発生するが、加熱コイル2の近傍にフェライト4が設置されていることにより、フェライト4に誘導磁化が生じ、その結果フェライト4を通る磁束が増加してフェライト4部の磁気回路が低抵抗になり、調理器具6に侵入する磁束も増えて発生する渦電流も増加し、調理器具6の発熱密度及び加熱効率も増加する。   Next, the operation of the first embodiment configured as described above will be described. When a high frequency current is applied to the heating coil 2 by the drive circuit 3, a magnetic flux is generated around the heating coil 2, but since the ferrite 4 is installed in the vicinity of the heating coil 2, induction magnetization occurs in the ferrite 4, As a result, the magnetic flux passing through the ferrite 4 increases, the magnetic circuit of the ferrite 4 part becomes low resistance, the magnetic flux entering the cooking utensil 6 also increases, the eddy current generated increases, and the heating density and heating efficiency of the cooking utensil 6 increase. Will also increase.

この実施の形態1では、フェライト4の幅を広げて形成された第1の大断面積部4cが最内周部Aの近傍に、第2の大断面積部4dが最外周部Cに位置するように加熱コイル2の下面に放射状に配設されていることにより、図17に示す発熱密度が低くなる部分での発熱密度が向上され、調理器具6に対する半径方向の発熱密度分布が均一化される。また、加熱コイル2の中心部近傍では、隣接するフェライト4相互の間に空隙5aがあることにより、フェライト4による磁束密度の向上は若干犠牲にされることになるが、加熱コイル2の中心に至る風路5が確保されることにより、加熱コイル2に対して必要な冷却が行なわれる。   In the first embodiment, the first large cross-sectional area portion 4c formed by expanding the width of the ferrite 4 is positioned in the vicinity of the innermost peripheral portion A, and the second large cross-sectional area portion 4d is positioned in the outermost peripheral portion C. In this manner, the radial arrangement on the lower surface of the heating coil 2 improves the heat generation density at the portion where the heat generation density is reduced as shown in FIG. Is done. Further, in the vicinity of the center portion of the heating coil 2, since the gap 5 a exists between the adjacent ferrites 4, the improvement in the magnetic flux density by the ferrite 4 is slightly sacrificed. Necessary cooling is performed on the heating coil 2 by securing the leading air passage 5.

上記のように、実施の形態1によれば、加熱効率を高めながら調理器具6に対する半径方向の発熱密度分布が均一化され、しかも加熱コイル2の風路5が確保できることで加熱コイル2の冷却を充分に行なえる誘導加熱調理器を得ることができる。調理器具6の温度分布が径方向に沿って一定に近づけられたことで、食材を均一に加熱できる。また、発熱密度が高い半径方向におけるフェライト4の中間部Bの幅を狭くしたことにより、高価なフェライト量を低減できる。また、一体的に形成された同一形状のフェライト4を放射方向に配置すればよいので、構成が簡単で組立も容易にできる。なお、フェライト4は必ずしも一体的なものに限定されず、分割されたものでも発熱密度分布の均一化と加熱コイル2の冷却を高めることができる。   As described above, according to the first embodiment, the heat generation density distribution in the radial direction with respect to the cooking utensil 6 is made uniform while increasing the heating efficiency, and the air passage 5 of the heating coil 2 can be secured, thereby cooling the heating coil 2. Can be obtained. Since the temperature distribution of the cooking utensil 6 is made constant along the radial direction, the food can be heated uniformly. Moreover, the amount of expensive ferrite can be reduced by narrowing the width of the intermediate portion B of the ferrite 4 in the radial direction where the heat generation density is high. Further, since the integrally formed ferrite 4 having the same shape may be disposed in the radial direction, the configuration is simple and the assembly can be facilitated. Note that the ferrite 4 is not necessarily limited to an integral one, and even a divided one can increase the uniform heat generation density distribution and improve the cooling of the heating coil 2.

実施の形態2.
図3はこの発明の実施の形態2に係る誘導加熱調理器の要部を模式的に示すもので、(a)は高透磁率部材と加熱コイルを示す背面図、(b)は側面断面図である。この実施の形態2は、上記実施の形態1においてはフェライト4の断面積を半径方向に沿って幅を変えたのに対し、厚みを変えることで断面積を半径方向に変えたものである。即ち、フェライト41の平面形状は、加熱コイル2の半径方向に中間部Bより外側は一定の幅で形成され、中間部Bの中心寄りから最内周部Aにかけて先細りに形成されている。
Embodiment 2. FIG.
FIG. 3 schematically shows a main part of an induction heating cooker according to Embodiment 2 of the present invention, in which (a) is a rear view showing a high permeability member and a heating coil, and (b) is a side sectional view. It is. In the second embodiment, the width of the cross-sectional area of the ferrite 4 is changed along the radial direction in the first embodiment, whereas the cross-sectional area is changed in the radial direction by changing the thickness. That is, the planar shape of the ferrite 41 is formed with a constant width outside the intermediate portion B in the radial direction of the heating coil 2, and is tapered from the center of the intermediate portion B to the innermost peripheral portion A.

そして、フェライト41の厚さは、図3(b)に示すように最内周部Aの若干外周部寄り、及び中間部Bが薄く、それぞれ小断面積部41a、及び小断面積部41bとして形成され、最内周部Aと中間部Bの間、及び最外周部Cが厚く、それぞれ大断面積部41c、及び大断面積部41dが形成されている。なお、この例では最内周部Aの先端部41eも厚く形成されているが、幅が狭くなっているので断面積は必ずしも大きくはない。なお、図では最内周部Aで隣接するフェライト41相互がほとんど接触しているが、実施の形態1と同様に空隙を設けて風路を広げることもできる。その他の構成は上記実施の形態1と同様である。   The thickness of the ferrite 41 is slightly closer to the outer peripheral portion of the innermost peripheral portion A as shown in FIG. 3B, and the intermediate portion B is thin. As a small cross-sectional area portion 41a and a small cross-sectional area portion 41b, respectively. The outermost peripheral portion C and the outermost peripheral portion C are thick, and a large cross-sectional area portion 41c and a large cross-sectional area portion 41d are formed, respectively. In this example, the tip end portion 41e of the innermost peripheral portion A is also formed thick, but since the width is narrow, the cross-sectional area is not necessarily large. Although the adjacent ferrites 41 are almost in contact with each other at the innermost peripheral portion A in the drawing, the air path can be widened by providing a gap as in the first embodiment. Other configurations are the same as those in the first embodiment.

上記のように構成された実施の形態2においては、実施の形態1と同様に、発熱密度が低い最内周部Aの近傍、及び最外周部C近傍の位置では、フェライト41の断面積を厚みを増やすことで大きくし、発熱密度がピークとなる中間部B近傍の位置では厚みを薄くしたことにより、フェライトの幅を増加させた場合と同様、発熱密度分布を均一化できる効果が得られる。また、風路を確保することもできる。また、特に加熱効率が悪化する最内周部Aに近い先端部41eの厚みを増大させたことにより、R=0付近の加熱効率を向上できる。なお、半径が大きい場合には、周方向に沿った長さが長くなり、広い面積で厚みが増え、図示省略している回路基板や装着された機器類との干渉が問題になる場合があるので、フェライト41の幅を広げる方式と組み合わせるようにしても良い。また、R=0近傍の中心付近ではフェライト41が下方へ突出する部分の割合も小さく、基板等の機器との干渉も起こり難い。   In the second embodiment configured as described above, similarly to the first embodiment, the ferrite 41 has a cross-sectional area in the vicinity of the innermost peripheral portion A where the heat generation density is low and in the vicinity of the outermost peripheral portion C. By increasing the thickness and increasing the thickness at a position near the intermediate portion B where the heat generation density reaches a peak, the effect of making the heat generation density distribution uniform can be obtained as in the case of increasing the width of the ferrite. . Moreover, an air path can also be secured. Moreover, the heating efficiency in the vicinity of R = 0 can be improved by increasing the thickness of the tip portion 41e near the innermost peripheral portion A where the heating efficiency deteriorates. In addition, when the radius is large, the length along the circumferential direction becomes long, the thickness increases in a wide area, and interference with a circuit board (not shown) and mounted devices may be a problem. Therefore, it may be combined with a method of widening the width of the ferrite 41. Further, in the vicinity of the center in the vicinity of R = 0, the ratio of the portion where the ferrite 41 protrudes downward is small, and interference with equipment such as a substrate hardly occurs.

実施の形態3.
図4はこの発明の実施の形態3に係る誘導加熱調理器の要部を模式的に示す側面断面図である。図において、加熱コイル2の下部に配設されたフェライト42は、中間部より外周側に配設された透磁率が一般的なレベルで安価に得られる第1の高透磁率材料42aと、この第1の高透磁率材料42aの中心部側に隣接して配設された透磁率がさらに高い第2の高透磁率材料42bからなり、第1の高透磁率材料42aの部分は断面積に換算して略実施の形態1と同様に幅を加熱コイル2の半径方向に変化させることで発熱密度分布の均一化を図ったものである。
Embodiment 3 FIG.
4 is a side cross-sectional view schematically showing a main part of an induction heating cooker according to Embodiment 3 of the present invention. In the figure, the ferrite 42 disposed at the lower portion of the heating coil 2 includes a first high magnetic permeability material 42a that can be obtained at a low cost at a general level, and the magnetic permeability disposed on the outer peripheral side from the intermediate portion. The first high magnetic permeability material 42a is formed of a second high magnetic permeability material 42b having a higher magnetic permeability disposed adjacent to the central portion of the first high magnetic permeability material 42a, and the first high magnetic permeability material 42a has a cross-sectional area. In conversion, the heat generation density distribution is made uniform by changing the width in the radial direction of the heating coil 2 in the same manner as in the first embodiment.

上記のように構成された実施の形態3では、実施の形態1または2において、フェライトの幅や、厚みを増やして断面積を増大させた部分を、より高透磁率である第2の高透磁率材料42bを用いて構成することで低抵抗化を図り、最内周部Aの加熱コイル2を冷却するための風路を確保しつつ発熱密度分布の均一化を図ったもので、実施の形態1または2と同様な効果が得られる他、透磁率がより高い第2の高透磁率材料42bを用いたことで、厚さの増大量を抑えることができるので、装置をコンパクトにできる効果も得られる。なお、より高透磁率である第2の高透磁率材料42bの配設位置は図4に例示したものに限定されないことは言うまでもない。例えば、最外周部Cの部分に第2の高透磁率材料42bを追加し、あるいは第1の高透磁率材料42aの最外周部Cに対応する部分を第2の高透磁率材料42bに置き換えても良い。   In the third embodiment configured as described above, the portion in which the cross-sectional area is increased by increasing the width and thickness of the ferrite in the first or second embodiment is replaced with the second high permeability. By using the magnetic material 42b, the resistance is reduced, and the distribution of heat generation density is made uniform while securing the air passage for cooling the heating coil 2 in the innermost peripheral portion A. In addition to the same effects as those of the first or second aspect, the second high magnetic permeability material 42b having a higher magnetic permeability can be used to suppress an increase in thickness, thereby reducing the size of the apparatus. Can also be obtained. Needless to say, the arrangement position of the second high magnetic permeability material 42b having a higher magnetic permeability is not limited to that illustrated in FIG. For example, the second high magnetic permeability material 42b is added to the outermost peripheral portion C, or the portion corresponding to the outermost peripheral portion C of the first high magnetic permeability material 42a is replaced with the second high magnetic permeability material 42b. May be.

実施の形態4.
図5はこの発明の実施の形態4に係る誘導加熱調理器の要部を模式的に示す側面断面図、図6はその変形例を示す側面断面図である。図5において、フェライト43は、中間部Bより外周側に位置する第1の部分43aと、この第1の部分43aの中心部側に段部を介して隣接する第2の部分43bからなり、第2の部分43bと加熱コイル2の下面との間には風路5(図示されていない)に連通する隙間51が形成されている。その他の構成は実施の形態1と同様である。
Embodiment 4 FIG.
FIG. 5 is a side sectional view schematically showing a main part of an induction heating cooker according to Embodiment 4 of the present invention, and FIG. 6 is a side sectional view showing a modification thereof. In FIG. 5, the ferrite 43 is composed of a first portion 43a located on the outer peripheral side from the intermediate portion B, and a second portion 43b adjacent to the central portion side of the first portion 43a via a stepped portion, A gap 51 communicating with the air passage 5 (not shown) is formed between the second portion 43 b and the lower surface of the heating coil 2. Other configurations are the same as those of the first embodiment.

この実施の形態4では、最内周部AのR=0付近にフェライト43と加熱コイル2の間に形成された大きな隙間51に冷却風が通流されることにより、加熱コイル2の中心部がより効率的に冷却され、例えば実施の形態1のようにフェライト4を密集させたことによって冷却効率が不足する恐れを解消できる。なお、図6の変形例に示すように、第1の部分43aの中心部側に段部を介して隣接する第2の部分43cの厚みを増大させ、あるいは透磁率がより高い材料を使用することで、加熱コイル2との距離を大きくしたことによる加熱効率の悪化を防止することもできる。   In the fourth embodiment, the cooling air is passed through a large gap 51 formed between the ferrite 43 and the heating coil 2 in the vicinity of R = 0 in the innermost peripheral portion A, whereby the central portion of the heating coil 2 is Cooling more efficiently, for example, the possibility of insufficient cooling efficiency can be solved by concentrating the ferrites 4 as in the first embodiment. As shown in the modification of FIG. 6, the thickness of the second portion 43c adjacent to the central portion of the first portion 43a via the stepped portion is increased, or a material having a higher magnetic permeability is used. Thereby, the deterioration of the heating efficiency by having increased the distance with the heating coil 2 can also be prevented.

実施の形態5.
図7〜図10はこの発明の実施の形態5による誘導加熱調理器の要部を説明するもので、図7は高透磁率部材及び加熱コイル部分を模式的に示す背面図、図8はその側面断面図、図9は図7に示す構成での調理器具底部での発熱密度を示す図、図10は図7の変形例を示す背面図である。図において、加熱コイル2は中心部に配設された円形状の第1のコイル体21と、この第1のコイル体の外周囲に円形リング状の間隙Dを介して配設された第2のコイル体22からなり、間隙Dには調理器具6の温度を検知するための複数の温度センサ7が設けられている。そしてフェライト44は、厚さが略一定で、半径方向に間隙Dに対応する位置に幅を広げた大断面積部44aが形成されている。
Embodiment 5 FIG.
FIGS. 7 to 10 illustrate the main part of an induction heating cooker according to Embodiment 5 of the present invention. FIG. 7 is a rear view schematically showing a high permeability member and a heating coil portion, and FIG. FIG. 9 is a side sectional view, FIG. 9 is a view showing the heat generation density at the bottom of the cooking utensil in the configuration shown in FIG. 7, and FIG. 10 is a rear view showing a modification of FIG. In the figure, the heating coil 2 has a circular first coil body 21 disposed in the center, and a second coil coil disposed around the outer periphery of the first coil body via a circular ring-shaped gap D. In the gap D, a plurality of temperature sensors 7 for detecting the temperature of the cooking utensil 6 are provided. The ferrite 44 has a substantially constant thickness and is formed with a large cross-sectional area 44a that is widened at a position corresponding to the gap D in the radial direction.

上記構成における調理器具6の温度分布を解析計算した結果を図9に示す。図9より、2分割されてコイルがない間隙D部分の直上の調理器具6の中間部Bに対応する位置では、加熱コイル2の磁界が低く発熱効率が落ちるが、フェライト44の大断面積部44aを間隙D部分に対応するように配設したことで、この部分での発熱効率が向上され、調理器具6の温度分布が改善されている。なお、図10の変形例は、加熱コイル2の最外周部Cの発熱密度が低い部分に対応するフェライト45の断面積も、図1の例と同様に幅を広げた大断面積部45bとしたことで、図9に示す最外周部分の発熱効率を改善することができる。この結果、全体的に半径方向に、より均一な分布を得ることができる。更には、発熱密度が高い部分の断面積が小さく構成されることで、フェライトの量を最小化できコストを低減できる効果も得られる。なお、フェライト44または45の幅を広げる代わりに厚さを厚くし、あるいは双方を組み合せて構成しても良いことは言うまでもない。   The result of analyzing and calculating the temperature distribution of the cooking utensil 6 in the above configuration is shown in FIG. From FIG. 9, the magnetic field of the heating coil 2 is low and the heat generation efficiency is lowered at the position corresponding to the middle part B of the cooking utensil 6 immediately above the gap D part that is divided into two and has no coil. By arranging 44a so as to correspond to the gap D portion, the heat generation efficiency in this portion is improved, and the temperature distribution of the cooking utensil 6 is improved. 10 is similar to the example of FIG. 1 in that the cross-sectional area of the ferrite 45 corresponding to the portion where the heat generation density of the outermost peripheral portion C of the heating coil 2 is low is the same as that of the example of FIG. As a result, the heat generation efficiency at the outermost peripheral portion shown in FIG. 9 can be improved. As a result, a more uniform distribution can be obtained in the overall radial direction. Further, since the cross-sectional area of the portion having a high heat generation density is configured to be small, the amount of ferrite can be minimized and the cost can be reduced. It goes without saying that instead of increasing the width of the ferrite 44 or 45, the thickness may be increased, or a combination of both may be used.

実施の形態6.
図11はこの発明の実施の形態6による誘導加熱調理器の要部を示す部分断面図である。図において、加熱コイル2は上記図7に示す実施の形態5と同様に径方向に間隙Dを介して2分割されている。フェライト46は、発熱密度が下がる間隙Dの中に進入するように一部が厚く形成された大断面積部46aが形成されている。その他の構成は実施の形態5と同様である。一般にフェライトは断面積が大きいほど磁束を集める効果が高いが、負荷である調理器具6から遠ざかるほど効果は小さくなる。例えばフェライト中の磁気モーメントが作る磁界は磁気モーメント位置の三乗に比例して減少する。従って、フェライトは極力調理器具6に近い方に配置した方が効果は大きい。この実施の形態6では、第1のコイル体21と第2のコイル体22の間隙Dに進入するように調理器具6に近づけて大断面積部46aが構成されていることにより、発熱効率の改善効果が高く、半径方向の温度分布を一層均一化できる。なお、例えば実施の形態5等と組み合わせて構成しても良い。
Embodiment 6 FIG.
FIG. 11 is a partial cross-sectional view showing a main part of an induction heating cooker according to Embodiment 6 of the present invention. In the figure, the heating coil 2 is divided into two via a gap D in the radial direction as in the fifth embodiment shown in FIG. The ferrite 46 is formed with a large cross-sectional area 46a that is partially thick so as to enter the gap D where the heat generation density decreases. Other configurations are the same as those of the fifth embodiment. In general, ferrite has a higher effect of collecting magnetic flux as its cross-sectional area is larger, but the effect becomes smaller as the distance from the cooking utensil 6 is increased. For example, the magnetic field generated by the magnetic moment in ferrite decreases in proportion to the third power of the magnetic moment position. Therefore, it is more effective to arrange the ferrite as close to the cooking utensil 6 as possible. In the sixth embodiment, since the large cross-sectional area 46a is configured close to the cooking utensil 6 so as to enter the gap D between the first coil body 21 and the second coil body 22, the heat generation efficiency is improved. The improvement effect is high, and the temperature distribution in the radial direction can be made more uniform. For example, it may be configured in combination with the fifth embodiment.

実施の形態7.
図12及び図13はこの発明の実施の形態7による誘導加熱調理器の要部を模式的に説明するもので、図12は高透磁率部材及び加熱コイル部分を模式的に示す背面図、図13は図12のXIII−XIII線における矢視断面図に相当する図である。図において、加熱コイル2は上記図7に示す実施の形態5と同様に径方向に間隙Dを介して2分割され、空隙Dに同様の温度センサ7が複数設けられている。そしてフェライト47は、加熱コイル2の半径方向に放射状に配設され、中心付近から中心に向けて先細りとなっている他は同一の幅で形成された棒状のフェライト本体47aと、間隙Dにおける隣接するフェライト本体47a相互の間にそれぞれ設置されたブロック状高透磁率部材47bとからなっている。
Embodiment 7 FIG.
12 and 13 schematically illustrate the main part of an induction heating cooker according to Embodiment 7 of the present invention. FIG. 12 is a rear view schematically showing a high permeability member and a heating coil portion. 13 is a view corresponding to a cross-sectional view taken along line XIII-XIII in FIG. In the figure, the heating coil 2 is divided into two via the gap D in the radial direction as in the fifth embodiment shown in FIG. 7, and a plurality of similar temperature sensors 7 are provided in the gap D. The ferrite 47 is arranged radially in the radial direction of the heating coil 2 and is adjacent to the gap D in a rod-like ferrite body 47a formed with the same width except that it is tapered from the vicinity of the center toward the center. Block-like high magnetic permeability members 47b installed between the ferrite main bodies 47a.

上記のように構成された実施の形態7においては、発熱密度分布が悪化する2分割コイルの間隙Dの領域に磁束を集中させるブロック状高透磁率部材47bを配設したことにより、加熱コイル2の半径方向に対する温度分布の均一化を図ることができる。また、この間隙D部はコイル体が存在せず、従ってコイル体の冷却を必要としない位置であり、また中心と最外周の中間部であることから周方向のスペースも相応に大きいので、ブロック状高透磁率部材47bを調理器具6に近接させて多数配置することも可能であり、温度分布を容易に均一化できる。また、加熱コイル2冷却の悪化の問題も生じない。なお、フェライト本体47aの幅は径方向に沿って一定としたが、間隙Dに対応する部分及び最外周部Cを例えば図10のように幅広に形成しても良い。   In the seventh embodiment configured as described above, the heating coil 2 is provided by arranging the block-like high permeability member 47b that concentrates the magnetic flux in the region of the gap D of the two-divided coil where the heat generation density distribution deteriorates. The temperature distribution in the radial direction can be made uniform. In addition, this gap D portion is a position where the coil body does not exist, and therefore the coil body does not need to be cooled, and since it is an intermediate portion between the center and the outermost periphery, the circumferential space is accordingly large. It is also possible to arrange a large number of the high magnetic permeability members 47b close to the cooking utensil 6, and the temperature distribution can be easily made uniform. Moreover, the problem of deterioration of heating coil 2 cooling does not arise. Although the width of the ferrite main body 47a is constant along the radial direction, the portion corresponding to the gap D and the outermost peripheral portion C may be formed wide as shown in FIG.

実施の形態8.
図14及び図15はこの発明の実施の形態8による誘導加熱調理器の要部を模式的に説明するもので、図14は高透磁率部材及び加熱コイル部分を模式的に示す背面図、図15は図14のXV−XV線における矢視断面図に相当する図である。この実施の形態8は、実施の形態7に示すブロック状高透磁率部材47bに相当する断面積の増加分を、フェライト本体48aと一体にし、間隙Dの中に進入するように上方に突出形成された大断面積部48bとして構成したものである。これにより、フェライト48の数を増やさずに、間隙D位置でフェライト48の大断面積部48bがより調理器具6に近づくので、組立が容易で発熱効率もより向上し、半径方向に沿った温度分布を均一化できる。
Embodiment 8 FIG.
14 and 15 schematically illustrate the main part of an induction heating cooker according to Embodiment 8 of the present invention. FIG. 14 is a rear view schematically showing a high magnetic permeability member and a heating coil portion. 15 is a view corresponding to a cross-sectional view taken along line XV-XV in FIG. In the eighth embodiment, the increase in cross-sectional area corresponding to the block-shaped high magnetic permeability member 47b shown in the seventh embodiment is integrated with the ferrite body 48a and protrudes upward so as to enter the gap D. The large cross-sectional area portion 48b is configured. As a result, the large cross-sectional area 48b of the ferrite 48 is closer to the cooking utensil 6 at the position of the gap D without increasing the number of the ferrites 48, so that the assembly is easy, the heat generation efficiency is further improved, and the temperature along the radial direction is increased. Distribution can be made uniform.

実施の形態9.
図16はこの発明の実施の形態9による誘導加熱調理器の要部を模式的に示す側面断面図である。この実施の形態9では、加熱コイル2が上記図7に示す実施の形態5と同様に径方向に間隙Dを介して2分割された第1のコイル体21と第2のコイル体22から構成されている。そしてフェライト49は、第1のコイル体21に対応する位置の上面を削る如く形成された凹部49bを有する小断面積部49aが設けられている。上記実施の形態5の図9に示すように、加熱コイル2が2分割されたものでは内側に配設された第1のコイル体21に対応する位置に発熱密度のピーク位置がある。また、加熱コイル2は冷却が必要であり、この発熱密度のピーク位置は調理器具6の発熱密度を下げたい領域となっている。
Embodiment 9 FIG.
FIG. 16 is a side sectional view schematically showing a main part of an induction heating cooker according to Embodiment 9 of the present invention. In the ninth embodiment, the heating coil 2 includes a first coil body 21 and a second coil body 22 that are divided into two via a gap D in the radial direction as in the fifth embodiment shown in FIG. Has been. The ferrite 49 is provided with a small cross-sectional area 49a having a recess 49b formed so as to cut the upper surface at a position corresponding to the first coil body 21. As shown in FIG. 9 of the fifth embodiment, when the heating coil 2 is divided into two, there is a peak position of the heat generation density at a position corresponding to the first coil body 21 disposed inside. The heating coil 2 needs to be cooled, and the peak position of the heat generation density is an area where the heat generation density of the cooking utensil 6 is desired to be lowered.

然るに、この実施の形態9では、凹部49bを設けたことで該凹部49bが加熱コイル2の冷却用風路として機能し、しかも小断面積部49aとなっていることにより調理器具6の発熱密度を下げることができる。一方、発熱密度が低い第1のコイル体21の最内周部A及び最外周部Cは、フェライト49が延在されていることにより磁束が集中され、発熱効率が高められる。なお、半径方向に沿ってフェライト49の断面積を例えば図10などに例示したものと同様に発熱密度に応じて凹凸などによる変化を持たせても良いことは言うまでもない。上記のように構成された実施の形態9によれば、発熱効率あるいは調理器具6の温度の半径方向に沿った分布をより一定にでき、かつ風路も確保できる。   However, in the ninth embodiment, the concave portion 49b is provided so that the concave portion 49b functions as a cooling air passage for the heating coil 2, and the small cross-sectional area portion 49a serves as a heat generation density of the cooking utensil 6. Can be lowered. On the other hand, in the innermost peripheral portion A and the outermost peripheral portion C of the first coil body 21 having a low heat generation density, the magnetic flux is concentrated by extending the ferrite 49, and the heat generation efficiency is improved. Needless to say, the cross-sectional area of the ferrite 49 along the radial direction may be changed due to unevenness according to the heat generation density, for example, as illustrated in FIG. According to the ninth embodiment configured as described above, the distribution along the radial direction of the heat generation efficiency or the temperature of the cooking utensil 6 can be made more constant, and the air path can be secured.

この発明の実施の形態1による誘導加熱調理器の要部を模式的に説明する図であり、(a)は高透磁率部材の形状及び加熱コイルに対する配置を示す背面図、(b)は高透磁率部材を示す平面図。It is a figure which illustrates typically the principal part of the induction heating cooking appliance by Embodiment 1 of this invention, (a) is a rear view which shows the shape and arrangement | positioning with respect to a heating coil of a high-permeability member, (b) is high The top view which shows a magnetic permeability member. 図1(a)の側面断面図。Side surface sectional drawing of Fig.1 (a). この発明の実施の形態2に係る誘導加熱調理器の要部を模式的に示すもので、(a)は高透磁率部材と加熱コイルを示す背面図、(b)は側面断面図。The principal part of the induction heating cooking appliance which concerns on Embodiment 2 of this invention is shown typically, (a) is a rear view which shows a high magnetic permeability member and a heating coil, (b) is side sectional drawing. この発明の実施の形態3に係る誘導加熱調理器の要部を模式的に示す側面断面図。Side surface sectional drawing which shows typically the principal part of the induction heating cooking appliance which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る誘導加熱調理器の要部を模式的に示す側面断面図。Side surface sectional drawing which shows typically the principal part of the induction heating cooking appliance which concerns on Embodiment 4 of this invention. 図5の変形例を示す側面断面図である。It is side surface sectional drawing which shows the modification of FIG. この発明の実施の形態5による誘導加熱調理器の要部を模式的に示す背面図。The rear view which shows typically the principal part of the induction heating cooking appliance by Embodiment 5 of this invention. 図7の側面断面図。Side surface sectional drawing of FIG. 図7に示す構成での調理器具底部での発熱密度を示す図。The figure which shows the heat generation density in the cooking appliance bottom part by the structure shown in FIG. 図7の変形例を示す背面図。The rear view which shows the modification of FIG. この発明の実施の形態6による誘導加熱調理器の要部を示す部分断面図。The fragmentary sectional view which shows the principal part of the induction heating cooking appliance by Embodiment 6 of this invention. この発明の実施の形態7による誘導加熱調理器の要部を模式的示す背面図。The rear view which shows typically the principal part of the induction heating cooking appliance by Embodiment 7 of this invention. 図12のXIII−XIII線における矢視断面図に相当する図。FIG. 13 is a diagram corresponding to a cross-sectional view taken along line XIII-XIII in FIG. 12. この発明の実施の形態8による誘導加熱調理器の要部を模式的に示す背面図。The rear view which shows typically the principal part of the induction heating cooking appliance by Embodiment 8 of this invention. 図14のXV−XV線における矢視断面図に相当する図。The figure equivalent to the arrow sectional view in the XV-XV line | wire of FIG. この発明の実施の形態9による誘導加熱調理器の要部を模式的に示す側面断面図。Side surface sectional drawing which shows typically the principal part of the induction heating cooking appliance by Embodiment 9 of this invention. フェライトの幅を径方向に沿って一定にした場合、調理器具の半径に対する調理器具底の発熱密度の計算結果を示す参考図。The reference figure which shows the calculation result of the heat_generation | fever density of the cooking appliance bottom with respect to the radius of a cooking appliance, when the width | variety of a ferrite is made constant along a radial direction. 加熱コイル中心部の発熱効率を上げるためのフェライトの配置例を説明する参考図。FIG. 5 is a reference diagram for explaining an arrangement example of ferrite for increasing the heat generation efficiency at the center of the heating coil.

1 誘導加熱調理器、 2 加熱コイル、 21 第1のコイル体、 22 第2のコイル体、 3 駆動回路、 4、41、42、43、44、45、46、47、48、49 フェライト(高透磁率部材)、 4a、4b、41a、41b、49a 小断面積部、 4c、4d、41c、41d、44a、45b、46a、48b 大断面積部、 41e 先端部、 42a 第1の高透磁率材料、 42b 第2の高透磁率材料、 43a 第1の部分、 43b、43c 第2の部分、 47a、48a フェライト本体、 47b ブロック状高透磁率部材、 49b 凹部、 5 風路、 5a 空隙、 51 隙間、 6 調理器具、 7 温度センサ、 A 最内周部、 B 中間部、 C 最外周部、 D 間隙、 R 調理器具底面中心部から半径方向の距離、 θ 中心軸。   DESCRIPTION OF SYMBOLS 1 induction heating cooker, 2 heating coil, 21 1st coil body, 22 2nd coil body, 3 drive circuit, 4, 41, 42, 43, 44, 45, 46, 47, 48, 49 ferrite (high Permeability member), 4a, 4b, 41a, 41b, 49a small cross section, 4c, 4d, 41c, 41d, 44a, 45b, 46a, 48b large cross section, 41e tip, 42a first high magnetic permeability Material, 42b second high permeability material, 43a first part, 43b, 43c second part, 47a, 48a ferrite body, 47b block-like high permeability member, 49b recess, 5 air path, 5a gap, 51 Gap, 6 Cooking utensil, 7 Temperature sensor, A Innermost circumference, B Middle, C Outermost circumference, D Gap, R Distance from the center of cooking utensil bottom , Θ the central axis.

Claims (2)

中心部に設けられた第1のコイル体及びこの第1のコイル体の外周囲にリング状の間隙を介して配設された第2のコイル体からなる調理器具を加熱するための円形状の加熱コイルと、この加熱コイルに電流を通電する駆動回路と、上記加熱コイルの一側に放射状に配置された複数の高透磁率部材を備えた誘導加熱調理器において、上記高透磁率部材は、上記加熱コイルの下面と隙間を介して配置されるとともに、上記第1のコイル体の直下に対応する位置の上部に凹部が設けられ、上記凹部により形成される空間を上記隙間に連通して冷却用風路としたことを特徴とする誘導加熱調理器。 A circular shape for heating a cooking utensil comprising a first coil body provided at the center and a second coil body disposed around the outer periphery of the first coil body via a ring-shaped gap. In the induction heating cooker comprising a heating coil, a drive circuit for passing current to the heating coil, and a plurality of high permeability members arranged radially on one side of the heating coil, the high permeability member is The heating coil is disposed through a gap between the lower surface of the heating coil, and a recess is provided at an upper portion corresponding to a position directly below the first coil body, and a space formed by the recess is communicated with the gap to be cooled. An induction heating cooker characterized by having an air duct . 上記凹部は、上記高透磁率部材の上面を削ることにより形成されることを特徴とする請求項1に記載の誘導加熱調理器。   The induction heating cooker according to claim 1, wherein the concave portion is formed by scraping an upper surface of the high magnetic permeability member.
JP2011280720A 2011-12-22 2011-12-22 Induction heating cooker Active JP5372129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280720A JP5372129B2 (en) 2011-12-22 2011-12-22 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280720A JP5372129B2 (en) 2011-12-22 2011-12-22 Induction heating cooker

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006156752A Division JP2007328917A (en) 2006-06-06 2006-06-06 Induction-heating cooker

Publications (2)

Publication Number Publication Date
JP2012059717A JP2012059717A (en) 2012-03-22
JP5372129B2 true JP5372129B2 (en) 2013-12-18

Family

ID=46056532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280720A Active JP5372129B2 (en) 2011-12-22 2011-12-22 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP5372129B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608393Y2 (en) * 1978-12-08 1985-03-25 株式会社東芝 Magnetic induction cooking device
JPS6177294A (en) * 1984-09-21 1986-04-19 シャープ株式会社 Current detector for heating coil of electromagnetic cookingapparatus
JP2003217814A (en) * 2002-01-28 2003-07-31 Mitsubishi Electric Corp Electromagnetic induction heating cooker
JP2005302406A (en) * 2004-04-08 2005-10-27 Hitachi Home & Life Solutions Inc Induction heating cooker

Also Published As

Publication number Publication date
JP2012059717A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP3938197B2 (en) Induction heating device
JP2007328917A (en) Induction-heating cooker
JP4980461B1 (en) Induction heating device
JP2007026789A (en) Electromagnetic cooking device
JP5693505B2 (en) Induction heating cooker
JP2005302393A (en) Induction heating cooking device
JP5227832B2 (en) Induction heating cooker
JPH07249480A (en) Electromagnetic cooking apparatus
JP2007323887A (en) Induction heating device
JP5372129B2 (en) Induction heating cooker
JP2010257891A (en) Induction heating cooker
JP6446288B2 (en) Induction heating device
JP2009094022A (en) Induction heating coil, and induction-heating cooker
WO2017113922A1 (en) Inner pot suitable for electromagnetic heating, and cooking utensil having same
JP2009123603A (en) Induction heating cooker
JP2006079916A (en) Induction heating cooker
JP5241629B2 (en) Induction heating cooker
WO2017193531A1 (en) Cooking utensil
JP5389114B2 (en) Induction heating cooker
JP6477604B2 (en) Induction heating device
JP2018014238A (en) Induction heating cooker
JP5404746B2 (en) Induction heating coil and induction heating cooker
JP5025563B2 (en) Induction heating cooker
JP5501500B2 (en) Induction heating cooker
JP5208143B2 (en) Induction heating cooker heating coil unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5372129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250