JP5372076B2 - Gas turbine combustor and gas turbine - Google Patents

Gas turbine combustor and gas turbine Download PDF

Info

Publication number
JP5372076B2
JP5372076B2 JP2011151309A JP2011151309A JP5372076B2 JP 5372076 B2 JP5372076 B2 JP 5372076B2 JP 2011151309 A JP2011151309 A JP 2011151309A JP 2011151309 A JP2011151309 A JP 2011151309A JP 5372076 B2 JP5372076 B2 JP 5372076B2
Authority
JP
Japan
Prior art keywords
gas turbine
inner cylinder
cooling air
combustor
cylindrical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011151309A
Other languages
Japanese (ja)
Other versions
JP2013019566A (en
Inventor
宏明 岸田
剣太郎 ▲徳▼山
崇嘉 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011151309A priority Critical patent/JP5372076B2/en
Publication of JP2013019566A publication Critical patent/JP2013019566A/en
Application granted granted Critical
Publication of JP5372076B2 publication Critical patent/JP5372076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas turbine combustor capable of enhancing a cooling effect around the weld line of an inner cylinder, and a gas turbine having the same. <P>SOLUTION: The gas turbine combustor 2 is arranged in a space 9 in the casing of a gas turbine 1. The inner cylinder 12 of the combustor 2 is formed in a cylindrical shape by making ends of plate members of a curved shape be butted against each other and welding them along a weld line 16. There is provided a communication pipe 20 for communicating the internal space of the inner cylinder 12 with then internal space of the inner cylinder 12 of the adjacent combustor 2. The position of the weld line 16 of the inner cylinder 12 is matched with the connecting position of the communication pipe 20 to the inner cylinder 12. A cooling air hole for introducing cooling air from the space 9 in the casing to the inside of the internal cylinder 12 is formed in the communication pipe 20 or in the vicinity of the communication pipe of the cylindrical member. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

本発明は、ガスタービンの車室内空間に収納されて燃焼ガスを生成するガスタービン燃焼器及びこれを用いたガスタービンに関する。   The present invention relates to a gas turbine combustor that is stored in a vehicle interior space of a gas turbine and generates combustion gas, and a gas turbine using the same.

ガスタービン燃焼器は、過酷な高温環境に曝される。そのため、従来から、冷却媒体を流すための流路が内部に多数形成された円筒状の部材がガスタービン燃焼器の構成部材として用いられている。
例えば、特許文献1には、冷却媒体としての空気が流れる空気流溝が内部に複数形成されたガスタービン燃焼器の内筒が記載されている。
Gas turbine combustors are exposed to harsh high temperature environments. Therefore, conventionally, a cylindrical member in which a large number of flow paths for flowing a cooling medium are formed is used as a constituent member of a gas turbine combustor.
For example, Patent Literature 1 describes an inner cylinder of a gas turbine combustor in which a plurality of air flow grooves through which air as a cooling medium flows are formed.

ガスタービン燃焼器の内筒は、通常、冷却媒体が流れる流路を内部に有する板部材を湾曲させた後、この湾曲形状の板部材の端部を突き合せて溶接して円筒形状に形成される。
例えば、特許文献2には、表面に複数のフィンを有する板状部材をもう一方の板状部材に接合して、隣接するフィン間のスペースが冷却媒体用の流路となる板部材を形成した後、この板部材を冷間プレス成形により湾曲させることが記載されている。
また特許文献3には、複数の内筒リング及び隣接する内筒リング間に溶着される波形板リングからなる内筒を作製するにあたって、内筒リングと波形板リングとを一対の半円筒状体に成形し、これら一対の半円筒状体を溶接線に沿って溶接することが記載されている。
The inner cylinder of a gas turbine combustor is generally formed into a cylindrical shape by bending a plate member having a flow path through which a cooling medium flows therein, and then butting and welding the end portions of the curved plate member. The
For example, in Patent Document 2, a plate member having a plurality of fins on the surface is joined to the other plate member to form a plate member in which a space between adjacent fins serves as a flow path for a cooling medium. Thereafter, it is described that the plate member is bent by cold press molding.
Further, in Patent Document 3, when producing an inner cylinder composed of a plurality of inner cylinder rings and a corrugated plate ring welded between adjacent inner cylinder rings, the inner cylinder ring and the corrugated plate ring are paired with a semicylindrical body. And welding these pair of semi-cylindrical bodies along the weld line.

特開平5−44927号公報JP-A-5-44927 特開2010−281225号公報JP 2010-281225 A 特開平3−8590号公報Japanese Patent Laid-Open No. 3-8590

従来のガスタービン燃焼器は、内筒の内部に形成された流路に空気や蒸気等の冷却媒体を流すことにより冷却されるから、過酷な高温環境に耐えることができる。しかし、近年、高効率化の観点から燃焼温度がますます高温化していることから、より過酷な高温環境に耐えられる信頼性の高いガスタービン燃焼器の開発が期待されていた。   Since the conventional gas turbine combustor is cooled by flowing a cooling medium such as air or steam through a flow path formed inside the inner cylinder, it can withstand a severe high temperature environment. However, in recent years, since the combustion temperature has been increased from the viewpoint of higher efficiency, development of a highly reliable gas turbine combustor that can withstand a severer high temperature environment has been expected.

このような期待に応えるべく本発明者らが鋭意検討した結果、冷却媒体が流れる流路を形成することができない溶接線周辺は他の部分に比べて冷却効果が十分でないため、溶接線周辺のメタル温度が上昇し、クラックの発生等の損傷の原因になることが明らかになった。
この点、特許文献1〜3には、内筒の溶接線周辺の冷却効果を増大させるための手法は何ら開示されていない。
As a result of intensive studies by the present inventors in order to meet such expectations, the periphery of the weld line that cannot form the flow path through which the cooling medium flows is not sufficient compared to other parts. It has been clarified that the metal temperature rises and causes damage such as cracks.
In this regard, Patent Documents 1 to 3 do not disclose any method for increasing the cooling effect around the weld line of the inner cylinder.

本発明は、上述の事情に鑑みてなされたものであり、内筒の溶接線周辺の冷却効果を増大させたガスタービン燃焼器及びこれを備えたガスタービンを提供することを目的とする。   This invention is made | formed in view of the above-mentioned situation, and it aims at providing the gas turbine combustor which increased the cooling effect around the weld line of an inner cylinder, and a gas turbine provided with the same.

本発明に係るガスタービン燃焼器は、ガスタービンの車室内空間に配置される燃焼器であって、湾曲形状の板部材の端部を突き合せて溶接線に沿って溶接して形成され、内部を燃焼ガスが流れる筒状部材と、前記筒状部材の内部空間を、隣接する燃焼器の筒状部材の内部空間に連通させるための連通管とを備え、前記溶接線の位置が、前記連通管の前記筒状部材への接続位置に一致しており、前記連通管または前記筒状部材の前記連通管の近傍には、前記車室内空間からの冷却空気を前記筒状部材の内部に導入する冷却空気孔が設けられていることを特徴とする。   A gas turbine combustor according to the present invention is a combustor disposed in a vehicle interior space of a gas turbine, and is formed by abutting end portions of curved plate members and welding along a weld line. A cylindrical member through which combustion gas flows, and a communication pipe for communicating the internal space of the cylindrical member with the internal space of the cylindrical member of an adjacent combustor, and the position of the weld line is the communication line A cooling air from the vehicle interior space is introduced into the tubular member in the vicinity of the communicating tube or the communicating tube of the tubular member, which coincides with the connection position of the tube to the tubular member. A cooling air hole is provided.

このガスタービン燃焼器では、連通管または前記筒状部材の前記連通管の近傍に冷却空気孔を設けたので、冷却空気孔を介して車室内空間から導入された冷却空気が筒状部材の内部空間に流入し、筒状部材の内壁面に沿って燃焼ガス流れの下流側にフィルム状に流れる。ここで、溶接線の位置は連通管の筒状部材への接続位置に一致している。そのため、溶接線周辺の筒状部材の内壁面は、燃焼ガス流れの下流側にフィルム状に流れる冷却空気によって遮られて、高温の燃焼ガスに直接曝されることがない。このようにして、筒状部材の溶接線周辺は、主としてフィルム冷却によってメタル温度の上昇が抑制される。   In this gas turbine combustor, the cooling air hole is provided in the vicinity of the communication pipe or the communication pipe of the cylindrical member, so that the cooling air introduced from the vehicle interior space through the cooling air hole is inside the cylindrical member. It flows into the space and flows in the form of a film along the inner wall surface of the cylindrical member on the downstream side of the combustion gas flow. Here, the position of the weld line coincides with the connection position of the communication pipe to the tubular member. Therefore, the inner wall surface of the cylindrical member around the weld line is blocked by the cooling air flowing in the form of a film on the downstream side of the combustion gas flow, and is not directly exposed to the high-temperature combustion gas. In this way, the increase in the metal temperature is suppressed around the weld line of the cylindrical member mainly by film cooling.

上記ガスタービン燃焼器は、前記溶接線をよけるように前記筒状部材の外表面に設けられた共鳴装置をさらに備えていることが好ましい。
このように溶接線をよけるように共鳴装置を配置することで、筒状部材の溶接線周辺が車室内空間に直接曝されることになり、溶接線が共鳴装置で覆われている場合に比べて、筒状部材の溶接線周辺からの車室内空間への放熱が促進され、より大きな冷却効果が得られる。
It is preferable that the gas turbine combustor further includes a resonance device provided on an outer surface of the cylindrical member so as to avoid the weld line.
By arranging the resonance device so as to avoid the weld line in this way, the periphery of the weld line of the cylindrical member is directly exposed to the vehicle interior space, and the weld line is covered with the resonance device. In comparison, heat radiation from the periphery of the weld line of the tubular member to the vehicle interior space is promoted, and a greater cooling effect is obtained.

また本発明に係るガスタービンは、上述のガスタービン燃焼器と、前記ガスタービン燃焼器を収納する車室と、前記車室に収納され、前記車室内空間を介して燃焼用空気としての圧縮空気を前記ガスタービン燃焼器に供給する圧縮機と、前記車室に収納され、前記ガスタービン燃焼器で生成した燃焼ガスによって駆動されるタービンとを備え、前記圧縮空気の一部が、前記冷却空気として前記冷却空気孔を介して前記筒状部材の内部に流入することを特徴とする。
このガスタービンによれば、圧縮機で生成された圧縮空気の一部が、冷却空気孔を介して車室内空間から筒状部材の内部空間に流入し、溶接線周辺の筒状部材の内壁面に沿ってフィルム状に流れるので、筒状部材の溶接線周辺のメタル温度の上昇が抑制される。
A gas turbine according to the present invention includes the above-described gas turbine combustor, a passenger compartment that houses the gas turbine combustor, and a compressed air that is accommodated in the passenger compartment and that serves as combustion air through the passenger compartment space. A compressor that supplies the gas turbine combustor to the gas turbine combustor, and a turbine that is housed in the passenger compartment and driven by the combustion gas generated by the gas turbine combustor, wherein a part of the compressed air is the cooling air. As described above, the air flows into the cylindrical member through the cooling air hole.
According to this gas turbine, a part of the compressed air generated by the compressor flows into the inner space of the cylindrical member from the vehicle interior space via the cooling air hole, and the inner wall surface of the cylindrical member around the weld line Therefore, the increase in the metal temperature around the weld line of the tubular member is suppressed.

本発明によれば、連通管または前記筒状部材の前記連通管の近傍に冷却空気孔を設けたので、冷却空気孔を介して車室内空間から導入された冷却空気が筒状部材の内部空間に流入し、筒状部材の内壁面に沿って燃焼ガス流れの下流側にフィルム状に流れる。ここで、溶接線の位置は連通管の筒状部材への接続位置に一致している。そのため、溶接線周辺の筒状部材の内壁面は、燃焼ガス流れの下流側にフィルム状に流れる冷却空気によって遮られて、高温の燃焼ガスに直接曝されることがない。このようにして、筒状部材の溶接線周辺は、主としてフィルム冷却によってメタル温度の上昇が抑制される。   According to the present invention, since the cooling air hole is provided in the vicinity of the communication pipe or the communication pipe of the cylindrical member, the cooling air introduced from the vehicle interior space through the cooling air hole is the internal space of the cylindrical member. And flows in the form of a film on the downstream side of the combustion gas flow along the inner wall surface of the cylindrical member. Here, the position of the weld line coincides with the connection position of the communication pipe to the tubular member. Therefore, the inner wall surface of the cylindrical member around the weld line is blocked by the cooling air flowing in the form of a film on the downstream side of the combustion gas flow, and is not directly exposed to the high-temperature combustion gas. In this way, the increase in the metal temperature is suppressed around the weld line of the cylindrical member mainly by film cooling.

ガスタービンの構成例を示す断面図である。It is sectional drawing which shows the structural example of a gas turbine. ガスタービン燃焼器の内筒の詳細構造を示す図である。It is a figure which shows the detailed structure of the inner cylinder of a gas turbine combustor. 図1におけるA−A線に沿った断面図である。It is sectional drawing along the AA line in FIG. 図3におけるBで示した領域の拡大図である。FIG. 4 is an enlarged view of a region indicated by B in FIG. 3. ガスタービン燃焼器の内筒の連通管周辺における冷却空気の流れを示す図である。It is a figure which shows the flow of the cooling air around the communicating pipe of the inner cylinder of a gas turbine combustor. ガスタービン燃焼器の内筒を作製する様子を示す図であり、(a)は成形前の平板状態の板部材を示す平面図であり、(b)は板部材を湾曲形状に成形した後溶接して得られる内筒を示す斜視図である。It is a figure which shows a mode that the inner cylinder of a gas turbine combustor is produced, (a) is a top view which shows the plate member of the flat state before shaping | molding, (b) is welding after shape | molding a plate member in a curved shape It is a perspective view which shows the inner cylinder obtained by doing. ガスタービン燃焼器の内筒において連通管の近傍に冷却空気孔が設けられた場合の冷却空気の流れを示す図である。It is a figure which shows the flow of the cooling air when the cooling air hole is provided in the vicinity of the communication pipe in the inner cylinder of the gas turbine combustor.

以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.

図1は、ガスタービンの構成例を示す断面図である。図2は、ガスタービン燃焼器の内筒(筒状部材)の詳細構造を示す図である。図3は、図1におけるA−A線に沿った断面図である。図4は、図3におけるBで示した領域の拡大図である。図5は、ガスタービン燃焼器の内筒の連通管周辺における冷却空気の流れを示す図である。   FIG. 1 is a cross-sectional view illustrating a configuration example of a gas turbine. FIG. 2 is a diagram showing a detailed structure of an inner cylinder (cylindrical member) of the gas turbine combustor. 3 is a cross-sectional view taken along line AA in FIG. FIG. 4 is an enlarged view of a region indicated by B in FIG. FIG. 5 is a diagram showing the flow of cooling air around the communication pipe of the inner cylinder of the gas turbine combustor.

図1に示すように、ガスタービン1は、ガスタービン燃焼器(以下、単に「燃焼器」という)2、圧縮機4及びタービン6により構成される。燃焼器2は、圧縮機4とタービン6との間の位置において、車室8によってロータ3の周りに形成される略環状の車室内空間9に収納されている。なお、図1には一つの燃焼器2しか示していないが、実際には、燃焼器2はロータ3の周方向に複数配列されている。   As shown in FIG. 1, the gas turbine 1 includes a gas turbine combustor (hereinafter simply referred to as “combustor”) 2, a compressor 4, and a turbine 6. The combustor 2 is accommodated in a substantially annular vehicle interior space 9 formed around the rotor 3 by the vehicle interior 8 at a position between the compressor 4 and the turbine 6. Although only one combustor 2 is shown in FIG. 1, a plurality of combustors 2 are actually arranged in the circumferential direction of the rotor 3.

各燃焼器2は、燃料を噴射するノズル10と、ノズル10から噴射された燃料が燃焼される内筒(燃焼器ライナ)12と、内筒12で生成した燃焼ガスをタービン6側に導く尾筒(トランジションピース)14とを有する。   Each combustor 2 includes a nozzle 10 for injecting fuel, an inner cylinder (combustor liner) 12 in which the fuel injected from the nozzle 10 is combusted, and a tail for guiding combustion gas generated in the inner cylinder 12 to the turbine 6 side. And a tube (transition piece) 14.

内筒12は、詳細は後述するが、湾曲形状の板部材の端部を突き合せて溶接線16に沿ってプラズマ溶接を行うことで円筒形状に形成されている。また内筒12の壁面内部には、図2に示すように、内筒12の内部における燃焼ガスの流れ方向に沿って延びる複数の流路13が形成されている。また、内筒12の外表面には冷却空気入口17が設けられ、内筒12の内表面には冷却空気出口18が設けられており、各流路13は冷却空気入口17及び冷却空気出口18に連通している。これにより、車室内空間9からの冷却空気が冷却空気入口17から各流路13に導入され、各流路13を流れた後、冷却空気出口18から内筒12の内部空間に排出されるようになっている。   Although the details will be described later, the inner cylinder 12 is formed in a cylindrical shape by abutting end portions of curved plate members and performing plasma welding along the welding line 16. Further, as shown in FIG. 2, a plurality of flow passages 13 extending along the flow direction of the combustion gas inside the inner cylinder 12 are formed inside the wall surface of the inner cylinder 12. A cooling air inlet 17 is provided on the outer surface of the inner cylinder 12, and a cooling air outlet 18 is provided on the inner surface of the inner cylinder 12, and each flow path 13 has a cooling air inlet 17 and a cooling air outlet 18. Communicating with Thereby, the cooling air from the vehicle interior space 9 is introduced into each flow path 13 from the cooling air inlet 17, flows through each flow path 13, and then is discharged from the cooling air outlet 18 to the inner space of the inner cylinder 12. It has become.

また、内筒12の外表面には、燃焼振動を抑制するための共鳴装置(音響ライナともいう)15が取り付けられている。この共鳴装置15は溶接線16をよけるように配置されている。言い換えると、共鳴装置15は内筒12のほぼ全周に亘って設けられているが、溶接線16周辺の領域には共鳴装置15は設けられていない。そのため、内筒12の溶接線16周辺が車室内空間9に直接曝されて、内筒12の溶接線16周辺からの車室内空間9への放熱が促進されるようになっている。   A resonance device (also referred to as an acoustic liner) 15 for suppressing combustion vibration is attached to the outer surface of the inner cylinder 12. The resonance device 15 is arranged so as to avoid the weld line 16. In other words, the resonance device 15 is provided over substantially the entire circumference of the inner cylinder 12, but the resonance device 15 is not provided in the region around the weld line 16. Therefore, the periphery of the weld line 16 of the inner cylinder 12 is directly exposed to the vehicle interior space 9, and heat radiation from the periphery of the weld line 16 of the inner cylinder 12 to the vehicle interior space 9 is promoted.

図3に示すように、隣接する燃焼器2の内筒12同士は連通管20で接続されている。連通管20は、内筒12の外表面に溶接で取り付けられた連結短管22、および、該連結短管22と隣接する燃焼器2の内筒12の連結短管22との間に設けられる連結管24により構成される。連結短管22と連結管24とは、それぞれのフランジ22A及び24Aを任意の締結部材で締結することで、連結されている。
このように、隣接する燃焼器2の内筒12同士を連通管20で接続することで、隣接する燃焼器2同士の内筒12の内部空間は互いに連通している。
As shown in FIG. 3, the inner cylinders 12 of the adjacent combustors 2 are connected by a communication pipe 20. The communication pipe 20 is provided between the connection short pipe 22 attached to the outer surface of the inner cylinder 12 by welding, and the connection short pipe 22 of the inner cylinder 12 of the combustor 2 adjacent to the connection short pipe 22. The connecting tube 24 is used. The connecting short pipe 22 and the connecting pipe 24 are connected by fastening the flanges 22A and 24A with arbitrary fastening members.
In this way, by connecting the inner cylinders 12 of the adjacent combustors 2 with the communication pipe 20, the internal spaces of the inner cylinders 12 of the adjacent combustors 2 are in communication with each other.

連通管20の連結短管22には、図4に示すように冷却空気孔23が複数設けられている。これにより、圧縮機4で生成された圧縮空気の一部が、冷却空気として、車室内空間9から冷却空気孔23を通って連結短管22の内部に導入される。なお、冷却空気孔23の形状,サイズ,個数,配置等は特に限定されず、冷却空気孔23を介して連通管20の内部に導入すべき冷却空気の量に応じて適宜設定されることが好ましい。
そして、連結短管22の内部に導入された冷却空気は、この後、図5に示すように、内筒12の内部に導入され、内筒12の内壁面12Sに沿って、燃焼ガス流れ方向の下流側へとフィルム状に流れていく。
As shown in FIG. 4, a plurality of cooling air holes 23 are provided in the connection short pipe 22 of the communication pipe 20. Thereby, a part of the compressed air generated by the compressor 4 is introduced as cooling air from the vehicle interior space 9 through the cooling air hole 23 into the connecting short pipe 22. Note that the shape, size, number, arrangement, and the like of the cooling air holes 23 are not particularly limited, and may be appropriately set according to the amount of cooling air to be introduced into the communication pipe 20 through the cooling air holes 23. preferable.
Then, as shown in FIG. 5, the cooling air introduced into the connecting short tube 22 is then introduced into the inner cylinder 12 and flows along the inner wall surface 12 </ b> S of the inner cylinder 12. It flows in the form of a film to the downstream side.

ここで、本実施形態では、内筒12の溶接線16(図1参照)の位置と、連通管20(具体的には連結短管22)の内筒12への接続位置とが一致している。このような構成の内筒12は、例えば、次のようにして作製される。   Here, in this embodiment, the position of the welding line 16 (see FIG. 1) of the inner cylinder 12 and the connection position of the communication pipe 20 (specifically, the connecting short pipe 22) to the inner cylinder 12 coincide with each other. Yes. The inner cylinder 12 having such a configuration is manufactured as follows, for example.

図6は内筒12を作製する様子を示す図であり、図6(a)は成形前の平板状態の板部材を示す平面図であり、図6(b)は板部材を湾曲形状に成形した後溶接して得られる内筒12を示す斜視図である。   FIG. 6 is a view showing how the inner cylinder 12 is manufactured, FIG. 6A is a plan view showing a plate member in a flat state before forming, and FIG. 6B is a view showing forming the plate member into a curved shape. It is a perspective view which shows the inner cylinder 12 obtained by welding after doing.

図6(a)に示すように、成形前の板部材30は平板形状である。板部材30には、一方の連結短管22の接続箇所に開口32が設けられ、他方の連結短管22の接続箇所に後で開口34となる半円形状の切欠き(34A,34B)が設けられている。なお、板部材30には、図2に示した流路13,冷却空気入口17及び冷却空気出口18が形成されている。
この板部材30をプレス成形によって円筒形状に成形して、板部材30の端部(31A,31B)を突き合せて溶接線16に沿ってプラズマ溶接を行うことで、図6(b)に示す内筒12が得られる。最後に、内筒12の開口32及び34の位置に、連結短管22が溶接により取り付けられる。これにより、溶接線16の位置が連結短管22の接続位置(すなわち開口34の位置)と一致した内筒12が得られる。
As shown to Fig.6 (a), the plate member 30 before shaping | molding is flat plate shape. In the plate member 30, an opening 32 is provided at a connection location of one connecting short tube 22, and semicircular cutouts (34 </ b> A, 34 </ b> B) that later become an opening 34 are connected to the connecting location of the other connecting short tube 22. Is provided. The plate member 30 is formed with the flow path 13, the cooling air inlet 17, and the cooling air outlet 18 shown in FIG.
The plate member 30 is formed into a cylindrical shape by press molding, the end portions (31A, 31B) of the plate member 30 are butted together, and plasma welding is performed along the weld line 16, as shown in FIG. The inner cylinder 12 is obtained. Finally, the connecting short tube 22 is attached to the positions of the openings 32 and 34 of the inner cylinder 12 by welding. Thereby, the inner cylinder 12 in which the position of the welding line 16 coincides with the connection position of the connecting short pipe 22 (that is, the position of the opening 34) is obtained.

以上説明したように、本実施形態では、連通管20(具体的には連結短管22)に冷却空気孔23を設けたので、冷却空気孔23を介して車室内空間9から連通管20に導入された冷却空気が内筒12の内部空間に流入し、内筒12の内壁面12Sに沿って燃焼ガス流れの下流側にフィルム状に流れる。ここで、溶接線16の位置は連通管20(具体的には連結短管22)の内筒12への接続位置(すなわち開口34の位置)に一致している。そのため、溶接線16周辺の内筒12の内壁面12Sは、燃焼ガス流れの下流側にフィルム状に流れる冷却空気によって遮られて、高温の燃焼ガスに直接曝されることがない。このようにして、内筒12の溶接線16周辺は、主としてフィルム冷却によってメタル温度の上昇が抑制される。   As described above, in this embodiment, since the cooling air hole 23 is provided in the communication pipe 20 (specifically, the connecting short pipe 22), the vehicle interior space 9 is connected to the communication pipe 20 via the cooling air hole 23. The introduced cooling air flows into the inner space of the inner cylinder 12 and flows in the form of a film along the inner wall surface 12S of the inner cylinder 12 on the downstream side of the combustion gas flow. Here, the position of the welding line 16 coincides with the connection position of the communication pipe 20 (specifically, the connecting short pipe 22) to the inner cylinder 12 (that is, the position of the opening 34). Therefore, the inner wall surface 12S of the inner cylinder 12 around the weld line 16 is blocked by the cooling air flowing in the form of a film on the downstream side of the combustion gas flow, and is not directly exposed to the high-temperature combustion gas. In this way, the increase in the metal temperature around the weld line 16 of the inner cylinder 12 is mainly suppressed by film cooling.

また、内筒12の外表面に取り付けられる共鳴装置15は溶接線16をよけるように配置されている。そのため、内筒12の溶接線16周辺が車室内空間9に直接曝されることになり、溶接線16が共鳴装置15で覆われている場合に比べて、内筒12の溶接線16周辺からの車室内空間9への放熱が促進され、より大きな冷却効果が得られる。
さらに、連結短管22及び連結管24のフランジ接合面から漏れ出た冷却空気が、連結短管22周辺の内筒12の外壁面を冷却する効果もあり、溶接線16周辺の内筒12の冷却をより確実に行うことができる。
The resonance device 15 attached to the outer surface of the inner cylinder 12 is arranged so as to avoid the welding line 16. Therefore, the periphery of the weld line 16 of the inner cylinder 12 is directly exposed to the vehicle interior space 9, and from the periphery of the weld line 16 of the inner cylinder 12 compared to the case where the weld line 16 is covered with the resonance device 15. The heat radiation to the vehicle interior space 9 is promoted, and a greater cooling effect is obtained.
Furthermore, the cooling air leaking from the flange joint surfaces of the connecting short pipe 22 and the connecting pipe 24 also has an effect of cooling the outer wall surface of the inner cylinder 12 around the connecting short pipe 22, Cooling can be performed more reliably.

以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。   As mentioned above, although embodiment of this invention was described in detail, it cannot be overemphasized that this invention is not limited to this, In the range which does not deviate from the summary of this invention, various improvement and deformation | transformation may be performed.

例えば、上述の実施形態では、内筒12の内部空間に冷却空気を導入するための冷却空気孔23を連通管20(具体的には連結短管22)に設ける例について説明したが、冷却空気孔は内筒12の連結短管22の近傍に設けてもよい。図7は、冷却空気孔を連結短管22の近傍に設けた場合における、連通管20周辺の冷却空気の流れを示す図である。
図7に示すように、連結短管22の近傍には冷却空気孔25が設けられている。これにより、上述の実施形態と同様に、冷却空気孔25から内筒12の内部に導入された冷却空気は、内筒12の内壁面12Sに沿って、燃焼ガス流れ方向の下流側へとフィルム状に流れていく。そのため、溶接線16周辺の内筒12の内壁面12Sは、燃焼ガス流れの下流側にフィルム状に流れる冷却空気によって遮られて、高温の燃焼ガスに直接曝されることがない。
なお、冷却空気孔25の形状,サイズ,個数,配置等は特に限定されず、冷却空気孔25を介して内筒12の内部に導入すべき冷却空気の量に応じて適宜設定されることが好ましい。
For example, in the above-described embodiment, the example in which the cooling air hole 23 for introducing the cooling air into the inner space of the inner cylinder 12 is provided in the communication pipe 20 (specifically, the connecting short pipe 22) has been described. The hole may be provided in the vicinity of the connecting short tube 22 of the inner cylinder 12. FIG. 7 is a diagram showing the flow of cooling air around the communication pipe 20 when the cooling air hole is provided in the vicinity of the connecting short pipe 22.
As shown in FIG. 7, a cooling air hole 25 is provided in the vicinity of the connecting short tube 22. Thereby, like the above-mentioned embodiment, the cooling air introduced into the inner cylinder 12 from the cooling air hole 25 is filmed along the inner wall surface 12S of the inner cylinder 12 to the downstream side in the combustion gas flow direction. It flows in a shape. Therefore, the inner wall surface 12S of the inner cylinder 12 around the weld line 16 is blocked by the cooling air flowing in the form of a film on the downstream side of the combustion gas flow, and is not directly exposed to the high-temperature combustion gas.
The shape, size, number, arrangement, and the like of the cooling air holes 25 are not particularly limited, and may be appropriately set according to the amount of cooling air to be introduced into the inner cylinder 12 through the cooling air holes 25. preferable.

また、上述の実施形態では、内筒12が燃焼ガスの流れ方向に沿って延びる複数の流路13を有する例について説明したが、内筒12の溶接線16が連通管20の内筒12への接続位置に一致している限り、内筒12はこの例に限定されない。例えば、内筒12は、流路13が燃焼ガスの流れ方向に対して傾斜しているものや、流路13が屈曲又は湾曲しているものであってもよい。   Moreover, although the above-mentioned embodiment demonstrated the example in which the inner cylinder 12 has the some flow path 13 extended along the flow direction of a combustion gas, the welding line 16 of the inner cylinder 12 leads to the inner cylinder 12 of the communicating pipe 20. As long as it matches the connection position, the inner cylinder 12 is not limited to this example. For example, the inner cylinder 12 may be such that the flow path 13 is inclined with respect to the flow direction of the combustion gas, or the flow path 13 is bent or curved.

また、上述の実施形態では、一枚の板部材30を円筒形状に成形した後、その両端部(31A,31B)を突き合せて溶接して内筒12を得る例について説明したが、内筒12を作製するために用いる板部材30は複数枚であってもよい。
例えば、2枚の板部材を湾曲形状(断面円弧状)に成形した後、これらの端部を突き合せて溶接することで円筒形状の内筒12を作製してもよい。この場合、内筒12の溶接線16は2本であるから、各溶接線16の位置を、対応する連通管20の内筒12への接続位置に一致させることが好ましい。これにより、各溶接線16周辺の内筒12の冷却効果を増大させることができる。
In the above-described embodiment, an example in which the inner cylinder 12 is obtained by forming a single plate member 30 into a cylindrical shape and then butting both ends (31A, 31B) and welding them has been described. There may be a plurality of plate members 30 used for manufacturing 12.
For example, the cylindrical inner cylinder 12 may be manufactured by forming two plate members into a curved shape (circular arc shape) and then welding the end portions together. In this case, since the number of welding lines 16 of the inner cylinder 12 is two, it is preferable to match the position of each welding line 16 with the connection position of the corresponding communication pipe 20 to the inner cylinder 12. Thereby, the cooling effect of the inner cylinder 12 around each welding line 16 can be increased.

さらに、上述の実施形態では、内筒12の溶接線16周辺を冷却する例について説明したが、本発明は、湾曲形状の板部材の端部を突き合せて溶接線に沿って溶接して形成され、内部に燃焼ガスが流れる筒状部材の溶接線周辺を冷却するために広く利用することができる。例えば、尾筒14が湾曲形状の板部材の端部を突き合せて溶接線に沿って溶接して形成されている場合、尾筒14の溶接線周辺を冷却するために本発明を適用してもよい。   Furthermore, in the above-described embodiment, an example in which the periphery of the weld line 16 of the inner cylinder 12 is cooled has been described. However, the present invention is formed by abutting the ends of curved plate members and welding along the weld line. It can be widely used to cool the periphery of the weld line of the cylindrical member through which the combustion gas flows. For example, when the tail tube 14 is formed by abutting the ends of curved plate members and welding along the weld line, the present invention is applied to cool the periphery of the weld line of the tail tube 14. Also good.

1 ガスタービン
2 燃焼器
3 ロータ
4 圧縮機
6 タービン
8 車室
9 車室内空間
10 ノズル
12 内筒(筒状部材)
12S 内壁面
13 流路
14 尾筒
15 共鳴装置
16 溶接線
17 冷却空気入口
18 冷却空気出口
20 連通管
22 連結短管
22A フランジ
23 冷却空気孔
24 連結管
25 冷却空気孔
24A フランジ
30 板部材
31A 端部
31B 端部
32 開口
34 開口
34A 切欠き
34B 切欠き
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Combustor 3 Rotor 4 Compressor 6 Turbine 8 Car interior 9 Car interior space 10 Nozzle 12 Inner cylinder (tubular member)
12S inner wall surface 13 flow path 14 tail tube 15 resonance device 16 welding line 17 cooling air inlet 18 cooling air outlet 20 communication pipe 22 connecting short pipe 22A flange 23 cooling air hole 24 connecting pipe 25 cooling air hole 24A flange 30 plate member 31A end Part 31B End part 32 Opening 34 Opening 34A Notch 34B Notch

Claims (3)

ガスタービンの車室内空間に配置される燃焼器であって、
湾曲形状の板部材の端部を突き合せて溶接線に沿って溶接して形成され、内部を燃焼ガスが流れる筒状部材と、
前記筒状部材の内部空間を、隣接する燃焼器の筒状部材の内部空間に連通させるための連通管とを備え、
前記溶接線の位置が、前記連通管の前記筒状部材への接続位置に一致しており、
前記連通管または前記筒状部材の前記連通管の近傍には、前記車室内空間からの冷却空気を前記筒状部材の内部に導入する冷却空気孔が設けられていることを特徴とするガスタービン燃焼器。
A combustor disposed in a passenger compartment of a gas turbine,
A cylindrical member formed by welding the end portions of the curved plate members together and welding along the weld line;
A communication pipe for communicating the internal space of the cylindrical member with the internal space of the cylindrical member of the adjacent combustor,
The position of the weld line coincides with the connection position of the communication pipe to the tubular member;
A gas turbine characterized in that a cooling air hole for introducing cooling air from the vehicle interior space into the cylindrical member is provided in the vicinity of the communication pipe or the communication pipe of the cylindrical member. Combustor.
前記溶接線をよけるように前記筒状部材の外表面に設けられた共鳴装置をさらに備えることを特徴とする請求項1に記載のガスタービン燃焼器。   The gas turbine combustor according to claim 1, further comprising a resonance device provided on an outer surface of the cylindrical member so as to avoid the weld line. 請求項1に記載のガスタービン燃焼器と、
前記ガスタービン燃焼器を収納する車室と、
前記車室に収納され、前記車室内空間を介して燃焼用空気としての圧縮空気を前記ガスタービン燃焼器に供給する圧縮機と、
前記車室に収納され、前記ガスタービン燃焼器で生成した燃焼ガスによって駆動されるタービンとを備え、
前記圧縮空気の一部が、前記冷却空気として前記冷却空気孔を介して前記筒状部材の内部に流入することを特徴とするガスタービン。
A gas turbine combustor according to claim 1;
A vehicle housing the gas turbine combustor;
A compressor housed in the vehicle compartment and supplying compressed air as combustion air to the gas turbine combustor through the vehicle interior space;
A turbine housed in the passenger compartment and driven by combustion gas generated by the gas turbine combustor,
A part of the compressed air flows into the cylindrical member as the cooling air through the cooling air hole.
JP2011151309A 2011-07-07 2011-07-07 Gas turbine combustor and gas turbine Active JP5372076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151309A JP5372076B2 (en) 2011-07-07 2011-07-07 Gas turbine combustor and gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151309A JP5372076B2 (en) 2011-07-07 2011-07-07 Gas turbine combustor and gas turbine

Publications (2)

Publication Number Publication Date
JP2013019566A JP2013019566A (en) 2013-01-31
JP5372076B2 true JP5372076B2 (en) 2013-12-18

Family

ID=47691176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151309A Active JP5372076B2 (en) 2011-07-07 2011-07-07 Gas turbine combustor and gas turbine

Country Status (1)

Country Link
JP (1) JP5372076B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402635A (en) * 1993-09-09 1995-04-04 Westinghouse Electric Corporation Gas turbine combustor with cooling cross-flame tube connector
JP3993484B2 (en) * 2002-07-15 2007-10-17 三菱重工業株式会社 Combustor cooling structure
JP5260402B2 (en) * 2009-04-30 2013-08-14 三菱重工業株式会社 Plate-like body manufacturing method, plate-like body, gas turbine combustor, and gas turbine

Also Published As

Publication number Publication date
JP2013019566A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP6126246B2 (en) Turbine housing
US8915707B2 (en) Exhaust gas housing for a gas turbine and method for producing same
CA2715596C (en) Fabricated static vane ring
JP5577264B2 (en) Exhaust manifold for internal combustion engine
JP5475757B2 (en) Combustion chamber of gas turbine engine with CMC deflector
US9400111B2 (en) Gas turbine combustor and gas turbine
JP5679883B2 (en) Combustor with flow sleeve
KR101567266B1 (en) Combustor tail pipe, gas turbine with tail pipe, and method for manufacturing tail pipe
JP6058652B2 (en) Modular manifold for automobiles
JP6490199B2 (en) Acoustic damping system for gas turbine engine combustors.
JP2011052691A (en) Impingement cooled type transition piece rear frame
JP6097070B2 (en) Exhaust gas exhaust system
US8656709B2 (en) Dual-layer to flange welded joint
JP2017166806A (en) Sleeve assemblies and methods of fabricating the same
KR20150118090A (en) Heat exchanger
JP5372076B2 (en) Gas turbine combustor and gas turbine
JP2011252698A (en) Extruded fluid manifold for gas turbomachine combustor casing
US11002490B2 (en) Heat exchanger with housing parts connected by flange ring connection
JP6546334B1 (en) Gas turbine combustor and gas turbine equipped with the same
JP5707123B2 (en) Heat exchange unit and manufacturing method thereof
JP6656973B2 (en) Intake manifold
JP4174615B2 (en) Gas turbine combustor tail tube seal structure
JP6320281B2 (en) Turbine housing
JP2014040800A (en) Steam turbine
JP2021085397A (en) EGR cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130419

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R151 Written notification of patent or utility model registration

Ref document number: 5372076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350