JP5370531B2 - Valve timing adjustment device - Google Patents

Valve timing adjustment device Download PDF

Info

Publication number
JP5370531B2
JP5370531B2 JP2012100367A JP2012100367A JP5370531B2 JP 5370531 B2 JP5370531 B2 JP 5370531B2 JP 2012100367 A JP2012100367 A JP 2012100367A JP 2012100367 A JP2012100367 A JP 2012100367A JP 5370531 B2 JP5370531 B2 JP 5370531B2
Authority
JP
Japan
Prior art keywords
phase
main
hole
sub
advance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012100367A
Other languages
Japanese (ja)
Other versions
JP2012140969A (en
Inventor
隆 山口
俊希 藤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012100367A priority Critical patent/JP5370531B2/en
Publication of JP2012140969A publication Critical patent/JP2012140969A/en
Application granted granted Critical
Publication of JP5370531B2 publication Critical patent/JP5370531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve timing adjusting device that secures startability of an internal combustion engine. <P>SOLUTION: The valve timing adjusting device 1 is accommodated in a vane rotor 14 so as to be reciprocated, regulates a rotation phase in a regulated phase between the most advanced angle phase and the most delayed angle phase by moving in a direction X of entering a recess 134 formed in a housing 11, and has a regulation member 150 that moves in a direction Y for escaping from the recess 134 and releases the regulation for the rotation phase. The housing 11 forms an open hole 137 that is open to the atmosphere. The vane rotor 14 forms a communication hole 147 communicating with an advance chamber 52, and connects the open hole 137 with the communication hole 147 by moving a predetermined member 152 from a position for shutting off the open hole 137 from the communication hole 147. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、内燃機関においてクランク軸からのトルク伝達によりカム軸が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置に関する。   The present invention relates to a valve timing adjusting device that adjusts the valve timing of a valve that opens and closes a camshaft by torque transmission from a crankshaft in an internal combustion engine.

従来、クランク軸と連動して回転するハウジング並びにカム軸と連動して回転するベーンロータを備え、内燃機関の回転に伴ってポンプ等の供給源から供給される作動液により、バルブタイミングを調整するバルブタイミング調整装置が知られている。例えば特許文献1の装置では、ハウジングの内部においてベーンロータのベーンが回転方向に区画する進角室又は遅角室に供給源からの作動液を導入することで、ハウジングに対するベーンロータの回転位相を進角側又は遅角側に変化させてバルブタイミングを調整する。   2. Description of the Related Art Conventionally, a valve that includes a housing that rotates in conjunction with a crankshaft and a vane rotor that rotates in conjunction with a camshaft, and adjusts valve timing with hydraulic fluid supplied from a supply source such as a pump as the internal combustion engine rotates. Timing adjustment devices are known. For example, in the apparatus of Patent Document 1, the rotational phase of the vane rotor relative to the housing is advanced by introducing hydraulic fluid from the supply source into the advance chamber or retard chamber in which the vane of the vane rotor is partitioned in the rotation direction inside the housing. The valve timing is adjusted by changing to the side or retard side.

さて、特許文献1の装置では、最進角位相及び最遅角位相の間の規制位相において回転位相を規制するようにしている。これは、内燃機関をクランキングして始動する際に、ベーンロータに収容した規制ピンを、ハウジングの内面よりも凹む凹部に突入させて回転位相を規制位相に規制することで、その始動性を確保するためである。したがって、内燃機関の停止前には、規制ピンを凹部に突入させておき、次の始動時には、回転位相の規制作用を確実に得ることが重要となっている。   In the apparatus of Patent Document 1, the rotation phase is regulated in the regulation phase between the most advanced angle phase and the most retarded angle phase. This is because when the internal combustion engine is cranked and started, the restriction pin accommodated in the vane rotor is inserted into the recess recessed from the inner surface of the housing to restrict the rotation phase to the restriction phase, thereby ensuring the startability. It is to do. Therefore, it is important that the restriction pin is inserted into the recess before the internal combustion engine is stopped, and that the rotational phase restriction action is reliably obtained at the next start-up.

特開2002−357105号公報JP 2002-357105 A

しかし、特許文献1の装置では、異常の発生により内燃機関が瞬間的に停止するような場合、凹部への規制ピンの突入により回転位相が規制位相に規制される前に、内燃機関が停止する事態が懸念される。こうした内燃機関の停止状態では、規制位相と異なる回転位相にて内燃機関のクランキングが開始されると、始動性の確保が困難となるおそれがあるため、当該クランキング中に発生する変動トルクを利用して規制ピンを凹部に突入させることが考えられている。   However, in the apparatus of Patent Document 1, when the internal combustion engine stops instantaneously due to the occurrence of an abnormality, the internal combustion engine stops before the rotation phase is regulated to the regulation phase by the entry of the regulation pin into the recess. There is concern about the situation. In such a stopped state of the internal combustion engine, if cranking of the internal combustion engine is started at a rotational phase different from the regulation phase, it may be difficult to ensure startability. Therefore, the fluctuation torque generated during the cranking is reduced. It is considered to use the restriction pin to enter the recess.

ここで、特許文献1の装置において規制ピンは、スプリングにより凹部への突入方向に付勢される一方、ベーンロータが形成する作動室に導入された作動液により凹部からの脱出方向に圧力を受けるようになっている。故に、内燃機関の始動前において作動液が作動室に残存している場合、内燃機関のクランキング中に規制ピンを凹部に突入させるようにするには、弾性部材に付勢される規制ピンの移動により、作動室から残存作動液を押し出す必要がある。しかしながら、特に作動液の粘度が増大する低温環境時には、残存作動液を作動室から押し出す際の圧損が大きくなるため、当該残存作動液から抵抗を受ける規制ピンの移動速度が低下し、規制ピンの凹部への突入、ひいては始動性の確保が困難となるおそれがあった。また、回転位相を規制位相に変化させて規制ピンを凹部に突入させる際には、始動性を確保するために、回転位相変化を迅速に生じさせる必要がある。   Here, in the device of Patent Document 1, the restriction pin is urged in the direction of entering the recess by the spring, while receiving pressure in the escape direction from the recess by the working fluid introduced into the working chamber formed by the vane rotor. It has become. Therefore, when hydraulic fluid remains in the working chamber before the internal combustion engine is started, in order to cause the restriction pin to enter the recess during cranking of the internal combustion engine, the restriction pin urged by the elastic member It is necessary to push out the remaining working fluid from the working chamber by the movement. However, particularly in a low temperature environment where the viscosity of the hydraulic fluid increases, the pressure loss when pushing out the residual hydraulic fluid from the working chamber increases. There was a risk that it would be difficult to enter the recess and thus to ensure startability. Further, when the rotation phase is changed to the restriction phase and the restriction pin is inserted into the recess, it is necessary to cause the rotation phase change to occur quickly in order to ensure startability.

本発明は、以上説明した問題に鑑みてなされたものであって、その目的は、内燃機関の始動性を確保するバルブタイミング調整装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a valve timing adjusting device that ensures startability of an internal combustion engine.

請求項1に記載の発明は、内燃機関においてクランク軸からのトルク伝達によりカム軸が開閉する動弁のバルブタイミングを、当該内燃機関の回転に伴って供給源から供給される作動液により調整するバルブタイミング調整装置であって、クランク軸と連動して回転するハウジングと、カム軸と連動して回転し、ハウジングの内部において進角室及び遅角室を回転方向に区画するベーンを有し、作動液が進角室又は遅角室に導入されることによりハウジングに対する回転位相を進角側又は遅角側に変化させるベーンロータと、ベーンロータまたはハウジングの一方に往復移動可能に収容され、他方に形成される凹部に突入する突入方向に移動することにより、回転位相を最進角位相及び最遅角位相の間の規制位相において規制する一方、凹部から脱出する脱出方向に移動して回転位相の規制を解除する規制部材と、を備え、ハウジングは、大気に開放される開放孔を形成し、ベーンロータは、進角室または遅角室の一方に連通する連通孔を形成し、開放孔及び連通孔の間を遮断する遮断位置からの所定部材の移動により、開放孔及び連通孔の間を連通させ、ベーンロータまたはハウジングの一方において規制部材としての主規制部材と同方向に往復移動可能に収容され、ベーンロータまたはハウジングの一方が形成する作動室に導入される作動液から脱出方向に圧力を受ける受圧部、及び主規制部材に対して脱出方向に係合し突入方向に離間する係合部を有し、作動室に導入される作動液の圧力が低下するのに応じて突入方向に移動することにより開放孔及び連通孔の間を連通させる所定部材として、絞り部を有する副規制部材を、さらに備える。 According to the first aspect of the present invention, the valve timing of the valve that opens and closes the camshaft by torque transmission from the crankshaft in the internal combustion engine is adjusted by the hydraulic fluid supplied from the supply source as the internal combustion engine rotates. A valve timing adjusting device, comprising a housing that rotates in conjunction with a crankshaft, a vane that rotates in conjunction with a camshaft, and divides an advance chamber and a retard chamber in the rotational direction inside the housing, The hydraulic fluid is introduced into the advance chamber or retard chamber, and the vane rotor that changes the rotational phase relative to the housing to the advance side or retard side is accommodated in one of the vane rotor or the housing so as to be able to reciprocate, and formed on the other The rotational phase is regulated in the regulation phase between the most advanced angle phase and the most retarded angle phase by moving in the entry direction to enter the recessed portion. Comprising a regulating member for releasing the restriction of movement to the rotational phase in the retract direction et escape, the housing forms an opening hole which is opened to the atmosphere, the vane rotor is in one of the advance chamber or retard chamber forming a communication hole communicating, by the movement of a predetermined member from the blocking position for blocking between the open hole and the communication hole communicates between the opening hole and the communication hole, the main of a regulating member in one of the vane rotor or housing A pressure receiving portion that is accommodated in a reciprocating manner in the same direction as the restricting member, receives pressure in the escape direction from the working fluid introduced into the working chamber formed by one of the vane rotor or the housing, and is engaged in the escape direction with respect to the main restricting member. It has an engaging part that is spaced apart in the entry direction, and moves between the opening hole and the communication hole by moving in the entry direction as the pressure of the hydraulic fluid introduced into the working chamber decreases. As the predetermined member, the sub regulation member having a narrowed portion, further comprising.

このような請求項1に記載の発明によれば、凹部への規制部材の突入により回転位相が規制位相に規制される前に内燃機関が停止した場合、開放孔及び連通孔の間を遮断する遮断位置からの所定部材の移動により、それら孔間の連通が可能となる。かかる連通状態下において内燃機関のクランキングが開始される始動時には、連通孔に連通の進角室又は遅角室が開放孔を通じて大気に開放されることとなる。したがって、回転位相を規制位相に変化させて規制部材を凹部に突入させる際には、クランキング中の変動トルクにより容積拡大する進角室又は遅角室に負圧が発生することで回転位相の変化速度が低下する事態を、抑制し得る。以上より、規制部材を凹部に突入させるのに必要な回転位相変化を迅速に生じさせて、始動性を確保することが可能となるのである。
尚、請求項1に記載の発明において規制部材を凹部から脱出させる際には、開放孔及び連通孔間の連通位置よりも当該脱出方向となる遮断位置に所定部材を移動させることで、開放孔及び連通孔間の連通遮断が可能となる。故に、かかる遮断状態下、進角室または遅角室の一方への作動液導入によりバルブタイミングを調整する際には、当該一方に連通の連通孔から開放孔を通じて作動液が漏れる事態を抑制して、バルブタイミング調整の応答性を高めることもできるのである。
According to the first aspect of the present invention, when the internal combustion engine stops before the rotation phase is regulated to the regulation phase due to the entry of the regulation member into the recess, the gap between the open hole and the communication hole is blocked. The movement of the predetermined member from the blocking position enables communication between the holes. At the start of cranking of the internal combustion engine under such a communication state, the advance angle chamber or the retard angle chamber communicating with the communication hole is opened to the atmosphere through the opening hole. Therefore, when the rotation phase is changed to the restriction phase and the restriction member is plunged into the recess, negative pressure is generated in the advance chamber or the retard chamber due to the fluctuating torque during cranking, so that the rotation phase is reduced. A situation in which the rate of change is reduced can be suppressed. As described above, the rotational phase change necessary for causing the restricting member to enter the concave portion can be quickly generated to ensure startability.
In the invention according to claim 1, when the regulating member is withdrawn from the recess, the predetermined member is moved to the blocking position in the escape direction from the communicating position between the opening hole and the communicating hole, thereby opening the opening hole. In addition, communication between the communication holes can be cut off. Therefore, when the valve timing is adjusted by introducing hydraulic fluid into one of the advance chamber or the retard chamber under such a shut-off state, the situation where the hydraulic fluid leaks from the communication hole connected to the one through the open hole is suppressed. Thus, the responsiveness of the valve timing adjustment can be improved.

また、請求項1に記載の発明において、内燃機関の回転に伴って供給源から供給される作動液は、ベーンロータまたはハウジングの一方が形成する作動室に導入される。故に、ベーンロータまたはハウジングの他方に形成される凹部に主規制部材が突入して回転位相が最進角位相及び最遅角位相の間の規制位相に規制される前に、内燃機関が停止すると、作動室に導入の作動液の圧力は低下することになる。その結果、受圧部において作動室の作動液から脱出方向に圧力を受ける副規制部材は、当該圧力の低下に応じて突入方向へと移動し、またこのとき、副規制部材の係合部が脱出方向に係合する主規制部材は、副規制部材に合わせて移動することで、特に規制位相と異なる回転位相では、当該主規制部材がベーンロータまたはハウジングの他方における凹部以外の部分に当接する。こうした他方との当接により主規制部材が移動し得ない状態となった後でも、副規制部材は、作動室の残存作動液を受圧部により押し出しつつ、主規制部材に対して係合部を突入方向に離間させるように移動し得る。これにより、内燃機関をクランキングして始動する始動時には、当該クランキング中に発生する変動トルクにより回転位相を規制位相に変化させて主規制部材を凹部に突入させるに際して、主規制部材を、離間した係合部側となる突入方向に高速移動させることができる。したがって、低温環境下であっても、主規制部材を凹部に迅速に且つ確実に突入させて回転位相を規制位相に規制し得るので、始動性の確保が可能となるのである。  In the first aspect of the present invention, the hydraulic fluid supplied from the supply source as the internal combustion engine rotates is introduced into a working chamber formed by one of the vane rotor and the housing. Therefore, if the internal combustion engine stops before the main restricting member enters the recess formed on the other of the vane rotor or the housing and the rotational phase is restricted to the restricting phase between the most advanced angle phase and the most retarded angle phase, The pressure of the working fluid introduced into the working chamber will decrease. As a result, the sub-regulating member that receives pressure in the direction of escape from the hydraulic fluid in the working chamber in the pressure receiving portion moves in the entry direction in accordance with the decrease in the pressure, and at this time, the engaging portion of the sub-regulating member escapes. The main restricting member engaged in the direction moves in accordance with the sub restricting member, so that the main restricting member comes into contact with a portion other than the recess in the vane rotor or the other of the housing, particularly in a rotational phase different from the restricting phase. Even after the main restricting member cannot move due to the contact with the other, the sub restricting member pushes the remaining working fluid in the working chamber by the pressure receiving portion, and the engaging portion with respect to the main restricting member. It can move so as to be separated in the entry direction. As a result, when starting the engine by cranking the internal combustion engine, the main regulating member is moved away when the main regulating member enters the recess by changing the rotation phase to the regulating phase by the fluctuation torque generated during the cranking. It is possible to move at a high speed in the entry direction on the engaged portion side. Therefore, even in a low temperature environment, the main restricting member can be quickly and surely entered into the recess to restrict the rotational phase to the restricting phase, so that startability can be ensured.
尚、請求項1に記載の発明において所定部材としての副規制部材については、内燃機関の回転に伴って作動室に導入される作動液の圧力を受圧部により脱出方向に受けることで、係合部により脱出方向に係合する主規制部材を移動させつつ、凹部から脱出することができる。したがって、主規制部材を凹部に突入させて内燃機関を始動させた後においては、当該凹部からの主規制部材の脱出により回転位相の規制を解除して、自由なバルブタイミング調整を実現することが可能となるのである。  In the first aspect of the invention, the sub-regulating member as the predetermined member is engaged by receiving the pressure of the hydraulic fluid introduced into the working chamber as the internal combustion engine rotates in the escape direction by the pressure receiving portion. It is possible to escape from the recess while moving the main regulating member engaged in the escape direction by the portion. Therefore, after the main restricting member enters the recess and the internal combustion engine is started, the restriction of the rotational phase can be released by the escape of the main restricting member from the recess to realize free valve timing adjustment. It becomes possible.

請求項2に記載の発明によると、遮断位置からの所定部材の移動により形成されて開放孔から連通孔に至る連通経路に、流体の流通面積を絞る絞り部が設けられる。これによれば、遮断位置からの所定部材の移動により形成されて開放孔から連通孔まで至る連通経路では、流体の流通面積を絞る絞り部において、大気の流通抵抗が作動液の流通抵抗よりも小さくなる。故に、開放孔及び連通孔間の連通状態下において内燃機関のクランキングが開始される始動時には、進角室及び遅角室のうち連通孔に連通の一方から作動液を漏れ難くして、当該一方に対して大気を容易に導入することができる。したがって、回転位相を規制位相に変化させて規制部材を凹部に突入させる際には、回転位相の変化速度が低下する事態の抑制作用を高めて、始動性の確保に貢献し得るのである。   According to the second aspect of the present invention, the throttle portion that restricts the flow area of the fluid is provided in the communication path formed by the movement of the predetermined member from the blocking position and extending from the open hole to the communication hole. According to this, in the communication path that is formed by the movement of the predetermined member from the blocking position and extends from the open hole to the communication hole, the atmospheric flow resistance is higher than the flow resistance of the hydraulic fluid in the throttle portion that restricts the flow area of the fluid. Get smaller. Therefore, at the start of cranking of the internal combustion engine under the communication state between the open hole and the communication hole, it is difficult for the hydraulic fluid to leak from one of the advance chamber and the retard chamber communicating with the communication hole. On the other hand, the atmosphere can be easily introduced. Therefore, when the rotation phase is changed to the restriction phase and the restriction member is rushed into the recess, the action of suppressing the situation in which the change speed of the rotation phase is reduced can be enhanced to contribute to securing startability.

本発明の第一実施形態によるバルブタイミング調整装置を示す構成図であって、図2のI−I断面図である。It is a block diagram which shows the valve timing adjustment apparatus by 1st embodiment of this invention, Comprising: It is II sectional drawing of FIG. 図1のII−II断面図である。It is II-II sectional drawing of FIG. 図1に示す駆動部が受ける変動トルクについて説明するための模式図である。It is a schematic diagram for demonstrating the fluctuation | variation torque which the drive part shown in FIG. 1 receives. 図1のIV−IV矢視図である。It is the IV-IV arrow line view of FIG. 図4とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図4,5とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図1のカバー部材を示す平面図である。It is a top view which shows the cover member of FIG. 図1の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 図8とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図1のX−X断面に相当する模式図である。It is a schematic diagram equivalent to the XX cross section of FIG. 図10とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図8,9とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図8,9,12とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図10,11とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図10,11,14とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図10,11,14,15とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図10,11,14〜16とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図1の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of FIG. 図18とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図18,19とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図18〜20とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIGS. 本発明の第二実施形態によるバルブタイミング調整装置を示す図であって、図12に対応する断面図である。It is a figure which shows the valve timing adjustment apparatus by 2nd embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG. 図22とは異なる作動状態を示す図であって、図13に対応する図である。It is a figure which shows the operation state different from FIG. 22, Comprising: It is a figure corresponding to FIG. 本発明の第二実施形態によるバルブタイミング調整装置を示す図であって、図20に対応する断面図である。It is a figure which shows the valve timing adjustment apparatus by 2nd embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG. 図24とは異なる作動状態を示す図であって、図21に対応する図である。It is a figure which shows the operation state different from FIG. 24, Comprising: It is a figure corresponding to FIG. 本発明の第三実施形態によるバルブタイミング調整装置を示す図であって、図12に対応する断面図である。It is a figure which shows the valve timing adjustment apparatus by 3rd embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG. 図26とは異なる作動状態を示す図であって、図13に対応する図である。It is a figure which shows the operation state different from FIG. 26, Comprising: It is a figure corresponding to FIG. 本発明の第三実施形態によるバルブタイミング調整装置を示す図であって、図20に対応する断面図である。FIG. 21 is a view showing a valve timing adjusting device according to a third embodiment of the present invention and is a cross-sectional view corresponding to FIG. 20. 図28とは異なる作動状態を示す図であって、図21に対応する図である。It is a figure which shows the operation state different from FIG. 28, Comprising: It is a figure corresponding to FIG. 本発明の第一実施形態の変形例を示す図である。It is a figure which shows the modification of 1st embodiment of this invention. 本発明の第一実施形態の変形例を示す図である。It is a figure which shows the modification of 1st embodiment of this invention. 本発明の第三実施形態の変形例を示す図である。It is a figure which shows the modification of 3rd embodiment of this invention. 本発明の第四実施形態におけるバルブタイミング調整装置の作動状態を示す図である。It is a figure which shows the operation state of the valve timing adjustment apparatus in 4th embodiment of this invention. 図33に示す状態に対応する第一の各規制部材の作動状態を示す断面図である。It is sectional drawing which shows the operating state of each 1st control member corresponding to the state shown in FIG. 図33に示す状態に対応する第二の各規制部材の作動状態を示す断面図である。It is sectional drawing which shows the operation state of each 2nd control member corresponding to the state shown in FIG. 図33とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図36に示す状態に対応する第一の各規制部材の作動状態を示す断面図である。It is sectional drawing which shows the operation state of each 1st control member corresponding to the state shown in FIG. 図36に示す状態に対応する第二の各規制部材の作動状態を示す断面図である。It is sectional drawing which shows the operation state of each 2nd control member corresponding to the state shown in FIG. 図33,36とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図39に示す状態に対応する第一の各規制部材の作動状態を示す断面図である。It is sectional drawing which shows the operating state of each 1st control member corresponding to the state shown in FIG. 図39に示す状態に対応する第二の各規制部材の作動状態を示す断面図である。It is sectional drawing which shows the operating state of each 2nd control member corresponding to the state shown in FIG. 図33,36,39とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図42に示す状態に対応する第一の各規制部材の作動状態を示す断面図である。FIG. 43 is a cross-sectional view showing an operating state of each first regulating member corresponding to the state shown in FIG. 42. 図42に示す状態に対応する第二の各規制部材の作動状態を示す断面図である。FIG. 43 is a cross-sectional view showing an operating state of each second regulating member corresponding to the state shown in FIG. 42. 図33,36,39,42とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図45に示す状態に対応する第一の各規制部材の作動状態を示す断面図である。It is sectional drawing which shows the operating state of each 1st control member corresponding to the state shown in FIG. 図45に示す状態に対応する第二の各規制部材の作動状態を示す断面図である。It is sectional drawing which shows the operating state of each 2nd control member corresponding to the state shown in FIG. 図33,36,39,42,45とは異なる作動状態を示す図である。It is a figure which shows the operation state different from FIG. 図48に示す状態に対応する第一の各規制部材の作動状態を示す断面図である。It is sectional drawing which shows the operation state of each 1st control member corresponding to the state shown in FIG. 図48に示す状態に対応する第二の各規制部材の作動状態を示す断面図である。It is sectional drawing which shows the operating state of each 2nd control member corresponding to the state shown in FIG. 作動室内の作動油圧と各規制部材の作動状態との関係を説明するための断面図である。It is sectional drawing for demonstrating the relationship between the working hydraulic pressure in a working chamber, and the operating state of each control member. 図51に示す状態とは異なる作動状態を示す図である。It is a figure which shows the operation state different from the state shown in FIG. 図51,52に示す状態とは異なる作動状態を示す図である。It is a figure which shows the operation state different from the state shown to FIG. 図51〜53に示す状態とは異なる作動状態を示す図である。It is a figure which shows the operation state different from the state shown in FIGS. 本発明の第一実施形態〜第四実施形態についての変形例を示す図である。It is a figure which shows the modification about 1st embodiment-4th embodiment of this invention.

以下、本発明の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. In addition, the overlapping description is abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment.

(第一実施形態)
以下、本発明の一実施形態を図面に基づいて説明する。図1は、本発明の第一実施形態によるバルブタイミング調整装置1を車両の内燃機関2に適用した例を示している。バルブタイミング調整装置1は、「供給源」としてのポンプ4から供給される「作動液」としての作動油により、カム軸3が開閉する「動弁」としての吸気弁のバルブタイミングを調整する。
(First embodiment)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example in which a valve timing adjusting device 1 according to a first embodiment of the present invention is applied to an internal combustion engine 2 of a vehicle. The valve timing adjusting device 1 adjusts the valve timing of an intake valve as a “valve valve” that opens and closes the camshaft 3 with hydraulic oil as “hydraulic fluid” supplied from a pump 4 as a “supply source”.

(基本構成)
以下、バルブタイミング調整装置1の基本構成を説明する。バルブタイミング調整装置1は、内燃機関2のクランク軸(図示しない)からカム軸3に機関トルクを伝達する伝達系に設置される駆動部10、並びに当該駆動部10の作動を制御する制御部30を備えている。
(Basic configuration)
Hereinafter, a basic configuration of the valve timing adjusting device 1 will be described. The valve timing adjusting device 1 includes a drive unit 10 installed in a transmission system that transmits engine torque from a crankshaft (not shown) of the internal combustion engine 2 to the camshaft 3, and a control unit 30 that controls the operation of the drive unit 10. It has.

(駆動部)
図1,2に示すように駆動部10において、ハウジング11は、シュー部材12、スプロケット部材18及びカバー部材13等から構成されている。
(Drive part)
As shown in FIGS. 1 and 2, in the drive unit 10, the housing 11 includes a shoe member 12, a sprocket member 18, a cover member 13, and the like.

シュー部材12は金属により形成され、円筒状の筒部12a並びに複数のシュー12b,12c,12dを有している。各シュー12b〜12dは、筒部12aにおいて回転方向に略等間隔となる箇所から径方向内側に突出している。各シュー12b〜12dの突出側端面は円弧面状であり、ベーンロータ14のボス部14aの外周面に摺接する。回転方向において隣り合うシュー12b〜12dの間には、それぞれ収容室50が形成されている。   The shoe member 12 is made of metal and has a cylindrical tube portion 12a and a plurality of shoes 12b, 12c, and 12d. Each of the shoes 12b to 12d protrudes radially inward from a portion that is substantially equidistant in the rotation direction in the cylindrical portion 12a. The protruding side end surfaces of the shoes 12b to 12d have an arcuate shape, and are in sliding contact with the outer peripheral surface of the boss portion 14a of the vane rotor 14. A storage chamber 50 is formed between the shoes 12b to 12d adjacent to each other in the rotation direction.

スプロケット部材18及びカバー部材13は、それぞれ金属によって円環板状に形成されており、それぞれシュー部材12の両端部に同軸固定されている。スプロケット部材18は、クランク軸との間にタイミングチェーン(図示しない)が掛け渡されることにより、当該クランク軸と連繋する。これにより内燃機関2の回転中は、クランク軸からスプロケット部材18に機関トルクが伝達されることで、ハウジング11がクランク軸と連動して図2の時計方向に回転するようになっている。   The sprocket member 18 and the cover member 13 are each formed in an annular plate shape from metal and are coaxially fixed to both ends of the shoe member 12. The sprocket member 18 is linked to the crankshaft by passing a timing chain (not shown) between the sprocket member 18 and the crankshaft. As a result, while the internal combustion engine 2 is rotating, engine torque is transmitted from the crankshaft to the sprocket member 18 so that the housing 11 rotates in the clockwise direction in FIG. 2 in conjunction with the crankshaft.

図1,2に示すようにベーンロータ14は、金属により形成されてハウジング11内に同心収容されており、軸方向の両端部がスプロケット部材18とカバー部材13とに摺接する。ベーンロータ14は、円柱状のボス部14a並びに複数のベーン14b,14c,14dを有している。   As shown in FIGS. 1 and 2, the vane rotor 14 is made of metal and is concentrically accommodated in the housing 11, and both end portions in the axial direction are in sliding contact with the sprocket member 18 and the cover member 13. The vane rotor 14 includes a cylindrical boss portion 14a and a plurality of vanes 14b, 14c, and 14d.

ボス部14aは、カム軸3に対して同軸固定されている。これによりベーンロータ14は、カム軸3と連動して図2の時計方向に回転すると共に、ハウジング11に対して相対回転可能となっている。各ベーン14b〜14dは、ボス部14aにおいて回転方向に略等間隔となる箇所から径方向外側に突出し、それぞれ対応する収容室50内に収容されている。各ベーン14b〜14dの突出側端面は円弧面状に形成され、筒部12aの内周面と摺接する。   The boss portion 14 a is coaxially fixed to the cam shaft 3. As a result, the vane rotor 14 rotates in the clockwise direction in FIG. 2 in conjunction with the camshaft 3 and can rotate relative to the housing 11. Each of the vanes 14b to 14d protrudes radially outward from a portion that is substantially equidistant in the rotation direction in the boss portion 14a, and is accommodated in the corresponding accommodating chamber 50. The projecting side end surfaces of the vanes 14b to 14d are formed in a circular arc shape and are in sliding contact with the inner peripheral surface of the cylindrical portion 12a.

各ベーン14b〜14dは、それぞれ対応する収容室50を回転方向に二分することにより、進角室52,53,54及び遅角室56,57,58をハウジング11内部に区画形成している。具体的には、シュー12bとベーン14bの間に進角室52、シュー12cとベーン14cの間に進角室53、シュー12dとベーン14dの間に進角室54がそれぞれ形成されている。また、シュー12cとベーン14bの間に遅角室56、シュー12dとベーン14cの間に遅角室57、シュー12bとベーン14dの間に遅角室58がそれぞれ形成されている。   Each of the vanes 14b to 14d divides the corresponding storage chamber 50 into two in the rotation direction, thereby defining the advance chambers 52, 53, 54 and the retard chambers 56, 57, 58 inside the housing 11. Specifically, an advance chamber 52 is formed between the shoe 12b and the vane 14b, an advance chamber 53 is formed between the shoe 12c and the vane 14c, and an advance chamber 54 is formed between the shoe 12d and the vane 14d. Further, a retard chamber 56 is formed between the shoe 12c and the vane 14b, a retard chamber 57 is formed between the shoe 12d and the vane 14c, and a retard chamber 58 is formed between the shoe 12b and the vane 14d.

こうした構成の駆動部10では、進角室52〜54への作動油導入並びに遅角室56〜58からの作動油排出により、ハウジング11に対するベーンロータ14の回転位相が進角側に変化する。故に、このときには、バルブタイミングが進角する。また一方、遅角室56〜58への作動油導入並びに進角室52〜54からの作動油排出により、回転位相が遅角側に変化する。故に、このときには、バルブタイミングが遅角する。   In the drive unit 10 having such a configuration, the rotation phase of the vane rotor 14 with respect to the housing 11 is changed to the advance side by introducing the hydraulic oil into the advance chambers 52 to 54 and discharging the hydraulic oil from the retard chambers 56 to 58. Therefore, at this time, the valve timing is advanced. On the other hand, the rotational phase changes to the retarded angle side by introducing hydraulic oil into the retard chambers 56 to 58 and discharging hydraulic fluid from the advance chambers 52 to 54. Therefore, at this time, the valve timing is retarded.

(制御部)
図1,2に示すように制御部30において、カム軸3及びその軸受(図示しない)を通して設けられる進角通路72は、回転位相の変化に拘らず進角室52〜54と常時連通する。また、カム軸3及びその軸受を通して設けられる遅角通路74は、回転位相の変化に拘らず遅角室56〜58と常時連通する。
(Control part)
As shown in FIGS. 1 and 2, in the control unit 30, the advance passage 72 provided through the cam shaft 3 and its bearing (not shown) is always in communication with the advance chambers 52 to 54 regardless of the change in the rotation phase. Further, the retard passage 74 provided through the cam shaft 3 and its bearing always communicates with the retard chambers 56 to 58 regardless of the change of the rotational phase.

図1に示すように、供給通路76はポンプ4の吐出口と連通しており、オイルパン5からポンプ4の吸入口に吸入された作動油が当該吐出口から吐出供給されるようになっている。ここで本実施形態のポンプ4は、内燃機関2の回転に伴ってクランク軸により駆動されることで、供給通路76に作動油を吐出供給するメカポンプであり、内燃機関2の停止に伴って当該吐出供給を停止するようになっている。また、ドレン通路78は、オイルパン5に作動油を排出可能に設けられている。   As shown in FIG. 1, the supply passage 76 communicates with the discharge port of the pump 4, and hydraulic oil sucked into the suction port of the pump 4 from the oil pan 5 is discharged and supplied from the discharge port. Yes. Here, the pump 4 of this embodiment is a mechanical pump that discharges and supplies hydraulic oil to the supply passage 76 by being driven by the crankshaft as the internal combustion engine 2 rotates. Discharge supply is stopped. Further, the drain passage 78 is provided in the oil pan 5 so that the hydraulic oil can be discharged.

位相制御弁80は、進角通路72、遅角通路74、供給通路76及びドレン通路78に機械的に接続されている。位相制御弁80は、ソレノイド82への通電に従って作動することにより、進角通路72及び遅角通路74にそれぞれ連通する通路を供給通路76及びドレン通路78の間で切換える。   The phase control valve 80 is mechanically connected to the advance passage 72, the retard passage 74, the supply passage 76 and the drain passage 78. The phase control valve 80 operates in accordance with the energization of the solenoid 82, thereby switching the passage communicating with the advance passage 72 and the retard passage 74 between the supply passage 76 and the drain passage 78.

制御回路90は、マイクロコンピュータを主体に構成されており、位相制御弁80のソレノイド82と電気的に接続されている。制御回路90は、ソレノイド82への通電を制御する機能と共に、内燃機関2の作動を制御する機能を備えている。   The control circuit 90 is mainly composed of a microcomputer and is electrically connected to the solenoid 82 of the phase control valve 80. The control circuit 90 has a function of controlling the operation of the internal combustion engine 2 as well as a function of controlling energization to the solenoid 82.

こうした構成の制御部30では、制御回路90により制御されたソレノイド82への通電に従って位相制御弁80が作動することで、進角通路72及び遅角通路74に対する供給通路76及びドレン通路78の連通状態が切り換えられる。ここで、位相制御弁80が進角通路72及び遅角通路74にそれぞれ供給通路76及びドレン通路78を連通させるときには、ポンプ4からの作動油が通路76,72を通じて進角室52〜54に導入されると共に、遅角室56〜58の作動油が通路74,78を通じてオイルパン5に排出される。故に、このときには、バルブタイミングが進角する。また一方、位相制御弁80が遅角通路74及び進角通路72にそれぞれ供給通路76及びドレン通路78を連通させるときには、ポンプ4からの作動油が通路76,74を通じて遅角室56〜58に導入されると共に、進角室52〜54の作動油が通路72,78を通じてオイルパン5に排出される。故に、このときには、バルブタイミングが遅角する。   In the control unit 30 configured as described above, the phase control valve 80 is operated in accordance with the energization of the solenoid 82 controlled by the control circuit 90, so that the supply passage 76 and the drain passage 78 communicate with the advance passage 72 and the retard passage 74. The state is switched. Here, when the phase control valve 80 causes the supply passage 76 and the drain passage 78 to communicate with the advance passage 72 and the retard passage 74, respectively, hydraulic oil from the pump 4 enters the advance chambers 52 to 54 through the passages 76 and 72. While being introduced, the hydraulic oil in the retard chambers 56 to 58 is discharged to the oil pan 5 through the passages 74 and 78. Therefore, at this time, the valve timing is advanced. On the other hand, when the phase control valve 80 causes the supply passage 76 and the drain passage 78 to communicate with the retard passage 74 and the advance passage 72, respectively, the hydraulic oil from the pump 4 enters the retard chambers 56 to 58 through the passages 76 and 74. While being introduced, the hydraulic oil in the advance chambers 52 to 54 is discharged to the oil pan 5 through the passages 72 and 78. Therefore, at this time, the valve timing is retarded.

以下、バルブタイミング調整装置1の構成を詳細に説明する。   Hereinafter, the configuration of the valve timing adjusting device 1 will be described in detail.

(変動トルクの作用構造)
ベーンロータ14にカム軸3が同軸固定されている駆動部10では、内燃機関2の回転中は、カム軸3が開閉駆動する吸気弁からのスプリング反力等に起因する変動トルクがベーンロータ14に作用する。ここで、図3に例示するように変動トルクは、ハウジング11に対する回転位相の進角側にベーンロータ14を付勢する負トルクと、回転位相の遅角側にベーンロータ14を付勢する正トルクとの間において、交番するものである。そして、特に本実施形態の変動トルクは、カム軸3及び軸受間のフリクション等に起因して、正トルクのピークトルクT+が負トルクのピークトルクT−よりも大きくなる傾向を示しており、当該変動トルクの平均トルクTaveによってベーンロータ14が正トルク側、即ち回転位相の遅角側に平均的に偏って付勢されるようになっている。
(Action structure of variable torque)
In the drive unit 10 in which the camshaft 3 is coaxially fixed to the vane rotor 14, during the rotation of the internal combustion engine 2, fluctuating torque caused by a spring reaction force or the like from an intake valve driven to open and close the camshaft 3 acts on the vane rotor 14. To do. Here, as illustrated in FIG. 3, the fluctuating torque includes a negative torque that biases the vane rotor 14 toward the advance side of the rotational phase relative to the housing 11, and a positive torque that biases the vane rotor 14 toward the retard side of the rotational phase. It is something that alternates between. In particular, the fluctuation torque of the present embodiment shows a tendency that the peak torque T + of the positive torque is larger than the peak torque T− of the negative torque due to the friction between the camshaft 3 and the bearing. The vane rotor 14 is biased with an average bias toward the positive torque side, that is, the retard side of the rotational phase, by the average torque Tave of the variable torque.

(付勢構造)
図1,4に示すように、ハウジング11においてカバー部材13には、金属によって円筒ハット状に形成されたハウジングブッシュ100のフランジ壁101が、同軸固定されている。ハウジングブッシュ100においてフランジ壁101とは反対側の端部には、径方向に貫通するハウジング溝102が設けられている。
(Biasing structure)
As shown in FIGS. 1 and 4, a flange wall 101 of a housing bush 100 formed in a cylindrical hat shape with metal is coaxially fixed to the cover member 13 in the housing 11. A housing groove 102 penetrating in the radial direction is provided at the end of the housing bush 100 opposite to the flange wall 101.

ベーンロータ14においてボス部14aには、金属によって有底円筒状に形成されたロータブッシュ110の底壁111が、同軸固定されている。ロータブッシュ110は、ハウジングブッシュ100よりも小径に形成され、当該ハウジングブッシュ100の内周側に相対回転可能に同心配置されている。ロータブッシュ110において底壁111とは反対側の端部には、径方向に貫通するロータ溝112が設けられている。   In the vane rotor 14, a bottom wall 111 of a rotor bush 110 formed in a bottomed cylindrical shape with metal is coaxially fixed to the boss portion 14a. The rotor bush 110 is formed to have a smaller diameter than the housing bush 100 and is concentrically disposed on the inner peripheral side of the housing bush 100 so as to be relatively rotatable. A rotor groove 112 penetrating in the radial direction is provided at the end of the rotor bush 110 opposite to the bottom wall 111.

ハウジングブッシュ100の外周側には、金属製のヘリカルトーションスプリングからなる付勢部材120が同心配置されている。付勢部材120の一端部120aは、カバー部材13に固定された係止ピン121に常時係止されている。付勢部材120の他端部120bは、ハウジング溝102及びロータ溝112を径方向の外側から内側に遊挿状態で貫通している。   A biasing member 120 made of a metallic helical torsion spring is concentrically disposed on the outer peripheral side of the housing bush 100. One end 120 a of the biasing member 120 is always locked to a locking pin 121 fixed to the cover member 13. The other end 120b of the urging member 120 penetrates the housing groove 102 and the rotor groove 112 from the radially outer side to the inner side in a loosely inserted state.

本実施形態において、回転位相が図5に示す最遅角位相と図4に示す所定のロック位相との間にあるときには、付勢部材120の端部120bがロータ溝112により進角側から係止される。このとき付勢部材120の端部120bは、ハウジング溝102には係止されない状態となるので、内燃機関2の回転中は、付勢部材120のねじり変形によって発生する復原力が変動トルクの平均トルクTaveに抗してロータ溝112に作用する。これにより、ロータブッシュ110と共にベーンロータ14が回転位相の進角側へと付勢されるのである。   In this embodiment, when the rotational phase is between the most retarded phase shown in FIG. 5 and the predetermined lock phase shown in FIG. 4, the end 120 b of the biasing member 120 is engaged from the advance side by the rotor groove 112. Stopped. At this time, the end 120b of the urging member 120 is not locked in the housing groove 102, so that the restoring force generated by the torsional deformation of the urging member 120 is the average of the fluctuation torque during the rotation of the internal combustion engine 2. It acts on the rotor groove 112 against the torque Tave. Thereby, the vane rotor 14 is urged together with the rotor bush 110 toward the advance side of the rotational phase.

これに対し、回転位相が図4に示すロック位相と図6に示す最進角位相との間にあるときには、付勢部材120の端部120bがハウジング溝102により進角側から係止される。このとき付勢部材120の端部120bは、ロータ溝112には係止されない状態となるので、付勢部材120の復原力がハウジングブッシュ100にのみ作用することになる。以上より本実施形態では、ベーンロータ14の進角側への付勢がロック位相よりも遅角側では実現されるが、ロック位相よりも進角側では実現されないようになっているのである。   On the other hand, when the rotational phase is between the lock phase shown in FIG. 4 and the most advanced angle phase shown in FIG. 6, the end 120 b of the biasing member 120 is locked from the advanced side by the housing groove 102. . At this time, the end 120 b of the urging member 120 is not locked to the rotor groove 112, so that the restoring force of the urging member 120 acts only on the housing bush 100. As described above, in this embodiment, the urging of the vane rotor 14 toward the advance side is realized on the retard side with respect to the lock phase, but is not realized on the advance side with respect to the lock phase.

尚、バルブタイミング調整装置1が適用される本実施形態の内燃機関2については、その始動性を確保するために始動時に規制する規制位相の領域として、最遅角位相及び最進角位相の間の中間位相から最進角位相に至るまでの領域が設定されている。また特に本実施形態では、環境温度に拘らず最適な始動性を確保可能な規制位相として、上記ロック位相が設定されている。これらの設定によれば、内燃機関2を始動するクランキング中において、気筒への吸入空気量が吸気弁の閉弁遅延により減少し過ぎることを抑制し得るのである。   In the internal combustion engine 2 of the present embodiment to which the valve timing adjusting device 1 is applied, the region between the most retarded angle phase and the most advanced angle phase is defined as a restriction phase region to be regulated at the start in order to ensure the startability. The region from the intermediate phase to the most advanced angle phase is set. In particular, in the present embodiment, the lock phase is set as a regulation phase that can ensure optimum startability regardless of the environmental temperature. According to these settings, during cranking for starting the internal combustion engine 2, it is possible to prevent the intake air amount to the cylinder from being excessively reduced due to the delay in closing the intake valve.

(第一規制・ロック構造)
図7,8に示すようにハウジング11のカバー部材13は、第一規制凹部131及びロック凹部134を形成している。第一規制凹部131は、カバー部材13の内面132に開口してハウジング11の回転方向に伸びており、閉塞された両端部に一対の規制ストッパ131a,131bが設けられた形となっている。ロック凹部134は、カム軸3に軸平行な有底筒孔状を呈しており、第一規制凹部131の進角側端部において当該規制凹部131の底面に開口している。
(First regulation / lock structure)
As shown in FIGS. 7 and 8, the cover member 13 of the housing 11 forms a first restriction recess 131 and a lock recess 134. The first restriction recess 131 is open on the inner surface 132 of the cover member 13 and extends in the rotation direction of the housing 11, and has a pair of restriction stoppers 131 a and 131 b provided at both closed ends. The lock recess 134 has a bottomed cylindrical hole shape that is parallel to the camshaft 3, and is open to the bottom surface of the restriction recess 131 at the advance side end of the first restriction recess 131.

図4,8に示すように、ロック凹部134の底面を形成するハウジングブッシュ100は、大気孔136を形成している。このハウジングブッシュ100の大気孔136は、カム軸3に軸平行且つロック凹部134の幅よりも小径の円筒孔状を呈しており、フランジ壁101を貫通することで常時大気開放されている。図8に示すようにハウジング11のスプロケット部材18は、ベーンロータ14を挟んで大気孔136と対向する箇所に、別の大気孔137を形成している。このスプロケット部材18の大気孔137は、カム軸3に軸平行且つ後述する第一収容孔140の大径支持部142よりも小径の円筒孔状を呈しており、スプロケット部材18を貫通することで常時大気開放されている。   As shown in FIGS. 4 and 8, the housing bush 100 that forms the bottom surface of the lock recess 134 forms an air hole 136. The air hole 136 of the housing bush 100 has a cylindrical hole shape that is parallel to the cam shaft 3 and smaller in diameter than the width of the lock recess 134, and is always open to the atmosphere by passing through the flange wall 101. As shown in FIG. 8, the sprocket member 18 of the housing 11 forms another air hole 137 at a location facing the air hole 136 with the vane rotor 14 interposed therebetween. The air hole 137 of the sprocket member 18 has a cylindrical hole shape that is parallel to the camshaft 3 and smaller in diameter than the large-diameter support portion 142 of the first accommodation hole 140 described later, and penetrates the sprocket member 18. Always open to the atmosphere.

図2,8に示すようにベーンロータ14のベーン14bは、第一収容孔140及び第一貫通孔149を形成している。第一収容孔140は、カム軸3に軸平行な有底円筒孔状を呈しており、カバー部材13の内面132に対するベーンロータ14の摺接端面に開口している。第一収容孔140は、凹部131,134の形成されたカバー部材13側となる開口側に、小径支持部141を有している。小径支持部141は、第一規制凹部131及びロック凹部134に対し、それぞれ所定の回転位相において対向するように形成されている。尚、本実施形態の小径支持部141については、ベーンロータ14の母材に嵌合固定されたスリーブ141aの内周面により、形成されている。   As shown in FIGS. 2 and 8, the vane 14 b of the vane rotor 14 forms a first accommodation hole 140 and a first through hole 149. The first accommodation hole 140 has a bottomed cylindrical hole shape that is parallel to the camshaft 3, and opens on the sliding contact end surface of the vane rotor 14 with respect to the inner surface 132 of the cover member 13. The first accommodation hole 140 has a small-diameter support portion 141 on the opening side that is the cover member 13 side where the recesses 131 and 134 are formed. The small-diameter support portion 141 is formed so as to face the first restricting recess 131 and the lock recess 134 at a predetermined rotational phase. The small-diameter support portion 141 of the present embodiment is formed by the inner peripheral surface of a sleeve 141a that is fitted and fixed to the base material of the vane rotor 14.

第一収容孔140は、凹部131,134の形成されたカバー部材13側に対して反対側となる底面側に、小径支持部141よりも大径の大径支持部142を有している。大径支持部142においてカバー部材13側の端部は、ベーンロータ14に貫通形成された第一規制通路145と常時連通することで、作動油の入出可能な作動室146を形成している。また、大径支持部142においてカバー部材13側とは反対側の端部は、ベーンロータ14に貫通形成された第一進角連通孔147を介して進角室52と常時連通することで、連通室148を形成している。   The first accommodation hole 140 has a large-diameter support portion 142 having a larger diameter than the small-diameter support portion 141 on the bottom surface side opposite to the cover member 13 side where the recesses 131 and 134 are formed. The end of the large-diameter support 142 on the cover member 13 side always communicates with a first restriction passage 145 that is formed through the vane rotor 14, thereby forming a working chamber 146 in which hydraulic oil can enter and exit. Further, the end of the large-diameter support portion 142 opposite to the cover member 13 side always communicates with the advance chamber 52 through a first advance communication hole 147 penetratingly formed in the vane rotor 14. A chamber 148 is formed.

図8に示すように第一貫通孔149は、カム軸3に軸平行且つ第一収容孔140の大径支持部142よりも小幅にて回転方向に伸びる長孔状を呈しており、スプロケット部材18の内面に対するベーンロータ14の摺接端面と、第一収容孔140における大径支持部142の底面との間を貫通している。これにより第一貫通孔149は、スプロケット部材18の大気孔137に対し、ロック位相を含む回転位相の所定領域において連通すると共に、大径支持部142に形成の連通室148と常時連通するようになっている。   As shown in FIG. 8, the first through hole 149 has a long hole shape extending in the rotation direction with a width smaller than that of the large-diameter support portion 142 of the first accommodation hole 140 and parallel to the camshaft 3. 18 through the sliding contact end surface of the vane rotor 14 with respect to the inner surface of 18 and the bottom surface of the large-diameter support portion 142 in the first accommodation hole 140. Accordingly, the first through hole 149 communicates with the air hole 137 of the sprocket member 18 in a predetermined region of the rotational phase including the lock phase, and always communicates with the communication chamber 148 formed in the large-diameter support portion 142. It has become.

図2,8に示すように第一収容孔140には、それぞれ金属により形成された円筒状の規制部材150,152が、同心収容されている。第一主規制部材150は、図8に示すように小径支持部141により外周面を支持されることで、軸方向に往復移動可能となっている。第一主規制部材150は、外周側に突出する円環板状の突出部151を、カバー部材13側とは反対側の端部に形成している。また、第一主規制部材150は、カバー部材13側とその反対側とを常時連通する通孔159を、内周孔によって形成している。   As shown in FIGS. 2 and 8, cylindrical regulating members 150 and 152 made of metal are accommodated concentrically in the first accommodation hole 140. As shown in FIG. 8, the first main regulating member 150 is reciprocally movable in the axial direction by being supported on the outer peripheral surface by the small-diameter support portion 141. The first main regulating member 150 is formed with an annular plate-shaped projecting portion 151 projecting to the outer peripheral side at the end opposite to the cover member 13 side. In addition, the first main regulating member 150 has a through hole 159 that always communicates between the cover member 13 side and the opposite side by an inner peripheral hole.

ここで第一主規制部材150は、ロック位相を含む規制位相の領域において突入方向Xに移動することで、図9の如くハウジング11の第一規制凹部131に突入する。こうして第一規制凹部131に突入した第一主規制部材150は、図11の如く当該規制凹部131の遅角側端部の規制ストッパ131aにより係止されることで、規制位相の領域のうちその遅角側限界の第一規制位相にて回転位相の遅角側変化を規制する。また一方、第一規制凹部131に突入した第一主規制部材150は、図10の如く当該規制凹部131の進角側端部の規制ストッパ131bにより係止されることで、ロック位相にて回転位相の進角側変化を規制する。   Here, the first main restricting member 150 enters the first restricting recess 131 of the housing 11 as shown in FIG. 9 by moving in the entry direction X in the restriction phase region including the lock phase. The first main restricting member 150 that has entered the first restricting recess 131 is locked by the restricting stopper 131a at the end portion on the retard side of the restricting recess 131 as shown in FIG. The change in the retard side of the rotational phase is regulated at the first regulation phase at the retard side limit. On the other hand, the first main restricting member 150 that has entered the first restricting recess 131 is rotated by the lock phase by being locked by the restricting stopper 131b of the advance side end of the restricting recess 131 as shown in FIG. Regulates the phase advance side change.

また、第一主規制部材150は、ロック位相において第一規制凹部131側から突入方向Xに移動することで、図8の如くハウジング11のロック凹部134に突入する。こうしてロック凹部134に突入した第一主規制部材150は、当該ロック凹部134との嵌合により回転位相の進角側及び遅角側双方への変化を規制することで、回転位相をロック位相にロックする。   Further, the first main restricting member 150 enters the lock recess 134 of the housing 11 as shown in FIG. 8 by moving in the entry direction X from the first restriction recess 131 side in the lock phase. Thus, the first main regulating member 150 that has entered the lock recess 134 regulates the rotation phase to the lock phase by regulating the rotation phase to both the advance side and the retard side by fitting with the lock recess 134. Lock it.

さらに第一主規制部材150は、ロック位相を含む規制位相の領域において図12,13の如く脱出方向Yに移動することで、ハウジング11のロック凹部134及び第一規制凹部131の双方から脱出する。こうして第一主規制部材150が凹部134,131から脱出することによれば、回転位相の規制が解除されるので、図10,11,14〜17の如く任意の回転位相変化を許容することが可能となる。   Further, the first main restricting member 150 moves out of both the lock recess 134 and the first restricting recess 131 of the housing 11 by moving in the exit direction Y as shown in FIGS. . Thus, when the first main regulating member 150 escapes from the recesses 134 and 131, the regulation of the rotational phase is released, so that an arbitrary rotational phase change can be allowed as shown in FIGS. It becomes possible.

以上の第一主規制部材150に対して、図8に示す第一副規制部材152は、第一収容孔140の小径支持部141よりも大径支持部142側にて第一主規制部材150の外周面に嵌合し、且つ大径支持部142によって外周面を支持されている。このような嵌合及び支持形態によって第一副規制部材152は、第一主規制部材150の場合と同方向となる軸方向に往復移動可能且つ第一主規制部材150に対して相対移動可能となっている。この相対移動可能な状態において第一主規制部材150と第一副規制部材152は、互いに摺動する関係にある。   In contrast to the first main restricting member 150 described above, the first sub restricting member 152 shown in FIG. 8 is closer to the large diameter support portion 142 than the small diameter support portion 141 of the first accommodation hole 140. The outer peripheral surface is supported by the large-diameter support portion 142. With such a fitting and supporting form, the first sub-regulating member 152 can reciprocate in the axial direction that is the same as that of the first main regulating member 150 and can move relative to the first main regulating member 150. It has become. In this relatively movable state, the first main restricting member 150 and the first sub restricting member 152 are in a relationship of sliding with each other.

第一副規制部材152は、作動室146に露出し、スリーブ141aにおいてカバー部材13側とは反対側に形成される端面143と対向する受圧部154を有している。受圧部154はカバー部材13側を向いた円環状の端面である。この受圧部154が作動室146の作動油から脱出方向Yに圧力を受けることで、第一副規制部材152を脱出方向Yに駆動する第一駆動力が発生する。   The first sub-regulating member 152 has a pressure receiving portion 154 exposed to the working chamber 146 and facing an end surface 143 formed on the sleeve 141a on the opposite side to the cover member 13 side. The pressure receiving portion 154 is an annular end surface facing the cover member 13 side. When the pressure receiving portion 154 receives pressure in the escape direction Y from the hydraulic oil in the working chamber 146, a first driving force for driving the first sub regulating member 152 in the escape direction Y is generated.

また、第一副規制部材152は、連通室148に露出して大径支持部142の底面と対向する係合部156を、カバー部材13側とは反対側を向いた円環状の段差面によって形成している。この係合部156が突出部151に対して図13の如く脱出方向Yに押すように係合した状態では、第一副規制部材152に発生する第一駆動力を第一主規制部材150に伝達して、それら規制部材150,152を脱出方向Yに一体に駆動することが可能となる。   The first sub-regulating member 152 has an engaging step 156 exposed to the communication chamber 148 and facing the bottom surface of the large-diameter support portion 142 by an annular step surface facing the side opposite to the cover member 13 side. Forming. In a state where the engaging portion 156 is engaged with the protruding portion 151 so as to push in the escape direction Y as shown in FIG. 13, the first driving force generated in the first sub regulating member 152 is applied to the first main regulating member 150. Accordingly, the restriction members 150 and 152 can be integrally driven in the escape direction Y.

さらに、本実施形態の第一副規制部材152は、外周面よりも凹んでカバー部材13側とは反対側の端面に開口する周溝部157を形成している。これにより、図13の如く周溝部157と第一進角連通孔147との間を連通遮断する遮断位置よりも突入方向Xに第一副規制部材152が移動することで、図8,9,12の如く第一貫通孔149が連通室148及び周溝部157を介して第一進角連通孔147と連通可能となっている。したがって、第一貫通孔149が大気孔137と連通する回転位相では、周溝部157及び第一進角連通孔147間の連通により、大気孔137から第一貫通孔149、連通室148及び周溝部157を経て第一進角連通孔147に至る第一連通経路158が形成されることとなる。また、このように形成される第一連通経路158においては、周溝部157における流体の流通面積を絞るように、当該周溝部157の径方向深さが調整されている。   Furthermore, the first sub-regulating member 152 of the present embodiment forms a circumferential groove portion 157 that is recessed from the outer peripheral surface and opens on the end surface opposite to the cover member 13 side. As a result, as shown in FIG. 13, the first sub-regulating member 152 moves in the entry direction X from the blocking position where the circumferential groove portion 157 and the first advance communication hole 147 are disconnected from each other. 12, the first through hole 149 can communicate with the first advance communication hole 147 through the communication chamber 148 and the circumferential groove 157. Therefore, in the rotational phase where the first through hole 149 communicates with the atmospheric hole 137, the communication between the circumferential groove portion 157 and the first advance communication hole 147 causes the first through hole 149, the communication chamber 148, and the circumferential groove portion to communicate with each other. A first communication path 158 that reaches the first advance communication hole 147 through 157 is formed. In the first continuous passage 158 formed in this way, the radial depth of the circumferential groove 157 is adjusted so as to reduce the flow area of the fluid in the circumferential groove 157.

第一収容孔140において少なくとも連通室148を含む部分には、弾性部材170,172が同心収容されている。第一主弾性部材170は金属製の圧縮コイルスプリングであり、大径支持部142の底面と第一主規制部材150との間に介装されている。第一主弾性部材170は、大径支持部142及び第一主規制部材150間での圧縮変形により第一主復原力を発生することで、当該主規制部材150を突入方向Xに付勢する。したがって、図14の最遅角位相を含む規制位相の領域外においては、第一主弾性部材170の第一主復原力により第一主規制部材150を突入方向Xに駆動することで、図12の如く当該主規制部材150をカバー部材13の内面132に当接させることが可能となっている。また、図13の如く係合部156が突出部151に対して係合した状態では、第一主弾性部材170の第一主復原力によって第一主規制部材150を第一副規制部材152に合わせて突入方向Xに一体に駆動することが、可能となる。   Elastic members 170 and 172 are concentrically accommodated in a portion including at least the communication chamber 148 in the first accommodation hole 140. The first main elastic member 170 is a metal compression coil spring, and is interposed between the bottom surface of the large-diameter support portion 142 and the first main regulating member 150. The first main elastic member 170 biases the main regulating member 150 in the entry direction X by generating a first main restoring force by compressive deformation between the large-diameter support portion 142 and the first main regulating member 150. . Therefore, outside the region of the restriction phase including the most retarded angle phase of FIG. 14, the first main restriction member 150 is driven in the entry direction X by the first main restoring force of the first main elastic member 170. As described above, the main regulating member 150 can be brought into contact with the inner surface 132 of the cover member 13. Further, in the state where the engaging portion 156 is engaged with the protruding portion 151 as shown in FIG. 13, the first main restricting member 150 is changed to the first sub restricting member 152 by the first main restoring force of the first main elastic member 170. In addition, it is possible to drive integrally in the entry direction X.

以上の第一主弾性部材170に対して、第一副弾性部材172は金属製の圧縮コイルスプリングであり、大径支持部142の底面と第一副規制部材152との間に介装されている。第一副弾性部材172は、大径支持部142及び第一副規制部材152間での圧縮変形により第一副復原力を発生することで、当該副規制部材152を突入方向Xに付勢する。したがって、規制位相の領域外において第一主規制部材150が図12の如くカバー部材13の内面132と当接した状態では、第一副弾性部材172の第一副復原力により第一副規制部材152のみを突入方向Xに駆動して、係合部156を突出部151から突入方向Xに離間させることが可能となっている。また、第一副弾性部材172の第一副復原力により係合部156を突出部151から離間させた第一副規制部材152については、図8,9,12の如く受圧部154をスリーブ141aの端面143に当接させることが可能となっている。   In contrast to the first main elastic member 170 described above, the first sub elastic member 172 is a metal compression coil spring, and is interposed between the bottom surface of the large-diameter support portion 142 and the first sub regulating member 152. Yes. The first secondary elastic member 172 generates a first secondary restoring force by compressive deformation between the large-diameter support portion 142 and the first secondary regulating member 152, thereby biasing the secondary regulating member 152 in the entry direction X. . Therefore, when the first main restricting member 150 is in contact with the inner surface 132 of the cover member 13 as shown in FIG. 12 outside the restricting phase region, the first sub restricting member is caused by the first sub restoring force of the first sub elastic member 172. Only 152 is driven in the entry direction X, and the engaging portion 156 can be separated from the protrusion 151 in the entry direction X. For the first sub regulating member 152 in which the engaging portion 156 is separated from the protruding portion 151 by the first sub restoring force of the first sub elastic member 172, the pressure receiving portion 154 is connected to the sleeve 141a as shown in FIGS. It is possible to make it contact | abut to the end surface 143 of this.

(第二規制構造)
図7,18に示すようにハウジング11のカバー部材13は、第二規制凹部231を形成している。第二規制凹部231は、カバー部材13の内面132に開口してハウジング11の回転方向に伸びており、遅角側から進角側に向かって一段階凹むことで浅底部232及び深底部233を有した形となっている。第二規制凹部231の浅底部232及び深底部233においてそれぞれ閉塞された遅角側端部には、規制ストッパ232a,233aが設けられている。
(Second regulatory structure)
As shown in FIGS. 7 and 18, the cover member 13 of the housing 11 forms a second restriction recess 231. The second restriction recess 231 opens in the inner surface 132 of the cover member 13 and extends in the rotation direction of the housing 11, and the shallow bottom portion 232 and the deep bottom portion 233 are formed by denting one step from the retard side toward the advance side. It has a shape. Restriction stoppers 232a and 233a are provided at the retarded side end portions closed at the shallow bottom portion 232 and the deep bottom portion 233 of the second restriction recess 231, respectively.

図4,18に示すようにカバー部材13は、大気孔236を形成している。このカバー部材13の大気孔236は、カム軸3に軸平行且つ第二規制凹部231の深底部幅よりも小径の円筒孔状を呈しており、カバー部材13の外面と深底部233の底面との間を貫通することで常時大気開放されている。図18に示すようにスプロケット部材18は、ベーンロータ14を挟んで大気孔236と対向する箇所に、別の大気孔237を形成している。このスプロケット部材18の大気孔237は、カム軸3に軸平行且つ後述する第二収容孔240の大径支持部242よりも小径の円筒孔状を呈しており、スプロケット部材18を貫通することで常時大気開放されている。   As shown in FIGS. 4 and 18, the cover member 13 forms an air hole 236. The air hole 236 of the cover member 13 has a cylindrical hole shape that is axially parallel to the camshaft 3 and smaller in diameter than the deep bottom width of the second restricting recess 231, and has an outer surface of the cover member 13 and a bottom surface of the deep bottom portion 233. It is always open to the atmosphere by penetrating between. As shown in FIG. 18, the sprocket member 18 has another air hole 237 formed at a location facing the air hole 236 across the vane rotor 14. The air hole 237 of the sprocket member 18 has a cylindrical hole shape that is parallel to the camshaft 3 and smaller in diameter than the large-diameter support portion 242 of the second housing hole 240 described later, and penetrates the sprocket member 18. Always open to the atmosphere.

図2,18に示すようにベーンロータ14のベーン14cは、第二収容孔240及び第二貫通孔249を形成している。第二収容孔240は、第一収容孔140に準ずる構成となっている。但し、第二収容孔240の小径支持部241は、第二規制凹部231の浅底部232及び深底部233に対し、それぞれ所定の回転位相において対向するように形成されている。また、小径支持部241についても本実施形態では、ベーンロータ14の母材に嵌合固定されたスリーブ241aの内周面により、形成されている。さらに、第二収容孔240の大径支持部242においてカバー部材13側の端部は、ベーンロータ14に貫通形成された第二規制通路245と常時連通することで、作動油の入出可能な作動室246を形成している。またさらに、大径支持部242においてカバー部材13側とは反対側の端部は、ベーンロータ14に貫通形成された第二進角連通孔247を介して進角室53と常時連通することで、連通室248を形成している。   As shown in FIGS. 2 and 18, the vane 14 c of the vane rotor 14 forms a second accommodation hole 240 and a second through hole 249. The second accommodation hole 240 has a configuration similar to that of the first accommodation hole 140. However, the small-diameter support portion 241 of the second accommodation hole 240 is formed so as to face the shallow bottom portion 232 and the deep bottom portion 233 of the second regulating recess 231 at a predetermined rotational phase, respectively. In the present embodiment, the small diameter support portion 241 is also formed by the inner peripheral surface of the sleeve 241a that is fitted and fixed to the base material of the vane rotor 14. Further, the end portion on the cover member 13 side of the large-diameter support portion 242 of the second accommodation hole 240 is always in communication with the second restriction passage 245 formed through the vane rotor 14 so that hydraulic oil can enter and exit. 246 is formed. Furthermore, the end of the large-diameter support portion 242 opposite to the cover member 13 side always communicates with the advance chamber 53 through the second advance communication hole 247 penetratingly formed in the vane rotor 14. A communication chamber 248 is formed.

図18に示すように第二貫通孔249は、カム軸3に軸平行且つ第二収容孔240の大径支持部242よりも小幅にて回転方向に伸びる長孔状を呈しており、スプロケット部材18の内面に対するベーンロータ14の摺接端面と、第二収容孔240における大径支持部242の底面との間を貫通している。これにより第二貫通孔249は、スプロケット部材18の大気孔237に対し、ロック位相を含む回転位相の所定領域において連通すると共に、大径支持部242に形成の連通室248と常時連通するようになっている。   As shown in FIG. 18, the second through-hole 249 has a long hole shape extending in the rotational direction with a width smaller than that of the large-diameter support portion 242 of the second accommodation hole 240 and parallel to the camshaft 3. 18 through the sliding contact end surface of the vane rotor 14 with respect to the inner surface of 18 and the bottom surface of the large-diameter support portion 242 in the second accommodation hole 240. Thus, the second through hole 249 communicates with the air hole 237 of the sprocket member 18 in a predetermined region of the rotational phase including the lock phase, and always communicates with the communication chamber 248 formed in the large diameter support portion 242. It has become.

図2,18に示すように第二収容孔240には、それぞれ金属により形成された円筒状の規制部材250,252が、同心収容されている。第二主規制部材250は、図18に示すような第一主規制部材150に準ずる構成により、外周面を小径支持部141に支持されて軸方向に往復移動可能となっていると共に、突出部251及び通孔259を形成している。   As shown in FIGS. 2 and 18, cylindrical regulating members 250 and 252 made of metal are concentrically accommodated in the second accommodation hole 240, respectively. The second main restricting member 250 has a configuration similar to that of the first main restricting member 150 as shown in FIG. 18, and the outer peripheral surface is supported by the small-diameter support portion 141 and can reciprocate in the axial direction. 251 and through holes 259 are formed.

ここで第二主規制部材250は、ロック位相を含む規制位相の領域において突入方向Xに移動することで、図19,18の如くハウジング11の第二規制凹部231のうち遅角側の浅底部232又は進角側の深底部233に突入する。こうして、浅底部232に突入した第二主規制部材250は、当該浅底部232の遅角側端部の規制ストッパ232aによって図15の如く係止されることで、規制位相の領域のうち第一規制位相よりも進角側の第二規制位相にて回転位相の遅角側変化を規制する。また一方、深底部233に突入した第二主規制部材250は、当該深底部233の遅角側端部の規制ストッパ233aによって図16の如く係止されることで、規制位相の領域のうち第二規制位相よりも進角側且つロック位相よりも遅角側の第三規制位相にて回転位相の遅角側変化を規制する。   Here, the second main restriction member 250 moves in the entry direction X in the restriction phase region including the lock phase, so that the shallow bottom portion on the retard side of the second restriction recess 231 of the housing 11 as shown in FIGS. 232 or the deep bottom portion 233 on the advance side. Thus, the second main restricting member 250 that has entered the shallow bottom portion 232 is locked as shown in FIG. 15 by the restriction stopper 232a at the end portion on the retarded side of the shallow bottom portion 232, so that the first of the restriction phase regions. The change in the retard side of the rotational phase is regulated by the second regulation phase on the advance side of the regulation phase. On the other hand, the second main regulating member 250 that has entered the deep bottom portion 233 is locked as shown in FIG. 16 by the restriction stopper 233a at the retard side end of the deep bottom portion 233, so that the The change in the retard side of the rotational phase is regulated by the third regulation phase that is advanced from the second regulation phase and retarded from the lock phase.

さらに第二主規制部材250は、ロック位相を含む規制位相の領域において図20,21の如く脱出方向Yに移動することで、ハウジング11の第二規制凹部231から脱出する。こうして第二主規制部材250が第二規制凹部231から脱出することによれば、回転位相の規制が解除されるので、図10,11,14〜17の如く任意の回転位相変化を許容することが可能となる。   Further, the second main restricting member 250 moves out of the second restricting recess 231 of the housing 11 by moving in the escape direction Y as shown in FIGS. When the second main restricting member 250 is escaped from the second restricting recess 231 in this way, the restriction of the rotational phase is released, so that an arbitrary rotational phase change is allowed as shown in FIGS. Is possible.

図18に示すような第一副規制部材152に準ずる構成により、以上の第二主規制部材250の外周面に嵌合する第二副規制部材252は、第二主規制部材250の場合と同方向となる軸方向に往復移動可能且つ第二主規制部材250に対して相対移動可能となっている。それと共に第二副規制部材252は、第一副規制部材152に準ずる構成により、受圧部254及び係合部256を形成している。したがって、受圧部254が作動室246の作動油から脱出方向Yに圧力を受けることで、第二副規制部材252を脱出方向Yに駆動する第二駆動力が発生することになる。また、係合部256が突出部251に対して図21の如く脱出方向Yに押すように係合した状態では、第二副規制部材252に発生する第二駆動力を第二主規制部材250に伝達して、それら規制部材250,252を脱出方向Yに一体に駆動することが可能となっている。   The second sub-regulating member 252 fitted to the outer peripheral surface of the second main restricting member 250 has the same configuration as the first sub-regulating member 152 as shown in FIG. It can be reciprocated in the axial direction, and can move relative to the second main regulating member 250. At the same time, the second sub-regulating member 252 forms a pressure receiving portion 254 and an engaging portion 256 with a configuration similar to the first sub-regulating member 152. Therefore, when the pressure receiving portion 254 receives pressure from the hydraulic oil in the working chamber 246 in the escape direction Y, a second driving force that drives the second sub-regulating member 252 in the escape direction Y is generated. Further, when the engaging portion 256 is engaged with the protruding portion 251 so as to push in the escape direction Y as shown in FIG. 21, the second driving force generated in the second sub-regulating member 252 is applied to the second main regulating member 250. The restriction members 250 and 252 can be integrally driven in the escape direction Y.

さらに、本実施形態の第二副規制部材252は、第一副規制部材152に準ずる構成により、周溝部257を形成している。これにより、図21の如く周溝部257と第二進角連通孔247との間を連通遮断する遮断位置よりも突入方向Xに第二副規制部材252が移動することで、図18〜20の如く第二貫通孔249が連通室248及び周溝部257を介して第二進角連通孔247と連通可能となっている。したがって、図18の如く第二貫通孔249が大気孔237と連通する回転ロック位相では、周溝部257及び第二進角連通孔247間の連通により、大気孔237から第二進角連通孔247に至る第二連通経路258が形成され、さらに当該経路258にて周溝部257における流通面積が絞られるのである。   Furthermore, the second sub-regulating member 252 of the present embodiment forms a circumferential groove portion 257 with a configuration similar to the first sub-regulating member 152. Accordingly, as shown in FIG. 21, the second sub-regulating member 252 moves in the entry direction X from the blocking position at which the communication between the circumferential groove portion 257 and the second advance communication hole 247 is blocked. Thus, the second through hole 249 can communicate with the second advance communication hole 247 through the communication chamber 248 and the circumferential groove portion 257. Therefore, in the rotation lock phase in which the second through hole 249 communicates with the atmospheric hole 237 as shown in FIG. 18, the communication between the circumferential groove portion 257 and the second advanced angle communicating hole 247 causes the second advanced angle communicating hole 247 to communicate with the second advanced angle communicating hole 247. The second communication path 258 is formed, and the flow area in the circumferential groove portion 257 is further reduced by the path 258.

第二収容孔240において少なくとも連通室248を含む部分には、弾性部材270,272が同心収容されている。第二主弾性部材270は、第一主弾性部材170に準ずる構成により、第二主規制部材250を突入方向Xに付勢する第二主復原力を発生する。したがって、図14の最遅角位相を含む規制位相の領域外においては、第二主弾性部材270の第二主復原力により第二主規制部材250を突入方向Xに駆動することで、図20の如く第二主規制部材250をカバー部材13の内面132に当接させることが可能となっている。また、図21の如く係合部256が突出部251に対して係合した状態では、第二主弾性部材270の第二主復原力によって第二主規制部材250を第二副規制部材252に合わせて突入方向Xに駆動することが、可能となっている。   Elastic members 270 and 272 are concentrically accommodated in a portion including at least the communication chamber 248 in the second accommodation hole 240. The second main elastic member 270 generates a second main restoring force that urges the second main regulating member 250 in the entry direction X by a configuration similar to the first main elastic member 170. Therefore, outside the region of the restriction phase including the most retarded angle phase of FIG. 14, the second main restriction member 250 is driven in the entry direction X by the second main restoring force of the second main elastic member 270. As described above, the second main regulating member 250 can be brought into contact with the inner surface 132 of the cover member 13. In the state where the engaging portion 256 is engaged with the protruding portion 251 as shown in FIG. 21, the second main regulating member 250 is changed to the second sub regulating member 252 by the second main restoring force of the second main elastic member 270. It is possible to drive in the entry direction X together.

以上の第二主弾性部材270に対して第二副弾性部材272は、第一副弾性部材172に準ずる構成により、第二副規制部材252を突入方向Xに付勢する第二副復原力を発生する。したがって、規制位相の領域外において第二主規制部材250が図20の如くカバー部材13の内面132と当接した状態では、第二副弾性部材272の第二副復原力により第二副規制部材252のみを突入方向Xに駆動して、係合部256を突出部251から突入方向Xに離間させることが可能となっている。また、第二副弾性部材272の第二副復原力により係合部256を突出部251から離間させた第二副規制部材252については、図18〜20の如く受圧部254を、それに対向する端面であってスリーブ241aにおけるカバー部材13側とは反対側に形成される端面243に当接させることが可能となっている。   With respect to the second main elastic member 270 described above, the second sub elastic member 272 has a configuration similar to that of the first sub elastic member 172, thereby providing a second sub restoring force that urges the second sub regulating member 252 in the entry direction X. Occur. Therefore, when the second main restricting member 250 is in contact with the inner surface 132 of the cover member 13 as shown in FIG. 20 outside the restricting phase region, the second sub restricting member is caused by the second sub restoring force of the second sub elastic member 272. Only the 252 is driven in the entry direction X, and the engaging portion 256 can be separated from the protrusion 251 in the entry direction X. Further, with respect to the second sub-regulating member 252 in which the engaging portion 256 is separated from the protruding portion 251 by the second sub-restoring force of the second sub-elastic member 272, the pressure receiving portion 254 is opposed to it as shown in FIGS. It can be brought into contact with an end surface 243 formed on the end surface opposite to the cover member 13 side in the sleeve 241a.

(駆動力制御)
図1に示すように制御部30において、カム軸3及びその軸受を通して設けられる駆動通路300は、回転位相の変化に拘らず通路145,245と常時連通する。また、供給通路76から分岐する分岐通路302は、当該供給通路76を介してポンプ4からの作動油供給を受けるようになっている。さらに、ドレン通路304は、オイルパン5に作動油を排出可能に設けられている。
(Driving force control)
As shown in FIG. 1, in the control unit 30, the drive passage 300 provided through the camshaft 3 and its bearing is always in communication with the passages 145 and 245 regardless of the change in the rotational phase. Further, the branch passage 302 branched from the supply passage 76 receives the hydraulic oil supply from the pump 4 through the supply passage 76. Further, the drain passage 304 is provided in the oil pan 5 so that the hydraulic oil can be discharged.

駆動制御弁310は、駆動通路300、分岐通路302及びドレン通路304と機械的に接続されている。駆動制御弁310は、制御回路90と電気的に接続されたソレノイド312への通電に従って作動することにより、駆動通路300に連通する通路を分岐通路302及びドレン通路304の間で切り換える。   The drive control valve 310 is mechanically connected to the drive passage 300, the branch passage 302 and the drain passage 304. The drive control valve 310 is operated in accordance with energization of the solenoid 312 electrically connected to the control circuit 90, thereby switching the passage communicating with the drive passage 300 between the branch passage 302 and the drain passage 304.

ここで、駆動制御弁310が分岐通路302を駆動通路300に連通させるときには、ポンプ4からの作動油が通路76,302,300,145,245を通じて、各作動室146,246に導入される。故にこのときには、第一及び第二副規制部材152,252を駆動する脱出方向Yの駆動力が発生することになる。また一方、駆動制御弁310がドレン通路304を駆動通路300に連通させるときには、作動室146,246内の作動油が通路145,245,300,304を通じてオイルパン5に排出される。故に、このときには、第一及び第二副規制部材152,252を駆動する駆動力が消失することとなる。   Here, when the drive control valve 310 causes the branch passage 302 to communicate with the drive passage 300, the hydraulic oil from the pump 4 is introduced into the working chambers 146 and 246 through the passages 76, 302, 300, 145, and 245. Therefore, at this time, a driving force in the escape direction Y that drives the first and second sub-regulating members 152 and 252 is generated. On the other hand, when the drive control valve 310 causes the drain passage 304 to communicate with the drive passage 300, the hydraulic oil in the working chambers 146, 246 is discharged to the oil pan 5 through the passages 145, 245, 300, 304. Therefore, at this time, the driving force for driving the first and second sub-regulating members 152 and 252 disappears.

以下、バルブタイミング調整装置1の作動を詳細に説明する。   Hereinafter, the operation of the valve timing adjusting device 1 will be described in detail.

(通常作動)
まず、内燃機関2が正常に停止する場合の通常作動について説明する。
(Normal operation)
First, the normal operation when the internal combustion engine 2 stops normally will be described.

(I)イグニッションスイッチのオフ等の停止指令に応じて内燃機関2を停止させる正常停止時には、制御回路90が位相制御弁80への通電を制御して供給通路76を進角通路72に連通させる。このとき、完全停止するまでは慣性回転する内燃機関2がその回転数を低下させることにより、ポンプ4から通路76,72を通じて進角室52〜54に導入される作動油の圧力も低下する。その結果、進角室52〜54への導入油の圧力によりベーンロータ14に作用する力が低下し、特にロック位相よりも遅角側の回転位相においては、ベーンロータ14を付勢する付勢部材120の復原力が支配的となる。   (I) At the time of a normal stop in which the internal combustion engine 2 is stopped in response to a stop command such as turning off the ignition switch, the control circuit 90 controls the energization of the phase control valve 80 to connect the supply passage 76 to the advance passage 72. . At this time, the internal combustion engine 2 that rotates inertially reduces its rotational speed until it stops completely, so that the pressure of the hydraulic oil introduced into the advance chambers 52 to 54 from the pump 4 through the passages 76 and 72 also decreases. As a result, the force acting on the vane rotor 14 is reduced by the pressure of the oil introduced into the advance chambers 52 to 54, and particularly in the rotational phase that is retarded from the lock phase, the biasing member 120 that biases the vane rotor 14. The restoration power of becomes dominant.

また、停止指令に応じた内燃機関2の正常停止時には、制御回路90が駆動制御弁310への通電を制御してドレン通路304を駆動通路300に連通させる。このとき、作動室146,246の作動油は通路145,245,300,304を通じて排出されて、第一及び第二副規制部材152,252を駆動する駆動力が消失する。その結果、第一及び第二副弾性部材172,272の復原力により第一及び第二副規制部材152,252が、作動室146,246の作動油を通路145,245に押し出しつつ突入方向Xに移動して、受圧部154,254を小径支持部141,241の端面143,243に当接させる。それと共に、第一及び第二主弾性部材170,270の復原力により第一及び第二主規制部材150,250が第一及び第二副規制部材152,252に合わせて突入方向Xに移動して、停止指令時の回転位相に応じた移動位置に定位する。   When the internal combustion engine 2 is normally stopped in response to the stop command, the control circuit 90 controls the energization of the drive control valve 310 so that the drain passage 304 communicates with the drive passage 300. At this time, the hydraulic oil in the working chambers 146, 246 is discharged through the passages 145, 245, 300, 304, and the driving force for driving the first and second sub-regulating members 152, 252 disappears. As a result, the first and second sub-regulating members 152 and 252 push the working oil in the working chambers 146 and 246 into the passages 145 and 245 by the restoring force of the first and second sub-elastic members 172 and 272, and enter the entry direction X. The pressure receiving portions 154 and 254 are brought into contact with the end surfaces 143 and 243 of the small diameter support portions 141 and 241. At the same time, due to the restoring force of the first and second main elastic members 170, 270, the first and second main restricting members 150, 250 move in the entry direction X according to the first and second sub restricting members 152, 252. Then, the position is determined according to the rotational phase at the time of the stop command.

したがって、この後においては、停止指令時の回転位相に応じた作動にてロック位相へのロックが実現され、内燃機関2の次の始動が待たれることになる。以下、停止指令時の回転位相に応じたロック作動の詳細を説明する。   Therefore, after this, the lock to the lock phase is realized by the operation according to the rotation phase at the time of the stop command, and the next start of the internal combustion engine 2 is awaited. Hereinafter, details of the lock operation according to the rotation phase at the time of the stop command will be described.

(I−1)停止指令時の回転位相が図14の最遅角位相である場合には、変動トルクとしての負トルク並びに付勢部材120の復原力によりベーンロータ14がハウジング11に対して進角側に相対回転し、それによって回転位相が進角側に変化する。この進角側への位相変化により回転位相が図11の第一規制位相に達すると、第一主弾性部材170の第一主復原力により第一主規制部材150が突入方向Xに移動して第一規制凹部131に突入することで、第一規制位相よりも遅角側への位相変化が規制される。さらに、進角側への位相変化により回転位相が図15の第二規制位相に達すると、第二主弾性部材270の第二主復原力により第二主規制部材250が第二規制凹部231の浅底部232に突入することで、第二規制位相よりも遅角側への位相変化が規制される。またさらに、進角側への位相変化により回転位相が図16の第三規制位相に達すると、第二主弾性部材270の第二主復原力により第二主規制部材250が第二規制凹部231の深底部233に突入することで、第三規制位相よりも遅角側への位相変化が規制される。   (I-1) When the rotation phase at the time of the stop command is the most retarded phase in FIG. 14, the vane rotor 14 is advanced with respect to the housing 11 by the negative torque as the variable torque and the restoring force of the urging member 120. The rotation phase is changed to the advance side. When the rotational phase reaches the first regulation phase of FIG. 11 due to the phase change toward the advance angle side, the first main regulation member 150 moves in the entry direction X by the first main restoring force of the first main elastic member 170. By entering the first restricting recess 131, the phase change to the retard side from the first restricting phase is restricted. Further, when the rotational phase reaches the second regulation phase of FIG. 15 due to the phase change toward the advance side, the second main regulation member 250 of the second regulation recess 231 is caused by the second main restoring force of the second main elastic member 270. By entering the shallow bottom portion 232, the phase change toward the retarded side with respect to the second restriction phase is restricted. Furthermore, when the rotational phase reaches the third restriction phase in FIG. 16 due to the phase change toward the advance side, the second main restriction member 250 causes the second restriction recess 231 by the second main restoring force of the second main elastic member 270. By entering the deep bottom portion 233, the phase change toward the retarded side with respect to the third restriction phase is restricted.

この後、進角側へのさらなる位相変化により回転位相が図10のロック位相に達すると、第一主規制部材150が第一規制凹部131の進角側端部の規制ストッパ131bにより係止される。このとき、付勢部材120の復原力により規制ストッパ131bに押し当てられる第一主規制部材150は、図8に示すように、第一主弾性部材170の第一主復原力により付勢されて、第一規制凹部131側からロック凹部134に突入嵌合する。その結果、回転位相がロック位相に規制されてロックされることになるのである。   Thereafter, when the rotational phase reaches the lock phase of FIG. 10 due to further phase change toward the advance angle side, the first main restriction member 150 is locked by the restriction stopper 131b at the advance side end portion of the first restriction recess 131. The At this time, the first main regulating member 150 pressed against the regulating stopper 131b by the restoring force of the urging member 120 is urged by the first main restoring force of the first main elastic member 170 as shown in FIG. Then, it is fitted into the lock recess 134 from the first restriction recess 131 side. As a result, the rotational phase is regulated and locked by the lock phase.

(I−2)停止指令時の回転位相が最遅角位相及びロック位相の間、又はロック位相である場合には、上記(I−1)に準ずる作動が停止指令時の回転位相に対応する状態から開始される。したがって、この場合にも、回転位相がロック位相に規制されてロックされることになる。   (I-2) When the rotation phase at the time of the stop command is between the most retarded angle phase and the lock phase or the lock phase, the operation according to the above (I-1) corresponds to the rotation phase at the time of the stop command. Start from state. Therefore, also in this case, the rotation phase is restricted and locked by the lock phase.

(I−3)停止指令時の回転位相が図17の最進角位相である場合には、第二主弾性部材270の第二主復原力によって第二主規制部材250が第二規制凹部231の深底部233への突入状態となる。かかる状態下、付勢部材120の復原力作用がロック位相よりも進角側にて制限される本実施形態では、変動トルクの平均トルクTaveの偏り側である遅角側に向かって回転位相が徐々に変化する。これにより回転位相が図10のロック位相に達すると、第一主弾性部材170の第一主復原力により第一主規制部材150が第一規制凹部131及びロック凹部134に順次突入するので、以上の場合にも、回転位相がロック位相に規制されてロックされることになる。   (I-3) When the rotation phase at the time of the stop command is the most advanced angle phase in FIG. 17, the second main regulating member 250 is moved into the second regulating recess 231 by the second main restoring force of the second main elastic member 270. It enters into the deep bottom portion 233. In this embodiment in which the restoring force action of the urging member 120 is limited on the advance side with respect to the lock phase in such a state, the rotational phase is directed toward the retard side that is the bias side of the average torque Tave of the variable torque. Change gradually. Accordingly, when the rotation phase reaches the lock phase of FIG. 10, the first main restriction member 150 sequentially enters the first restriction recess 131 and the lock recess 134 by the first main restoring force of the first main elastic member 170. Also in this case, the rotation phase is restricted and locked by the lock phase.

(I−4)停止指令時の回転位相がロック位相及び最進角位相の間である場合には、上記(I−3)に準ずる作動が停止指令時の回転位相に対応する状態から開始される。したがって、この場合にも、回転位相がロック位相に規制されてロックされることになる。   (I-4) When the rotation phase at the time of stop command is between the lock phase and the most advanced angle phase, the operation according to the above (I-3) is started from the state corresponding to the rotation phase at the time of stop command. The Therefore, also in this case, the rotation phase is restricted and locked by the lock phase.

(II)正常停止後、イグニッションスイッチのオン等の始動指令に応じて内燃機関2をクランキングして始動するときには、制御回路90が位相制御弁80への通電を制御して供給通路76を進角通路72に連通させる。このとき、ポンプ4からの作動油が通路76,72を通じて進角室52〜54に導入される。また、正常停止後の始動指令に応じた内燃機関2の始動時には、制御回路90が駆動制御弁310への通電を制御してドレン通路304を駆動通路300に連通させる。このとき、作動室146,246には作動油が導入されず、第一及び第二副規制部材152,252を駆動する駆動力が消失状態に維持される。   (II) When the internal combustion engine 2 is cranked and started in response to a start command such as turning on the ignition switch after the normal stop, the control circuit 90 controls the energization of the phase control valve 80 to advance the supply passage 76. It communicates with the corner passage 72. At this time, the hydraulic oil from the pump 4 is introduced into the advance chambers 52 to 54 through the passages 76 and 72. In addition, when the internal combustion engine 2 is started in response to the start command after the normal stop, the control circuit 90 controls the energization of the drive control valve 310 to connect the drain passage 304 to the drive passage 300. At this time, the working oil is not introduced into the working chambers 146 and 246, and the driving force for driving the first and second sub-regulating members 152 and 252 is maintained in a lost state.

以上の結果、上記(I)の最終状態、即ち図8,18の如く第一及び第二主弾性部材170,270の復原力により第一及び第二主規制部材150,250がそれぞれ凹部134,231に突入した状態が、継続される。ここで特に、内燃機関2が完爆して始動が完了するまでのクランキング中は、ポンプ4からの作動油の圧力が低い状態にあるので、異常によって作動油が作動室146,246まで到達したとしても、各主規制部材150,250の凹部134,231への突入状態が、維持され得る。したがって、規制位相のうち内燃機関2の始動に最適なロック位相に回転位相をロックして、始動性を確保することができるのである。   As a result, the first and second main restricting members 150 and 250 are moved into the concave portions 134 and 250 by the restoring force of the first and second main elastic members 170 and 270 as shown in FIGS. The state of having entered 231 is continued. Here, in particular, during the cranking from when the internal combustion engine 2 is completely detonated until the start is completed, the pressure of the hydraulic oil from the pump 4 is low, so that the hydraulic oil reaches the working chambers 146 and 246 due to an abnormality. Even if it does, the rushing state to the recessed parts 134 and 231 of each main control member 150 and 250 may be maintained. Accordingly, the startability can be ensured by locking the rotation phase to the lock phase that is optimal for starting the internal combustion engine 2 in the regulation phase.

(III)このような始動の完了後において制御回路90は、駆動制御弁310への通電を制御して供給通路76からの分岐通路302を駆動通路300に連通させる。このとき、圧力上昇した作動油が通路76,302,300,145,245を通じて作動室146,246に導入されるので、第一及び第二副規制部材152,252を駆動する駆動力が発生する。   (III) After completion of such start-up, the control circuit 90 controls the energization of the drive control valve 310 to connect the branch passage 302 from the supply passage 76 to the drive passage 300. At this time, the hydraulic oil whose pressure has been increased is introduced into the working chambers 146 and 246 through the passages 76, 302, 300, 145 and 245, so that a driving force for driving the first and second sub-regulating members 152 and 252 is generated. .

以上の結果、第一及び第二副規制部材152,252が脱出方向Yに移動して係合部256が突出部251に係合することで、第一及び第二主規制部材150,250も脱出方向Yに移動する。これにより、第一主規制部材150がロック凹部134及び第一規制凹部131から脱出すると共に、第二主規制部材250が第二規制凹部231から脱出するので、回転位相の規制が解除されて任意の回転位相への変化が許容されることになる。したがって、この後においては、制御回路90が位相制御弁80への通電を制御してポンプ4からの作動油を進角室52〜54又は遅角室56〜58に導入することで、自由なバルブタイミング調整を実現することができるのである。   As a result, the first and second sub-regulating members 152 and 252 move in the escape direction Y and the engaging portion 256 engages with the protruding portion 251, so that the first and second main restricting members 150 and 250 are also engaged. Move in the escape direction Y. As a result, the first main restricting member 150 escapes from the lock recess 134 and the first restricting recess 131, and the second main restricting member 250 escapes from the second restricting recess 231. Is allowed to change to the rotational phase. Therefore, after this, the control circuit 90 controls the energization to the phase control valve 80 and introduces the hydraulic oil from the pump 4 into the advance chambers 52 to 54 or the retard chambers 56 to 58, so that it is free. Valve timing adjustment can be realized.

ここで、作動室146,246での作動油の油圧と第一及び第二副規制部材152,252等の挙動の関係について説明する。圧力上昇した作動油が第一及び第二規制通路145,245を通って作動室146,246に導入されると、受圧部154,254が作動室146,246の作動油からの圧力を受けて、第一及び第二副弾性部材172,272の弾性力に抗して第一及び第二副規制部材152,252が脱出方向Yに移動する。この脱出方向Yの移動に伴い、第一及び第二副規制部材152,252の係合部156,256が第一及び第二主規制部材150,250の突出部151,251に係合し、第一及び第二副規制部材152,252が第一及び第二主規制部材150,250を脱出方向Yに移動させるため、第一及び第二主規制部材150,250が第一及び第二規制凹部131,231から脱出し、位相の規制が解除される。   Here, the relationship between the hydraulic oil pressure in the working chambers 146 and 246 and the behavior of the first and second sub-regulating members 152 and 252 will be described. When the hydraulic oil whose pressure has increased is introduced into the working chambers 146 and 246 through the first and second regulating passages 145 and 245, the pressure receiving portions 154 and 254 receive pressure from the hydraulic oil in the working chambers 146 and 246. The first and second sub-regulating members 152 and 252 move in the escape direction Y against the elastic force of the first and second sub-elastic members 172 and 272. As the escape direction Y moves, the engaging portions 156 and 256 of the first and second sub-regulating members 152 and 252 engage with the protruding portions 151 and 251 of the first and second main restricting members 150 and 250, Since the first and second sub-regulating members 152 and 252 move the first and second main regulating members 150 and 250 in the escape direction Y, the first and second main regulating members 150 and 250 are the first and second regulating members. It escapes from the recessed parts 131 and 231 and the regulation of the phase is released.

次に、作動油の油圧が降下すると、受圧部154,254に加わっていた圧力が減少して第一及び第二副弾性部材172,272の弾性力が打ち勝つようになる。このため、第一及び第二副規制部材152,252の突入方向Xへの移動によって、作動油が第一及び第二規制通路145,245へ流出し始め、第一及び第二主規制部材150,250が突入方向Xに移動してカバー部材13の内面132に接触するようになる。このように第一及び第二主規制部材150,250がカバー部材13の内面132に当接して突入方向Xの移動が規制されている状態では、例えば低温の環境下等に起因する作動油の油圧降下によって作動油の粘度が上昇するにしたがい、第一及び第二副弾性部材172,272の弾性力により第一及び第二副規制部材152,252のみの突入方向Xの移動が進み、作動油はさらに第一及び第二規制通路145,245へ流出して、作動室146,246からの排出が促進する。さらに作動油の油圧降下が進むと、スリーブ141a,241aの対向する端面143に受圧部154,254が突き当たって作動室146,246が最小容積になるため、作動油は完全に排出されるようになる。   Next, when the hydraulic pressure of the hydraulic oil is lowered, the pressure applied to the pressure receiving portions 154 and 254 is reduced, and the elastic forces of the first and second auxiliary elastic members 172 and 272 are overcome. For this reason, hydraulic oil begins to flow out into the first and second restriction passages 145 and 245 due to the movement of the first and second auxiliary restriction members 152 and 252 in the entry direction X, and the first and second main restriction members 150. , 250 moves in the entry direction X and comes into contact with the inner surface 132 of the cover member 13. Thus, in the state where the first and second main regulating members 150 and 250 are in contact with the inner surface 132 of the cover member 13 and the movement in the entry direction X is regulated, for example, the hydraulic oil caused by a low temperature environment or the like As the viscosity of the hydraulic oil increases due to the hydraulic pressure drop, the first and second sub-restrictive members 152 and 252 move by the elastic force of the first and second sub-elastic members 172 and 272, and the operation proceeds. The oil further flows out into the first and second regulating passages 145 and 245, and discharge from the working chambers 146 and 246 is promoted. As the hydraulic oil pressure drops further, the pressure receiving portions 154 and 254 abut against the opposing end surfaces 143 of the sleeves 141a and 241a, and the working chambers 146 and 246 become the minimum volume, so that the hydraulic oil is completely discharged. Become.

(フェイルセーフ作動)
次に、内燃機関2が異常停止する場合のフェイルセーフ作動について説明する。
(Fail safe operation)
Next, a fail safe operation when the internal combustion engine 2 is abnormally stopped will be described.

(i)クラッチの締結異常等により内燃機関2が瞬間的に停止する異常停止時には、制御回路90から位相制御弁80への通電がカットされて、供給通路76が進角通路72に連通した状態となる。このとき、ポンプ4から通路76,72を通じて進角室52〜54に導入される作動油の圧力が急低下するので、当該圧力によってベーンロータ14に作用する力は消失し、回転位相は異常停止(瞬間停止)時の位相に保持される。   (I) When the internal combustion engine 2 stops instantaneously due to a clutch engagement abnormality or the like, the energization from the control circuit 90 to the phase control valve 80 is cut, and the supply passage 76 communicates with the advance passage 72 It becomes. At this time, since the pressure of the hydraulic oil introduced into the advance chambers 52 to 54 from the pump 4 through the passages 76 and 72 rapidly decreases, the force acting on the vane rotor 14 due to the pressure disappears, and the rotation phase stops abnormally ( The phase is maintained at the moment of instantaneous stop).

また、内燃機関2の異常停止時には、制御回路90から駆動制御弁310への通電もカットされて、ドレン通路304が駆動通路300に連通した状態となるので、第一及び第二副規制部材152,252を駆動する駆動力が消失する。その結果、通常作動の上記(I)に準じて第一及び第二副規制部材152,252が受圧部154,254を小径支持部141,241の端面143,243に当接させると共に、第一及び第二主規制部材150,250が異常停止時の回転位相に応じた移動位置に定位する。   Further, when the internal combustion engine 2 is abnormally stopped, the energization from the control circuit 90 to the drive control valve 310 is also cut off, and the drain passage 304 is in communication with the drive passage 300, so the first and second sub-regulator members 152. , 252 is lost. As a result, the first and second sub-regulating members 152 and 252 abut the pressure receiving portions 154 and 254 on the end surfaces 143 and 243 of the small-diameter support portions 141 and 241 in accordance with the above-described normal operation (I), and the first And the 2nd main control member 150,250 is localized to the movement position according to the rotation phase at the time of an abnormal stop.

したがって、この後においては、異常指令時の回転位相に応じた作動状態となるので、以下では、当該状態の詳細を説明する。   Therefore, after this, since it will be in the operation state according to the rotation phase at the time of abnormality command, the details of the state are explained below.

(i−1)異常停止時の回転位相が規制位相と異なる場合、即ち図14の最遅角位相を含む規制位相の領域外にある場合には、第一及び第二主弾性部材170,270の復原力により第一及び第二主規制部材150,250が、図12,20の如くカバー部材13の内面132に当接する。この当接により第一及び第二主規制部材150,250は、第一及び第二副規制部材152,252の係合部156,256から突出部151,251を離間させた状態で、カバー部材13の内面132よりも突入方向Xへの移動を規制される。したがって、カバー部材13の内面132よりも凹む凹部131,134,231には第一及び第二主規制部材250を突入させることができないので、ロック位相へのロックが実現されずに、内燃機関2の次の始動が待たれることになる。   (I-1) When the rotational phase at the time of abnormal stop is different from the regulation phase, that is, outside the regulation phase region including the most retarded angle phase in FIG. The first and second main regulating members 150 and 250 abut against the inner surface 132 of the cover member 13 as shown in FIGS. With this contact, the first and second main restricting members 150 and 250 cover the projecting portions 151 and 251 away from the engaging portions 156 and 256 of the first and second sub restricting members 152 and 252. The movement in the rushing direction X is more restricted than the inner surface 132 of 13. Therefore, since the first and second main regulating members 250 cannot be inserted into the recesses 131, 134, and 231 that are recessed from the inner surface 132 of the cover member 13, the internal combustion engine 2 is not locked without being locked. The next start will be awaited.

(i−2)異常停止時の回転位相が第一規制位相、又は第一規制位相及びロック位相の間である場合、通常作動の上記(I−1)の作動状態のうち異常停止時の回転位相に対応する状態として、第一主弾性部材170の復原力により第一主規制部材150が第一規制凹部131への突入状態となる。これに対して第二主規制部材250は、第二主弾性部材270の復原力によりカバー部材13の内面132に当接した状態となる。これらにより、ロック位相へのロックは実現されず、内燃機関2の次の始動が待たれることになる。   (I-2) When the rotation phase at the time of abnormal stop is between the first restriction phase or the first restriction phase and the lock phase, the rotation at the time of abnormal stop in the operation state of (I-1) of normal operation As a state corresponding to the phase, the first main restricting member 150 enters the first restricting recess 131 by the restoring force of the first main elastic member 170. On the other hand, the second main regulating member 250 comes into contact with the inner surface 132 of the cover member 13 by the restoring force of the second main elastic member 270. As a result, the lock to the lock phase is not realized, and the next start of the internal combustion engine 2 is awaited.

(i−3)異常停止時の回転位相がロック位相である場合には、第一主弾性部材170の復原力により第一主規制部材150がロック凹部134に突入嵌合し得るので、ロック位相へのロックが実現されて、内燃機関2の次の始動が待たれることになる。   (I-3) When the rotation phase at the time of an abnormal stop is the lock phase, the first main regulating member 150 can rush into the lock recess 134 by the restoring force of the first main elastic member 170, so the lock phase Thus, the next start of the internal combustion engine 2 is awaited.

(i−4)異常停止時の回転位相が図17の最進角位相、又ロック位相及び最進角位相の間である場合には、通常作動の上記(I−3),(I−4)の作動状態のうち異常停止時の回転位相に対応する状態にて、駆動部10が止まる。したがって、ロック位相へのロックが実現されずに、内燃機関2の次の始動が待たれることになる。   (I-4) When the rotational phase at the time of abnormal stop is between the most advanced angle phase of FIG. 17 and between the lock phase and the most advanced angle phase, (I-3), (I-4) The driving unit 10 stops in a state corresponding to the rotation phase at the time of abnormal stop in the operation state of). Therefore, the next start of the internal combustion engine 2 is awaited without realizing the lock to the lock phase.

(ii)異常停止後に始動指令に応じて内燃機関2を始動させるときには、制御回路90が位相制御弁80への通電を制御して、ポンプ4からの作動油を進角室52〜54に導入させる。それと共に制御回路90は、駆動制御弁310への通電を制御して、第一及び第二副規制部材152,252を駆動する駆動力を消失状態に維持する。これらの結果、内燃機関2の始動が完了するまでの間において回転位相は、異常停止時の回転位相と実質的に一致する始動指令時の回転位相に応じて、調整されることになる。以下、かかる始動指令時の回転位相に応じた調整の詳細を説明する。   (Ii) When starting the internal combustion engine 2 in response to a start command after an abnormal stop, the control circuit 90 controls energization to the phase control valve 80 and introduces hydraulic oil from the pump 4 into the advance chambers 52 to 54. Let At the same time, the control circuit 90 controls energization to the drive control valve 310 to maintain the driving force for driving the first and second sub-regulating members 152 and 252 in the disappeared state. As a result, until the start of the internal combustion engine 2 is completed, the rotation phase is adjusted according to the rotation phase at the start command that substantially matches the rotation phase at the time of abnormal stop. Hereinafter, details of the adjustment according to the rotation phase at the time of the start command will be described.

(ii−1)始動指令時の回転位相が規制位相と異なる場合、即ち図14の最遅角位相を含む規制位相の領域外にある場合には、変動トルクとしての負トルク並びに付勢部材120の復原力により、ベーンロータ14がハウジング11に対して進角側に相対回転し、それによって回転位相が進角側に変化する。その結果、通常作動の上記(I−1)に準じて、第一及び第二主規制部材150,250が第一及び第二規制凹部131,231に順次突入し、さらに第一主規制部材150がロック凹部134に突入嵌合する。   (Ii-1) When the rotation phase at the time of the start command is different from the regulation phase, that is, outside the regulation phase region including the most retarded phase in FIG. Due to the restoring force, the vane rotor 14 rotates relative to the housing 11 relative to the advance side, whereby the rotation phase changes toward the advance side. As a result, the first and second main restricting members 150 and 250 sequentially enter the first and second restricting recesses 131 and 231 in accordance with the normal operation (I-1), and further the first main restricting member 150. Enters the lock recess 134.

このとき、作動室146,246に作動油が残存していても、当該残存作動油の圧力は第一及び第二主規制部材150,250には実質的に及ばない。したがって、第一及び第二主規制部材150,250について、図12,20の如く突出部151,251から離間した第一及び第二副規制部材152,252の係合部156,256側に、即ち突入方向Xに高速駆動して、凹部131,134,231へと迅速に突入させることができる。   At this time, even if hydraulic oil remains in the working chambers 146 and 246, the pressure of the residual hydraulic oil does not substantially reach the first and second main regulating members 150 and 250. Accordingly, the first and second main regulating members 150 and 250 are arranged on the engaging portions 156 and 256 side of the first and second sub regulating members 152 and 252 spaced from the projecting portions 151 and 251 as shown in FIGS. That is, it is possible to rapidly drive into the recesses 131, 134, and 231 by driving at high speed in the entry direction X.

ここで、第一及び第二主規制部材150,250に対して凹部131,134,231を形成のカバー部材13側は、少なくともロック位相において、凹部131,231と連通する大気孔136,236により大気開放されることになる。また、第一及び第二主規制部材150,250に対してカバー部材13側とは反対側の連通室148,248は、少なくともロック位相において、貫通孔149,249を介して連通する大気孔136,236により大気開放されることになる。これらによれば、第一及び第二主規制部材150,250がカバー部材13側又はその反対側の連通室148,248から受ける移動抵抗、例えば負圧の発生による抵抗や漏れた作動油による抵抗等を低減して、それら主規制部材150,250の突入速度を高めることができる。しかも、第一及び第二主規制部材150,250に対してカバー部材13側とその反対側の連通室148,248とは、通孔159,259を通じて相互連通することで、大気孔136,236等の詰まり等による大気開放状態の悪化を抑制されている。故に、第一及び第二主規制部材150,250の突入速度に影響を与える移動抵抗の低減作用について、その発揮の確度を高めることができるのである。   Here, the cover member 13 side that forms the recesses 131, 134, and 231 with respect to the first and second main regulating members 150 and 250 has air holes 136 and 236 communicating with the recesses 131 and 231 at least in the lock phase. It will be open to the atmosphere. The communication chambers 148 and 248 on the opposite side to the cover member 13 side with respect to the first and second main regulating members 150 and 250 have an air hole 136 communicating with each other through the through holes 149 and 249 at least in the lock phase. , 236 is released to the atmosphere. According to these, the movement resistance received by the first and second main regulating members 150, 250 from the communication member 148, 248 on the cover member 13 side or the opposite side thereof, for example, resistance due to generation of negative pressure or resistance due to leaked hydraulic oil Etc. can be reduced, and the entry speed of the main regulating members 150 and 250 can be increased. In addition, the cover member 13 side and the communication chambers 148 and 248 on the opposite side to the first and second main regulating members 150 and 250 communicate with each other through the through holes 159 and 259, so that the air holes 136 and 236 are communicated. Deterioration of the air release state due to clogging or the like is suppressed. Therefore, it is possible to increase the accuracy of the effect of reducing the movement resistance that affects the rush speed of the first and second main regulating members 150 and 250.

加えて、第一及び第二副規制部材152,252が受圧部154,254を小径支持部141,241の端面143,243に当接させている始動指令時の状態では、図8,9,12,18〜20の如く第一及び第二連通経路158,258が形成されることなる。ここで第一及び第二連通経路158,258は、進角室52,53に連通する進角連通孔147,247に対して大気孔137,237を連通させることで、それら進角室52,53を大気開放させるものとなる。さらに第一及び第二連通経路158,258は、その中途部にある周溝部157,257の絞り作用により、大気の流通抵抗を作動油の流通抵抗よりも小さくすることができる。これらによれば、変動トルクとしての負トルク並びに付勢部材120の復原力により進角室52,53が容積拡大して負圧が発生することを、それら進角室52,53への大気導入によって抑制し得る。したがって、第一及び第二主規制部材150,250を凹部131,134,231に突入させるのに必要な回転位相の変化速度について、高めることができるのである。   In addition, in the state at the time of the start command in which the first and second sub-regulating members 152 and 252 have the pressure receiving portions 154 and 254 contact the end surfaces 143 and 243 of the small diameter support portions 141 and 241, FIGS. First and second communication paths 158 and 258 are formed as shown in FIGS. Here, the first and second communication paths 158 and 258 are communicated with the advance communication holes 147 and 247 communicating with the advance chambers 52 and 53, so that the advance chambers 137 and 237 communicate with each other. 53 is opened to the atmosphere. Further, the first and second communication paths 158 and 258 can make the atmospheric flow resistance smaller than the hydraulic oil flow resistance by the throttling action of the circumferential groove portions 157 and 257 in the middle of the first and second communication paths 158 and 258. According to these, the negative pressure is generated by the negative torque as the variable torque and the restoring force of the urging member 120, and the negative pressure is generated by introducing the atmospheric pressure into the advanced chambers 52, 53. Can be suppressed. Therefore, it is possible to increase the speed of change of the rotational phase necessary for causing the first and second main regulating members 150, 250 to enter the recesses 131, 134, 231.

以上より、始動指令時に回転位相が規制位相と異なっていたとしても、規制位相のうち始動に最適なロック位相に回転位相を短時間で戻すようにして、始動性を確実に確保することができる。   As described above, even if the rotation phase is different from the regulation phase at the time of the start command, the startability can be reliably ensured by returning the rotation phase to the lock phase optimum for the start in the regulation phase in a short time. .

(ii−2)始動指令時の回転位相が図11の第一規制位相、又は第一規制位相及びロック位相の間である場合には、上記(ii−1)に準ずる作動が始動指令時の回転位相に対応する状態から開始される。したがって、この場合にも、回転位相をロック位相に戻して、始動性を確保することができる。   (Ii-2) When the rotation phase at the time of the start command is between the first restriction phase of FIG. 11 or between the first restriction phase and the lock phase, the operation according to the above (ii-1) is It starts from the state corresponding to the rotational phase. Therefore, also in this case, the rotational phase can be returned to the lock phase to ensure startability.

(ii−3)始動指令時の回転位相が図10のロック位相である場合には、通常作動の上記(II)に準じた作動を実現して、始動性を確保することができる。   (Ii-3) When the rotation phase at the time of the start command is the lock phase of FIG. 10, the start operation can be ensured by realizing the operation according to the normal operation (II).

(ii−4)始動指令時の回転位相が図17の最進角位相、又はロック位相及び最進角位相の間である場合には、進角室52〜54への作動油の導入によって回転位相が最進角位相に調整されることになる。したがって、この場合には、規制位相としての最進角位相において内燃機関2の始動が実現されるので、その始動性を確保することができるのである。   (Ii-4) When the rotation phase at the time of the start command is between the most advanced angle phase of FIG. 17 or between the lock phase and the most advanced angle phase, the rotation is performed by introducing hydraulic oil into the advance angle chambers 52 to 54. The phase is adjusted to the most advanced angle phase. Therefore, in this case, the start of the internal combustion engine 2 is realized in the most advanced angle phase as the regulation phase, so that the startability can be ensured.

(iii)このような始動の完了後においては、通常作動の上記(III)に準じた作動により、ポンプ4からの作動油を進角室52〜54又は遅角室56〜58に導入することで、自由なバルブタイミング調整を実現することができる。またこのとき、第一及び第二副規制部材152,252は図13,21の如く脱出方向Yの遮断位置まで移動して、第一及び第二連通経路158,258を形成する周溝部157,257及び進角連通孔147,247の間を遮断する状態となる。これによれば、進角連通孔147,247に連通する進角室52,53の作動油が第一及び第二連通経路158,258を通じて外部に漏れる事態を抑制し得るので、バルブタイミング調整の応答性を高めることもできるのである。   (Iii) After completion of such starting, the hydraulic oil from the pump 4 is introduced into the advance chambers 52 to 54 or the retard chambers 56 to 58 by the operation according to the normal operation (III). Thus, free valve timing adjustment can be realized. At this time, the first and second sub-regulating members 152, 252 move to the blocking position in the escape direction Y as shown in FIGS. 13 and 21, and the circumferential groove portions 157, 158 forming the first and second communication paths 158, 258, 257 and the advance communication holes 147 and 247 are blocked. According to this, since the hydraulic fluid in the advance chambers 52 and 53 communicating with the advance communication holes 147 and 247 can be prevented from leaking to the outside through the first and second communication paths 158 and 258, the valve timing adjustment can be performed. Responsiveness can also be improved.

ここまで説明したように、第一実施形態によれば、内燃機関2の始動時には環境温度に拘らずに始動性を確保することができ、また内燃機関2の始動完了後には自由なバルブタイミング調整を実現することができるのである。   As described so far, according to the first embodiment, when the internal combustion engine 2 is started, the startability can be ensured regardless of the environmental temperature, and the valve timing can be freely adjusted after the start of the internal combustion engine 2 is completed. Can be realized.

尚、以上の第一実施形態では、第一規制凹部131、第二規制凹部231、又はロック凹部134が特許請求の範囲に記載の「凹部」に相当し、第一主規制部材150又は第二主規制部材250が特許請求の範囲に記載の「主規制部材」に相当し、第一副規制部材152又は第二副規制部材252が特許請求の範囲に記載の「副規制部材」に相当している。また、大気孔137又は大気孔237が特許請求の範囲に記載の「開放孔」に相当し、第一進角連通孔147又は第二進角連通孔247が特許請求の範囲に記載の「連通孔」に相当し、周溝部157又は周溝部257が特許請求の範囲に記載の「絞り部」に相当している。   In the first embodiment described above, the first restriction recess 131, the second restriction recess 231, or the lock recess 134 corresponds to the “recess” described in the claims, and is the first main restriction member 150 or the second restriction member. The main restricting member 250 corresponds to a “main restricting member” recited in the claims, and the first sub restricting member 152 or the second sub restricting member 252 corresponds to a “sub restricting member” recited in the claims. ing. Further, the atmospheric hole 137 or the atmospheric hole 237 corresponds to the “open hole” recited in the claims, and the first advance communication hole 147 or the second advance communication hole 247 is the “communication” recited in the claims. The peripheral groove portion 157 or the peripheral groove portion 257 corresponds to the “diaphragm portion” recited in the claims.

(第二実施形態)
図22〜25に示すように、本発明の第二実施形態は第一実施形態の変形例である。第二実施形態において第一及び第二副規制部材2152,2252が形成する周溝部2157,2257は、カバー部材13側とは反対側には開口しておらず、大径支持部142,242に形成される連通室148,248との間の連通を実質的に遮断されている。また、それぞれ進角室52,53と連通するようにベーンロータ14に貫通形成された第一及び第二進角連通孔147,247は、任意位置の第一及び第二副規制部材2152,2252により、対応する連通室148,248との間の連通を実質的に遮断される。さらに、それぞれ遅角室56,57と連通するようにベーンロータ14に貫通形成された第一及び第二遅角連通孔2147,2247は、任意位置の第一及び第二副規制部材2152,2252により、対応する連通室148,248との間の連通を実質的に遮断される。
(Second embodiment)
As shown in FIGS. 22-25, 2nd embodiment of this invention is a modification of 1st embodiment. In the second embodiment, the circumferential groove portions 2157 and 2257 formed by the first and second sub-regulating members 2152 and 2252 are not opened on the side opposite to the cover member 13 side, and the large diameter support portions 142 and 242 are not opened. The communication between the formed communication chambers 148 and 248 is substantially blocked. Further, the first and second advance communication holes 147 and 247 formed through the vane rotor 14 so as to communicate with the advance chambers 52 and 53 are respectively defined by first and second sub-regulator members 2152 and 2252 at arbitrary positions. The communication between the corresponding communication chambers 148 and 248 is substantially blocked. Further, first and second retard communication holes 2147 and 2247 formed through the vane rotor 14 so as to communicate with the retard chambers 56 and 57 are respectively defined by first and second sub-regulator members 2152 and 2252 at arbitrary positions. The communication between the corresponding communication chambers 148 and 248 is substantially blocked.

以上の構成により第一及び第二副規制部材2152,2252は、図23,25の如く脱出方向Yの遮断位置に移動することで、対応する進角連通孔147,247及び遅角連通孔2147,2247の間の連通を遮断するようになっている。また一方、第一及び第二副規制部材2152,2252は、図22,24の如く遮断位置よりも突入方向Xに移動することで、対応する進角連通孔147,247及び遅角連通孔2147,2247の間を周溝部2157,2257により連通させるようになっている。   With the above configuration, the first and second sub-regulating members 2152 and 2252 move to the blocking positions in the escape direction Y as shown in FIGS. 23 and 25, so that the corresponding advance communication holes 147 and 247 and retard communication holes 2147 are obtained. , 2247 is cut off. On the other hand, the first and second sub-regulating members 2152 and 2252 move in the entry direction X from the blocking position as shown in FIGS. 22 and 24, so that the corresponding advance communication holes 147 and 247 and retard communication holes 2147 correspond to each other. , 2247 are communicated with each other by peripheral groove portions 2157, 2257.

このような第二実施形態では、異常停止時及び始動指令時の回転位相が規制位相と異なる場合において、図22,24の如く第一及び第二副規制部材2152,2252が受圧部154,254を小径支持部141,241の端面143,243に当接させた状態となる。このとき、進角連通孔147,247と遅角連通孔2147,2247との間が第一及び第二副規制部材2152,2252の周溝部2157,2257により連通するので、遅角室56,57に作動油が残存していたとしても、当該残存作動油を進角室52,53に排出可能となる。これによれば、回転位相を進角側に変化させて第一及び第二主規制部材150,250を凹部131,134,231に突入させつつ、内燃機関2を始動させる際に、遅角室56,57の残存作動油に起因して回転位相の変化速度が低下する事態を抑制し得る。したがって、第二実施形態によっても、回転位相を始動に最適なロック位相に短時間で戻すようにして、始動性を確実に確保することができる。   In such a second embodiment, when the rotation phase at the time of abnormal stop and the start command is different from the regulation phase, the first and second sub regulation members 2152 and 2252 are pressure receiving portions 154 and 254 as shown in FIGS. Is brought into contact with the end surfaces 143 and 243 of the small diameter support portions 141 and 241. At this time, the advance communication holes 147 and 247 and the retard communication holes 2147 and 2247 communicate with each other through the circumferential groove portions 2157 and 2257 of the first and second sub-regulator members 2152 and 2252. Even if the hydraulic oil remains, the residual hydraulic oil can be discharged into the advance chambers 52 and 53. According to this, when the internal combustion engine 2 is started while changing the rotation phase to the advance side and causing the first and second main regulating members 150 and 250 to enter the recesses 131, 134 and 231, the retard chamber It is possible to suppress a situation in which the change speed of the rotational phase is reduced due to the remaining hydraulic oils 56 and 57. Therefore, according to the second embodiment as well, the startability can be reliably ensured by returning the rotational phase to the optimum lock phase for starting in a short time.

加えて第二実施形態では、内燃機関2の始動完了後において第一及び第二副規制部材2152,2252が、図23,25の如く脱出方向Yの遮断位置まで移動して、進角連通孔147,247と遅角連通孔2147,2247との間を遮断する状態となる。これによれば、進角室52,53及び遅角室56,57の一方の作動油が他方に漏れる事態を抑制し得るので、バルブタイミング調整の応答性を高めることができるのである。   In addition, in the second embodiment, after the start of the internal combustion engine 2 is completed, the first and second sub-regulating members 2152 and 2252 move to the blocking position in the escape direction Y as shown in FIGS. It will be in the state which interrupts | blocks between 147,247 and the retard communication hole 2147,2247. According to this, it is possible to suppress a situation in which one hydraulic oil of the advance chambers 52 and 53 and the retard chambers 56 and 57 leaks to the other, so that the responsiveness of the valve timing adjustment can be improved.

尚、以上の第二実施形態では、第一副規制部材2152又は第二副規制部材2252が特許請求の範囲に記載の「副規制部材」に相当し、第一進角連通孔147又は第二進角連通孔247が特許請求の範囲に記載の「進角連通孔」に相当し、第一遅角連通孔2147又は第二遅角連通孔2247が特許請求の範囲に記載の「遅角連通孔」に相当する。   In the second embodiment described above, the first sub-regulating member 2152 or the second sub-regulating member 2252 corresponds to the “sub-regulating member” recited in the claims, and the first advance communication hole 147 or the second sub-regulating member 2252. The advance communication hole 247 corresponds to the “advance communication hole” described in the claims, and the first retard communication hole 2147 or the second retard communication hole 2247 is the “retard communication hole” described in the claims. Corresponds to “hole”.

(第三実施形態)
図26〜29に示すように、本発明の第三実施形態は第二実施形態の変形例である。第三実施形態において常時大気開放且つ連通室148,248に常時連通の大気孔3137,3237は、ロック位相を含む回転位相の全領域でそれぞれ第一及び第二貫通孔149,249と連通するようになっている。
(Third embodiment)
As shown in FIGS. 26-29, 3rd embodiment of this invention is a modification of 2nd embodiment. In the third embodiment, the atmospheric holes 3137 and 3237 that are always open to the atmosphere and are always in communication with the communication chambers 148 and 248 communicate with the first and second through holes 149 and 249, respectively, in the entire rotational phase region including the lock phase. It has become.

また、第三実施形態の第一及び第二副規制部材3152,3252は、周溝部2157,2257の底部を径方向に貫通して周溝部2157,2257及び連通室148,248間を連通させる円筒孔状の第一及び第二呼吸通路3160,3260を、それぞれ周方向に複数ずつ形成している。ここで、第一及び第二進角連通孔147,247と第一及び第二遅角連通孔2147,2247とは、図27,29の如き遮断位置よりも突入方向Xとなる連通位置において、対応する周壁部2157,2257と図26,28の如く対向して連通可能となっている。   Further, the first and second sub-regulating members 3152 and 3252 of the third embodiment are cylinders that pass through the bottoms of the circumferential groove portions 2157 and 2257 in the radial direction and communicate between the circumferential groove portions 2157 and 2257 and the communication chambers 148 and 248. A plurality of hole-shaped first and second breathing passages 3160 and 3260 are formed in the circumferential direction. Here, the first and second advance communication holes 147 and 247 and the first and second retard communication holes 2147 and 2247 are in the communication position in the entry direction X rather than the blocking position as shown in FIGS. The corresponding peripheral wall portions 2157 and 2257 can communicate with each other as shown in FIGS.

こうした構成により第一及び第二副規制部材3152,3252は、図27,29の如く脱出方向Yの遮断位置に移動することで、対応する進角連通孔147,247及び遅角連通孔2147,2247間の連通並びに当該間の大気孔3137,3237との連通を遮断する。また一方、第一及び第二副規制部材3152,3252は、図26,28の如く遮断位置よりも突入方向Xに移動することで、対応する進角連通孔147,247及び遅角連通孔2147,2247間を周溝部2157,2257により連通させると共に、当該間を第一及び第二呼吸通路3160,3260により大気孔3137,3237と連通させる。   With such a configuration, the first and second sub-regulating members 3152 and 3252 move to the blocking positions in the escape direction Y as shown in FIGS. 27 and 29, so that the corresponding advance communication holes 147 and 247 and retard communication holes 2147, The communication between 2247 and the communication with the air holes 3137 and 3237 are blocked. On the other hand, the first and second sub-regulating members 3152 and 3252 move in the entry direction X from the blocking position as shown in FIGS. 26 and 28, so that the corresponding advance communication holes 147 and 247 and retard communication holes 2147. , 2247 are communicated with each other by peripheral groove portions 2157, 2257, and the air gaps 3137, 3237 are communicated with each other by first and second respiratory passages 3160, 3260.

このように第三実施形態では、大気孔3137,3237から第一及び第二貫通孔149,249、連通室148,248、第一及び第二呼吸通路3160,3260、並びに周溝部2157,2257を経て第一及び第二進角連通孔147,247と第一及び第二遅角連通孔2147,2247とに至る第一及び第二連通経路3158,3258が形成されている。そして、それら第一及び第二連通経路3158,3258においては、第一及び第二呼吸通路3160,3260の流通面積を絞って大気の流通抵抗を作動油の流通抵抗よりも小さくするように、第一及び第二呼吸通路3160,3260の内径が調整されている。   As described above, in the third embodiment, the first and second through holes 149 and 249, the communication chambers 148 and 248, the first and second breathing passages 3160 and 3260, and the circumferential grooves 2157 and 2257 are formed from the atmospheric holes 3137 and 3237. First and second communication paths 3158 and 3258 are formed through the first and second advance communication holes 147 and 247 and the first and second retard communication holes 2147 and 2247. In the first and second communication paths 3158 and 3258, the first and second breathing passages 3160 and 3260 are narrowed so that the atmospheric flow resistance is smaller than the hydraulic oil flow resistance. The inner diameters of the first and second breathing passages 3160 and 3260 are adjusted.

以上の第三実施形態では、異常停止時及び始動指令時の回転位相が規制位相と異なる場合において、図26,28の如く第一及び第二副規制部材3152,3252が受圧部154,254を小径支持部141,241の端面143,243に当接させた状態となる。このとき、進角連通孔147,247及び遅角連通孔2147,2247間が第一及び第二副規制部材3152,3252の周溝部2157,2257により連通するので、遅角室56,57に作動油が残存していたとしても、当該残存作動油を進角室52,53に排出可能となる。またこのとき、進角連通孔147,247及び遅角連通孔2147,2247間は周溝部2157,2257及び絞り作用の第一及び第二呼吸通路3160,3260により大気孔3137,3237と連通するので、高い粘度によって作動油の移動が困難な状態(例えば、作動油の劣化状態や低温状態等)でも、進角室52,53及び遅角室56,57への大気導入が容易となる。これらによれば、回転位相を進角側に変化させて第一及び第二主規制部材150,250を凹部131,134,231に突入させつつ、内燃機関2を始動させる際に、遅角室56,57の残存作動油と進角室52,53における負圧の発生とに起因して回転位相の変化速度が低下する事態を、抑制し得る。したがって、第三実施形態によれば、回転位相を始動に最適なロック位相に短時間で戻すようにして、始動性の確実な確保効果を高めることができる。   In the third embodiment described above, when the rotation phase at the time of abnormal stop and the start command is different from the regulation phase, the first and second sub regulation members 3152 and 3252, as shown in FIGS. It will be in the state contact | abutted to end surface 143,243 of the small diameter support parts 141,241. At this time, the advance communication holes 147 and 247 and the retard communication holes 2147 and 2247 communicate with each other through the peripheral groove portions 2157 and 2257 of the first and second sub-regulator members 3152 and 3252, so that the retard chambers 56 and 57 are operated. Even if the oil remains, the remaining hydraulic oil can be discharged to the advance chambers 52 and 53. Further, at this time, the advance communication holes 147 and 247 and the retard communication holes 2147 and 2247 communicate with the atmospheric holes 3137 and 3237 through the circumferential groove portions 2157 and 2257 and the first and second respiration passages 3160 and 3260 of the throttle action. Even in a state where it is difficult to move the hydraulic oil due to the high viscosity (for example, a deteriorated state of the hydraulic oil or a low temperature state), it is easy to introduce the atmosphere into the advance chambers 52 and 53 and the retard chambers 56 and 57. According to these, when the internal combustion engine 2 is started while changing the rotation phase to the advance side and causing the first and second main regulating members 150 and 250 to enter the recesses 131, 134 and 231, the retard chamber It is possible to suppress a situation in which the change speed of the rotational phase is reduced due to the remaining hydraulic oil 56 and 57 and the generation of negative pressure in the advance chambers 52 and 53. Therefore, according to the third embodiment, the rotational phase is returned to the lock phase optimum for starting in a short time, and the effect of ensuring startability can be enhanced.

加えて第三実施形態では、内燃機関2の始動完了後に第一及び第二副規制部材3152,3252が図27,29の如く脱出方向Yの遮断位置まで移動して、遮断状態となった進角連通孔147,247及び遅角連通孔2147,2247の間が大気孔3137,3237に対しても遮断される。これによれば、進角室52,53及び遅角室56,57の一方の作動油がその他方と外部とに漏出する事態を抑制し得るので、バルブタイミング調整の応答性を飛躍的に高めることができる。   In addition, in the third embodiment, after the start of the internal combustion engine 2, the first and second sub-regulating members 3152 and 3252 move to the shut-off position in the escape direction Y as shown in FIGS. The space between the corner communication holes 147 and 247 and the retard communication holes 2147 and 2247 is also blocked from the atmospheric holes 3137 and 3237. According to this, it is possible to suppress a situation in which one hydraulic fluid of the advance chambers 52 and 53 and the retard chambers 56 and 57 leaks to the other side and the outside, so that the responsiveness of the valve timing adjustment is greatly improved. be able to.

さらに加えて第三実施形態では、内燃機関2の停止状態において第一及び第二副規制部材3152,3252が進角連通孔147,247及び遅角連通孔2147,2247間を大気孔3137,3237と連通させる状態となる。これによれば、内燃機関2の運転終了後において進角室52,53及び遅角室56,57の残留作動油を例えば自重により排出させる際に、当該残留作動油と大気との置換が容易となる。したがって、内燃機関2の始動前には、遅角室56,57の残存作動油自体が低減されることになるので、回転位相の変化速度低下の抑制による始動性の確保効果をさらに高めることもできるのである。   In addition, in the third embodiment, when the internal combustion engine 2 is stopped, the first and second sub-regulating members 3152 and 3252 are connected between the advance communication holes 147 and 247 and the retard communication holes 2147 and 2247 through the air holes 3137 and 3237. It will be in the state of communicating with. According to this, when the residual hydraulic fluid in the advance chambers 52 and 53 and the retard chambers 56 and 57 is discharged, for example, by its own weight after the operation of the internal combustion engine 2 is finished, the replacement of the residual hydraulic fluid with the atmosphere is easy. It becomes. Therefore, before the internal combustion engine 2 is started, the remaining hydraulic oil itself in the retarded angle chambers 56 and 57 is reduced, so that it is possible to further enhance the startability securing effect by suppressing the decrease in the rotational speed of the rotational phase. It can be done.

尚、以上の第三実施形態では、第一副規制部材3152又は第二副規制部材3252が特許請求の範囲に記載の「副規制部材」に相当し、大気孔3137又は大気孔3237が特許請求の範囲に記載の「開放孔」に相当し、第一呼吸通路3160又は第二呼吸通路3260が特許請求の範囲に記載の「絞り部」に相当する。   In the third embodiment described above, the first sub-regulating member 3152 or the second sub-regulating member 3252 corresponds to the “sub-regulating member” recited in the claims, and the atmospheric hole 3137 or the atmospheric hole 3237 is claimed. The first breathing passage 3160 or the second breathing passage 3260 corresponds to the “throttle portion” described in the claims.

(第四実施形態)
本発明の第四実施形態は、図33〜54を参照して、より好ましい実施形態を示すものである。また図33〜54において、上記の第一実施形態から第三実施形態において説明する構成要素と同一符号を付した構成要素は、同一のものであり、同様の作動及び作用効果を奏する。
(Fourth embodiment)
4th embodiment of this invention shows a more preferable embodiment with reference to FIGS. 33 to 54, the same reference numerals as those described in the first to third embodiments are the same, and exhibit the same operation and effect.

以下、図33〜図50を参照してベーンロータ14の回転位相に対応する第一規制構造及び第二規制構造の作動状態を説明する。   Hereinafter, the operating states of the first restriction structure and the second restriction structure corresponding to the rotational phase of the vane rotor 14 will be described with reference to FIGS. 33 to 50.

まず、回転位相が図39に示す最遅角位相であるときには、図40に示すように、第一主規制部材150は、突入方向Xの端部が規制ストッパ131aよりも遅角側に形成されるカバー部材13の内面132に当接する位置にあるため、第一主弾性部材170からの弾性力によって突入方向Xに押されつつも、当該内面132よりも凹む凹部131,134には突入できない状態にある。さらに、第二主規制部材250についても、図41に示すように、突入方向Xの端部が規制ストッパ232aよりも遅角側に形成されるカバー部材13の内面132に当接する位置にあるため、第二主弾性部材270からの弾性力によって突入方向Xに押されても、当該内面132よりも凹む第二規制凹部231には突入できない状態にある。   First, when the rotational phase is the most retarded angle phase shown in FIG. 39, as shown in FIG. 40, the first main regulating member 150 is formed such that the end in the entry direction X is on the more retarded side than the regulating stopper 131a. Since the cover member 13 is in a position where it abuts against the inner surface 132 of the cover member 13, the cover member 13 is pushed in the entry direction X by the elastic force from the first main elastic member 170, but cannot enter the recesses 131 and 134 that are recessed from the inner surface 132. It is in. Further, as shown in FIG. 41, the second main regulating member 250 is also in a position where the end in the entry direction X is in contact with the inner surface 132 of the cover member 13 formed on the retard side with respect to the regulating stopper 232a. Even if it is pushed in the entry direction X by the elastic force from the second main elastic member 270, it cannot enter the second restriction recess 231 that is recessed from the inner surface 132.

このような最遅角位相の場合には、変動トルクとしての負トルク及び付勢部材120の復原力によりベーンロータ14がハウジング11に対して進角側に相対回転するため、回転位相は進角側に変化する。この進角側への位相変化により回転位相が図36に示すように、最遅角位相から進角側に向けて一回目に到来する第一規制位相に達すると、第一主規制部材150は、図37に示すように、突入方向Xの端部全体が規制ストッパ131aよりも進角側に位置するようになる。これにより、第一主規制部材150は、第一主弾性部材170の第一主復原力によって突入方向Xに移動して第一規制凹部131に突入する。したがって、第一規制位相よりも遅角側への位相変化が規制されるようになる。また、第二主規制部材250は、図38に示すように、突入方向Xの端部の一部分が、まだ規制ストッパ232aよりも遅角側に形成されるカバー部材13の内面132に当接する位置にあるため、第二主弾性部材270からの弾性力によって突入方向Xに押されても、当該内面132よりも凹む第二規制凹部231の浅底部232には突入できない状態にある。   In the case of such a most retarded phase, the vane rotor 14 rotates relative to the housing 11 with respect to the housing 11 due to the negative torque as the variable torque and the restoring force of the urging member 120. To change. When the rotational phase reaches the first regulation phase that arrives for the first time from the most retarded phase toward the advance side, as shown in FIG. As shown in FIG. 37, the entire end portion in the entry direction X is positioned on the advance side with respect to the restriction stopper 131a. Accordingly, the first main regulating member 150 moves in the entry direction X by the first main restoring force of the first main elastic member 170 and enters the first restriction recess 131. Therefore, the phase change to the retard side from the first regulation phase is regulated. Further, as shown in FIG. 38, the second main regulating member 250 is a position where a part of the end portion in the entry direction X is still in contact with the inner surface 132 of the cover member 13 formed on the retard side with respect to the regulating stopper 232a. Therefore, even if it is pushed in the entry direction X by the elastic force from the second main elastic member 270, it cannot enter the shallow bottom portion 232 of the second regulating recess 231 that is recessed from the inner surface 132.

このような第一規制位相から進角側への位相変化が進行することにより、回転位相が図42に示すように、最遅角位相から進角側に向けて二回目に到来する第二規制位相に達すると、第二主規制部材250が、図44に示すように突入方向Xの端部全体が規制ストッパ233aよりも進角側に位置するようになる。これにより、第二主規制部材250は、第二主弾性部材270の第二主復原力によって突入方向Xに移動して第二規制凹部231の浅底部232に突入する。したがって、第二規制位相よりも遅角側への位相変化が規制されるようになる。また、第一主規制部材150は、図43に示すように、突入方向Xの端面の一部分が、まだロック凹部134の遅角側の内壁よりも遅角寄りに位置するため、第一主弾性部材170からの弾性力によって突入方向Xに押されても、ロック凹部134に突入できず、第一規制凹部131に突入したままである。   As the phase change from the first restriction phase to the advance side proceeds, the second restriction arrives the second time from the most retarded phase toward the advance side as shown in FIG. When the phase is reached, as shown in FIG. 44, the second main restricting member 250 has its entire end portion in the entry direction X positioned on the more advanced side than the restricting stopper 233a. Accordingly, the second main regulating member 250 moves in the entry direction X by the second main restoring force of the second main elastic member 270 and enters the shallow bottom portion 232 of the second regulating recess 231. Therefore, the phase change to the retard side from the second regulation phase is regulated. Further, as shown in FIG. 43, the first main regulating member 150 has a first main elasticity because a part of the end face in the entry direction X is still located closer to the retarding side than the inner wall of the locking recess 134 on the retarding side. Even if it is pushed in the entry direction X by the elastic force from the member 170, it cannot enter the lock recess 134 and remains in the first restriction recess 131.

第二規制位相からさらに、進角側への位相変化により回転位相が図45に示すように、最遅角位相から進角側に向けて三回目に到来する第三規制位相に達すると、第二主規制部材250は、図47に示すように、突入方向Xの端部が規制ストッパ233aよりも進角側に位置するようになる。これにより、第二主規制部材250は、第二主弾性部材270の第二主復原力によって突入方向Xに移動して第二規制凹部231の深底部233に突入する。したがって、第三規制位相よりも遅角側への位相変化が規制されるようになる。このとき、第一主規制部材150は、図46に示すように、二段状に形成された突入方向Xの端部の外周縁部がまだ第一規制凹部131に位置するため、第一主弾性部材170からの弾性力によって突入方向Xに押されても、第一規制凹部131に突入したままである。   When the rotation phase reaches the third regulation phase that arrives for the third time from the most retarded phase toward the advance side as shown in FIG. As shown in FIG. 47, the two main regulating member 250 has an end portion in the entry direction X positioned on the advance side with respect to the regulating stopper 233a. As a result, the second main regulating member 250 moves in the entry direction X by the second main restoring force of the second main elastic member 270 and enters the deep bottom portion 233 of the second regulating recess 231. Therefore, the phase change to the retard side with respect to the third regulation phase is regulated. At this time, as shown in FIG. 46, the first main regulating member 150 has the first main regulating member 150 because the outer peripheral edge portion of the end portion in the entry direction X formed in two steps is still located in the first regulating concave portion 131. Even if the elastic member 170 is pushed in the entry direction X by the elastic force, it remains in the first restriction recess 131.

第三規制位相から進角側へのさらなる位相変化により回転位相が図33に示すように、ロック位相に達すると、第一主規制部材150は、図34に示すように、第一規制凹部131の進角側端部の規制ストッパ131bにより係止され、付勢部材120の復原力により規制ストッパ131bに押し当てられるとともに、第一主弾性部材170の第一主復原力により付勢されて、第一規制凹部131側からロック凹部134に突入して嵌合する。したがって、回転位相がロック位相に規制されてロックされるようになる。このとき、第二主規制部材250は、図45に示すように第一規制凹部131に突入したままである。   When the rotation phase reaches the lock phase as shown in FIG. 33 due to the further phase change from the third restriction phase to the advance angle side, the first main restriction member 150, as shown in FIG. And is pressed against the restriction stopper 131b by the restoring force of the urging member 120 and urged by the first main restoring force of the first main elastic member 170, The first restricting recess 131 is inserted into the lock recess 134 and fitted. Therefore, the rotation phase is regulated and locked by the lock phase. At this time, the second main restricting member 250 remains in the first restricting recess 131 as shown in FIG.

回転位相が図48に示す最進角位相である場合には、図50に示すように、第二主規制部材250は、突入方向Xの端部が第二規制凹部231の進角側の内壁よりも遅角寄りに位置する。これにより、第二主規制部材250は、第二主弾性部材270の第二主復原力によって突入方向Xに移動して第二規制凹部231の深底部233への突入状態にある。また、第一主規制部材150については、図50に示すように、突入方向Xの端部が規制ストッパ131bよりも進角側に形成されるカバー部材13の内面132に当接する位置にあるため、第一主弾性部材170からの弾性力によって突入方向Xに押されても、当該内面132よりも凹む第一規制凹部131には突入できない状態にある。   When the rotational phase is the most advanced angle phase shown in FIG. 48, as shown in FIG. 50, the second main restricting member 250 has an inner wall on the advance angle side of the second restricting recess 231 whose end in the entry direction X is It is located closer to the angle. As a result, the second main regulating member 250 is moved in the entry direction X by the second main restoring force of the second main elastic member 270 and is in the entry state into the deep bottom portion 233 of the second restriction recess 231. Further, as shown in FIG. 50, the first main regulating member 150 is in a position where the end in the entry direction X is in contact with the inner surface 132 of the cover member 13 formed on the advance side with respect to the regulating stopper 131b. Even if it is pushed in the entry direction X by the elastic force from the first main elastic member 170, it cannot enter the first restriction recess 131 that is recessed from the inner surface 132.

次に、図51〜図54を参照して、作動室146,246での作動油の油圧と第一及び第二副規制部材152,252等の挙動の関係について説明する。図51〜図54は、第一規制構造について説明する図であるが、第二規制構造についても、以下に説明する第一規制構造の作動状態と同様である。   Next, the relationship between the hydraulic oil pressure in the working chambers 146 and 246 and the behavior of the first and second sub-regulating members 152 and 252 will be described with reference to FIGS. 51 to 54 are diagrams illustrating the first restriction structure, but the second restriction structure is the same as the operating state of the first restriction structure described below.

圧力上昇した作動油が第一規制通路145を通って作動室146に導入されると、図51に示すように、作動室146の圧力が上昇して受圧部154が脱出方向Yに押圧されるため、第一副規制部材152が第一副弾性部材172の弾性力に抗して第一主規制部材150の外側を脱出方向Yに摺動する。作動室146への作動油の流入及び第一副規制部材152の脱出方向Yへの移動が進むと、第一副規制部材152の係合部156が第一主規制部材150の突出部151に接触して係合し、さらに第一副規制部材152と第一主規制部材150が一体となって脱出方向Yに移動する。これにより、第一主規制部材150が脱出方向Yへ移動するにつれて第一規制凹部131から脱出し、位相の規制が解除されることになる。   When the hydraulic oil whose pressure has increased is introduced into the working chamber 146 through the first restriction passage 145, the pressure in the working chamber 146 rises and the pressure receiving portion 154 is pressed in the escape direction Y as shown in FIG. Therefore, the first sub regulating member 152 slides in the escape direction Y outside the first main regulating member 150 against the elastic force of the first sub elastic member 172. When the inflow of hydraulic oil into the working chamber 146 and the movement of the first sub-regulating member 152 in the escape direction Y proceed, the engaging portion 156 of the first sub-regulating member 152 becomes the protruding portion 151 of the first main regulating member 150. The first sub-regulating member 152 and the first main regulating member 150 are moved together in the escape direction Y. Thereby, as the first main regulating member 150 moves in the escape direction Y, it escapes from the first regulating recess 131 and the regulation of the phase is released.

次に、作動油の油圧が降下する状況になると、図52に示すように、受圧部154に押圧していた圧力が減少し、これに対して第一副弾性部材172の弾性力が打ち勝つようになり、第一副規制部材152を突入方向Xへ押し返すようになる。このため、第一副規制部材152の突入方向Xへの移動によって、作動油が作動室146から押し出されて第一規制通路145へ流出し始めるとともに、第一主規制部材150が突入方向Xに移動してカバー部材13の内面132に接触するようになる。図52の如く第一主規制部材150がカバー部材13の内面132に当接して突入方向Xへの移動が規制されている状態では、例えば低温の環境下等に起因する作動油の油圧降下によって作動油の粘度が上昇するにしたがい、図53に示すように第一副弾性部材172の弾性力により押し返されて第一副規制部材152のみが第一主規制部材150の外側を突入方向Xに摺動するようになる。このため、作動室146の容積が減少して、作動油はさらに第一規制通路145へ流出し、作動室146からの排出が促進するようになる。さらに第一副規制部材152のみの突入方向Xへの摺動が進むと、図54に示すように第一副規制部材152の受圧部154がスリーブ141aの端面143に突き当たって作動室146の容積が最小になるため、作動油は作動室146から完全に流出して作動油の排出が完了する。   Next, when the hydraulic oil pressure drops, as shown in FIG. 52, the pressure pressed against the pressure receiving portion 154 decreases, and the elastic force of the first secondary elastic member 172 overcomes this. Thus, the first sub regulating member 152 is pushed back in the entry direction X. Therefore, when the first sub-regulating member 152 moves in the entry direction X, the hydraulic oil is pushed out of the working chamber 146 and starts to flow out into the first restriction passage 145, and the first main restriction member 150 is moved in the entry direction X. It moves and comes into contact with the inner surface 132 of the cover member 13. In a state where the first main regulating member 150 is in contact with the inner surface 132 of the cover member 13 and the movement in the entry direction X is restricted as shown in FIG. 52, for example, due to the hydraulic oil pressure drop caused by a low temperature environment or the like. As the viscosity of the hydraulic oil increases, as shown in FIG. 53, only the first sub-regulating member 152 is pushed back by the elastic force of the first sub-elastic member 172 and enters the outside of the first main regulating member 150 in the entry direction X. Will come to slide. For this reason, the volume of the working chamber 146 decreases, and the working oil further flows out into the first restriction passage 145, and the discharge from the working chamber 146 is promoted. Further, when only the first sub-regulating member 152 slides in the entry direction X, the pressure receiving portion 154 of the first sub-regulating member 152 hits the end surface 143 of the sleeve 141a as shown in FIG. 54, and the volume of the working chamber 146 is increased. Therefore, the hydraulic oil completely flows out of the working chamber 146, and the discharge of the hydraulic oil is completed.

(他の実施形態)
以上、本発明の複数の実施形態について説明したが、本発明はそれらの実施形態に限定して解釈されるものではなく、その要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
(Other embodiments)
Although a plurality of embodiments of the present invention have been described above, the present invention is not construed as being limited to these embodiments, and can be applied to various embodiments without departing from the scope of the present invention. .

具体的に第一〜第三実施形態では、第二規制凹部231、第二主規制部材250、第二副規制部材252,2252,3252、第二主弾性部材270及び第二副弾性部材272の組を設けないようにしてもよい。また、第一〜第三実施形態では、図30に変形例(図30は、規制部材150,152の組の場合の変形例)を示すように、主規制部材150,250及び副規制部材152,252,2152,2252,3152,3252を共に板状に形成してもよく、この場合には同図の(a)に示すように、主規制部材150,250を挟む形態で一対の副規制部材152,252,2152,2252,3152,3252を設けることが好ましい。さらに第一〜第三実施形態では、図31に変形例(図31は、小径支持部141の変形例)を示すように、小径支持部141,241をベーンロータ14の母材自体により形成してもよい。またさらに第一〜第三実施形態では、付勢部材120、ハウジング溝102及びロータ溝112の組を設けないようにしてもよい。加えて第一〜第三実施形態では、進角及び遅角の関係を逆にして実施するようにしてもよい。さらに加えて第三実施形態では、副規制部材3152,3252において周溝部2157,2257の底部に呼吸通路3160,3260を設けたが、図32に変形例(図32は、副規制部材3152の変形例)を示すように、副規制部材3152,3252の端部において周溝部2157,2257の側部を開放することにより呼吸通路3160,3260を形成しても、同様の作用を得ることができる。   Specifically, in the first to third embodiments, the second restriction recess 231, the second main restriction member 250, the second sub restriction members 252, 2252, 3252, the second main elastic member 270, and the second sub elastic member 272 are arranged. A set may not be provided. In the first to third embodiments, the main regulating members 150 and 250 and the sub regulating member 152 are shown in FIG. 30 as a modified example (FIG. 30 shows a modified example in the case of a set of the regulating members 150 and 152). , 252, 2152, 2252, 3152, 3252 may be formed in a plate shape. In this case, as shown in FIG. Preferably, members 152, 252, 2152, 2252, 3152, 3252 are provided. Furthermore, in 1st-3rd embodiment, as FIG. 31 shows a modification (FIG. 31 is a modification of the small diameter support part 141), the small diameter support parts 141 and 241 are formed by the base material itself of the vane rotor 14. Also good. Furthermore, in the first to third embodiments, the set of the urging member 120, the housing groove 102, and the rotor groove 112 may not be provided. In addition, in the first to third embodiments, the relationship between the advance angle and the retard angle may be reversed. In addition, in the third embodiment, breathing passages 3160 and 3260 are provided at the bottoms of the circumferential groove portions 2157 and 2257 in the sub-regulating members 3152 and 3252. FIG. 32 shows a modified example (FIG. 32 shows a modification of the sub-regulating member 3152 As shown in the example, even if the breathing passages 3160 and 3260 are formed by opening the side portions of the circumferential groove portions 2157 and 2257 at the ends of the sub-regulating members 3152 and 3252, the same action can be obtained.

上記の第一実施形態〜第四実施形態については、主規制部材150,250をベーンロータ14に配置し、ハウジング11に規制凹部131,231、ロック凹部134を形成しているが、本発明はこの形態に限定するものではない。例えば、図55に示すように、主規制部材150,250及び副規制部材152,252をハウジング11Aの所定箇所に配置し、ベーンロータ14に規制凹部131,231、ロック凹部134を形成するようにしてもよい。また、この場合の主規制部材150,250及び副規制部材152,252は、ベーンロータ14Aに対して突入方向Xが径方向内方であり、脱出方向Yが径方向外方に設定される。すなわち、本発明において、主規制部材150,250は、ベーンロータ14,14Aまたはハウジング11,11Aの一方に往復移動可能に収容され、他方に形成される規制凹部等に突入する突入方向Xに移動することにより、回転位相を最進角位相及び最遅角位相の間の規制位相において規制するとともに、当該規制凹部等から脱出する脱出方向Yに移動して回転位相の規制を解除する。さらに、副規制部材152,252は、主規制部材150,250と同方向に往復移動可能に収容され、ベーンロータ14,14Aまたはハウジング11,11Aの一方が形成する作動室146,246に導入される作動油から脱出方向Xに圧力を受ける受圧部154,254、及び主規制部材150,250に対して脱出方向Yに係合し突入方向Yに離間する係合部156,256を有するものである。   About said 1st embodiment-4th embodiment, although the main control members 150 and 250 are arrange | positioned at the vane rotor 14 and the control recessed part 131,231 and the lock recessed part 134 are formed in the housing 11, this invention is this. It is not limited to the form. For example, as shown in FIG. 55, the main restricting members 150 and 250 and the sub restricting members 152 and 252 are arranged at predetermined positions of the housing 11A, and the restricting recesses 131 and 231 and the lock recess 134 are formed in the vane rotor 14. Also good. In this case, the main restricting members 150 and 250 and the sub restricting members 152 and 252 are set such that the entry direction X is radially inward and the escape direction Y is radially outward with respect to the vane rotor 14A. That is, in the present invention, the main restricting members 150 and 250 are accommodated in one of the vane rotors 14 and 14A or the housings 11 and 11A so as to be reciprocally movable, and move in an entry direction X that enters into a restriction recess formed on the other. As a result, the rotational phase is regulated in the regulation phase between the most advanced angle phase and the most retarded angle phase, and the rotational phase is released by moving in the escape direction Y that escapes from the regulation recess. Further, the sub-regulating members 152 and 252 are accommodated so as to be reciprocable in the same direction as the main regulating members 150 and 250, and are introduced into the working chambers 146 and 246 formed by one of the vane rotors 14 and 14A or the housings 11 and 11A. Pressure receiving portions 154 and 254 that receive pressure in the escape direction X from the hydraulic oil, and engaging portions 156 and 256 that engage with the main regulating members 150 and 250 in the escape direction Y and are spaced apart in the entry direction Y are provided. .

そして、本発明は、吸気弁のバルブタイミングを調整する装置以外にも、「動弁」としての排気弁のバルブタイミングを調製する装置や、吸気弁及び排気弁の双方のバルブタイミングを調整する装置にも、適用することができる。   In addition to the device that adjusts the valve timing of the intake valve, the present invention provides a device that adjusts the valve timing of the exhaust valve as a “valve”, and a device that adjusts the valve timing of both the intake valve and the exhaust valve. Can also be applied.

1 バルブタイミング調整装置、2 内燃機関、3 カム軸、4 ポンプ(供給源)、10 駆動部、11 ハウジング、13 カバー部材、14 ベーンロータ、14b,14c,14d ベーン、18 スプロケット部材、30 制御部、52,53,54 進角室、56,57,58 遅角室、80 位相制御弁、90 制御回路、100 ハウジングブッシュ、110 ロータブッシュ、120 付勢部材、131 第一規制凹部(凹部)、131a,131b,232a,233a 規制ストッパ、132 内面、134 ロック凹部(凹部)、136,236 大気孔、137,237,3137,3237 大気孔(開放孔)、140 第一収容孔、141a,241a スリーブ、141,241 小径支持部(支持部)、142,242 大径支持部、143,243 端面、145 第一規制通路、146,246 作動室、147 第一進角連通孔(連通孔・進角連通孔)、148,248 連通室、149 第一貫通孔、150 第一主規制部材(主規制部材)、151,251 突出部、152,2152,3152 第一副規制部材(副規制部材)、154,254 受圧部、156,256 係合部、157,257 周溝部(絞り部)、158,3158 第一連通経路、258,3258 第二連通経路、159,259 通孔、170 第一主弾性部材(主弾性部材)、172 第一副弾性部材(副弾性部材)、231 第二規制凹部(凹部)、232 浅底部、233 深底部、240 第二収容孔、245 第二規制通路、247 第二進角連通孔(連通孔・進角連通孔)、249 第二貫通孔、250 第二主規制部材(主規制部材)、251 突出部、252,2252,3252 第二副規制部材(副規制部材)、270 第二主弾性部材(主弾性部材)、272 第二副弾性部材(副弾性部材)、310 駆動制御弁、2147 第一遅角連通孔(遅角連通孔)、2247 第二遅角連通孔(遅角連通孔)、2157,2257 周溝部、3160 第一呼吸通路(絞り部)、3260 第二呼吸通路(絞り部)、X 突入方向、Y 脱出方向 DESCRIPTION OF SYMBOLS 1 Valve timing adjusting device, 2 Internal combustion engine, 3 Cam shaft, 4 Pump (supply source), 10 Drive part, 11 Housing, 13 Cover member, 14 Vane rotor, 14b, 14c, 14d vane, 18 Sprocket member, 30 Control part, 52, 53, 54 Advance chamber, 56, 57, 58 Delay chamber, 80 Phase control valve, 90 Control circuit, 100 Housing bush, 110 Rotor bush, 120 Energizing member, 131 First regulating recess (recess), 131a , 131b, 232a, 233a Restriction stopper, 132 Inner surface, 134 Lock recess (recess), 136, 236 Air hole, 137, 237, 3137, 3237 Air hole (open hole), 140 First receiving hole, 141a, 241a Sleeve, 141,241 Small diameter support part (support part), 142,242 large Support portion, 143, 243 end face, 145 first restriction passage, 146, 246 working chamber, 147 first advance communication hole (communication hole / advance communication hole), 148, 248 communication chamber, 149 first through hole, 150 First main restricting member (main restricting member), 151,251 protruding portion, 152, 2152, 3152 First sub restricting member (sub restricting member), 154,254 pressure receiving portion, 156,256 engaging portion, 157,257 circumference Groove (throttle part), 158, 3158 First communication path, 258, 3258 Second communication path, 159, 259 through hole, 170 First main elastic member (main elastic member), 172 First sub elastic member (sub elastic) Member), 231 second restriction recess (recess), 232 shallow bottom portion, 233 deep bottom portion, 240 second receiving hole, 245 second restriction passage, 247 second advance communication hole (communication hole / advance communication hole), 49 2nd through-hole, 250 2nd main control member (main control member), 251 protrusion part, 252, 2252, 3252 2nd sub control member (sub control member), 270 2nd main elastic member (main elastic member), 272 Second subelastic member (subelastic member), 310 Drive control valve, 2147 First retard communication hole (retard communication hole), 2247 Second retard communication hole (retard communication hole), 2157, 2257 Circumferential groove 3160 1st breathing passage (throttle part), 3260 2nd breathing passage (throttle part), X entry direction, Y escape direction

Claims (2)

内燃機関においてクランク軸からのトルク伝達によりカム軸が開閉する動弁のバルブタイミングを、当該内燃機関の回転に伴って供給源から供給される作動液により調整するバルブタイミング調整装置であって、
前記クランク軸と連動して回転するハウジングと、
前記カム軸と連動して回転し、前記ハウジングの内部において進角室及び遅角室を回転方向に区画するベーンを有し、前記作動液が前記進角室又は前記遅角室に導入されることにより前記ハウジングに対する回転位相を進角側又は遅角側に変化させるベーンロータと、
前記ベーンロータまたは前記ハウジングの一方に往復移動可能に収容され、他方に形成される凹部に突入する突入方向に移動することにより、前記回転位相を最進角位相及び最遅角位相の間の規制位相において規制する一方、前記凹部から脱出する脱出方向に移動して前記回転位相の規制を解除する規制部材と、を備え、
前記ハウジングは、大気に開放される開放孔を形成し、
前記ベーンロータは、前記進角室または前記遅角室の一方に連通する連通孔を形成し、
前記開放孔及び前記連通孔の間を遮断する遮断位置からの所定部材の移動により、前記開放孔及び前記連通孔の間を連通させ
前記ベーンロータまたは前記ハウジングの一方において前記規制部材としての主規制部材と同方向に往復移動可能に収容され、前記ベーンロータまたは前記ハウジングの一方が形成する作動室に導入される前記作動液から前記脱出方向に圧力を受ける受圧部、及び前記主規制部材に対して前記脱出方向に係合し前記突入方向に離間する係合部を有し、前記作動室に導入される前記作動液の圧力が低下するのに応じて前記突入方向に移動することにより前記開放孔及び前記連通孔の間を連通させる前記所定部材として、前記絞り部を有する副規制部材を、さらに備えることを特徴とするバルブタイミング調整装置。
A valve timing adjusting device for adjusting a valve timing of a valve that opens and closes a camshaft by torque transmission from a crankshaft in an internal combustion engine, using a hydraulic fluid supplied from a supply source as the internal combustion engine rotates,
A housing that rotates in conjunction with the crankshaft;
The vane rotates in conjunction with the camshaft and divides the advance chamber and retard chamber in the rotation direction inside the housing, and the hydraulic fluid is introduced into the advance chamber or retard chamber. A vane rotor that changes the rotational phase relative to the housing to the advance side or the retard side,
By restricting the rotational phase to the most advanced angle phase and the most retarded angle phase by moving in a plunging direction, which is accommodated in one of the vane rotor or the housing so as to be reciprocally movable, and enters a recess formed in the other. A regulating member that moves in the escape direction to escape from the recess and releases the regulation of the rotational phase.
The housing forms an open hole that is open to the atmosphere;
The vane rotor forms a communication hole communicating with one of the advance chamber or the retard chamber,
With the movement of a predetermined member from a blocking position that blocks between the open hole and the communication hole, the open hole and the communication hole are communicated with each other ,
One of the vane rotor and the housing is accommodated so as to be reciprocable in the same direction as the main regulating member as the regulating member, and the escape direction from the working fluid introduced into the working chamber formed by one of the vane rotor or the housing A pressure receiving portion that receives pressure, and an engagement portion that engages in the escape direction with respect to the main regulating member and separates in the entry direction, and the pressure of the hydraulic fluid introduced into the working chamber decreases. The valve timing adjusting device further comprising: a sub-regulating member having the throttle portion as the predetermined member for communicating between the opening hole and the communication hole by moving in the entry direction according to .
前記遮断位置からの前記所定部材の移動により形成されて前記開放孔から前記連通孔に至る連通経路に、流体の流通面積を絞る絞り部が設けられることを特徴とする請求項1に記載のバルブタイミング調整装置。   2. The valve according to claim 1, wherein a throttle portion that restricts a fluid flow area is provided in a communication path that is formed by the movement of the predetermined member from the blocking position and extends from the opening hole to the communication hole. Timing adjustment device.
JP2012100367A 2008-09-11 2012-04-25 Valve timing adjustment device Active JP5370531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100367A JP5370531B2 (en) 2008-09-11 2012-04-25 Valve timing adjustment device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008233912 2008-09-11
JP2008233912 2008-09-11
JP2009106873 2009-04-24
JP2009106873 2009-04-24
JP2012100367A JP5370531B2 (en) 2008-09-11 2012-04-25 Valve timing adjustment device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009193566A Division JP4985729B2 (en) 2008-09-11 2009-08-24 Valve timing adjustment device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013153869A Division JP5574027B2 (en) 2008-09-11 2013-07-24 Valve timing adjustment device

Publications (2)

Publication Number Publication Date
JP2012140969A JP2012140969A (en) 2012-07-26
JP5370531B2 true JP5370531B2 (en) 2013-12-18

Family

ID=46677436

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012100367A Active JP5370531B2 (en) 2008-09-11 2012-04-25 Valve timing adjustment device
JP2013153869A Active JP5574027B2 (en) 2008-09-11 2013-07-24 Valve timing adjustment device
JP2014104884A Active JP5846247B2 (en) 2008-09-11 2014-05-21 Valve timing adjustment device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2013153869A Active JP5574027B2 (en) 2008-09-11 2013-07-24 Valve timing adjustment device
JP2014104884A Active JP5846247B2 (en) 2008-09-11 2014-05-21 Valve timing adjustment device

Country Status (1)

Country Link
JP (3) JP5370531B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064780B2 (en) * 2013-05-16 2017-01-25 トヨタ自動車株式会社 Variable valve timing mechanism for internal combustion engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897078B2 (en) * 1999-05-31 2007-03-22 株式会社デンソー Valve timing adjustment device
JP3705029B2 (en) * 1999-07-30 2005-10-12 トヨタ自動車株式会社 Valve timing control device for internal combustion engine
JP4017860B2 (en) * 2000-12-25 2007-12-05 三菱電機株式会社 Valve timing adjustment device
JP4411814B2 (en) * 2001-03-30 2010-02-10 株式会社デンソー Valve timing adjustment device
JP2004150278A (en) * 2002-10-28 2004-05-27 Mitsubishi Electric Corp Valve timing regulator
JP4160408B2 (en) * 2003-01-17 2008-10-01 株式会社日立製作所 Valve timing control device for internal combustion engine
GB2413168A (en) * 2004-04-13 2005-10-19 Mechadyne Plc Variable phase drive mechanism
JP4168450B2 (en) * 2004-07-22 2008-10-22 株式会社デンソー Valve timing adjustment device
JP4498976B2 (en) * 2005-05-17 2010-07-07 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine
JP5382427B2 (en) * 2008-09-04 2014-01-08 アイシン精機株式会社 Valve timing control device

Also Published As

Publication number Publication date
JP2014167300A (en) 2014-09-11
JP2013213508A (en) 2013-10-17
JP5574027B2 (en) 2014-08-20
JP2012140969A (en) 2012-07-26
JP5846247B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP4985729B2 (en) Valve timing adjustment device
JP4661902B2 (en) Valve timing adjustment device
JP5029671B2 (en) Valve timing adjustment device
JP5051267B2 (en) Valve timing adjustment device
US8991346B2 (en) Valve timing control apparatus
JP4377183B2 (en) Variable camshaft timing mechanism
JP2009250073A (en) Valve timing adjusting apparatus
US8955479B2 (en) Variable valve timing control apparatus of internal combustion engine and method for assembling the same
JP2006328986A (en) Valve timing control device of internal combustion engine
JP4556137B2 (en) Valve timing control device
JP5846247B2 (en) Valve timing adjustment device
JP5494862B2 (en) Valve timing adjustment device
JP4853676B2 (en) Valve timing adjustment device
JP5310826B2 (en) Valve timing adjustment device
JP2013087626A (en) Valve timing adjusting device
JP6079448B2 (en) Valve timing adjustment device
JPWO2020084764A1 (en) Valve timing adjuster
JP2009167810A (en) Valve timing adjusting device
JP2009133300A (en) Valve timing adjusting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R151 Written notification of patent or utility model registration

Ref document number: 5370531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250