JP5369967B2 - Heat source machine - Google Patents

Heat source machine Download PDF

Info

Publication number
JP5369967B2
JP5369967B2 JP2009177752A JP2009177752A JP5369967B2 JP 5369967 B2 JP5369967 B2 JP 5369967B2 JP 2009177752 A JP2009177752 A JP 2009177752A JP 2009177752 A JP2009177752 A JP 2009177752A JP 5369967 B2 JP5369967 B2 JP 5369967B2
Authority
JP
Japan
Prior art keywords
heat exchanger
source machine
exhaust
water channel
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009177752A
Other languages
Japanese (ja)
Other versions
JP2011033227A (en
Inventor
哲 ▲吉▼田
健 大東
信宏 竹田
誠 廣津
哲郎 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2009177752A priority Critical patent/JP5369967B2/en
Publication of JP2011033227A publication Critical patent/JP2011033227A/en
Application granted granted Critical
Publication of JP5369967B2 publication Critical patent/JP5369967B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat source machine capable of minimizing an increase of exhaust resistance and suppressing the imbalance of exhaust resistance at first and second water channel sides even if an installation position of a secondary heat exchanger is deflected to one side in the horizontal direction in a one-can two-water channel type heat source machine. <P>SOLUTION: A burner 31, a primary heat exchanger 32, a collective exhaust section 34 and a communication hole 33 for the first water channel, and a burner 41, a primary heat exchanger 42, a collective exhaust section 44 and a communication hole 43 for the second water channel are partitioned by a partitioning member 5, and the secondary heat exchangers 35, 45 are partitioned by a partitioning wall 232. A secondary heat exchange section 23 incorporating the secondary heat exchangers 35, 45 is deflected by S1 to one side in the horizontal direction, and a part of the collective exhaust sections 34, 44 of the partitioning member 5 is formed as an inclined partitioning section 52 inclined by an amount corresponding to the deflection. The other side of a collective exhaust pipe 22a has an inclined wall 222a. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、単一の缶体内に、第1の水路(例えば給湯回路)用のバーナ、このバーナにより熱交換加熱される一次熱交換器、一次熱交換器からの燃焼排ガスから潜熱を回収する二次熱交換器、及び、一次熱交換器からの燃焼排ガスを集合させて二次熱交換器に導くための集合排気部と、第2の水路(例えば風呂追い焚き回路や、温水暖房回路)用のバーナ、このバーナにより熱交換加熱される一次熱交換器、一次熱交換器からの燃焼排ガスから潜熱を回収する二次熱交換器、及び、一次熱交換器からの燃焼排ガスを集合させて二次熱交換器に導くための集合排気部とを含む複数の水路用の構成要素を互いに仕切った状態で併設した、1缶多水路式の熱源機に関する。特に、一次熱交換器、集合排気筒、二次熱交換器の組み付けレイアウトに係るものである。   The present invention recovers latent heat from a burner for a first water channel (for example, a hot water supply circuit), a primary heat exchanger heat-exchanged by the burner, and combustion exhaust gas from the primary heat exchanger in a single can. A secondary heat exchanger, a collective exhaust for collecting combustion exhaust gas from the primary heat exchanger and guiding it to the secondary heat exchanger, and a second water channel (for example, a bath reheating circuit or a hot water heating circuit) Burner, a primary heat exchanger that is heat-exchanged by the burner, a secondary heat exchanger that recovers latent heat from the combustion exhaust gas from the primary heat exchanger, and a combustion exhaust gas from the primary heat exchanger The present invention relates to a one-can multi-channel heat source apparatus in which a plurality of water-channel components including a collective exhaust section for guiding to a secondary heat exchanger are partitioned from each other. In particular, the present invention relates to an assembly layout of the primary heat exchanger, the collective exhaust pipe, and the secondary heat exchanger.

従来、この種の熱源機として、単一の缶体内において第1の水路用の一次熱交換器、集合排気筒及び二次熱交換器と、第2の水路用の一次熱交換器、集合排気筒及び二次熱交換器との間に仕切り板を配設し、この仕切り板により第1水路用の燃焼排ガスの流路部分と第2水路用の燃焼排ガスの流路部分とを互いに仕切るようにしたものが知られている(例えば特許文献1参照)。   Conventionally, as this type of heat source machine, a primary heat exchanger for a first water channel, a collective exhaust pipe and a secondary heat exchanger, a primary heat exchanger for a second water channel, a collective exhaust in a single can. A partition plate is disposed between the cylinder and the secondary heat exchanger, and the partition plate separates the flow path portion of the combustion exhaust gas for the first water channel and the flow channel portion of the combustion exhaust gas for the second water channel from each other. What was made into is known (for example, refer patent document 1).

特開2008−25979号公報JP 2008-25959A

ところで、単一の缶体内に、顕熱回収用の一次熱交換器、集合排気部及び潜熱回収用の二次熱交換器という構成要素の組み合わせを複数個併設する場合には、各構成要素を垂直方向に合致させた構造が採用されている。すなわち、図5に例示するように、第1バーナ31により加熱される一次熱交換器32、一次熱交換器32を通過した燃焼排ガスを集合させて連通孔33に導く集合排気部34及び導入された燃焼排ガスから潜熱回収する二次熱交換器35という第1の水路用の構成要素の組み合わせと、第2バーナ41により加熱される一次熱交換器42、一次熱交換器42を通過した燃焼排ガスを集合させて連通孔43に導く集合排気部44及び導入された燃焼排ガスから潜熱回収する二次熱交換器45という第2の水路用の構成要素の組み合わせとを、単一の缶体20内の左右両側に配置される構成要素間の比率(図示のものではほぼ6:4の比率)が垂直方向で同じになるように併設し、かつ、各水路用の構成要素を垂直方向に揃えて積み上げたような構造にしている。つまり、第1の水路用の一次熱交換器32と第2の水路用の一次熱交換器42との比率が6:4であれば、第1の水路用の集合排気部34と第2の水路用の集合排気部44との比率や、第1の水路用の二次熱交換器35と第2の水路用の二次熱交換器45との比率も、同様に6:4になるように設定されており、従って、両者を仕切る仕切部材500も一直線状に垂直に延びる構成のものが設置されている。   By the way, when a plurality of combinations of constituent elements such as a primary heat exchanger for sensible heat recovery, a collective exhaust part, and a secondary heat exchanger for latent heat recovery are provided in a single can body, A structure that matches the vertical direction is adopted. That is, as illustrated in FIG. 5, the primary heat exchanger 32 heated by the first burner 31, the collective exhaust part 34 that collects the combustion exhaust gas that has passed through the primary heat exchanger 32, and introduces the flue gas to the communication hole 33 are introduced. The combination of the first water channel component, the secondary heat exchanger 35 that recovers latent heat from the combustion exhaust gas, the primary heat exchanger 42 heated by the second burner 41, and the combustion exhaust gas that has passed through the primary heat exchanger 42 A combination of components for the second water channel, that is, a collective exhaust part 44 that collects the gas and leads to the communication hole 43 and a secondary heat exchanger 45 that recovers latent heat from the introduced combustion exhaust gas. Are arranged so that the ratio between the components arranged on the left and right sides (approximately 6: 4 in the illustrated example) is the same in the vertical direction, and the components for each waterway are aligned in the vertical direction. Like stacked It has been to the structure. That is, if the ratio of the primary heat exchanger 32 for the first water channel and the primary heat exchanger 42 for the second water channel is 6: 4, the collective exhaust 34 for the first water channel and the second Similarly, the ratio with the collective exhaust 44 for the water channel and the ratio between the secondary heat exchanger 35 for the first water channel and the secondary heat exchanger 45 for the second water channel are also 6: 4. Therefore, the partition member 500 that divides both is also installed in a configuration extending vertically in a straight line.

このような構造において、第1及び第2の両バーナ31,41に対する燃焼用空気の供給を単一の送風ファン24により行う場合には、第1の水路側と第2の水路側とでの排気抵抗バランスは、本来は、集合排気部34,44から二次熱交換器35,45に燃焼排ガスが導入される連通孔33,43と、二次熱交換器35,45から潜熱回収後の燃焼排ガスを外部に放出するための排気口233との各開口の比率によって定まることになる。   In such a structure, when the combustion air is supplied to the first and second burners 31 and 41 by the single blower fan 24, the first and second water channel sides are used. The exhaust resistance balance is originally obtained from the communication holes 33 and 43 through which the flue gas is introduced from the collective exhaust parts 34 and 44 to the secondary heat exchangers 35 and 45 and the latent heat recovered from the secondary heat exchangers 35 and 45. It is determined by the ratio of each opening to the exhaust port 233 for releasing the combustion exhaust gas to the outside.

しかしながら、一次熱交換器32,42での顕熱回収は第1の水路側と第2の水路側とで上記の如く6:4の比率に設定するものの、潜熱回収の主眼を例えば第1の水路側におき、このために第1の水路側と第2の水路側との二次熱交換器の比率を例えば8:2に設定したいというように、垂直方向で構成要素間の比率について変更要求が生じたり、あるいは、二次熱交換器を水平方向一側にずらせてハウジングH内の各種部品(例えば膨張タンクTや補機類)の配設スペースを確保したいというケース内のレイアウト設計上の変更要求が生じたりする場合があり、単に変更してしまうと、特に排気抵抗の点で不都合が生じることになる。   However, although the sensible heat recovery in the primary heat exchangers 32 and 42 is set to the ratio of 6: 4 on the first water channel side and the second water channel side as described above, the main point of the latent heat recovery is, for example, the first Change the ratio between the components in the vertical direction, for example, to set the ratio of the secondary heat exchanger between the first water channel side and the second water channel side to 8: 2 for this purpose. Due to the design of the layout in the case where there is a demand or the secondary heat exchanger is to be shifted to one side in the horizontal direction to secure the space for various parts (for example, expansion tank T and accessories) in the housing H The change request may occur, and if it is simply changed, inconvenience occurs particularly in terms of exhaust resistance.

すなわち、第1の水路側又は第2の水路側において排気抵抗が増大してしまうおそれがある上に、第1の水路側と第2の水路側とで排気抵抗バランスがくずれてしまうおそれもある。このような排気抵抗の増大や、排気抵抗バランスのくずれが生じると、送風ファン24による空気供給量の増大化を招いたり、ファン回転数の増加に伴い騒音が発生したりすることになる。   That is, the exhaust resistance may increase on the first water channel side or the second water channel side, and the exhaust resistance balance may be lost on the first water channel side and the second water channel side. . When such an increase in exhaust resistance or a breakdown in the exhaust resistance balance occurs, an increase in the amount of air supplied by the blower fan 24 is caused, or noise is generated as the number of fan rotations increases.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、複数の水路用の構成要素が単一の缶体内に併設された1缶多水路式の熱源機において、特に二次熱交換器の配設位置を水平方向一側にずらせたレイアウトを採用したとしても、あるいは、垂直方向で構成要素間の比率についての変更要求を満たすために二次熱交換器の側のサイズを変更するようなレイアウトを採用したとしても、排気抵抗の増大を最小限に抑制することができ、併せて第1の水路側と第2の水路側とで排気抵抗バランスのくずれを抑制することができる熱源機を提供することにある。   This invention is made | formed in view of such a situation, The place made into the objective is in the 1 can multi-channel water source type heat source machine with which the component for several water channels was provided side by side in the single can body. In particular, even if a layout in which the position of the secondary heat exchanger is shifted to one side in the horizontal direction is adopted, or in order to satisfy the change request for the ratio between components in the vertical direction, Even if a layout that changes the size of the side is adopted, an increase in the exhaust resistance can be suppressed to a minimum, and at the same time, the balance of the exhaust resistance between the first water channel side and the second water channel side is lost. It is in providing the heat source machine which can be suppressed.

上記目的を達成するために、本発明では、単一の缶体内に、顕熱回収用の一次熱交換器、集合排気部及び潜熱回収用の二次熱交換器の組み合わせを複数の水路分だけ併設し、かつ、各水路用の上記一次熱交換器、集合排気部及び二次熱交換器の組み合わせを仕切部材により互いに仕切ることにより、上記一次熱交換器を通過した燃焼排ガスが集合排気部により集合された後に連通孔を通して二次熱交換器に供給されるという燃焼排ガスの流路が各水路用毎に区画されている潜熱回収型の熱源機を対象にして、次の特定事項を備えることとした。すなわち、上記二次熱交換器を下位の一次熱交換器に対し水平方向一側にオフセット配置し、上記仕切部材として、上記一次熱交換器よりも下流側でかつ上記連通孔よりも上流側の領域において上記オフセット配置された側に向けて斜め上方に傾斜する傾斜仕切部を備えたものとする(請求項1)。   In order to achieve the above object, in the present invention, a combination of a primary heat exchanger for sensible heat recovery, a collective exhaust part, and a secondary heat exchanger for latent heat recovery is provided for a plurality of water channels in a single can. The combustion exhaust gas that has passed through the primary heat exchanger is separated by the collective exhaust part by separating the combination of the primary heat exchanger, the collective exhaust part, and the secondary heat exchanger for each water channel with a partition member. The following specific matters shall be provided for the latent heat recovery type heat source machine in which the flue gas flow path that is supplied to the secondary heat exchanger through the communication hole after being assembled is divided for each water channel. It was. In other words, the secondary heat exchanger is offset from one side in the horizontal direction with respect to the lower primary heat exchanger, and the partition member is located downstream of the primary heat exchanger and upstream of the communication hole. It is assumed that there is an inclined partition portion that is inclined obliquely upward toward the side where the offset is arranged in the region (claim 1).

この発明の場合、傾斜仕切部により、この傾斜仕切部を挟んで水平方向他側の一次熱交換器下流側から連通孔までの排気流路の流路断面、つまり集合排気部の流路断面を、傾斜仕切部を形成しない場合よりも拡大させることが可能となる。これにより、その拡大された分だけ、集合排気部における排気抵抗を低減させることが可能となる。このため、熱回収上の何らかの必要性により、特に一方の水路側の下流側の排気抵抗を上流側のそれよりも低減させる必要が生じた場合には、上記の如き傾斜仕切部の形成によって、その排気抵抗の低減を実現させ得ることになる。そして、二次熱交換器を水平方向一側にオフセット配置にしたとしても排気抵抗の増大を招くこともないため、そのオフセット配置によって二次熱交換器の水平方向他側位置に利用可能な空間が生じ、この空間に例えば膨張タンクや補機類を配設するなどを採択することが可能となり、レイアウト設計上の自由度を向上させることが可能となる。   In the case of the present invention, the inclined partition portion sandwiches the inclined partition portion so that the flow passage cross section of the exhaust flow passage from the downstream side of the primary heat exchanger on the other side in the horizontal direction to the communication hole, that is, the flow passage cross section of the collective exhaust portion. Further, it is possible to enlarge compared to the case where the inclined partition portion is not formed. As a result, the exhaust resistance in the collective exhaust portion can be reduced by the enlarged amount. For this reason, when it becomes necessary to reduce the exhaust resistance on the downstream side of one water channel side more than that on the upstream side due to some necessity for heat recovery, by forming the inclined partition portion as described above, The exhaust resistance can be reduced. Even if the secondary heat exchanger is offset on one side in the horizontal direction, the exhaust resistance does not increase, so that the space available for the other side in the horizontal direction of the secondary heat exchanger by the offset arrangement. Therefore, for example, an expansion tank or auxiliary equipment can be adopted in this space, and the degree of freedom in layout design can be improved.

本発明の傾斜仕切部によって、上記一次熱交換器の下流側の燃焼排ガスの流路に対する上流側の燃焼排ガスの流路の断面積比率を変更させることができる(請求項2)。上記の如く水平方向他側の排気流路ではその流路断面が拡大される一方、水平方向一側の排気流路ではその流路断面が縮小されることになる。従って、傾斜仕切部を挟んで水平方向一側と他側とでは排気抵抗を低減させたり増大させたりというように変更させることが可能となるため、レイアウト設計上の要求や、熱回収上の要求に応じて、変更調整し得ることになる。   According to the inclined partition portion of the present invention, the ratio of the cross-sectional area of the upstream flue gas flow path to the downstream flue gas flow path of the primary heat exchanger can be changed (claim 2). As described above, the cross section of the exhaust channel on the other side in the horizontal direction is enlarged, while the cross section of the exhaust channel on the one side in the horizontal direction is reduced. Therefore, it is possible to change the exhaust resistance on the one side and the other side in the horizontal direction across the inclined partition so that the exhaust resistance can be reduced or increased. Depending on the situation, the change can be adjusted.

又、複数の水路用の一次熱交換器の内、熱効率が低い側の水路用の一次熱交換器の下流側の燃焼排ガスの流路の断面積を、その一次熱交換器の上流側の燃焼排ガスの流路の断面積よりも拡大させるようにすることができる(請求項3)。上記の如く、傾斜仕切部を挟んで水平方向他側の燃焼排ガスの流路断面積について一次熱交換器の上流側よりも下流側を拡大させることが可能となり、二次熱交換器をオフセット配置にしても、排気抵抗の増大を確実に抑制し得ることになる。しかも、熱効率が低い側は、高い側に比べて燃焼排ガスの体積減少率が小さいため排気抵抗バランスのくずれを招き易くなるものの、二次熱交換器をオフセット配置にすることでこれを防止することが可能となる。   Also, among the primary heat exchangers for a plurality of water channels, the cross-sectional area of the flow path of the combustion exhaust gas on the downstream side of the primary heat exchanger for the water channel having the lower thermal efficiency is set to the combustion on the upstream side of the primary heat exchanger. The cross-sectional area of the exhaust gas flow passage can be enlarged (claim 3). As described above, it becomes possible to enlarge the downstream side of the upstream side of the primary heat exchanger with respect to the cross-sectional area of the combustion exhaust gas on the other side in the horizontal direction across the inclined partition, and the secondary heat exchanger is offset. Even so, an increase in exhaust resistance can be reliably suppressed. In addition, the side with low thermal efficiency has a smaller volume reduction rate of the combustion exhaust gas than the high side, so it tends to cause a collapse of the exhaust resistance balance, but this can be prevented by arranging the secondary heat exchanger in an offset arrangement. Is possible.

以上の傾斜仕切部を備えた仕切部材は、集合排気部を区画構成する部材に固定させることができる(請求項4)。このようにすることにより、一次熱交換器よりも下流側の集合排気部を確実に仕切って、本発明の作用を確実に得られることになる。   The partition member provided with the above-described inclined partition part can be fixed to a member that configures the collective exhaust part (Claim 4). By doing in this way, the collective exhaust part on the downstream side of the primary heat exchanger is surely partitioned, and the operation of the present invention can be reliably obtained.

又、上記単一の缶体内の複数の水路分の全てのバーナに対する燃焼用空気の供給が、単一の送風ファンにより行われるように構成することができる(請求項5)。この場合に特に本発明が有用なものとなる。すなわち、単一の送風ファンにより複数の水路分の全てのバーナに対する燃焼用空気の供給を行う場合に、排気抵抗の増大した側を基準として全体の空気供給作動が行われることになって騒音発生を招くことになるため、このような不都合の発生を回避させることが可能となる。その上に、単一の送風ファンにより複数の水路分の全てのバーナに対する燃焼用空気の供給を行うようにしているため、複数の水路分の個々のバーナ毎に送風ファンを設置する場合と比べ、部品点数の削減化及び熱源機の軽量化が図られる。   Further, the combustion air can be supplied to all the burners of the plurality of water channels in the single can by a single blower fan. In this case, the present invention is particularly useful. That is, when supplying combustion air to all the burners for a plurality of water channels by a single blower fan, the entire air supply operation is performed on the basis of the side with the increased exhaust resistance, and noise is generated. Therefore, it is possible to avoid such inconvenience. In addition, since the combustion air is supplied to all the burners for a plurality of water channels by a single blower fan, compared to the case where a blower fan is installed for each burner for a plurality of water channels. The number of parts can be reduced and the heat source machine can be reduced in weight.

以上、説明したように、請求項1〜請求項5のいずれかの熱源機によれば、傾斜仕切部を挟んで水平方向他側の一次熱交換器下流側から連通孔までの排気流路の流路断面、つまり集合排気部の流路断面を、傾斜仕切部を形成しない場合よりも拡大させることができ、これにより、集合排気部における排気抵抗を低減させることができる。このため、熱回収上の何らかの必要性により、特に一方の水路側の下流側の排気抵抗を上流側のそれよりも低減させる必要が生じた場合に、上記の如き傾斜仕切部の形成によって、その排気抵抗の低減を実現させることができるようになる。一方、二次熱交換器を水平方向一側にオフセット配置にしたとしても排気抵抗の増大を招くこともないため、そのオフセット配置によって二次熱交換器の水平方向他側位置に形成される空間を利用して例えば膨張タンクや補機類を配設するなどを採択することができ、レイアウト設計上の自由度を向上させることができるようになる。   As described above, according to the heat source apparatus of any one of claims 1 to 5, the exhaust flow path from the downstream side of the primary heat exchanger on the other side in the horizontal direction to the communication hole with the inclined partition portion interposed therebetween. The cross section of the flow path, that is, the cross section of the flow path of the collective exhaust portion can be enlarged as compared with the case where the inclined partition portion is not formed, and thereby the exhaust resistance in the collective exhaust portion can be reduced. For this reason, when it is necessary to reduce the exhaust resistance on the downstream side of one water channel side more than that on the upstream side due to some necessity in heat recovery, the formation of the inclined partition portion as described above, Reduction of exhaust resistance can be realized. On the other hand, even if the secondary heat exchanger is offset on one side in the horizontal direction, the exhaust resistance does not increase, so the space formed at the other side in the horizontal direction of the secondary heat exchanger by the offset arrangement For example, it is possible to adopt an expansion tank or auxiliary equipment by utilizing the above, and the degree of freedom in layout design can be improved.

特に、請求項2によれば、上記傾斜仕切部によって、一次熱交換器の下流側の燃焼排ガスの流路に対する上流側の燃焼排ガスの流路の断面積比率を変更させることができ、レイアウト設計上の要求や、熱回収上の要求に応じて、変更調整することができるようなる。   In particular, according to the second aspect of the present invention, the inclined partition portion can change the cross-sectional area ratio of the upstream side flue gas passage to the downstream side flue gas passage of the primary heat exchanger. It can be changed and adjusted according to the above requirements and the heat recovery requirements.

請求項3によれば、複数の水路用の内、熱効率が低い側の水路用の一次熱交換器の下流側の燃焼排ガスの流路の断面積を、上記一次熱交換器の上流側の燃焼排ガスの流路の断面積よりも拡大させることで、二次熱交換器をオフセット配置にしても、排気抵抗の増大を確実に抑制することができるようになる。しかも、熱効率が低い側は、高い側に比べて燃焼排ガスの体積減少率が小さいため排気抵抗バランスのくずれを招き易くなるものの、二次熱交換器をオフセット配置にすることでこれを防止することができるようになる。   According to claim 3, the cross-sectional area of the flow path of the combustion exhaust gas on the downstream side of the primary heat exchanger for the water channel having a low thermal efficiency among the plurality of water channels is defined as the combustion on the upstream side of the primary heat exchanger. By enlarging the cross-sectional area of the exhaust gas flow path, an increase in exhaust resistance can be reliably suppressed even if the secondary heat exchanger is offset. In addition, the side with low thermal efficiency has a smaller volume reduction rate of the combustion exhaust gas than the high side, so it tends to cause a collapse of the exhaust resistance balance, but this can be prevented by arranging the secondary heat exchanger in an offset arrangement. Will be able to.

又、請求項4によれば、一次熱交換器よりも下流側の集合排気部を確実に仕切ることができ、上述の本発明による効果を確実に得ることができるようになる。   According to the fourth aspect of the present invention, the collective exhaust part on the downstream side of the primary heat exchanger can be reliably partitioned, and the above-described effects of the present invention can be reliably obtained.

さらに、請求項5によれば、上記単一の缶体内の複数の水路分の全てのバーナに対する燃焼用空気の供給を単一の送風ファンにより行うものに本発明を適用することで、排気抵抗の増大した側を基準として全体の空気供給作動が行われることになって騒音発生を招くというような不都合の発生を回避させることができるようになる。その上に、単一の送風ファンにより複数の水路分の全てのバーナに対する燃焼用空気の供給を行うようにしているため、複数の水路分の個々のバーナ毎に送風ファンを設置する場合と比べ、部品点数の削減化及び熱源機の軽量化を図ることができるようになる。   Further, according to claim 5, by applying the present invention to a single blower fan that supplies combustion air to all the burners for a plurality of water passages in the single can, exhaust resistance As a result, the entire air supply operation is performed on the basis of the increased side, so that it is possible to avoid the occurrence of inconvenience such as noise generation. In addition, since the combustion air is supplied to all the burners for a plurality of water channels by a single blower fan, compared to the case where a blower fan is installed for each burner for a plurality of water channels. Thus, the number of parts can be reduced and the heat source machine can be reduced in weight.

本発明の第1実施形態を断面状態で模式的に示した説明図である。It is explanatory drawing which showed typically 1st Embodiment of this invention in the cross-sectional state. 第2実施形態を示す図1対応図である。It is a figure corresponding to FIG. 1 which shows 2nd Embodiment. 第3実施形態を示す図1対応図である。It is a figure corresponding to FIG. 1 which shows 3rd Embodiment. 第4実施形態を示す図1対応図である。It is a figure corresponding to Drawing 1 showing a 4th embodiment. 本発明の課題を説明するために例示した熱源機の図1対応図である。FIG. 2 is a view corresponding to FIG. 1 of a heat source machine exemplified for explaining the problem of the present invention.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1実施形態>
図1は、本発明の第1実施形態に係る熱源機の缶体2aを示す。この熱源機は、単一の缶体2aに対し、第1の水路(例えば給湯回路)用の各種構成要素と、第2の水路(例えば風呂の追い焚き回路又は温水循環式の暖房回路)用の各種構成要素との双方が内蔵されたものである。第1の水路用の構成要素としては、第1バーナ31、第1バーナ31の燃焼により熱交換加熱される第1の一次熱交換器32、この一次熱交換器32を通過した後の燃焼排ガスを集合して第1連通孔33に導く第1集合排気部34、及び、第1連通孔33を通して導入される燃焼排ガスから潜熱回収する第1の二次熱交換器35を備えている。又、第2の水路用の構成要素としては、第2バーナ41、第2バーナ41の燃焼により熱交換加熱される第2の一次熱交換器42、この一次熱交換器42を通過した後の燃焼排ガスを集合して第2連通孔43に導く第2集合排気部44、及び、第2連通孔43を通して導入される燃焼排ガスから潜熱回収する第2の二次熱交換器45を備えている。つまり、缶体2aは1缶2水路式に構成されたものである。
<First Embodiment>
FIG. 1 shows a can body 2a of a heat source machine according to a first embodiment of the present invention. This heat source machine is for various components for a first water channel (for example, a hot water supply circuit) and a second water channel (for example, a reheating circuit for a bath or a heating circuit for hot water circulation) with respect to a single can body 2a. Both of these components are built-in. The components for the first water channel include the first burner 31, the first primary heat exchanger 32 that is heat-exchanged and heated by the combustion of the first burner 31, and the combustion exhaust gas that has passed through the primary heat exchanger 32. And a first secondary heat exchanger 35 for recovering latent heat from the combustion exhaust gas introduced through the first communication hole 33. In addition, as the components for the second water channel, the second burner 41, the second primary heat exchanger 42 that is heat exchange-heated by the combustion of the second burner 41, and after passing through the primary heat exchanger 42 A second collective exhaust part 44 that collects combustion exhaust gas and guides it to the second communication hole 43, and a second secondary heat exchanger 45 that recovers latent heat from the combustion exhaust gas introduced through the second communication hole 43 are provided. . That is, the can body 2a is configured in a single can / two water channel type.

上記缶体2aは、缶体部21と、集合排気筒部22aと、二次熱交換部23とをこの順に積み上げるようにして結合させて組み付けたものである。缶体部21は、下側位置等に送風ファン24が取り付けられ、ケース211内の下部位置に第1バーナ31が水平方向一側(同図の右側)に、第2バーナ41が水平方向他側(同図の左側)の各位置にそれぞれ設置され、上部位置に第1の一次熱交換器32が水平方向一側に、第2の一次熱交換器42が水平方向他側にそれぞれ設置されたものである。そして、第1バーナ31と第2バーナ41との両者間、及び、第1の一次熱交換器32と第2の一次熱交換器42との両者間が、後述の仕切部材5の垂下仕切部51によって互いに遮断されて仕切られている。各一次熱交換器32,42は例えばフィンアンドチューブ式のもので構成されている。   The can body 2a is assembled by assembling the can body portion 21, the collective exhaust cylinder portion 22a, and the secondary heat exchange portion 23 in this order. The can body portion 21 has a blower fan 24 attached to a lower position or the like, a first burner 31 on one side in the horizontal direction (right side in the figure), a second burner 41 in the horizontal direction, etc. The first primary heat exchanger 32 is installed on one side in the horizontal direction, and the second primary heat exchanger 42 is installed on the other side in the horizontal direction. It is a thing. And between both the 1st burner 31 and the 2nd burner 41, and between both of the 1st primary heat exchanger 32 and the 2nd primary heat exchanger 42, the hanging partition part of below-mentioned partition member 5 51 are separated from each other and partitioned. Each primary heat exchanger 32, 42 is configured by, for example, a fin and tube type.

集合排気筒部22aは、缶体部21の上面開口を覆うように下面が開口されたケース221を備え、このケース221の内部が仕切部材5により水平方向一側の第1集合排気部34と、水平方向他側の第2集合排気部44とに仕切られて区画されている。ケース221の上面の水平方向一側位置(例えば奥方位置)には第1連通口33が形成され、水平方向他側位置(奥方位置)には第2連通口43が形成されている。   The collective exhaust cylinder portion 22 a includes a case 221 whose lower surface is opened so as to cover the upper surface opening of the can body portion 21, and the interior of the case 221 is separated from the first collective exhaust portion 34 on one side in the horizontal direction by the partition member 5. The second exhaust unit 44 on the other side in the horizontal direction is partitioned and partitioned. A first communication port 33 is formed at one horizontal position (for example, the back position) on the upper surface of the case 221, and a second communication port 43 is formed at the other horizontal position (the back position).

二次熱交換部23は、そのケース231の底面後部位置に上記の第1及び第2の両連通孔33,43が開口し、内部が仕切壁232により2つに仕切られて区画され、一方に第1の二次熱交換器35が内蔵され、他方に第2の二次熱交換器45が内蔵されている。そして、各二次熱交換器35,45により潜熱回収された後の燃焼排ガスが排気口233から外部に放出されるようになっている。排気口233は、図示の如くケース231の上面側か、あるいは、ケース231の前面側かのいずれかに開口されている。各二次熱交換器35,45は例えば螺旋状の水管を同心状に多重に配置した多管式のもので構成されている。   The secondary heat exchanging portion 23 is partitioned by the first and second communication holes 33 and 43 at the bottom rear position of the case 231, and the inside is partitioned into two by a partition wall 232. The first secondary heat exchanger 35 is built in the second, and the second secondary heat exchanger 45 is built in the other. The combustion exhaust gas after the latent heat recovery by the secondary heat exchangers 35 and 45 is discharged from the exhaust port 233 to the outside. The exhaust port 233 is opened on either the upper surface side of the case 231 or the front surface side of the case 231 as illustrated. Each of the secondary heat exchangers 35 and 45 is constituted by, for example, a multi-tube type in which spiral water pipes are concentrically arranged in a multiple manner.

そして、単一の送風ファン24から供給された空気により第1及び第2の両バーナ31,41が燃焼され、燃焼ガスが一次熱交換器32,42を通過する間に熱交換加熱され、一次熱交換器32,42を通過した後の燃焼排ガスが集合排気部34,44に集合されて連通孔33,43に導かれ、二次熱交換部23内に導かれた燃焼排ガスが二次熱交換器35,45により潜熱回収された後、排気口233から外部に放出されることになる。以上の燃焼排ガスの放出までが単一の送風ファン24の空気供給圧を源として行われ、一次熱交換器32,42、集合排気部34,44、連通孔33,43、二次熱交換器35,45、及び、排気口233がそれぞれ排気抵抗発生の要因となる。このため、送風ファン24は、排気抵抗に抗して所定量の空気を供給し得るように作動制御されるようになっている。   The first and second burners 31 and 41 are combusted by the air supplied from the single blower fan 24, and the combustion gas is heat-exchanged and heated while passing through the primary heat exchangers 32 and 42. The flue gas after passing through the heat exchangers 32 and 42 is collected in the collective exhaust parts 34 and 44 and led to the communication holes 33 and 43, and the flue gas led into the secondary heat exchange part 23 is the secondary heat. After the latent heat is recovered by the exchangers 35 and 45, the heat is discharged to the outside from the exhaust port 233. Until the release of the combustion exhaust gas described above, the air supply pressure of the single blower fan 24 is used as a source, and the primary heat exchangers 32 and 42, the collective exhaust parts 34 and 44, the communication holes 33 and 43, and the secondary heat exchanger. 35 and 45 and the exhaust port 233 cause exhaust resistance. For this reason, the blower fan 24 is controlled to operate so that a predetermined amount of air can be supplied against the exhaust resistance.

以上の基本的な構成に加え、本実施形態では缶体部21に対し、二次熱交換部23の配設位置が水平方向一側(図1の右側)にずらされたオフセット配置とされている。そして、このオフセット配置の二次熱交換部23と缶体部21とを接続する集合排気筒部22a及び仕切部材5がそれぞれ傾斜されて、燃焼排ガスの流路断面が滑らかに変化するようにされている。   In addition to the above basic configuration, in the present embodiment, the arrangement position of the secondary heat exchanging portion 23 is offset with respect to the can body portion 21 so as to be shifted to one side in the horizontal direction (right side in FIG. 1). Yes. And the collective exhaust cylinder part 22a and the partition member 5 which connect the secondary heat exchange part 23 and the can part 21 of this offset arrangement | positioning are each inclined, and the flow-path cross section of combustion exhaust gas changes smoothly. ing.

すなわち、仕切部材5として、第1及び第2のバーナ31,41間及び第1及び第2の一次熱交換器32,42間を互いに仕切る部分は垂直方向に延びる垂下部51とする一方、集合排気部22aの第1集合排気部34と第2集合排気部44とを仕切る部分はオフセット量S1に対応する分だけオフセット移動側(図1の右側)である第1の水路側に向けて垂下仕切部51の上端からケース221の内上面まで斜め上方に延びる傾斜仕切部52としている。この傾斜仕切部52の形成により、特に第2の一次熱交換器42から第2連通孔43までの排気流路の流路断面(第2集合排気部44の流路断面)を、傾斜仕切部52を形成しない場合よりも拡大させることができる。これにより、その拡大された分だけ、第2集合排気部44における排気抵抗を低減させることができるようになる。このため、熱回収上の何らかの必要性により、特に一方の水路側の下流側の排気抵抗を上流側のそれよりも低減させる必要が生じた場合には、上記の如き傾斜仕切部52の形成によって、その排気抵抗の低減を実現させることができるようになる。例えば、熱効率の低い側である第2の水路側の一次熱交換器42下流側の流路(第2集合排気部44の流路)の流路断面積を、その一次熱交換器42までの流路よりも拡大させることができるようになる。これにより、熱効率の低い側である第2の水路側において一次熱交換器42よりも下流側の排気抵抗を低減させることができるようになる。   That is, as the partition member 5, the part partitioning the first and second burners 31, 41 and the first and second primary heat exchangers 32, 42 from each other is a hanging part 51 extending in the vertical direction. The part of the exhaust part 22a that divides the first collective exhaust part 34 and the second collective exhaust part 44 hangs down toward the first water channel that is the offset movement side (right side in FIG. 1) by an amount corresponding to the offset amount S1. An inclined partition portion 52 extending obliquely upward from the upper end of the partition portion 51 to the inner upper surface of the case 221 is used. By forming the inclined partition portion 52, the flow passage cross section of the exhaust flow passage (flow passage cross section of the second collective exhaust portion 44) from the second primary heat exchanger 42 to the second communication hole 43 in particular is changed into the inclined partition portion. The size can be enlarged as compared with the case where 52 is not formed. Thus, the exhaust resistance in the second collective exhaust part 44 can be reduced by the enlarged amount. For this reason, when it becomes necessary to reduce the exhaust resistance on the downstream side of one water channel than that on the upstream side due to some necessity for heat recovery, the formation of the inclined partition portion 52 as described above is necessary. The exhaust resistance can be reduced. For example, the flow path cross-sectional area of the flow path on the downstream side of the primary heat exchanger 42 (the flow path of the second collective exhaust section 44) on the second water channel side, which is the low thermal efficiency side, is connected to the primary heat exchanger 42. It becomes possible to make it larger than the flow path. As a result, the exhaust resistance on the downstream side of the primary heat exchanger 42 can be reduced on the second water channel side, which is the low thermal efficiency side.

一方、第1の一次熱交換器32から第1連通孔33までの排気流路の流路断面(第1集合排気部34の流路断面)が上記の傾斜仕切部52の形成により縮小されることになるため、その分だけ缶体部21に対する集合排気部22aの組み付け位置をオフセット量S1に対応するオフセット量S2(S2はS1とほぼ同等)だけオフセット移動側にずらせている。これにより、第1集合排気部34の流路断面を本来必要とされるものまで拡大させることができる。さらに、傾斜部52とは逆の側において第2集合排気部44を区画するケース221の壁部を、上記傾斜仕切部52と同じ側に傾斜する傾斜壁222aにすることで、第2集合排気部44での燃焼排ガスのスムーズな流れを図るようにしている。これにより、傾斜壁222aを形成しない場合において隅角部での乱流発生に伴い排気抵抗が増大する事態の発生を、回避するようにしている。   On the other hand, the flow passage cross section of the exhaust flow passage from the first primary heat exchanger 32 to the first communication hole 33 (the flow passage cross section of the first collective exhaust portion 34) is reduced by the formation of the inclined partition portion 52 described above. Therefore, the assembly position of the collective exhaust portion 22a with respect to the can body portion 21 is shifted to the offset movement side by an offset amount S2 (S2 is substantially equivalent to S1) corresponding to the offset amount S1. Thereby, the flow path cross section of the 1st collection exhaust part 34 can be expanded to what is originally needed. Furthermore, the wall portion of the case 221 that divides the second collective exhaust portion 44 on the side opposite to the inclined portion 52 is an inclined wall 222a that is inclined to the same side as the inclined partition portion 52. A smooth flow of the combustion exhaust gas at the portion 44 is intended. Thereby, in the case where the inclined wall 222a is not formed, occurrence of a situation in which the exhaust resistance increases due to the generation of turbulent flow at the corner is avoided.

以上の実施形態の場合、二次熱交換部23を缶体部21に対し水平方向一側にオフセット配置にしたとしても、缶体部21側から二次熱交換部23に至る燃焼排ガスの流路断面が狭小になることもなく、第1及び第2の両集合排気部34,44の双方において必要な流路断面を確保することができる上に、燃焼排ガスのスムーズな流れも図ることができるようになる。このため、排気抵抗の増大を招くことなく、しかも、第1の水路側と第2の水路側との排気抵抗バランスを崩すこともなく、従って、送風ファン24の全体的な空気供給量の増大(ファン回転数の増大)を招くこともない。そして、かかる不都合を招くことなく上記のオフセット配置が可能となるため、その水平方向一側へのオフセット配置により水平方向他側に形成される空間Kに例えば膨張タンクTや補機類を配設するなどを採択することができるようになり、ハウジングH内のレイアウト設計上の自由度を向上させることができるようになる。   In the case of the above embodiment, even if the secondary heat exchange part 23 is offset from the can body part 21 in the horizontal direction, the flow of the combustion exhaust gas from the can body part 21 side to the secondary heat exchange part 23 It is possible to secure the necessary flow path cross section in both the first and second collective exhaust parts 34 and 44 and to ensure a smooth flow of the combustion exhaust gas without narrowing the cross section of the road. become able to. For this reason, the exhaust resistance is not increased, and the exhaust resistance balance between the first water channel side and the second water channel side is not disturbed. Therefore, the overall air supply amount of the blower fan 24 is increased. (Increase in fan speed) is not caused. Since the above-described offset arrangement is possible without causing such inconvenience, for example, an expansion tank T and auxiliary equipment are arranged in the space K formed on the other side in the horizontal direction by the offset arrangement on the one side in the horizontal direction. It becomes possible to adopt such a method, and the degree of freedom in designing the layout in the housing H can be improved.

<第2実施形態>
図2は、本発明の第2実施形態に係る熱源機の缶体2bを示す。この第2実施形態の缶体2bは、第1実施形態とは異なる構成の集合排気部22bを備える点でのみ第1実施形態と異なり、その他の点は第1実施形態と同じである。このため、第1実施形態と同じ構成要素については第1実施形態と同じ符号を付して重複した説明を省略する。
Second Embodiment
FIG. 2 shows a can body 2b of a heat source machine according to the second embodiment of the present invention. The can 2b of the second embodiment is different from the first embodiment only in that it includes a collective exhaust part 22b having a configuration different from that of the first embodiment, and is otherwise the same as the first embodiment. For this reason, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.

本実施形態の集合排気部22bは、第1実施形態の傾斜壁222aの代わりに、缶体部21のケース211の胴壁212と同じ位置から垂直方向に直上する立壁222bを備えたものである。   The collective exhaust part 22b of the present embodiment is provided with a standing wall 222b that rises directly in the vertical direction from the same position as the body wall 212 of the case 211 of the can body part 21 instead of the inclined wall 222a of the first embodiment. .

この第2実施形態の場合、第1実施形態の傾斜壁222aの形成による燃焼排ガスのスムーズな流れの担保は若干阻害されるものの、その他の作用効果は第1実施形態と同様に得ることができる。すなわち、傾斜仕切部52の形成により、第1実施形態と同様に、第2の一次熱交換器42から第2連通孔43までの排気流路の流路断面(第2集合排気部44の流路断面)を、傾斜仕切部52を形成しない場合よりも拡大させることができる。これにより、その拡大された分だけ、第2集合排気部44における排気抵抗を低減させることができるようになる。このため、熱回収上の何らかの必要性により、特に一方の水路側の下流側の排気抵抗を上流側のそれよりも低減させる必要が生じた場合には、上記の如き傾斜仕切部52の形成によってその排気抵抗の低減を実現させることができるようになる。例えば、熱効率の低い側である第2の水路側の一次熱交換器42下流側の流路(第2集合排気部44の流路)の流路断面積を、その一次熱交換器42までの流路よりも拡大させることができるようになる。これにより、熱効率の低い側である第2の水路側において一次熱交換器42よりも下流側の排気抵抗を低減させることができるようになる。   In the case of this second embodiment, although the guarantee of the smooth flow of the combustion exhaust gas by the formation of the inclined wall 222a of the first embodiment is somewhat disturbed, other operational effects can be obtained as in the first embodiment. . That is, by forming the inclined partition portion 52, as in the first embodiment, the cross section of the exhaust passage from the second primary heat exchanger 42 to the second communication hole 43 (the flow of the second collective exhaust portion 44). The road cross section) can be enlarged as compared with the case where the inclined partition portion 52 is not formed. Thus, the exhaust resistance in the second collective exhaust part 44 can be reduced by the enlarged amount. For this reason, when it becomes necessary to reduce the exhaust resistance on the downstream side of one water channel than that on the upstream side due to some necessity for heat recovery, the formation of the inclined partition portion 52 as described above is necessary. Reduction of the exhaust resistance can be realized. For example, the flow path cross-sectional area of the flow path on the downstream side of the primary heat exchanger 42 (the flow path of the second collective exhaust section 44) on the second water channel side, which is the low thermal efficiency side, is connected to the primary heat exchanger 42. It becomes possible to make it larger than the flow path. As a result, the exhaust resistance on the downstream side of the primary heat exchanger 42 can be reduced on the second water channel side, which is the low thermal efficiency side.

又、第1の一次熱交換器32から第1連通孔33までの排気流路の流路断面(第1集合排気部34の流路断面)も、第1実施形態と同様に、缶体部21に対する集合排気部22bの組み付け位置を二次熱交換部23のオフセット移動側にずらせて、第1集合排気部34の流路断面を本来必要とされるものまで拡大させることができる。   Further, the flow passage cross section of the exhaust flow passage from the first primary heat exchanger 32 to the first communication hole 33 (the flow passage cross section of the first collective exhaust portion 34) is also a can body portion as in the first embodiment. The assembly position of the collective exhaust part 22b with respect to 21 can be shifted to the offset movement side of the secondary heat exchange part 23, and the flow path cross section of the first collective exhaust part 34 can be expanded to what is originally required.

<第3実施形態>
図3は、本発明の第3実施形態に係る熱源機の缶体2cを示す。この第3実施形態の缶体2cは、第1実施形態とは異なる構成の集合排気部22cを備える点でのみ第1実施形態と異なり、その他の点は第1実施形態と同じである。このため、第1実施形態と同じ構成要素については第1実施形態と同じ符号を付して重複した説明を省略する。
<Third Embodiment>
FIG. 3 shows a can body 2c of a heat source machine according to a third embodiment of the present invention. The can 2c of the third embodiment is different from the first embodiment only in that it includes a collective exhaust part 22c having a configuration different from that of the first embodiment, and is otherwise the same as the first embodiment. For this reason, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.

本実施形態の集合排気部22cは、本来の集合排気部200(図5参照)のケース201とほぼ同じ構成を備えたものであって、二次熱交換部23と共に、そのオフセット移動量と同じ移動量だけ水平方向一側にオフセット配置したものである。   The collective exhaust part 22c of this embodiment has substantially the same configuration as the case 201 of the original collective exhaust part 200 (see FIG. 5), and has the same amount of offset movement as the secondary heat exchange part 23. The amount of movement is offset on one side in the horizontal direction.

この第3実施形態の場合、仕切部材5に傾斜仕切部52を形成することにより、第1実施形態と同様に、第2の一次熱交換器42から第2連通孔43までの排気流路の流路断面(第2集合排気部44の流路断面)を、傾斜仕切部52を形成しない場合よりも拡大させることができる。これにより、第2集合排気部44における排気抵抗の増大を抑制することができる。又、第1の一次熱交換器32から第1連通孔33までの排気流路の流路断面(第1集合排気部34の流路断面)も、第1実施形態と同様に、缶体部21に対する集合排気部22bの組み付け位置を二次熱交換部23のオフセット移動側にずらせて、第1集合排気部34の流路断面を本来必要とされるものまで拡大させることができる。さらに、本実施形態の場合、オフセット移動に伴い形成される空間Kは他の実施形態よりも大きくなり、ハウジングH(図1参照)内の他の各種部品、例えば膨張タンクTや補機類を配設するための配設スペースをより拡大させることができる。   In the case of the third embodiment, by forming the inclined partition portion 52 in the partition member 5, the exhaust flow path from the second primary heat exchanger 42 to the second communication hole 43 is formed as in the first embodiment. The cross section of the flow path (the cross section of the flow path of the second collective exhaust portion 44) can be made larger than when the inclined partition portion 52 is not formed. Thereby, an increase in exhaust resistance in the second collective exhaust part 44 can be suppressed. Further, the flow passage cross section of the exhaust flow passage from the first primary heat exchanger 32 to the first communication hole 33 (the flow passage cross section of the first collective exhaust portion 34) is also a can body portion as in the first embodiment. The assembly position of the collective exhaust part 22b with respect to 21 can be shifted to the offset movement side of the secondary heat exchange part 23, and the flow path cross section of the first collective exhaust part 34 can be expanded to what is originally required. Furthermore, in the case of this embodiment, the space K formed by the offset movement becomes larger than that of the other embodiments, and other various parts in the housing H (see FIG. 1), such as the expansion tank T and auxiliary machinery, are provided. The arrangement space for arrangement can be further expanded.

<第4実施形態>
図4は、本発明の第4実施形態に係る熱源機の缶体2dを示す。この第4実施形態の缶体2dは、仕切部材5が傾斜仕切部52を備える点、及び、二次熱交換部23d内の両二次熱交換器35d,45dの比率を一次熱交換器32,42とは変更して熱回収に係る構成要素間の比率を垂直方向で変更させた点で、図5に示す缶体2と異なるものである。本実施形態では、第2の二次熱交換器45dでの潜熱回収をより高くするためにその二次熱交換器45dのサイズをより大きくしたものを例示している。
<Fourth embodiment>
FIG. 4 shows a can body 2d of a heat source machine according to the fourth embodiment of the present invention. In the can body 2d of the fourth embodiment, the partition member 5 includes the inclined partition portion 52, and the ratio between the secondary heat exchangers 35d and 45d in the secondary heat exchange portion 23d is the primary heat exchanger 32. , 42 is different from the can 2 shown in FIG. 5 in that the ratio between the components related to heat recovery is changed in the vertical direction. In the present embodiment, an example in which the size of the secondary heat exchanger 45d is increased in order to further increase the latent heat recovery in the second secondary heat exchanger 45d is illustrated.

より具体的には、第1と第2との一次熱交換器32,42の比率が60:40であるのに対し、第1と第2との二次熱交換器35d,45dの比率を45:55に変更したものを例示している。第1〜第3の各実施形態では、二次熱交換部23内の二次熱交換器35,45の比率は一次熱交換器32,42のそれと同じであり、垂直方向での構成要素間の比率自体に変更はないものの、缶体部21に対し二次熱交換部23を水平方向一側にオフセット移動させたものを、「二次熱交換器をオフセット配置」にしたものとして示したが、本実施形態では、第1と第2との二次熱交換器35d,45dの側の比率を一次熱交換器32,42の側とは異なる比率に変更することにより、一次熱交換器の側に対し「二次熱交換器をオフセット配置」にしたものの例を示している。なお、本実施形態においても、第1実施形態と同じ構成要素については第1実施形態と同じ符号を付して重複した説明を省略する。   More specifically, the ratio between the first and second primary heat exchangers 32 and 42 is 60:40, while the ratio between the first and second secondary heat exchangers 35d and 45d is changed. The example changed to 45:55 is illustrated. In each of the first to third embodiments, the ratio of the secondary heat exchangers 35 and 45 in the secondary heat exchanging unit 23 is the same as that of the primary heat exchangers 32 and 42, and between the components in the vertical direction. Although there is no change in the ratio itself, the secondary heat exchanger 23 that has been offset-moved to one side in the horizontal direction with respect to the can body 21 has been shown as having the "secondary heat exchanger disposed in an offset arrangement". However, in this embodiment, the primary heat exchanger is changed by changing the ratio of the first and second secondary heat exchangers 35d and 45d to a ratio different from that of the primary heat exchangers 32 and 42. The example of what made the "secondary heat exchanger an offset arrangement | positioning" is shown with respect to this side. Also in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.

すなわち、二次熱交換部23d内において仕切壁232による仕切位置をオフセット移動量S1だけ水平方向一側に移動させ、この仕切壁232により区画される水平方向一側に収容される第1の二次熱交換器35dのサイズを図5の二次熱交換器35よりも小さくし、水平方向他側に収容される第2の二次熱交換器45dのサイズを図5の二次熱交換器45よりも大きくしている。これに伴い、特に第2連通孔43dの開口サイズをより大きいものに変更している。   That is, the partition position by the partition wall 232 is moved to the one side in the horizontal direction by the offset movement amount S1 in the secondary heat exchange part 23d, and the first second housed on the one side in the horizontal direction partitioned by the partition wall 232 is stored. The size of the secondary heat exchanger 35d is made smaller than that of the secondary heat exchanger 35 in FIG. 5, and the size of the second secondary heat exchanger 45d accommodated on the other side in the horizontal direction is changed to the secondary heat exchanger in FIG. It is larger than 45. Accordingly, the opening size of the second communication hole 43d is changed to a larger one.

本実施形態の場合、仕切部材5の傾斜仕切部52の存在によって、第1実施形態と同様に、第2の一次熱交換器42から第2連通孔43dまでの排気流路の流路断面(第2集合排気部44の流路断面)を、傾斜仕切部52を形成しない場合よりも拡大させることができる。これに加えて第2連通孔43dの開口サイズもより拡大されているため、第2集合排気部44の流路断面の拡大及び第2連通孔43dの拡大に伴い、第2集合排気部44における排気抵抗や、第2連通孔43dを通した第2の二次熱交換器45dの側への排気抵抗を低減させることができるようになる。このため、熱回収上の必要性により、特に一方の水路側の二次熱交換器(本実施形態では第2の二次熱交換器45d)のサイズをより大きく変更する要求、つまり垂直方向で構成要素間の比率について変更要求が生じた場合であって、その変更する二次熱交換器45dに対する一次熱交換器42下流側の排気抵抗を上流側のそれよりも低減させる必要が生じた場合には、上記の如き傾斜仕切部52の形成及び連通孔43dの開口サイズの変更によってその排気抵抗の低減を実現させることができるようになる。   In the case of the present embodiment, due to the presence of the inclined partition portion 52 of the partition member 5, the cross section of the exhaust flow path from the second primary heat exchanger 42 to the second communication hole 43d (as in the first embodiment) ( The flow passage cross section of the second collective exhaust part 44) can be enlarged as compared with the case where the inclined partition part 52 is not formed. In addition to this, since the opening size of the second communication hole 43d is further enlarged, along with the enlargement of the flow passage cross section of the second collective exhaust part 44 and the enlargement of the second communication hole 43d, The exhaust resistance and the exhaust resistance toward the second secondary heat exchanger 45d through the second communication hole 43d can be reduced. For this reason, due to the need for heat recovery, in particular, there is a request to change the size of the secondary heat exchanger on the one water channel side (second secondary heat exchanger 45d in the present embodiment), that is, in the vertical direction. When a change request is made for the ratio between the components, and it is necessary to reduce the exhaust resistance downstream of the primary heat exchanger 42 with respect to the secondary heat exchanger 45d to be changed from that on the upstream side. In this case, the exhaust resistance can be reduced by forming the inclined partition portion 52 as described above and changing the opening size of the communication hole 43d.

又、サイズがより小さく変更された第1の二次熱交換器35dの側への第1集合排気部34からの排気抵抗についても、傾斜仕切部52によって第1集合排気部34内の隅角部における乱流等の発生が抑制されるため、燃焼排ガスのよりスムーズな流れを確保して、一次熱交換器42よりも下流側への排気抵抗を低減させることができるようになる。   Further, with respect to the exhaust resistance from the first collective exhaust part 34 toward the first secondary heat exchanger 35d whose size has been changed to be smaller, the corner angle in the first collective exhaust part 34 is also set by the inclined partition part 52. Since the occurrence of turbulent flow or the like in the section is suppressed, a smoother flow of the combustion exhaust gas can be ensured, and the exhaust resistance downstream of the primary heat exchanger 42 can be reduced.

<他の実施形態>
なお、本発明は上記第1〜第4の各実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記第1〜第4の各実施形態では、仕切部材5として、集合排気筒部22a〜22dに固定された単一のもので構成された例を示したが、集合排気筒部22a〜22d内における傾斜仕切部52を含むものであれば、一次熱交換器32,42やバーナ31,41を仕切る仕切部材とは別体の仕切部材により構成されたものであっても、もちろんよい。
<Other embodiments>
The present invention is not limited to the first to fourth embodiments, but includes other various embodiments. That is, in each of the first to fourth embodiments, the example in which the partition member 5 is configured by a single member fixed to the collective exhaust tube portions 22a to 22d has been described. Of course, as long as it includes the inclined partition portion 52 in 22d, it may be constituted by a partition member separate from the partition members that partition the primary heat exchangers 32 and 42 and the burners 31 and 41.

2a〜2d 缶体
5 仕切部材
22a〜22d 集合排気筒部(集合排気部を区画構成する部材)
24 送風ファン
31 第1バーナ
32 第1の一次熱交換器
33,33d 第1連通孔
34 第1集合排気部
35,35d 第1の二次熱交換器
41 第2バーナ
42 第2の一次熱交換器
43,43d 第2連通孔
44 第2集合排気部
45,45d 第2の二次熱交換器
52 傾斜仕切部
222a 傾斜壁
2a to 2d can body 5 partitioning members 22a to 22d collective exhaust tube portion (members defining the collective exhaust portion)
24 Blow fan 31 1st burner 32 1st primary heat exchanger 33, 33d 1st communicating hole 34 1st collective exhaust parts 35, 35d 1st secondary heat exchanger 41 2nd burner 42 2nd primary heat exchange 43, 43d Second communication hole 44 Second collective exhaust 45, 45d Second secondary heat exchanger 52 Inclined partition 222a Inclined wall

Claims (5)

単一の缶体内に、顕熱回収用の一次熱交換器、集合排気部及び潜熱回収用の二次熱交換器の組み合わせが複数の水路分だけ併設され、かつ、各水路用の上記一次熱交換器、集合排気部及び二次熱交換器の組み合わせが仕切部材により互いに仕切られることにより、上記一次熱交換器を通過した燃焼排ガスが集合排気部により集合された後に連通孔を通して二次熱交換器に供給されるという燃焼排ガスの流路が各水路用毎に区画されている潜熱回収型の熱源機であって、
上記二次熱交換器は、下位の一次熱交換器に対し水平方向一側にオフセット配置され、
上記仕切部材は、上記一次熱交換器よりも下流側でかつ上記連通孔よりも上流側の領域において上記オフセット配置された側に向けて斜め上方に傾斜する傾斜仕切部を備えている
ことを特徴とする熱源機。
In a single can, a combination of a primary heat exchanger for sensible heat recovery, a collective exhaust part and a secondary heat exchanger for latent heat recovery is provided for a plurality of water channels, and the primary heat for each water channel is provided. The combination of the exchanger, the collective exhaust section, and the secondary heat exchanger is partitioned from each other by a partition member, so that the combustion exhaust gas that has passed through the primary heat exchanger is collected by the collective exhaust section and then the secondary heat exchange through the communication hole. A latent heat recovery type heat source machine in which the flow path of the combustion exhaust gas supplied to the vessel is divided for each water channel,
The secondary heat exchanger is disposed offset on one side in the horizontal direction with respect to the lower primary heat exchanger,
The partition member includes an inclined partition portion that is inclined obliquely upward toward the offset side in a region downstream of the primary heat exchanger and upstream of the communication hole. Heat source machine.
請求項1に記載の熱源機であって、
上記傾斜仕切部によって、上記一次熱交換器の下流側の燃焼排ガスの流路に対する上流側の燃焼排ガスの流路の断面積比率が変更されている、熱源機。
The heat source machine according to claim 1,
The heat source machine, wherein the cross-sectional area ratio of the upstream side flue gas passage to the downstream side flue gas passage of the primary heat exchanger is changed by the inclined partition.
請求項2に記載の熱源機であって、
複数の水路用の一次熱交換器の内、熱効率が低い側の水路用の一次熱交換器の下流側の燃焼排ガスの流路の断面積が、上記一次熱交換器の上流側の燃焼排ガスの流路の断面積よりも拡大されている、熱源機。
The heat source machine according to claim 2,
Among the primary heat exchangers for a plurality of water channels, the cross-sectional area of the flue gas flow path on the downstream side of the primary heat exchanger for the low heat efficiency water channel is the A heat source machine that is larger than the cross-sectional area of the flow path.
請求項1〜請求項3のいずれかに記載の熱源機であって、
上記傾斜仕切部を備えた仕切部材が集合排気部を区画構成する部材に固定されている、熱源機。
It is a heat source machine in any one of Claims 1-3,
A heat source machine, wherein a partition member provided with the inclined partition portion is fixed to a member that configures the collective exhaust portion.
請求項1〜請求項4のいずれかに記載の熱源機であって、
上記単一の缶体内の複数の水路分の全てのバーナに対する燃焼用空気の供給が、単一の送風ファンにより行われるように構成されている、熱源機。
It is a heat source machine in any one of Claims 1-4,
A heat source machine configured to supply combustion air to all the burners of a plurality of water channels in the single can body by a single blower fan.
JP2009177752A 2009-07-30 2009-07-30 Heat source machine Expired - Fee Related JP5369967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177752A JP5369967B2 (en) 2009-07-30 2009-07-30 Heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177752A JP5369967B2 (en) 2009-07-30 2009-07-30 Heat source machine

Publications (2)

Publication Number Publication Date
JP2011033227A JP2011033227A (en) 2011-02-17
JP5369967B2 true JP5369967B2 (en) 2013-12-18

Family

ID=43762479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177752A Expired - Fee Related JP5369967B2 (en) 2009-07-30 2009-07-30 Heat source machine

Country Status (1)

Country Link
JP (1) JP5369967B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818071B2 (en) * 2011-06-29 2015-11-18 株式会社ノーリツ Water heater
JP6236784B2 (en) * 2013-01-10 2017-11-29 株式会社ノーリツ Heat exchanger and water heater
JP6256801B2 (en) * 2013-11-26 2018-01-10 株式会社ノーリツ Heat exchanger and hot water device provided with the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124946U (en) * 1983-02-14 1984-08-22 松下電器産業株式会社 combustor exhaust system
JP4246749B2 (en) * 2005-05-10 2009-04-02 リンナイ株式会社 1 can type combined heat source machine
JP4710470B2 (en) * 2005-07-29 2011-06-29 株式会社ノーリツ Exhaust top and hot water supply apparatus provided with the same

Also Published As

Publication number Publication date
JP2011033227A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5771519B2 (en) Latent heat exchanger and hot water supply device
JP7135325B2 (en) Heat exchange device and heat source machine
US20190195563A1 (en) Heat exchange device and heat source machine
JP5871167B2 (en) Combustion device
JP5182570B2 (en) Water heater
JP5369967B2 (en) Heat source machine
JP2020106168A (en) Heat exchanger and water heater
JP2010007968A (en) Hot water supply device
JP2018165593A (en) Heat exchanger, heat exchange unit and heat source machine
JP7137195B2 (en) Heat exchange units, heat exchangers and hot water systems
JP2009243725A (en) Latent heat recovery type heat source machine
KR100598549B1 (en) Complex heat source machine with one can
JP2010007924A (en) Water heater
JP5472703B2 (en) Heat exchanger and combustion apparatus
JP2011179704A (en) Combination structure of exhaust top and heat exchanger, and water heating device including the same
JP5457577B1 (en) Exhaust heat boiler unit and exhaust heat boiler
JP2008298326A (en) Heat exchanger and water heating system
JP4565316B2 (en) Heat source equipment
JP2019020041A (en) Heat exchanger and heat source machine
CN107850341B (en) Heat exchanger
CN210718794U (en) Frame plate for a heat exchanger and heat exchanger with such a frame plate
JP7248275B2 (en) Heat exchangers and combined water heaters
JP2020046133A (en) Combustor
JP2018132256A (en) Heat exchanger and water heater using the same
JP2020003110A (en) Exhaust air collection cylinder and water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120620

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees