JP5367785B2 - Vibration isolator for blower fan and blower fan structure including the same - Google Patents

Vibration isolator for blower fan and blower fan structure including the same Download PDF

Info

Publication number
JP5367785B2
JP5367785B2 JP2011186692A JP2011186692A JP5367785B2 JP 5367785 B2 JP5367785 B2 JP 5367785B2 JP 2011186692 A JP2011186692 A JP 2011186692A JP 2011186692 A JP2011186692 A JP 2011186692A JP 5367785 B2 JP5367785 B2 JP 5367785B2
Authority
JP
Japan
Prior art keywords
outer cylinder
vibration isolator
blower fan
vibration
diameter side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011186692A
Other languages
Japanese (ja)
Other versions
JP2011236917A (en
JP2011236917A5 (en
Inventor
孝 河合
貴久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Mechatronics Inc
Original Assignee
Nisshinbo Mechatronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Mechatronics Inc filed Critical Nisshinbo Mechatronics Inc
Priority to JP2011186692A priority Critical patent/JP5367785B2/en
Publication of JP2011236917A publication Critical patent/JP2011236917A/en
Publication of JP2011236917A5 publication Critical patent/JP2011236917A5/ja
Application granted granted Critical
Publication of JP5367785B2 publication Critical patent/JP5367785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration-isolating tool for a blower fan capable of solving various kinds of newly occurring problems when forming the blower fan on the outer cylinder of the conventional vibration-isolating tool, and a blower fan structure having the same. <P>SOLUTION: The vibration-isolating tool of a fan 20 has an outer cylinder 11 for holding the propeller fan 20, and an inner cylinder 12 is connected to the inner side of the outer cylinder 11 via an elastic member 13. A step S is formed over the entire circumference of an outer circumferential surface in the outer cylinder 11. A large diameter side area surface f2 partitioned by the step S forms an area for golding the hub 21 of the fan 20. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、いわゆる、エアコン(エアコンディショナー)等の空調装置やエレクトロニクス機器等に装備される送風用ファンの防振具及びそれを備える送風用ファン構造体に関するものである。   The present invention relates to a vibration isolator for a blower fan installed in an air conditioner such as a so-called air conditioner (air conditioner), an electronic device, and the like, and a blower fan structure including the same.

送風用ファン構造体としては、モータからの電磁振動が送風用ファン全体に伝播されることの防止や、製造上の工数の削減及び材料費の低減による低コスト化、軽量化、リサイクル性の向上等を目的として、図14に示すように、熱可塑性樹脂からなる外筒51と内筒52とを、熱可塑性エラストマーからなる弾性部材53で連結したオール樹脂製の防振具50をインサート部品として用い、これに送風用ファンを射出成形してなるものが知られている。(例えば、特許文献1参照。)   As a blower fan structure, it is possible to prevent electromagnetic vibration from the motor from being propagated throughout the blower fan, reduce manufacturing man-hours, reduce material costs, reduce weight, and improve recyclability. For example, as shown in FIG. 14, an all-resin vibration isolator 50 in which an outer cylinder 51 and an inner cylinder 52 made of a thermoplastic resin are connected by an elastic member 53 made of a thermoplastic elastomer is used as an insert part. It is known that a blower fan is used for injection molding. (For example, refer to Patent Document 1.)

更に詳細には、同図に示すように、防振具50を可動型D1にインサートした後、この可動型D1を固定型D2方向に移動させて型締めし、可動型D1と固定型D2との相互間に形成されたキャビティC4内にゲートGを通して熱可塑性樹脂を矢印mに示すように射出することにより、防振具50を備える送風用ファン構造体が形成される。   More specifically, as shown in the figure, after the vibration isolator 50 is inserted into the movable mold D1, the movable mold D1 is moved in the direction of the fixed mold D2 and clamped, and the movable mold D1 and the fixed mold D2 By injecting the thermoplastic resin into the cavity C4 formed between the two through the gate G as shown by the arrow m, a blower fan structure including the vibration isolator 50 is formed.

特開2003−56492号公報。JP2003-56492A.

しかしながら、送風用ファン構造体の形成にあたり、防振具50の外筒51(特に、周壁51a)には、同図矢印で示すように、高い充填圧(200〜400kg/cm2)と、高い温度(200〜300°C)とが加わることになる。この場合、可動型D1内で防振具50の外筒51に変形、傾き、芯ずれ等を生じると、可動型D1から取り出した送風用ファン構造体にも、内筒52の偏心等に伴うアンバランスが生じ、振動や異音を発生する虞がある。   However, in forming the blower fan structure, the outer cylinder 51 (particularly the peripheral wall 51a) of the vibration isolator 50 has a high filling pressure (200 to 400 kg / cm @ 2) and a high temperature as shown by the arrows in the figure. (200 to 300 ° C.). In this case, if the outer cylinder 51 of the vibration isolator 50 is deformed, tilted, misaligned, or the like in the movable mold D1, the blower fan structure taken out from the movable mold D1 also accompanies the eccentricity of the inner cylinder 52, etc. There is a possibility that unbalance occurs and vibrations and abnormal noise occur.

これを解決する手段としては、外筒51の剛性を高めるべく、外筒51の肉厚を厚くすることが考えられるが、樹脂使用量が増えることで、材料コストの面で改善の余地を残す。   As a means for solving this, it is conceivable to increase the thickness of the outer cylinder 51 in order to increase the rigidity of the outer cylinder 51, but the amount of resin used increases, leaving room for improvement in terms of material costs. .

一方、外筒51の成形にあたり、使用される樹脂を選択して充填温度や充填圧に起因した外筒51への影響を抑えることも考えられるが、この場合、曲げ強度や引張り強度等の強度、曲げ弾性率等の剛性、熱変形温度等の耐熱性などに代表される諸物性を含めて樹脂を選択する必要があることから、材料コスト面で改善の余地を残す。   On the other hand, when molding the outer cylinder 51, it may be possible to suppress the influence on the outer cylinder 51 due to the filling temperature and filling pressure by selecting the resin to be used, but in this case, the strength such as bending strength and tensile strength Further, since it is necessary to select a resin including various physical properties represented by rigidity such as bending elastic modulus and heat resistance such as thermal deformation temperature, there is room for improvement in terms of material cost.

加えて、外筒51を厚肉化すれば、金型内での冷却に時間を要するため、1個当たりの成形サイクルが長くなることで、作業能率が悪くなると共に、これに起因する製造コストとの面で改善の余地を残す。   In addition, if the outer cylinder 51 is made thicker, it takes time to cool the inside of the mold, so that the molding cycle per unit becomes longer, so that the work efficiency is deteriorated and the manufacturing cost resulting from this is reduced. And leave room for improvement.

また、単一の部品を厚肉に射出成形しようとすると、その厚さが厚くなればなる程、冷却時に各部位で生じる樹脂収縮が大きくなるため、外筒51に反りやヒケを生じさせる虞があり、品質面で改善の余地を残す。   In addition, when attempting to injection-mold a single part thickly, the thicker the thickness, the greater the resin shrinkage that occurs at each part during cooling, which may cause warping and sink marks on the outer cylinder 51. There is room for improvement in terms of quality.

また、こうした問題に配慮して、好適な製造条件を定めても、製造条件のバラツキ等により、歩留りが悪化することが予想されることから、その分、検査項目も増やす必要があり、製造管理に費やす費用に改善の余地を残す。   Considering these problems, even if suitable manufacturing conditions are determined, the yield is expected to deteriorate due to variations in manufacturing conditions, etc., so it is necessary to increase the number of inspection items accordingly, manufacturing management. Leave room for improvement in the cost of spending.

これに対し、従来の防振具50は、外筒51における一方の軸方向端部にフランジ51bを設けることで、結果的に外筒51全体の剛性を高めているが、フランジ51bが大径化すれば、材料コスト面で改善の余地を残す。   In contrast, the conventional vibration isolator 50 is provided with a flange 51b at one end in the axial direction of the outer cylinder 51, thereby increasing the rigidity of the entire outer cylinder 51, but the flange 51b has a large diameter. This will leave room for improvement in terms of material costs.

また、外筒51にフランジ51bを設ける場合、単位の金型当たりの成形個数が減少するので、多数個取りを目的とした成形には不利であり、改善の余地を残す。   Further, when the outer cylinder 51 is provided with the flange 51b, the number of moldings per unit die is reduced, which is disadvantageous for molding for the purpose of obtaining a large number of pieces and leaves room for improvement.

また、外筒51に高温の高い圧力が加わるという問題は、送風用ファン構造体の成形時のみに起きるのではなく、外筒51と内筒52とを弾性部材53で連結するとき、例えば、弾性部材53を合成ゴムで加硫成形するときや、弾性部材53をエラストマーで射出成形するときにおいても起こり得る問題である。   In addition, the problem that high temperature and high pressure is applied to the outer cylinder 51 does not occur only at the time of molding the blower fan structure, but when the outer cylinder 51 and the inner cylinder 52 are connected by the elastic member 53, for example, This problem may also occur when the elastic member 53 is vulcanized with synthetic rubber or when the elastic member 53 is injection molded with an elastomer.

即ち、従来の技術では、防振具の外筒に高温高圧が加わることで起きる様々な問題を解消するにあたり、コストの上昇、作業能率の悪化や製品品質のバラツキを生じ、また、これらを抑制するにあたっては、製造管理が煩雑でこの管理にも限界があり、更に、従来の技術では、多数個取りを目的とした成形には不利であるところから、本発明の目的とするところは、こうした課題を解決した送風用ファンの防振具及び、それを備えた送風用ファン構造体を提供することにある。   In other words, in the conventional technology, in solving various problems caused by high temperature and high pressure applied to the outer cylinder of the vibration isolator, cost increases, work efficiency deteriorates and product quality varies, and these are suppressed. In doing so, manufacturing management is complicated and there is a limit to this management, and further, the conventional technique is disadvantageous for molding for the purpose of obtaining a large number of pieces. An object of the present invention is to provide a blower fan vibration isolator and a blower fan structure including the same.

本発明である送風用ファンの防振具は、送風用ファンを保持するための外筒を有しその内側に弾性部材を介して内筒が連結される送風用ファンの防振具であって、前記外筒における外周面の全周に亘って段差を形成して送風用ファンの保持領域を設けたことを特徴とするものである。   The blower vibration isolator of the present invention is a blower fan vibration isolator having an outer cylinder for holding the blower fan and having an inner cylinder connected to the inner cylinder via an elastic member. Further, a holding area for the blower fan is provided by forming a step over the entire circumference of the outer peripheral surface of the outer cylinder.

本発明にあっては、前記段差が、外筒の軸方向に対して直交する面としてなることが好ましい。   In this invention, it is preferable that the said level | step difference becomes a surface orthogonal to the axial direction of an outer cylinder.

加えて、この場合、外筒の端部のうちの少なくとも一方は、弾性部材よりも突出した突出部位としてなることが好ましい。   In addition, in this case, it is preferable that at least one of the end portions of the outer cylinder is a protruding portion that protrudes more than the elastic member.

また、本発明である他の送風用ファンの防振具は、送風用ファンを保持するための外筒を有しその内側に弾性部材を介して内筒が連結される送風用ファンの防振具であって、前記外筒の端部のうちの少なくとも一方が、前記弾性部材よりも突出した突出部位としてなることを特徴とするものである。   Further, another vibration isolator for a blower fan according to the present invention has an outer cylinder for holding the blower fan and has an outer cylinder connected to the inner cylinder via an elastic member inside thereof. It is a tool, Comprising: At least one of the edge parts of the said outer cylinder becomes a protrusion part which protruded rather than the said elastic member, It is characterized by the above-mentioned.

本発明はいずれも、前記突出部位の内周面が、その端面に向かうに従って拡径する傾斜面としてなることが好ましい。   In any of the present invention, it is preferable that the inner peripheral surface of the projecting portion is an inclined surface that increases in diameter toward the end surface.

また、本発明である送風用ファン構造体は、上記の防振具と、この防振具の外筒における前記保持領域に保持される送風用ファンとを有することを特徴とするものである。   A blower fan structure according to the present invention includes the vibration isolator described above and a blower fan held in the holding region of the outer cylinder of the vibration isolator.

なお、本発明によれば、防振具の外筒が熱可塑性樹脂等の合成樹脂からなる場合に特に有効であるが、防振具の外筒がアルミ合金等の金属からなる場合にも適用できる。   The present invention is particularly effective when the outer cylinder of the vibration isolator is made of a synthetic resin such as a thermoplastic resin, but is also applicable when the outer cylinder of the vibration isolator is made of a metal such as an aluminum alloy. it can.

本発明である送風用ファンの防振具は、防振具の外筒における外周面の全周に亘って段差を形成して送風用ファンの保持領域を設けたことで、当該外筒に送風用ファンを成形するにあたり、この成形に用いられる領域として、例えば、この段差の大径側の領域を用いれば、成形領域の面積が小さく済む。即ち、本発明である防振具によれば、外筒の外周面全体に送風用ファンを成形した従来の場合に比べて、成形時に樹脂圧を受ける面積(受圧面積)が小さく済むことから、外筒が樹脂圧を受けることによって受ける力も小さく済む。   The vibration isolator for the blower fan according to the present invention is configured to form a step over the entire circumference of the outer peripheral surface of the outer cylinder of the vibration isolator to provide a holding area for the blower fan. In forming the fan for use, for example, if the region on the large diameter side of the step is used as the region used for the forming, the area of the forming region can be reduced. That is, according to the vibration isolator of the present invention, compared to the conventional case where the blower fan is formed on the entire outer peripheral surface of the outer cylinder, the area that receives the resin pressure during molding (pressure receiving area) can be reduced. The force received by the outer cylinder receiving the resin pressure can be reduced.

従って、本発明である防振具によれば、外筒を厚肉化し、又は、外筒にフランジを設けることなく、外筒に高温・高圧が加わることで生じる変形を抑えることができる。   Therefore, according to the vibration isolator which is this invention, the deformation | transformation which arises when high temperature and a high pressure are added to an outer cylinder can be suppressed, without thickening an outer cylinder or providing a flange in an outer cylinder.

また、本発明である上記防振具を用いて、防振具と送風用ファンとを有する送風用ファン構造体を一体に成形した場合、防振具における外筒の変形が抑えられたことで、防振具が変形し、又は、偏心することによって防振機能が損なわれるようなことがない。従って、本発明である送風用ファン構造体によれば、外筒を厚肉化し、又は、外筒にフランジを設けることなく、防振機能を維持することができる。   Further, when the blower fan structure having the vibration isolator and the blower fan is integrally formed using the above vibration isolator according to the present invention, deformation of the outer cylinder in the vibration isolator is suppressed. The anti-vibration function is not impaired by deformation or eccentricity of the anti-vibration tool. Therefore, according to the blower fan structure of the present invention, the vibration isolation function can be maintained without increasing the thickness of the outer cylinder or providing a flange on the outer cylinder.

ところで、外筒の外周面に段差が存在しなくとも、成形型に段差を形成し、この段差の大径側と外筒の外周面との間にキャビティを形成すれば、外筒の外周面の一部だけを送風用ファンの保持領域とすることも可能である。   By the way, even if there is no step on the outer peripheral surface of the outer cylinder, if the step is formed in the mold and a cavity is formed between the large diameter side of the step and the outer peripheral surface of the outer cylinder, the outer peripheral surface of the outer cylinder It is also possible to make only a part of the area a holding area for the blower fan.

しかしながら、この場合、段差の大径側と外筒の外周面との間にキャビティを形成し、このキャビティ内の樹脂が段差の小径側と外筒の外周面との間に流入しないようにするためには、外筒を密着させた状態又は極微小なクリアランスを持った状態でインサートできるように寸法調整をしなければならない。   However, in this case, a cavity is formed between the large diameter side of the step and the outer peripheral surface of the outer cylinder so that the resin in the cavity does not flow between the small diameter side of the step and the outer peripheral surface of the outer cylinder. For this purpose, the dimensions must be adjusted so that the insert can be inserted with the outer cylinder in close contact or with a very small clearance.

ところが、こうした寸法調整は、成形型や外筒の寸法精度を考慮すれば、実際上は非常に困難である。しかも、このように寸法調整しても、スムースなインサートが実現できないため、作業能率が悪い。   However, such dimensional adjustment is actually very difficult in consideration of the dimensional accuracy of the mold and the outer cylinder. Moreover, even if the dimensions are adjusted in this way, a smooth insert cannot be realized, so that the work efficiency is poor.

加えて、成形型に段差を形成し、外筒の外周面の一部だけを送風用ファンの保持領域とする場合、防振具外筒が調心されていない状態で成形型にインサートすれば、インサート時には調心されているものの、送風用ファン構造体として取り出したときには調心されていない状態に戻ってしまい、振動や騒音等を発生する場合がある。   In addition, if a step is formed in the mold and only a part of the outer peripheral surface of the outer cylinder is used as a holding area for the blower fan, the vibration isolator outer cylinder is inserted into the mold without being aligned. Although it is aligned at the time of insertion, it may return to an unaligned state when taken out as a blower fan structure, and vibration or noise may occur.

これに対し、本発明である防振具は、外筒の外周面に段差が形成されていることから、成形型に大径側と小径側に区画する段差を形成し、この段差に、外筒の段差を接触させるだけで、成形型に形成した段差の大径側と外筒の保持領域との間にキャビティを形成し、このキャビティ内の樹脂が、成形型に形成した段差の小径側と、外筒の保持領域以外の領域との間に流入しないようにシールすることができる。   On the other hand, the vibration isolator according to the present invention has a step formed on the outer peripheral surface of the outer cylinder. Therefore, a step is formed in the molding die that is divided into a large diameter side and a small diameter side. By simply contacting the step of the cylinder, a cavity is formed between the large diameter side of the step formed in the mold and the holding area of the outer cylinder, and the resin in this cavity is the small diameter side of the step formed in the mold And a region other than the holding region of the outer cylinder can be sealed so as not to flow.

即ち、本発明である防振具のように、外筒の外周面に段差を形成すれば、外筒を成形型にインサートするにあたり、この成形型に形成した段差の小径側にクリアランスを持った状態でもインサートできるから、外筒を密着させた状態又は極微小なクリアランスを持った状態でインサートする必要がなく、作業能率も向上する。そして、このことは、結果的に、本発明である送風用ファン構造体においても同様である。   That is, when a step is formed on the outer peripheral surface of the outer cylinder as in the case of the vibration isolator according to the present invention, a clearance is provided on the small diameter side of the step formed on the molding die when the outer cylinder is inserted into the molding die. Since it can be inserted even in a state, it is not necessary to insert in a state where the outer cylinder is in close contact or with a very small clearance, and the work efficiency is improved. As a result, this also applies to the blower fan structure of the present invention.

また、本発明である防振具によれば、外筒に段差が形成されているため、例えば、段差の大径側を送風用ファンの保持領域とすれば、当該防振具の内筒に対し外筒が偏心を伴っていたり、外筒自体が変形等により真円が維持できていない状態のまま、当該防振具を成形型内に収納しても、当該段差により形成される防振具の小径側領域は、成形型に対してクリアランスを持った状態でインサートできる。即ち、本発明である防振具は、成形型と干渉することなく収納できる。このため、本発明である防振具が予め偏心等を伴っていても、送風用ファンを成形するにあたっては、防振具の精度に左右されることなく調心されることから、プロペラファン構造体として成形型から取り出しても、回転精度が悪化して振動や騒音等を発生することがない。   Further, according to the vibration isolator of the present invention, since the outer cylinder has a step, for example, if the large diameter side of the step is a holding area for the blower fan, the inner cylinder of the vibration isolator is On the other hand, even if the vibration isolator is housed in the mold while the outer cylinder is eccentric or is not maintained in a perfect circle due to deformation or the like, the vibration isolation is formed by the step. The small diameter region of the tool can be inserted with a clearance from the mold. That is, the vibration isolator according to the present invention can be stored without interfering with the mold. For this reason, even if the vibration isolator according to the present invention is preliminarily accompanied by eccentricity or the like, the propeller fan structure is used because the air blower fan is aligned without being affected by the accuracy of the vibration isolator. Even if it is taken out from the mold as a body, the rotational accuracy is not deteriorated and vibrations and noises are not generated.

また、本発明によれば、以下に例示するような各種の問題も併せて改善することができる。   Moreover, according to the present invention, various problems exemplified below can be improved together.

まず、本発明である防振具によれば、外筒を厚肉化し、又は、外筒にフランジを設ける必要がないので、材料コストの改善、作業能率の改善及び、これに伴う製造コストの改善を実現することができる。また、このことは、結果的に、本発明である送風用ファン構造体においても同様である。   First, according to the vibration isolator of the present invention, it is not necessary to thicken the outer cylinder or provide a flange on the outer cylinder. Therefore, the material cost is improved, the work efficiency is improved, and the manufacturing cost associated therewith is reduced. Improvements can be realized. In addition, as a result, the same applies to the blower fan structure according to the present invention.

また、本発明である防振具によれば、外筒の厚肉化に伴い外筒に生じる外筒の反りやヒケが抑制されるため品質の安定化が図れる。これは、防振具に送風用ファンを成形するにあたり、防振具の外筒に生じる反りやヒケの影響を当該送風用ファンに波及させないことから、結果的に、本発明である送風用ファン構造体の品質も安定化する。   Moreover, according to the vibration isolator which is this invention, since the curvature and sink of the outer cylinder which arise in an outer cylinder with the thickening of an outer cylinder are suppressed, quality stabilization can be aimed at. This is because, in forming the blower fan in the vibration isolator, the influence of warpage and sink marks generated in the outer cylinder of the vibration isolator is not propagated to the blower fan. The quality of the structure is also stabilized.

また、本発明である防振具によれば、外筒を厚肉化したり、外筒にフランジを設けた場合に比べ、その歩留りが製造条件のバラツキ等で悪化しない。しかも、外筒を厚肉化し、又は、外筒にフランジを設ける必要がないことから、外筒を肉厚化したことに伴う検査や、フランジを設けたことに伴う検査等が不要となるため、製造管理が容易なものとなる。そして、こうした防振具を用いて送風用ファン構造体を成形すれば、結果的に、その歩留りも製造条件のバラツキ等で悪化せず、検査項目も削減できるから製造管理も容易なものとなる。   Moreover, according to the vibration isolator which is this invention, the yield does not deteriorate by the variation in manufacturing conditions etc. compared with the case where an outer cylinder is thickened or a flange is provided in an outer cylinder. Moreover, since it is not necessary to increase the thickness of the outer cylinder or to provide a flange on the outer cylinder, the inspection associated with increasing the thickness of the outer cylinder, the inspection associated with providing the flange, etc. are not required. Manufacturing management becomes easy. If a blower fan structure is formed using such a vibration isolator, as a result, the yield is not deteriorated due to variations in manufacturing conditions, and inspection items can be reduced, thereby facilitating manufacturing management. .

加えて、外筒を厚肉化し、又は、外筒にフランジを設ける必要がないことは、防振具の小型化に繋がることから、単位の金型当たりの成形個数が増大し、多数個取りを目的とした成形には有効である。   In addition, increasing the thickness of the outer cylinder or eliminating the need to provide a flange on the outer cylinder leads to a reduction in the size of the vibration isolator. It is effective for forming for the purpose.

更に、本発明である防振具において、外筒の端部のうちの少なくとも一方を、前記弾性部材よりも突出した突出部位とすれば、この突出部位を、成形型に対する位置決め用及び保持用の部位として利用できるため、外筒に対して高温・高圧が加わることで生じる変形を、より効果的に抑えることができる。このため、こうした防振具を用いて成形した送風用ファン構造体は、その防振機能がより良い状態に維持される。   Furthermore, in the vibration isolator according to the present invention, if at least one of the end portions of the outer cylinder is a protruding portion protruding from the elastic member, the protruding portion is used for positioning and holding with respect to the mold. Since it can utilize as a site | part, the deformation | transformation which arises when high temperature and a high pressure are added with respect to an outer cylinder can be suppressed more effectively. For this reason, the fan structure for ventilation shape | molded using such a vibration isolator is maintained in the state where the vibration proof function is better.

加えて、本発明である防振具において、上記突出部位の内周面が、その端面に向かうに従って拡径する傾斜面としてなれば、インサート部品として成形型にインサートし、型締めする際に、当該突出部位の内周面が案内面として機能することで、成形型とのスムースな嵌合が可能となる。このため、成形型内に取り付けられた外筒に高温・高圧が加わることに伴う当該外筒の変形の抑止にも同様に効果的である。このため、こうした防振具を用いて成形した送風用ファン構造体も、その防振機能がより良い状態に維持される。   In addition, in the vibration isolator according to the present invention, if the inner peripheral surface of the projecting portion is an inclined surface that expands in diameter toward the end surface, when inserted into a mold as an insert part and clamped, Since the inner peripheral surface of the projecting portion functions as a guide surface, smooth fitting with the molding die is possible. For this reason, it is similarly effective in suppressing the deformation of the outer cylinder accompanying the application of high temperature and high pressure to the outer cylinder attached in the mold. For this reason, the fan structure for air blow molded using such a vibration isolator also maintains its vibration isolating function in a better state.

なお、外筒の端部のうちの少なくとも一方を、前記弾性部材よりも突出させることにより突出部位とする構成は、外筒における外周面の全周に亘って段差を形成する構成とは、独立した構成とすることもできる。   Note that the configuration in which at least one of the end portions of the outer cylinder is projected from the elastic member is independent of the configuration in which a step is formed over the entire outer peripheral surface of the outer cylinder. It can also be set as the structure which carried out.

また、本発明に係る段差は、外筒の軸方向に沿って傾斜する面としてなるものや、外筒の軸方向に対して直交する面としてなるもの等、その形状は様々に選択できるが、本発明に係る段差が、外筒の軸方向に対して直交する面としてなれば、型締めした時に段差に作用する型締め圧が当該段差に効率的に伝わることにより、キャビティが形成される領域とキャビティが形成されない領域との間を効率的にシールすることができる。   Further, the step according to the present invention can be selected in various shapes, such as a surface inclined along the axial direction of the outer cylinder, a surface orthogonal to the axial direction of the outer cylinder, If the step according to the present invention is a surface perpendicular to the axial direction of the outer cylinder, a region in which a cavity is formed by efficiently transmitting a mold clamping pressure acting on the step when the mold is clamped to the step. And an area where no cavity is formed can be effectively sealed.

このため、本発明である防振具において、外筒の段差が外筒の軸方向に対して直交する面としてなれば、外筒の保持領域だけに送風用ファンを確実に成形することができる。このため、こうした防振具を用いて成形した送風用ファン構造体は、その防振機能がより良い状態に維持される。   For this reason, in the vibration isolator according to the present invention, if the step of the outer cylinder is a surface orthogonal to the axial direction of the outer cylinder, the blower fan can be reliably formed only in the holding area of the outer cylinder. . For this reason, the fan structure for ventilation shape | molded using such a vibration isolator is maintained in the state where the vibration proof function is better.

(a)〜(c)はそれぞれ、本発明である防振具の一形態である防振具10をその一方の端面から示す斜視図、防振具10の断面図及び防振具10をその他方の端面から示す斜視図である。(a) to (c) are perspective views showing a vibration isolator 10 as one embodiment of the vibration isolator according to the present invention from one end face, a cross-sectional view of the vibration isolator 10, and other vibration isolator 10 It is a perspective view shown from the one end surface. (a),(b)はそれぞれ、図1の防振具を用いてプロペラファンを一体に成形した本発明の一形態であるプロペラファン構造体を防振具外筒の大径側端面から示す斜視図と、防振具外筒の小径側端面から示す斜視図である。(a), (b) respectively shows the propeller fan structure which is one form of this invention which formed the propeller fan integrally using the vibration isolator of FIG. 1 from the end surface on the large diameter side of the vibration isolator outer cylinder. It is a perspective view and the perspective view shown from the small diameter side end surface of a vibration isolator outer cylinder. 図2のプロペラファン構造体を成形するにあたり、図1の防振具を可動型に取り付ける直前の状態を拡大して示す要部断面図である。FIG. 3 is an essential part cross-sectional view showing, in an enlarged manner, a state immediately before mounting the vibration isolator of FIG. 1 on a movable mold in forming the propeller fan structure of FIG. 2. 図3の状態の後、可動型と固定型とを型締めした状態を拡大して示す要部断面図である。FIG. 4 is an enlarged cross-sectional view of a main part showing a state where a movable mold and a fixed mold are clamped after the state of FIG. 3. 従来の防振具外筒の一部にだけハブを成形するにあたり、同防振具を可動型に取り付ける直前の状態を拡大して示す要部断面図である。It is principal part sectional drawing which expands and shows the state just before attaching the vibration isolator to a movable mold | type in shape | molding a hub only in a part of conventional vibration isolator outer cylinder. 図5の状態の後、可動型と固定型とを型締めした状態を拡大して示す要部断面図である。FIG. 6 is an enlarged cross-sectional view of a main part showing a state where a movable mold and a fixed mold are clamped after the state of FIG. 5. 防振具を用いてプロペラファン構造体を形成するにあたり、成形型のゲートから熱可塑性樹脂を充填したときの樹脂流れを例示する模式図である。When forming a propeller fan structure using a vibration isolator, it is a schematic diagram which illustrates a resin flow when filling a thermoplastic resin from the gate of a shaping | molding die. (a)〜(c)はそれぞれ、従来例1である防振具外筒の一端部に高温・高圧を加えた場合の構造解析図、従来例2である防振具外筒の一端部に高温・高圧を加えた場合の構造解析図及び本発明に従う防振具外筒の一端部に高温・高圧を加えた場合の構造解析図である。(a) to (c) are structural analysis diagrams when high temperature and high pressure are applied to one end of the vibration isolator outer cylinder according to the conventional example 1, respectively, and one end of the vibration isolator outer cylinder according to the conventional example 2. It is a structural analysis figure at the time of applying high temperature and a high pressure, and a structural analysis figure at the time of applying high temperature and a high pressure to the one end part of the vibration isolator outer cylinder according to this invention. (a),(b)はそれぞれ、本発明に係るプロペラファン構造体の変形例を示す要部斜視図である。(a), (b) is a principal part perspective view which shows the modification of the propeller fan structure which concerns on this invention, respectively. (a),(b)はそれぞれ、本発明に従う防振具を他の送風用ファンである遠心ファンと組み合わせた構造体をその空気の流入する側から示す斜視図である。(a), (b) is a perspective view which shows the structure which combined the vibration isolator according to this invention with the centrifugal fan which is another ventilation fan from the air inflow side. 防振具を備えた送風用ファンに加わる負荷を説明するため例示されたプロペラファン構造体の要部斜視図である。It is a principal part perspective view of the propeller fan structure illustrated in order to demonstrate the load added to the fan for ventilation provided with the vibration isolator. (a)〜(c)はそれぞれ、従来の防振具を備えたプロペラファン構造体と、本発明に従う防振具を備えたプロペラファン構造体とを同一の条件で運転することで性能を評価するために得られた実験データである。Each of (a) to (c) evaluates performance by operating a propeller fan structure equipped with a conventional vibration isolator and a propeller fan structure equipped with a vibration isolator according to the present invention under the same conditions. It is the experimental data obtained to do. (a),(b)はそれぞれ、比較例と本発明の実施例とを既存のエアコン室外機に装着し、その運転時に広域の周波数帯(0〜5KHz間の周波数帯)において発生する音圧レベル(dB)を比較検証した実験データである。(a) and (b) respectively show the sound pressure generated in a wide frequency band (frequency band between 0 and 5 KHz) during operation when the comparative example and the embodiment of the present invention are mounted on an existing air conditioner outdoor unit. This is experimental data for verifying the level (dB). 従来の防振具の外筒全体にハブを成形するにあたり、同防振具を可動型に取り付けた後、可動型と固定型とを型締めした状態を拡大して示す要部断面図である。When forming a hub in the whole outer cylinder of the conventional vibration isolator, after attaching the vibration isolator to the movable mold, it is an essential part cross-sectional view showing an enlarged state where the movable mold and the fixed mold are clamped. .

以下、図面を参照して、本発明の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1(a)〜(c)はそれぞれ、本発明である防振具の一形態である防振具10をその一方の端面から示す斜視図、防振具10の断面図及び防振具10をその他方の端面から示す斜視図である。   1 (a) to 1 (c) are perspective views showing a vibration isolator 10 as one embodiment of the vibration isolator according to the present invention from one end face, a cross-sectional view of the vibration isolator 10, and the vibration isolator 10 respectively. It is a perspective view which shows from the other end surface.

符号11は、熱可塑性樹脂を用いて射出成形してなる外筒である。外筒11は、図示のように、その外周面の全周に亘って段差Sが形成されている。   Reference numeral 11 denotes an outer cylinder formed by injection molding using a thermoplastic resin. As shown in the figure, the outer cylinder 11 is formed with a step S over the entire outer peripheral surface thereof.

段差Sは、図1(b)に示すように、軸O方向に対して直交する垂直な面(以下、「段差面」という)f1としてなり、外筒11の外周面を、外径の大きい大径側領域面f2と、大径側領域面f2よりも外径の小さい小径側領域面f3とに区画する。   As shown in FIG. 1B, the step S is a vertical surface (hereinafter referred to as “step surface”) f1 orthogonal to the direction of the axis O, and the outer peripheral surface of the outer cylinder 11 has a large outer diameter. A large-diameter region surface f2 and a small-diameter region surface f3 having a smaller outer diameter than the large-diameter region surface f2 are partitioned.

大径側領域面f2は、その全周に亘って外向きに突出する環状凸部11fを一体に備え、この環状凸部11fと段差Sとの相互間には、軸Oに沿って伸びる複数の溝11gが形成されている。   The large-diameter region surface f2 is integrally provided with an annular convex portion 11f that protrudes outward over the entire circumference, and a plurality of portions extending along the axis O are provided between the annular convex portion 11f and the step S. Grooves 11g are formed.

符号12は、熱可塑性樹脂を用いて射出成形してなる内筒である。内筒12は、弾性部材13を介して外筒11の内側に連結され、その内側に、モータ等に繋がる回転シャフトが接続される嵌合孔10aを有する。   Reference numeral 12 denotes an inner cylinder formed by injection molding using a thermoplastic resin. The inner cylinder 12 is connected to the inner side of the outer cylinder 11 via an elastic member 13, and has a fitting hole 10a to which a rotating shaft connected to a motor or the like is connected.

弾性部材13は、外筒11と内筒12とを同一の成形用金型にインサートし、熱可塑性エラストマーや加硫ゴム等を主原料として成形される。   The elastic member 13 is formed by inserting the outer cylinder 11 and the inner cylinder 12 into the same molding die and using thermoplastic elastomer, vulcanized rubber or the like as a main raw material.

なお、本形態に係る外筒11では、外筒11の内周面f4は、外筒11の一方の端面(以下、便宜上、「大径側端面」という)e1から他方の端面(以下、便宜上、「小径側端面」という)e2に軸Oに沿って向かうに従って縮径するように傾斜し、更に、小径側端面e2付近には、軸Oに向かって突出する環状の突出部11pが一体に形成されているが、外筒11の内周面形状は、これに限ることなく、例えば、大径側領域面f2の肉厚と、小径側領域面f3の肉厚とが同一の肉厚となるようにしてもよい。   In the outer cylinder 11 according to this embodiment, the inner peripheral surface f4 of the outer cylinder 11 is from one end face (hereinafter referred to as “large-diameter side end face”) e1 of the outer cylinder 11 to the other end face (hereinafter referred to as convenience). (Referred to as “small-diameter side end face”) e2 is inclined so as to be reduced in diameter along the axis O, and an annular projecting part 11p projecting toward the axis O is integrally formed in the vicinity of the small-diameter side end face e2. However, the shape of the inner peripheral surface of the outer cylinder 11 is not limited to this, for example, the thickness of the large-diameter side region surface f2 is the same as the thickness of the small-diameter side region surface f3. It may be made to become.

また、外筒11は、図1(b)に示すように、その大径側及び小径側に位置する端部がそれぞれ、弾性部材13よりも突出した突出部位Pとしてなる。本形態に係る突出部位Pは、弾性部材13の端面における最外周側縁部を軸O周りに環状に切り欠くことで形成される。   Further, as shown in FIG. 1 (b), the outer cylinder 11 has projecting portions P whose end portions located on the large diameter side and the small diameter side project from the elastic member 13, respectively. The protruding portion P according to this embodiment is formed by cutting out the outermost peripheral edge portion of the end face of the elastic member 13 in an annular shape around the axis O.

また、大径側に位置する突出部位Pの内周面f5は、同図に示すように、その大径側端面e1に向かうに従って拡径する傾斜面としてなる。同様に、小径側に位置する突出部位Pの内周面f5も、同図に示すように、その小径側端面e2に向かうに従って拡径する傾斜面としてなる。   Further, as shown in the figure, the inner peripheral surface f5 of the projecting portion P located on the large-diameter side is an inclined surface that increases in diameter toward the large-diameter end surface e1. Similarly, the inner peripheral surface f5 of the protruding portion P located on the small diameter side is also an inclined surface that increases in diameter toward the small diameter side end surface e2, as shown in FIG.

図2(a),(b)はそれぞれ、図1の防振具10を用いてプロペラファン(軸流ファン)20を一体に成形した本発明の一形態であるプロペラファン構造体1を防振具外筒11の大径側端面e1から示す斜視図と、防振具外筒11の小径側端面e2から示す斜視図である。   FIGS. 2 (a) and 2 (b) respectively show the vibration isolation of the propeller fan structure 1 according to one embodiment of the present invention, in which a propeller fan (axial fan) 20 is integrally formed using the vibration isolator 10 of FIG. FIG. 3 is a perspective view shown from the large-diameter side end surface e1 of the instrument outer cylinder 11 and a perspective view shown from the small-diameter side end face e2 of the vibration isolator outer cylinder 11.

プロペラファン20は、防振具外筒11の大径側領域面f2に固定保持される内筒部(以下、「ハブ」という。)21と、このハブ21に隔壁22を介して一体に繋がる外筒部23と、この外筒部23の周りに当該外筒部23と一体に繋がる複数の羽根24とを有する。   The propeller fan 20 is integrally connected to an inner cylinder portion (hereinafter referred to as “hub”) 21 fixedly held on the large-diameter side region surface f2 of the vibration isolator outer cylinder 11 and the hub 21 via a partition wall 22. An outer cylinder part 23 and a plurality of blades 24 connected integrally with the outer cylinder part 23 are provided around the outer cylinder part 23.

ここで、図3,4はそれぞれ、プロペラファン構造体1を成形するにあたり、防振具10を可動型D1に取り付ける直前の状態を拡大して示す要部断面図と、その後、可動型D1と固定型D2とを型締めした状態を拡大して示す要部断面図である。   Here, FIGS. 3 and 4 are enlarged cross-sectional views showing a main part immediately before the vibration isolator 10 is attached to the movable mold D1 in forming the propeller fan structure 1, and then the movable mold D1. FIG. 4 is an enlarged cross-sectional view of a main part showing a state where a fixed mold D2 is clamped.

符号D1は、可動型である。可動型D1には、防振具10を保持するための凹部Dが形成されている。凹部Dは、防振具外筒11の小径側端面e2が突き当る最深面F1と、防振具外筒11の小径側領域面f3を取り囲む第一内周面F2と、この第一内周面F2と段差面F3を介して繋がり第一内周面F2よりも大径の第二内周面F4とで形作られ、最深面F1には、防振具10の嵌合孔10aが貫通するシャフト部Dsが一体に形成されている。   Reference sign D1 is a movable type. The movable die D1 has a recess D for holding the vibration isolator 10. The recess D includes a deepest surface F1 against which the small diameter side end surface e2 of the vibration isolator outer cylinder 11 abuts, a first inner peripheral surface F2 surrounding the small diameter side region surface f3 of the vibration isolator outer cylinder 11, and the first inner periphery. The surface F2 and the step surface F3 are connected to form a second inner peripheral surface F4 having a larger diameter than the first inner peripheral surface F2, and the fitting hole 10a of the vibration isolator 10 penetrates through the deepest surface F1. The shaft portion Ds is integrally formed.

また、段差面F3は、軸O方向に対して直交する面としてなり、図4に示すように、可動型D1と固定型D2とを型締めした状態で、防振具外筒11の段差面f1と面接触する。更に、第二内周面F4は、同図に示すように、防振具外筒11の大径側領域面f2と共にキャビティC4の一部を形成し、このキャビティが、プロペラファン20のハブ21の一部を形成するためのキャビティとなる。   Further, the step surface F3 is a surface orthogonal to the direction of the axis O, and as shown in FIG. 4, the step surface of the vibration isolator outer cylinder 11 with the movable mold D1 and the fixed mold D2 clamped. Makes surface contact with f1. Further, as shown in the figure, the second inner peripheral surface F4 forms part of the cavity C4 together with the large-diameter side region surface f2 of the vibration isolator outer cylinder 11, and this cavity is the hub 21 of the propeller fan 20. It becomes a cavity for forming a part of.

符号D2は、固定型である。固定型D2は、図4に示すように、可動型D1との型締め状態において、その合せ面F6が可動型D1の合せ面F5と共にキャビティC4の残部を形成し、このキャビティが、ハブ21の残部及び隔壁22を形成するためのキャビティとなる。   Reference sign D2 is a fixed type. As shown in FIG. 4, the fixed die D <b> 2, in the clamping state with the movable die D <b> 1, forms a remaining portion of the cavity C <b> 4 together with the mating surface F <b> 5 of the movable die D <b> 1. It becomes a cavity for forming the remaining part and the partition wall 22.

加えて、固定型D2の合せ面F6には、図4に示すように、可動型D1との型締め状態において、防振具突出部位Pの内周面f5と面接触する突条Drが一体に形成されている。   In addition, the mating surface F6 of the fixed die D2 is integrally provided with a protrusion Dr that is in surface contact with the inner peripheral surface f5 of the vibration isolator projecting portion P in the clamping state with the movable die D1, as shown in FIG. Is formed.

なお、図3及び図4では省略しているが、可動型D1と固定型D2の間には、ハブ21及び隔壁22を成形するためのキャビティC4だけでなく、外筒部23及び羽根24を成形するためのキャビティも形成される。   Although omitted in FIGS. 3 and 4, not only the cavity C4 for forming the hub 21 and the partition wall 22 but also the outer cylinder portion 23 and the blades 24 are provided between the movable die D1 and the fixed die D2. A cavity for molding is also formed.

即ち、防振具10を用いてプロペラファン構造体1を成形するにあたっては、先ず図3に示すように、可動型D1の凹部Dに、シャフト部Dsに沿って防振具10をインサートし、次いで、可動型D1を固定型D2に移動させて型締めする。   That is, in forming the propeller fan structure 1 using the vibration isolator 10, first, as shown in FIG. 3, the vibration isolator 10 is inserted along the shaft portion Ds into the recess D of the movable die D1, Next, the movable mold D1 is moved to the fixed mold D2 and clamped.

このとき、可動型D1にインサートされた防振具10は、固定型D2の突条Drを案内にして位置決め及び保持される。可動型D1と固定型D2との型締め後は、固定型D2のゲートGから熱可塑性樹脂が圧送され、この熱可塑性樹脂が、可動型D1と固定型D2との間に形成されたキャビティ内に充填される。   At this time, the vibration isolator 10 inserted in the movable mold D1 is positioned and held with the protrusion Dr of the fixed mold D2 as a guide. After clamping the movable mold D1 and the fixed mold D2, the thermoplastic resin is pumped from the gate G of the fixed mold D2, and this thermoplastic resin is in the cavity formed between the movable mold D1 and the fixed mold D2. Filled.

このとき、可動型D1の段差面F3と防振具外筒11の段差面f1とは、可動型D1と固定型D2との型締めによって面接触しているので、熱可塑性樹脂は、防振具外筒11の大径側領域面f2側に存在する空間(キャビティC4)のみに充填される。   At this time, the step surface F3 of the movable mold D1 and the step surface f1 of the vibration isolator outer cylinder 11 are in surface contact by clamping the movable mold D1 and the fixed mold D2, so that the thermoplastic resin is vibration-proof. Only the space (cavity C4) existing on the large-diameter side region surface f2 side of the tool outer cylinder 11 is filled.

要するに、本発明に従う防振具10によれば、防振具外筒11における外周面の全周に亘って段差Sを形成し、この段差Sの大径側領域面f2をプロペラファン20の保持領域としたことで、防振具外筒11にプロペラファン20を成形するにあたり、この成形に用いられる領域の面積が小さく済む。即ち、本形態の防振具10によれば、防振具外筒11の外周面全体にプロペラファン20を成形した従来の場合に比べて、受圧面積が小さく済むことから、防振具外筒11が樹脂圧を受けることによって受ける力も小さく済む。   In short, according to the vibration isolator 10 according to the present invention, the step S is formed over the entire circumference of the outer peripheral surface of the vibration isolator outer cylinder 11, and the large-diameter region surface f2 of the step S is held by the propeller fan 20. By forming the region, when the propeller fan 20 is formed on the vibration isolator outer cylinder 11, the area of the region used for forming can be reduced. That is, according to the vibration isolator 10 of the present embodiment, the pressure receiving area can be reduced as compared with the conventional case in which the propeller fan 20 is formed on the entire outer peripheral surface of the vibration isolator outer cylinder 11. The force received by 11 receiving the resin pressure can be reduced.

従って、本形態の防振具10によれば、防振具外筒11を厚肉化し、又は、防振具外筒11にフランジを設けることなく、防振具外筒11に高温・高圧が加わることで生じる変形を抑えることができる。   Therefore, according to the vibration isolator 10 of the present embodiment, the vibration isolator outer cylinder 11 is thickened, or the vibration isolator outer cylinder 11 is subjected to high temperature and high pressure without providing a flange on the vibration isolator outer cylinder 11. The deformation caused by the addition can be suppressed.

また、この防振具10を用いて、プロペラファン構造体1を成形した場合、防振具外筒11の変形が抑えられたことで、防振具10が変形し、又は、偏心することによって防振機能が損なわれるようなことがない。従って、プロペラファン構造体1によれば、防振具外筒11を厚肉化し、又は、防振具外筒11にフランジを設けることなく、防振機能を維持することができる。   Further, when the propeller fan structure 1 is molded using the vibration isolator 10, the vibration isolator 10 is deformed or decentered by suppressing the deformation of the vibration isolator outer cylinder 11. The anti-vibration function is not impaired. Therefore, according to the propeller fan structure 1, the vibration isolator outer cylinder 11 can be made thicker or the vibration isolator function can be maintained without providing the vibration isolator outer cylinder 11 with a flange.

これに対し、従来の防振具50を用いて防振具外筒51の一部だけを、プロペラファン20の保持領域とすることは可能であり、図5,6はそれぞれ、従来の防振具外筒51の一部だけにハブ21を成形するにあたり、防振具50を可動型D1に取り付ける直前の状態を拡大して示す要部断面図と、その後、可動型D1と固定型D2とを型締めした状態を拡大して示す要部断面図である。   On the other hand, it is possible to use only a part of the vibration isolator outer cylinder 51 as a holding area for the propeller fan 20 using the conventional vibration isolator 50, and FIGS. When forming the hub 21 on only a part of the tool outer cylinder 51, an enlarged cross-sectional view showing the main part immediately before the vibration isolator 50 is attached to the movable mold D1, and then the movable mold D1 and the fixed mold D2. It is principal part sectional drawing which expands and shows the state which clamped.

この場合、防振具外筒51における周壁51aの外周面と、可動型D1の第一内周面F2との関係は、樹脂が流入しないように接触又は近接させる必要があり、その相互間のクリアランスは、高い充填圧を伴う樹脂の流れ(図6の矢印m)を阻止するために、約0.1mm以下の精度に保つ必要がある。   In this case, the relationship between the outer peripheral surface of the peripheral wall 51a of the vibration isolator outer cylinder 51 and the first inner peripheral surface F2 of the movable mold D1 needs to be in contact with or close to each other so that the resin does not flow in. The clearance needs to be maintained with an accuracy of about 0.1 mm or less in order to prevent the flow of resin with a high filling pressure (arrow m in FIG. 6).

しかしながら、防振具51の外径精度は、その製造段階での寸法誤差を予め最小限に抑えるように管理・製造されるが、こうした製造段階での管理・製造には限界がある。例えば、寸法誤差には、外筒51や内筒52の製造工程(切削加工、ダイカスト成形、絞り加工、樹脂射出成形等)で発生するもの、更には、外筒51と内筒52とを連結する弾性部材53の製造工程(ゴム加硫成形や熱可塑性エラストマーによる射出成形等)時に発生するものがあり、それぞれ寸法誤差が累積される。   However, the outer diameter accuracy of the vibration isolator 51 is managed and manufactured in advance so as to minimize the dimensional error in the manufacturing stage, but there is a limit to the management and manufacturing in such a manufacturing stage. For example, dimensional errors may occur in the manufacturing process of the outer cylinder 51 and the inner cylinder 52 (cutting, die casting, drawing, resin injection molding, etc.), and the outer cylinder 51 and the inner cylinder 52 are connected. That occur during the manufacturing process of the elastic member 53 (rubber vulcanization molding, injection molding using a thermoplastic elastomer, etc.), and dimensional errors are accumulated respectively.

即ち、本発明に係る防振具のように、その構造が外筒、弾性部材及び内筒からなる積層構造の場合には、同芯度や真円度等の精度において、製造上回避し難い寸法誤差を保有し、具体的には、量産時における製造能力の影響により、外筒の外径が軸心に対して0.3mm程度の偏心を伴うことがある。   That is, when the structure is a laminated structure composed of an outer cylinder, an elastic member, and an inner cylinder, as in the case of the vibration isolator according to the present invention, it is difficult to avoid in manufacturing with accuracy such as concentricity and roundness. In particular, due to the influence of manufacturing capacity during mass production, the outer diameter of the outer cylinder may be eccentric by about 0.3 mm with respect to the shaft center.

こうした場合、図5,6に示すように、防振具30をインサートしようとすると、防振具外筒51の外周面51aと、可動型D1の内面(第一内周面F2)とが干渉して、外筒51が軸O方向に押圧されながらインサートされ、更に防振具外筒51が僅かでも変形していると、スムースなインサートに支障をきたし、作業能率が低下する。   In such a case, as shown in FIGS. 5 and 6, when the vibration isolator 30 is inserted, the outer peripheral surface 51a of the vibration isolator outer cylinder 51 interferes with the inner surface (first inner peripheral surface F2) of the movable die D1. If the outer cylinder 51 is inserted while being pressed in the direction of the axis O, and the vibration isolator outer cylinder 51 is deformed even a little, the smooth insert is hindered and the work efficiency is lowered.

しかも、可動型D1に段差F3を形成し、従来の防振具外筒51の外周面の一部だけをプロペラファン20の保持領域とする場合、防振具50がインサートできても、防振具外筒51の調心は、弾性部材53の弾性変形に伴う一時的なものに過ぎない。このため、プロペラファン20の成形が完了して成形型D1,D2から取り出されると、防振具外筒51は、弾性部材53の復元力により、精度が悪いインサート前の状態に戻ってしまう。   Moreover, when the step F3 is formed in the movable die D1 and only a part of the outer peripheral surface of the conventional vibration isolator outer cylinder 51 is used as the holding area of the propeller fan 20, the vibration isolator 50 can be inserted even if the vibration isolator 50 can be inserted. The alignment of the tool outer cylinder 51 is only temporary due to the elastic deformation of the elastic member 53. For this reason, when the formation of the propeller fan 20 is completed and taken out from the molds D1, D2, the vibration isolator outer cylinder 51 returns to the state before the insertion with poor accuracy due to the restoring force of the elastic member 53.

このため、こうして得られたプロペラファン構造体は、防振具外筒51の影響を確実に受け、回転精度(振れ、バランス)が悪化することで、例えば、空調機器としての運転時に、振動や騒音等を発生する場合がある。   For this reason, the propeller fan structure thus obtained is reliably influenced by the vibration isolator outer cylinder 51, and the rotational accuracy (vibration, balance) is deteriorated. Noise may be generated.

これに対し、本形態の防振具10は、防振具外筒11の外周面に段差Sが形成されていることから、可動型D1に大径側と小径側に区画する段差面F3を形成し、この段差面F3に、防振具外筒11の段差面f1を接触させるだけで、可動型D1に形成した第二内周面F4と防振具外筒11の保持領域面f2との間にキャビティを形成し、このキャビティ内の樹脂が、可動型D1に形成した第一内周面F2と、防振具外筒11の小径側領域面f3との間に流入しないようにシールすることができる。   On the other hand, since the vibration isolator 10 of this embodiment has a step S formed on the outer peripheral surface of the vibration isolator outer cylinder 11, a step surface F3 that divides the movable die D1 into a large diameter side and a small diameter side is provided. The second inner peripheral surface F4 formed on the movable die D1 and the holding region surface f2 of the vibration isolator outer cylinder 11 are formed by simply contacting the step surface f1 of the vibration isolator outer cylinder 11 with the step surface F3. A seal is formed so that the resin in this cavity does not flow between the first inner peripheral surface F2 formed on the movable mold D1 and the small-diameter side region surface f3 of the vibration isolator outer cylinder 11. can do.

即ち、本形態の防振具によれば、図4に示すように、可動型D1の第一内周面F2と、防振具外筒11の小径側領域面f3との相互間にクリアランス(例えば、0.5mm程度)Cを設けることができる。   That is, according to the vibration isolator of this embodiment, as shown in FIG. 4, a clearance (between the first inner peripheral surface F2 of the movable die D1 and the small-diameter side region surface f3 of the vibration isolator outer cylinder 11 is provided. For example, C can be provided.

このように、可動型D1の第一内周面F2と、防振具外筒11の小径側領域面f3との間にクリアランスCを設ければ、防振具10が偏芯を伴っていても、可動型D1と干渉することなく、防振具10を可動型D1内に収納できるから、作業能率も向上する。   Thus, if the clearance C is provided between the first inner peripheral surface F2 of the movable die D1 and the small-diameter side region surface f3 of the vibration isolator outer cylinder 11, the vibration isolator 10 is accompanied by eccentricity. However, since the vibration isolator 10 can be stored in the movable type D1 without interfering with the movable type D1, the work efficiency is also improved.

また、本形態の防振具10によれば、外筒11に段差Sが形成されているため、例えば、段差の大径側を送風用ファンの保持領域とすれば、防振具10の内筒13に対し外筒11が偏心していたり、外筒11自体が変形等により真円が維持できていない状態のまま、防振具10を可動型D1内に収納しても、当該段差Sにより形成される小径側領域面f3は、可動型D1に対してクリアランスCを持った状態でインサートできる。即ち、本発明である防振具10は、可動型D1と干渉することなく収納できる。このため、本発明である防振具10が予め偏心等を伴っていても、プロペラファン20を成形するにあたっては、防振具10の精度に左右されることなくプロペラファン20は調心されることから、プロペラファン構造体1として成形型D1,D2から取り出しても、回転精度が悪化して振動や騒音等を発生することがない。   Further, according to the vibration isolator 10 of the present embodiment, since the step S is formed in the outer cylinder 11, for example, if the large diameter side of the step is a holding area for the blower fan, Even if the vibration isolator 10 is housed in the movable mold D1 while the outer cylinder 11 is eccentric with respect to the cylinder 13 or the outer cylinder 11 itself cannot be maintained in a perfect circle due to deformation or the like, The formed small diameter side region surface f3 can be inserted with a clearance C with respect to the movable die D1. That is, the vibration isolator 10 according to the present invention can be stored without interfering with the movable mold D1. For this reason, even when the vibration isolator 10 according to the present invention is preliminarily accompanied by eccentricity or the like, the propeller fan 20 is aligned without being influenced by the accuracy of the vibration isolator 10 when the propeller fan 20 is molded. For this reason, even if the propeller fan structure 1 is taken out from the molds D1 and D2, the rotation accuracy is not deteriorated and vibrations and noises are not generated.

従って、防振具10を用いて成形されたプロペラファン構造体1の回転精度は、防振具10が含有する精度の良否に左右されることなく、品質の安定したものとなる。   Therefore, the rotational accuracy of the propeller fan structure 1 molded using the vibration isolator 10 is stable regardless of the accuracy of the accuracy contained in the vibration isolator 10.

更に、本形態の防振具10では、防振具外筒11の大径側端部を弾性部材13よりも突出した突出部位Pとしたことで、この突出部位Pを、固定型D2に対する位置決め用及び保持用の部位として利用できるため、防振具外筒11に対して高温・高圧が加わることで生じる変形を、より効果的に抑えることができる。このため、防振具10を用いて成形したプロペラファン構造体1は、その防振機能がより良い状態に維持される。   Furthermore, in the vibration isolator 10 of the present embodiment, the large diameter side end of the vibration isolator outer cylinder 11 is a projecting portion P projecting from the elastic member 13, so that the projecting portion P is positioned with respect to the fixed mold D2. Therefore, it is possible to more effectively suppress deformation caused by high temperature and high pressure applied to the vibration isolator outer cylinder 11. For this reason, the propeller fan structure 1 molded using the vibration isolator 10 is maintained in a state in which the vibration isolating function is better.

なお、本形態の場合、外筒11の小径側領域面f3には熱可塑性樹脂が充填されないため、可動型D1に突条Drを設けていないが、可動型D1に突条Drを設ければ、小径側端部に設けた突出部位Pを、可動型D1に対して固定するための位置決め用及び保持用の部位として利用できる。これは、小径側領域面f3をプロペラファン20の保持領域として使用した場合に有効である。   In the case of this embodiment, the small diameter side region surface f3 of the outer cylinder 11 is not filled with the thermoplastic resin, and therefore the protrusion Dr is not provided on the movable mold D1, but if the protrusion Dr is provided on the movable mold D1, The protruding portion P provided at the small diameter side end can be used as a positioning and holding portion for fixing to the movable mold D1. This is effective when the small-diameter side area surface f3 is used as a holding area for the propeller fan 20.

即ち、本発明に係る突出部位Pは、小径側端部及び大径側端部のうちの少なくとも、一方に形成すればよい。また、突出部位Pは、外筒51に段差Sを形成する構成とは、独立した構成とすることもできる。   That is, the protruding portion P according to the present invention may be formed in at least one of the small diameter side end and the large diameter side end. Further, the protruding portion P can be configured independently of the configuration in which the step S is formed in the outer cylinder 51.

加えて、防振具10では、突出部位Pの内周面f5が、その端面e1に向かうに従って拡径する傾斜面としてなるから、インサート部品として可動型D1にインサートし、型締めする際に、当該突出部位Pの内周面f5が案内面として機能することで、固定型D2に取り付ける際の当該固定型D2との干渉が可能な限り小さく抑えられ、固定型D2とのスムースな嵌合が可能となる。このため、成形型D1,D2内に取り付けられた防振具外筒11に高温・高圧が加わることに伴う防振具外筒11の変形の抑止にも同様に効果的である。このため、こうした防振具10を用いて成形したプロペラファン構造体1も、その防振機能がより良い状態に維持される。   In addition, in the vibration isolator 10, since the inner peripheral surface f5 of the projecting portion P is an inclined surface that increases in diameter toward the end surface e1, when inserting into the movable mold D1 as an insert part and clamping the mold, Since the inner peripheral surface f5 of the projecting portion P functions as a guide surface, interference with the fixed mold D2 when attaching to the fixed mold D2 is suppressed as much as possible, and a smooth fitting with the fixed mold D2 is achieved. It becomes possible. For this reason, the anti-vibration device outer cylinder 11 attached in the molds D1 and D2 is similarly effective in suppressing deformation of the anti-vibration device outer cylinder 11 due to the application of high temperature and high pressure. For this reason, the propeller fan structure 1 molded using the vibration isolator 10 is also maintained in a better state.

なお、本発明によれば、可動型D1に突条Drを設けた場合も、小径側端部に設けた突出部位Pの内周面f5を、同様に傾斜面としても、防振具外筒11を可動型D1にインサートして当該可動型D1に取り付ける際の当該可動型D1との干渉が可能な限り小さく抑えられ、可動型D1とのスムースな嵌合が可能となる。また、こうした構成によれば、小径側領域面f3をプロペラファン20の保持領域として使用した場合にも、成形型D1,D2内に取り付けられた防振具外筒11に高温・高圧が加わることに伴う防振具外筒11の変形の抑止に効果的であり、この場合のプロペラファン構造体1も、その防振機能がより良い状態に維持される。   According to the present invention, even when the protrusion D is provided on the movable die D1, the inner peripheral surface f5 of the protruding portion P provided at the small-diameter side end portion is similarly inclined, so that the vibration isolator outer cylinder When 11 is inserted into the movable mold D1 and attached to the movable mold D1, the interference with the movable mold D1 is suppressed as much as possible, and a smooth fitting with the movable mold D1 becomes possible. In addition, according to such a configuration, even when the small-diameter side region surface f3 is used as a holding region of the propeller fan 20, high temperature and high pressure are applied to the vibration isolator outer cylinder 11 attached in the molds D1 and D2. Therefore, the propeller fan structure 1 in this case is also maintained in a better state.

ところで、本発明に係る段差Sは、防振具外筒11の軸O方向に沿って傾斜する面としてなるものや、防振具外筒11の軸O方向に対して直交する面としてなるもの等、その形状は様々に選択できるが、本形態に係る段差Sの段差面f1は、防振具外筒11の軸O方向に対して直交する面としてなるから、型締めした時に段差Sの段差面f1に作用する型締め圧が当該段差面f1に効率的に伝わることにより、キャビティが形成される大径側領域面f2とキャビティが形成されない小径側領域面f3との間を効率的にシールすることができる。   Incidentally, the step S according to the present invention is a surface that is inclined along the axis O direction of the vibration isolator outer cylinder 11 or a surface that is orthogonal to the axis O direction of the vibration isolator outer cylinder 11. However, since the step surface f1 of the step S according to the present embodiment is a surface orthogonal to the direction of the axis O of the vibration isolator outer cylinder 11, the shape of the step S when the mold is clamped can be selected. The mold clamping pressure acting on the step surface f1 is efficiently transmitted to the step surface f1, so that the space between the large-diameter side region surface f2 where the cavity is formed and the small-diameter side region surface f3 where the cavity is not formed is efficiently obtained. Can be sealed.

このため、本形態の防振具10では、防振具外筒11の段差面f1が防振具外筒11の軸O方向に対して直交する面としてなるから、防振具外筒11の保持領域だけにプロペラファン20のハブ21を確実に成形することができる。このため、防振具10を用いて成形したプロペラファン構造体1は、その防振機能がより良い状態に維持される。   For this reason, in the vibration isolator 10 of the present embodiment, the step surface f1 of the vibration isolator outer cylinder 11 is a surface orthogonal to the axis O direction of the vibration isolator outer cylinder 11, The hub 21 of the propeller fan 20 can be reliably molded only in the holding region. For this reason, the propeller fan structure 1 molded using the vibration isolator 10 is maintained in a state in which the vibration isolating function is better.

ところで、送風用ファンの成形にあたっては、生産効率や品質の安定化を図るため、固定型D2に形成されたゲートGの位置選定が重要である。例えば、図7に示すプロペラファン20では、ハブ21と共に各羽根24の先端に至るまで樹脂をバランスよく供給するため、ゲートGの位置をハブ21と羽根24との間の好適な位置に設定する。   By the way, in forming the blower fan, it is important to select the position of the gate G formed on the fixed mold D2 in order to stabilize production efficiency and quality. For example, in the propeller fan 20 shown in FIG. 7, in order to supply the resin in a balanced manner until the tip of each blade 24 together with the hub 21, the position of the gate G is set to a suitable position between the hub 21 and the blade 24. .

しかしながら、ゲートGからの流動方向は、同図の矢印に示すように、ゲートGを中心にして放射状に広がるため、防振具外筒11の外周面に加わる充填圧も防振具外筒11の外周面に対して均一ではなく、熱可塑性樹脂の流動方向に従ってそれぞれ、若干異なる。   However, since the flow direction from the gate G spreads radially around the gate G as shown by the arrow in the figure, the filling pressure applied to the outer peripheral surface of the vibration isolator outer cylinder 11 is also reduced. It is not uniform with respect to the outer peripheral surface of the resin, and is slightly different according to the flow direction of the thermoplastic resin.

しかも、ゲートGからの熱可塑性樹脂は、その温度が、例えば、200〜300C°と比較的高温で、しかも、その圧力も、約200〜400kg/cm2と高いため、防振具外筒11が変形してしまう場合がある。   Moreover, the temperature of the thermoplastic resin from the gate G is relatively high, for example, 200 to 300 C °, and the pressure is as high as about 200 to 400 kg / cm 2. It may be deformed.

更に、図8(a)〜(c)はそれぞれ、防振具をプロペラファン用の金型にインサートして熱可塑性樹脂を射出成形する際に、防振具の外筒が受ける圧力に対し外筒の変形する度合いを、それぞれ外筒の形態別に構造解析(応力変形解析)を行った事例である。   Further, FIGS. 8 (a) to 8 (c) show the external force against the pressure received by the outer cylinder of the vibration isolator when the vibration isolator is inserted into the propeller fan mold and the thermoplastic resin is injection molded. This is an example in which the degree of deformation of the cylinder is subjected to structural analysis (stress deformation analysis) for each form of the outer cylinder.

例えば、図8(a)の構造解析図に示す従来例1は、防振具外筒がストレートの円筒形であり、その一方の外筒端部側にハブを成形すると、同図に示すように、それと反対側端部(端面e2側)も大きく変形する。これに対し、図8(b)の構造解析図に示す従来例2は、防振具外筒にフランジ51bを設けた従来の防振具50であり、そのフランジ51b側にハブを成形すれば、それと反対側端部(端面e2側)での変形は小さく抑えられるものの、同図に示すように、その変位量は依然大きい。   For example, in Conventional Example 1 shown in the structural analysis diagram of FIG. 8 (a), the vibration isolator outer cylinder is a straight cylinder, and when a hub is formed on one end of the outer cylinder, as shown in FIG. In addition, the opposite end (end face e2 side) is also greatly deformed. On the other hand, the conventional example 2 shown in the structural analysis diagram of FIG. 8 (b) is a conventional vibration isolator 50 having a vibration isolator outer cylinder provided with a flange 51b, and a hub is formed on the flange 51b side. Although the deformation at the opposite end (end face e2 side) can be suppressed small, the displacement is still large as shown in FIG.

一方、本発明に従う防振具外筒11は、図8(c)の構造解析図に示すように、その大径側領域面f2にハブを成形しても、同図に示すように、小径側領域面f3ではほとんど変形を生じない。   On the other hand, as shown in the structural analysis diagram of FIG. 8 (c), the vibration isolator outer cylinder 11 according to the present invention has a small diameter as shown in the figure even if a hub is formed on the large-diameter side region surface f2. Almost no deformation occurs on the side region surface f3.

図9(a),(b)はそれぞれ、本発明に係るプロペラファン構造体1の変形例を示す要部斜視図である。   FIGS. 9 (a) and 9 (b) are perspective views showing a main part of a modified example of the propeller fan structure 1 according to the present invention.

図9(a)に示す形態は、隔壁22と一体に成形した複数のフィン25がハブ21と外筒部23との間を放射状に連結するものである。この場合、プロペラファン20に対する防振具10の取り付け強度を更に増加させることができる。   In the form shown in FIG. 9 (a), a plurality of fins 25 formed integrally with the partition wall 22 connects the hub 21 and the outer cylinder portion 23 radially. In this case, the attachment strength of the vibration isolator 10 to the propeller fan 20 can be further increased.

図9(b)に示す形態は、防振具外筒11の大径側領域面f2の一部をハブ21で保持する一方、大径側領域面f2の残部をフィン25で保持するものである。この場合、プロペラファン構造体1の成形にあたり、大径側領域面f2に加わる樹脂圧を更に軽減させることができる。また、樹脂圧の軽減に併せて、防振具外筒11の薄肉化を図ることもできる。   In the form shown in FIG. 9 (b), a part of the large-diameter region surface f2 of the vibration isolator outer cylinder 11 is held by the hub 21 while the remaining portion of the large-diameter region surface f2 is held by the fins 25. is there. In this case, when the propeller fan structure 1 is molded, the resin pressure applied to the large-diameter side region surface f2 can be further reduced. Further, along with the reduction of the resin pressure, the vibration isolator outer cylinder 11 can be thinned.

更に、本形態の場合、同図に示すように、フィン25は防振具外筒11の大径側領域面f2に形成した溝11gに嵌合する構成となっている。この場合、フィン25による保持が強固なものとなる。加えて、本形態では、フィン25の先端を「あり」とし、溝11gを「あり」の嵌合する「あり溝」とすることで、又は、これと逆の構成とすることで、フィン25による保持を更に強固なものとしているが、溝11gは単なる溝であってもよい。   Further, in the case of this embodiment, as shown in the figure, the fin 25 is configured to fit into a groove 11g formed in the large-diameter side region surface f2 of the vibration isolator outer cylinder 11. In this case, the holding by the fins 25 becomes strong. In addition, in the present embodiment, the tip of the fin 25 is “present”, and the groove 11g is a “present groove” in which “there” is fitted, or by the reverse configuration, the fin 25 However, the groove 11g may be a simple groove.

また、本形態では、ハブ21とフィン25との組み合わせで、防振具外筒11を保持しているが、フィン25のみで保持してもよい。更に、大径側領域面f2に溝11gを形成することなく、大径側領域面f2に直接フィン25を接合させてもよい。   Further, in this embodiment, the vibration isolator outer cylinder 11 is held by a combination of the hub 21 and the fins 25, but may be held only by the fins 25. Furthermore, the fins 25 may be directly joined to the large diameter side region surface f2 without forming the grooves 11g on the large diameter side region surface f2.

図10(a),(b)はそれぞれ、防振具10を他の送風用ファンである遠心ファンと組み合わせた構造体をその空気の流入する側から示す斜視図である。   FIGS. 10 (a) and 10 (b) are perspective views showing a structure in which the vibration isolator 10 is combined with a centrifugal fan, which is another blower fan, from the air inflow side.

図10(a)に示す遠心ファンは、所謂、ターボファン30であり、防振具外筒11の大径側領域面f2を保持するハブ31を有する支持板32と、この支持板32と軸線方向に間隔を空けて配置されるシュラウド33とを有し、その間が複数の羽根34により連結されている。また、図10(b)に示す遠心ファンは、所謂、シロッコファン40であり、防振具外筒11の大径側領域面f2を保持するハブ41を有するディスク部材42と、このディスク部材42に対してその軸線周りに複数の羽根43がリング部材44で規制しつつ連結されることで成っている。   The centrifugal fan shown in FIG. 10 (a) is a so-called turbo fan 30, a support plate 32 having a hub 31 that holds the large-diameter side region surface f2 of the vibration isolator outer cylinder 11, and the support plate 32 and the axis line. And a shroud 33 arranged at intervals in the direction, and a plurality of blades 34 are connected therebetween. The centrifugal fan shown in FIG. 10 (b) is a so-called sirocco fan 40, a disk member 42 having a hub 41 that holds the large-diameter side region surface f2 of the vibration isolator outer cylinder 11, and the disk member 42. On the other hand, a plurality of blades 43 are connected around the axis while being regulated by the ring member 44.

上述したところは、本発明の好適な形態であるが、当業者によれば、特許請求の範囲内で種々の変更を加えることができる。例えば、外筒の全長に対する段差の配置比率は、送風用ファンに要求される性能や使用状況に応じて適宜変更することができ、また、送風用ファンの形状や羽根の枚数等も適宜変更することができる。また、本発明によれば、上述した各形態の部材やその形態、又は、その周辺構造等は用途に応じてそれぞれ組み合わせて使用することができる。   The above is the preferred embodiment of the present invention, but various modifications can be made within the scope of the claims by those skilled in the art. For example, the arrangement ratio of the step with respect to the entire length of the outer cylinder can be changed as appropriate according to the performance and usage conditions required for the blower fan, and the shape of the blower fan, the number of blades, and the like can be changed as appropriate. be able to. Moreover, according to this invention, the member of each form mentioned above, its form, its peripheral structure, etc. can be used in combination according to a use, respectively.

送風用ファン構造体の防振具には、例えば、図11に示すように、モータMに繋がるモータ軸Msからの回転トルク、ファンの重量(自重)、回転により生じる遠心力及び、これに実用上の熱履歴等が加わるため、本発明のように、送風用ファンの保持領域を削減したことで、従来の防振具10及びその保持方法を変更した場合、新たな実用上の問題(負荷、熱履歴等による変形に伴い発生する振動、騒音等)が伴わないこと、即ち、少なくとも、従来の性能を維持していることを確認する必要がある。   For example, as shown in FIG. 11, the vibration isolator of the fan structure for blower includes rotational torque from the motor shaft Ms connected to the motor M, weight of the fan (self-weight), centrifugal force generated by the rotation, and practical use for this. Since the heat history etc. are added, if the conventional vibration isolator 10 and its holding method are changed by reducing the holding area of the blower fan as in the present invention, a new practical problem (load It is necessary to confirm that there is no vibration, noise, etc. generated by deformation due to thermal history or the like, that is, that at least the conventional performance is maintained.

そこで、本願発明者は、本発明である送風用ファン構造体に関する性能を評価すべく、本発明に従う防振具10を備えるプロペラファン構造体を実施例とする一方、従来の防振具50を備えたプロペラファン構造体を比較例とし、各々を同一条件で運転させることで、図12に示す試験データを得た。   Therefore, in order to evaluate the performance of the blower fan structure according to the present invention, the present inventor uses a propeller fan structure including the vibration isolator 10 according to the present invention as an example, while the conventional vibration isolator 50 is used. The provided propeller fan structure was used as a comparative example, and each was operated under the same conditions, and test data shown in FIG. 12 was obtained.

なお、両者の比較は、モータとして同一性能のものを用い、温度80°Cの環境下で、モータ回転数を1000rpmに統一し、2分間回転後2分間停止を繰り返して200時間運転させることで行った。   In addition, the comparison of both uses the same performance as the motor, unifies the motor rotation speed to 1000rpm in the environment of the temperature of 80 ° C, repeats the stop for 2 minutes after the rotation for 2 minutes, and operates for 200 hours. went.

また、図12(a)の「偏重心距離(μm)」とは、軸Oに対するプロペラファン構造体1の試験前後(試験前と200時間運転後)のアンバランス量の変化分を重心の移動距離に置き換えて表現したものであり、更に、同図(b)の「面振れ(mm)」及び同図(c)の「芯振れ(mm)」はそれぞれ、図11の矢印で示した位置におけるプロペラファン外筒部23の外周面にて同じく試験前後(試験前と200時間運転後)に発生する変位量を表したものである。なお、これらは、プロペラファン構造体の性能を左右する重要な要素である。   In addition, “Eccentric center of gravity distance (μm)” in FIG. 12 (a) is the change in the center of gravity of the change in the unbalance amount before and after the test of the propeller fan structure 1 with respect to the axis O (before the test and after 200 hours of operation). It is expressed by replacing the distance, and further, `` surface runout (mm) '' in FIG. 11B and `` core runout (mm) '' in FIG. 11C are the positions indicated by arrows in FIG. 3 shows the amount of displacement generated on the outer peripheral surface of the propeller fan outer cylinder portion 23 before and after the test (before the test and after 200 hours of operation). These are important factors that influence the performance of the propeller fan structure.

図12(a)〜(c)に示す各実験データから明らかなように、実施例は、各評価項目において、比較例に対して同等以上の性能を維持しており、運転に伴い応力や熱履歴を受けても、実用上プロペラファン構造体として支障をきたすことのないレベルであることが確認された。   As is clear from the respective experimental data shown in FIGS. 12 (a) to (c), the examples maintain the same or better performance than the comparative examples in each evaluation item, and the stress and heat are increased with the operation. Even if it received the history, it was confirmed that it was a level that would not cause any trouble as a propeller fan structure in practice.

更に、図13(a),(b)はそれぞれ、比較例と実施例とを既存のエアコン室外機に装着し、その運転時に広域の周波数帯(0〜5KHz間の周波数帯)において発生する音圧レベル(dB)を比較検証した実験データである。   Further, FIGS. 13 (a) and 13 (b) show the sound generated in a wide frequency band (frequency band between 0 to 5 KHz) during operation when the comparative example and the example are mounted on an existing air conditioner outdoor unit, respectively. It is the experimental data which compared and verified the pressure level (dB).

この検証では、DCブラシレスモータを備えたエアコン室外機に各プロペラファン構造体を取り付けて回転数1000rpmで運転し、「JIS C 9612」に準拠してエアコン室外機の前方1mの位置で測定を行った。   In this verification, each propeller fan structure is attached to an air conditioner outdoor unit equipped with a DC brushless motor and operated at a rotational speed of 1000 rpm, and measurement is performed at a position 1 m ahead of the air conditioner outdoor unit in accordance with “JIS C 9612”. It was.

図13(a),(b)を比較すれば明らかなように、比較例に対して実施例は、広域の周波数帯において、特に突出した音圧レベルの上昇もないことが確認された。また、騒音値についても、比較例の騒音値が40.9dB(A)であるのに対し、実施例の騒音値が39.1dB(A)であり、比較例に対して同等以下の騒音値であることが確認された。   As is clear from a comparison of FIGS. 13 (a) and 13 (b), it was confirmed that the embodiment did not have a particularly prominent increase in sound pressure level in a wide frequency band compared to the comparative example. Also, the noise value of the comparative example is 40.9 dB (A), whereas the noise value of the example is 39.1 dB (A), which is equal to or lower than that of the comparative example. It was confirmed.

本発明である防振具は、軸流ファンや遠心ファンに限らず、斜流ファンや横流れファン(クロスフローファン)等の送風用ファンにも適用することで、送風用ファン構造体とすることができる。   The vibration isolator according to the present invention is not limited to an axial flow fan or a centrifugal fan, but is also applied to a blower fan such as a mixed flow fan or a cross flow fan (cross flow fan) to form a blower fan structure. Can do.

プロペラファン構造体(送風用ファン構造体)
10 防振具(本発明防振具)
10a シャフト嵌合孔
11 外筒
11f 環状凸部
11g 溝
11p 突出部
11r リブ
12 内筒
13 弾性部材
20 プロペラファン(本発明に係る送風用ファン)
21 ハブ
22 隔壁
23 プロペラファン外筒部
24 羽根
25 フィン
30 ターボファン(本発明に係る送風用ファン)
31 ハブ
32 支持板
33 シュラウド
34 羽根
40 シロッコファン(本発明に係る送風用ファン)
41 ハブ
42 ディスク部材
43 羽根
50 防振具(従来防振具)
51 外筒
51a 周壁
51b フランジ
52 内筒
53 弾性部材
D 可動型側凹部
D1 可動型
D2 固定型
e1 大径側軸方向端面
e2 小径側軸方向端面
f1 外筒外周の段差面
f2 外筒外周の大径側領域面
f3 外筒外周の小径側領域面
f4 外筒内周面
f5 筒状部内周面
F1 段差面
F2 凹部第一内周面
F3 凹部段差面
F4 凹部第二内周面
F5 可動型側合せ面
F6 固定型側合せ面
P 突出部位
S 段差
O 軸(軸心)
M モータ
Ms モータ軸
Propeller fan structure (fan structure for ventilation)
10 Anti-vibration device (Invention anti-vibration device)
10a Shaft fitting hole
11 outer cylinder
11f Annular projection
11g groove
11p protrusion
11r rib
12 inner cylinder
13 Elastic member
20 Propeller fan (fan for ventilation according to the present invention)
21 Hub
22 Bulkhead
23 Propeller fan outer cylinder
24 feathers
25 fins
30 Turbo fan (fan for blowing according to the present invention)
31 Hub
32 Support plate
33 Shroud
34 feathers
40 Sirocco fan (fan for ventilation according to the present invention)
41 Hub
42 Disc members
43 feathers
50 Vibration isolator (conventional vibration isolator)
51 outer cylinder
51a Perimeter wall
51b flange
52 inner cylinder
53 Elastic member D Movable mold side recess
D1 Movable type
D2 fixed type
e1 Large-diameter axial end face
e2 Small diameter side axial end face
f1 Stepped surface around the outer cylinder
f2 Large-diameter area on the outer periphery of the outer cylinder
f3 Small-diameter area on the outer periphery of the outer cylinder
f4 Inner peripheral surface of outer cylinder
f5 Inner circumferential surface of cylindrical part
F1 Step surface
F2 Concave first inner peripheral surface
F3 Recessed step surface
F4 Concave second inner peripheral surface
F5 Movable side mating surface
F6 Fixed mold side mating surface P Projection part S Step difference O Axis (axial center)
M motor
Ms Motor shaft

Claims (2)

熱可塑性樹脂からなる外筒と内筒とを弾性部材で連結したインサート品としての防振具であって、該外筒に送風用ファンが射出成形される送風用ファンの防振具において、
前記外筒における外周面の全周に亘って段差を形成して、該段差で分けられた小径側の領域面及び大径側の領域面のうち大径側の領域面を送風用ファンの保持領域とし、
前記外筒の端部のうちの少なくとも一方が、前記弾性部材よりも突出した突出部位としてなることを特徴とする、送風用ファンの防振具。
A vibration isolator as an insert product in which an outer cylinder and an inner cylinder made of a thermoplastic resin are connected by an elastic member, and a blower fan vibration isolator in which a blower fan is injection-molded in the outer cylinder.
A step is formed over the entire circumference of the outer peripheral surface of the outer cylinder, and the large-diameter region surface among the small-diameter region surface and the large-diameter region surface divided by the step is held by the blower fan. Area and
At least one of the end portions of the outer cylinder is a protruding portion that protrudes beyond the elastic member.
請求項1に記載の防振具と、この防振具の外筒における前記保持領域に保持される送風用ファンとを有することを特徴とする送風用ファン構造体。   A blower fan structure comprising the vibration isolator according to claim 1 and a blower fan held in the holding region of an outer cylinder of the vibration isolator.
JP2011186692A 2011-08-30 2011-08-30 Vibration isolator for blower fan and blower fan structure including the same Active JP5367785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186692A JP5367785B2 (en) 2011-08-30 2011-08-30 Vibration isolator for blower fan and blower fan structure including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186692A JP5367785B2 (en) 2011-08-30 2011-08-30 Vibration isolator for blower fan and blower fan structure including the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007156541A Division JP5142596B2 (en) 2007-06-13 2007-06-13 Vibration isolator for blower fan and blower fan structure including the same

Publications (3)

Publication Number Publication Date
JP2011236917A JP2011236917A (en) 2011-11-24
JP2011236917A5 JP2011236917A5 (en) 2012-01-12
JP5367785B2 true JP5367785B2 (en) 2013-12-11

Family

ID=45325134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186692A Active JP5367785B2 (en) 2011-08-30 2011-08-30 Vibration isolator for blower fan and blower fan structure including the same

Country Status (1)

Country Link
JP (1) JP5367785B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6175285B2 (en) * 2013-06-07 2017-08-02 日清紡メカトロニクス株式会社 Anti-vibration device for blower fan and blower fan structure
US11852156B1 (en) * 2022-11-11 2023-12-26 Air International (Us) Inc. HVAC blower wheel insert

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0185497U (en) * 1987-11-27 1989-06-06
JPH0921399A (en) * 1995-07-04 1997-01-21 Mitsubishi Heavy Ind Ltd Blower
JPH09228993A (en) * 1996-02-26 1997-09-02 Mitsubishi Heavy Ind Ltd Propeller fan
JPH09268998A (en) * 1996-04-01 1997-10-14 Hitachi Ltd Cylindrical impeller
JP2000110780A (en) * 1998-10-08 2000-04-18 Daikin Ind Ltd Impeller of fan
JP2003056492A (en) * 2001-06-07 2003-02-26 Matsushita Electric Ind Co Ltd Impeller for blower and method of manufacturing the impeller
JP4907018B2 (en) * 2001-09-03 2012-03-28 三菱電機株式会社 Blower and air conditioner
JP2003269381A (en) * 2002-03-13 2003-09-25 Mitsubishi Electric Corp Air blower and fan support mechanism and air conditioner
JP2003343488A (en) * 2002-05-28 2003-12-03 Daikin Ind Ltd Impeller for air blower
JP2005299524A (en) * 2004-04-13 2005-10-27 Matsushita Electric Ind Co Ltd Impeller for blower and method of manufacturing the same
JP5142596B2 (en) * 2007-06-13 2013-02-13 日清紡メカトロニクス株式会社 Vibration isolator for blower fan and blower fan structure including the same

Also Published As

Publication number Publication date
JP2011236917A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP6702318B2 (en) Blower and vacuum cleaner
US8596596B2 (en) Motor support device for heating, ventilation and/or air-conditioning system
JP5142596B2 (en) Vibration isolator for blower fan and blower fan structure including the same
JP5840151B2 (en) Rotating electric machine
JP2007082384A (en) Motor
US20080118357A1 (en) Turbofan and manufacturing method thereof
US20180258947A1 (en) Axial fan
US20110318200A1 (en) Blower fan and method of manufacturing the same
US8310116B2 (en) Brushless motor and manufacturing method thereof
JP5367785B2 (en) Vibration isolator for blower fan and blower fan structure including the same
JP2012092810A (en) Method of producing rotation fan
US20190376530A1 (en) Motor support for motor vehicle blower
JP2010127595A (en) Outdoor unit of air conditioner
JP2014015851A (en) Vibration control boss for fan, and method of manufacturing rotary fan
JP6175285B2 (en) Anti-vibration device for blower fan and blower fan structure
KR101528877B1 (en) Hub assembly for fan
JP2011190705A (en) Supercharger and method of manufacturing supercharger
CN211790987U (en) Rotor core and rotor with same
JP4159493B2 (en) Motor rotor, motor, air conditioner, refrigerator and ventilation fan
US20210148376A1 (en) Impeller and blower
KR102582901B1 (en) axial fan assembly
JPWO2021171435A5 (en)
JP6083918B1 (en) Manufacturing method of molded products with vibration damping function
JP2009091962A (en) Centrifugal fan
JPWO2020039774A1 (en) Blower

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R150 Certificate of patent or registration of utility model

Ref document number: 5367785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250