JP5365551B2 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP5365551B2
JP5365551B2 JP2010049088A JP2010049088A JP5365551B2 JP 5365551 B2 JP5365551 B2 JP 5365551B2 JP 2010049088 A JP2010049088 A JP 2010049088A JP 2010049088 A JP2010049088 A JP 2010049088A JP 5365551 B2 JP5365551 B2 JP 5365551B2
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
ram
core
cylinder pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010049088A
Other languages
Japanese (ja)
Other versions
JP2011185117A (en
Inventor
竜路 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010049088A priority Critical patent/JP5365551B2/en
Publication of JP2011185117A publication Critical patent/JP2011185117A/en
Application granted granted Critical
Publication of JP5365551B2 publication Critical patent/JP5365551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine capable of reducing the start-up time of the internal combustion engine. <P>SOLUTION: The control device 1 for the internal combustion engine includes cylinder pressure sensors 4-7 for detecting the cylinder internal pressure of cylinders of the internal combustion engine, a first CPU core 11 for calculating the controlled variable of the internal combustion engine based on the cylinder internal pressure detected by the cylinder pressure sensor 4-7, a second CPU core 12 for controlling the internal combustion engine, a first RAM 13 associated with the first CPU core 11, a second RAM 14 associated with the second CPU core 12, a first ADC 16 for AD-converting the detection signal of the cylinder internal pressure, and a DMAC 20 for writing the AD-converted detection signal of the cylinder internal pressure in the first RAM 13 or the second RAM 14. The DMAC 20 writes the AD-converted detection signal of the cylinder internal pressure in the second RAM 14 at start control, and the second CPU core 12 performs the start control of the internal combustion engine based on the controlled variable calculated by the second CPU core 12 based on the detection signal of the cylinder internal pressure of the second RAM 15. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、内燃機関制御装置に関する。   The present invention relates to an internal combustion engine control device.

上記技術分野の内燃機関制御装置として、種々の構成を採用したものが提案されている。例えば、特許文献1には、車両の内燃機関の制御のうちクランク角同期による処理を行うクランク角同期処理部と時間同期による処理を行う時間同期処理部とを別々に備えることで、クランク角同期の処理と時間同期の処理とが互いに干渉することを防止する内燃機関制御装置が記載されている。   As an internal combustion engine control device in the above technical field, devices adopting various configurations have been proposed. For example, Patent Document 1 includes a crank angle synchronization processing unit that performs processing based on crank angle synchronization in a control of an internal combustion engine of a vehicle and a time synchronization processing unit that performs processing based on time synchronization. The internal combustion engine control device is described in which the above process and the time synchronization process are prevented from interfering with each other.

特開2006−17054号公報JP 2006-17054 A

ところで、前述のような内燃機関制御装置においては、更なる利便性の向上のため、内燃機関の早期始動すなわち始動時間の短縮が強く望まれている。   By the way, in the internal combustion engine control apparatus as described above, it is strongly desired to start the internal combustion engine early, that is, to shorten the start-up time, in order to further improve convenience.

そこで、本発明は、内燃機関の始動時間の短縮を図ることができる内燃機関制御装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an internal combustion engine control device that can shorten the startup time of an internal combustion engine.

上記課題を解決するため、本発明は、複数のコアを有し、内燃機関の制御に関する演算を行うマルチコアプロセッサを備えた内燃機関制御装置であって、内燃機関の状態に関する内燃機関状態量を検出する状態量検出手段と、状態量検出手段の検出した内燃機関状態量に基づいて内燃機関の制御量を演算する第1のコアと、内燃機関の制御を行う第2のコアと、第1のコアに付随する第1のRAM[Random Access Memory]と、第2のコアに付随する第2のRAMと、状態量検出手段による内燃機関状態量の検出信号をAD変換する第1の変換手段と、第1の変換手段がAD[Analog to Digital]変換した内燃機関状態量の検出信号を第1のRAM又は第2のRAMに書き込ませる書き込み手段と、を備え、通常制御時において、書き込み手段は第1の変換手段がAD変換した内燃機関状態量の検出信号を第1のRAMに書き込み、第1のコアが第1のRAMに書き込まれた内燃機関状態量の検出信号に基づいて演算した制御量に基づいて第2のコアが内燃機関の制御を行い、始動制御時において、書き込み手段は第1の変換手段がAD変換した内燃機関状態量の検出信号を第2のRAMに書き込み、第2のコアが第2のRAMに書き込まれた内燃機関状態量の検出信号に基づいて演算した制御量に基づいて、第2のコアが内燃機関の始動制御を行うことを特徴とする。ここで、第1のRAMが第1のコアに付随するとは、第1のコアと第1のRAMとが専用バスで接続されている状態をいう他、第1のコアと共通バスのみで接続されている場合であっても第1のコアが第1のRAMに対して優先的なアクセスが可能になっている状態等も含む。   In order to solve the above-described problems, the present invention is an internal combustion engine control device that includes a plurality of cores and includes a multi-core processor that performs calculations related to control of the internal combustion engine, and detects an internal combustion engine state quantity related to the state of the internal combustion engine. A state quantity detection means for performing the operation, a first core for calculating the control amount of the internal combustion engine based on the internal combustion engine state quantity detected by the state quantity detection means, a second core for controlling the internal combustion engine, A first RAM [Random Access Memory] associated with the core, a second RAM associated with the second core, and a first conversion means for AD-converting a detection signal of the internal combustion engine state quantity by the state quantity detection means; And a writing means for writing the detection signal of the internal combustion engine state quantity converted by AD (Analog to Digital) into the first RAM or the second RAM by the first conversion means. First strange An internal combustion engine state quantity detection signal AD converted by the conversion means is written in the first RAM, and the first core is based on the control amount calculated based on the internal combustion engine state quantity detection signal written in the first RAM. The second core controls the internal combustion engine, and at the time of starting control, the writing means writes the detection signal of the internal combustion engine state quantity AD-converted by the first conversion means to the second RAM, and the second core The second core performs start control of the internal combustion engine based on a control amount calculated based on the detection signal of the internal combustion engine state quantity written in the second RAM. Here, the fact that the first RAM is attached to the first core means a state in which the first core and the first RAM are connected by a dedicated bus, and is connected only by the common bus to the first core. This includes a state in which the first core can preferentially access the first RAM even if it is.

本発明に係る内燃機関制御装置によれば、複数のコアに演算処理を分担させるマルチコアプロセッサにおいて、内燃機関の通常制御時に第1のコアが演算した内燃機関の制御量に基づいて第2のコアが内燃機関の制御を行うことで演算処理が適切に分担され、処理能力の向上を図ることができる。しかも、内燃機関の始動制御時においては、第2のコアが制御量の演算と内燃機関の始動制御との両方の処理を行うことにより、内燃機関状態量が第1のコア及び第1のRAMを経由することによる通信時間の遅れがなくなるので、内燃機関の始動時間の短縮を図ることができる。また、この内燃機関制御装置では、内燃機関の始動制御時において第1の変換手段がAD変換した内燃機関状態量の検出信号を第2のRAMに書き込ませるため、第2のコアは自身に付随する第2のRAMから内燃機関状態量の検出信号を読み込んで制御量の演算を行うことができる。従って、この内燃機関制御装置によれば、第2のコアに付随しない第1のRAM等に内燃機関状態量の検出信号が書き込まれる場合と比べて、第2のコアは内燃機関状態量の検出信号を高速で読み込むことができるので、第2のコアによる制御量の演算速度を向上させることができる。このことは内燃機関の始動時間の短縮に寄与する。   According to the internal combustion engine control device of the present invention, in the multi-core processor in which the arithmetic processing is shared by a plurality of cores, the second core is based on the control amount of the internal combustion engine calculated by the first core during normal control of the internal combustion engine. By controlling the internal combustion engine, the arithmetic processing is appropriately shared and the processing capacity can be improved. In addition, during the start control of the internal combustion engine, the second core performs both the calculation of the control amount and the start control of the internal combustion engine, so that the internal combustion engine state quantity becomes the first core and the first RAM. Since there is no delay in communication time due to passing through the engine, it is possible to shorten the starting time of the internal combustion engine. Further, in this internal combustion engine control device, the detection signal of the internal combustion engine state quantity AD-converted by the first conversion means during the start control of the internal combustion engine is written in the second RAM, so the second core is attached to itself. The control amount can be calculated by reading the internal combustion engine state quantity detection signal from the second RAM. Therefore, according to this internal combustion engine control device, the second core detects the internal combustion engine state quantity as compared with the case where the detection signal of the internal combustion engine state quantity is written in the first RAM or the like not associated with the second core. Since the signal can be read at high speed, the calculation speed of the control amount by the second core can be improved. This contributes to shortening the starting time of the internal combustion engine.

また、本発明に係る内燃機関制御装置においては、内燃機関状態量は内燃機関が有する複数の気筒の筒内圧であり、第1のコア及び第2のコアは、内燃機関の通常制御時において、複数の気筒の筒内圧に基づいて内燃機関の制御量を演算し、第1のコアの演算した制御量と第2のコアの演算した制御量との比較に基づいて異常があるか否かを判定することが好ましい。   Further, in the internal combustion engine control apparatus according to the present invention, the internal combustion engine state quantity is an in-cylinder pressure of a plurality of cylinders of the internal combustion engine, and the first core and the second core are in normal control of the internal combustion engine. A control amount of the internal combustion engine is calculated based on in-cylinder pressures of a plurality of cylinders, and whether there is an abnormality based on a comparison between the control amount calculated by the first core and the control amount calculated by the second core It is preferable to determine.

この内燃機関制御装置によれば、内燃機関の通常制御時において第1のコアで内燃機関の制御量を演算する際に、第2のコアでも内燃機関の制御量の演算を行うことにより、第1のコアで演算された内燃機関の制御量と第2のコアで演算された内燃機関の制御量との比較に基づいて装置の異常を判定することが可能になる。従って、この内燃機関制御装置によれば、異常を判定して対処することが可能になるので、装置に対する信頼性の向上を図ることができる。   According to this internal combustion engine control device, when the control amount of the internal combustion engine is calculated by the first core during the normal control of the internal combustion engine, the control amount of the internal combustion engine is also calculated by the second core. It is possible to determine an abnormality of the apparatus based on a comparison between the control amount of the internal combustion engine calculated by the first core and the control amount of the internal combustion engine calculated by the second core. Therefore, according to this internal combustion engine control device, it is possible to determine and deal with an abnormality, so that the reliability of the device can be improved.

或いは、本発明に係る内燃機関制御装置においては、状態量検出手段の検出した内燃機関状態量をAD変換する第2の変換手段を更に備え、内燃機関状態量は内燃機関が有する複数の気筒の筒内圧であり、第1の変換手段は、複数の気筒の各々の筒内圧の検出信号をAD変換し、第2の変換手段は、複数の気筒の筒内圧の検出信号を足し合わせた信号をAD変換し、書き込み手段は、第1の変換手段がAD変換した検出信号を第1のRAMに書き込ませると共に、第2の変換手段がAD変換した検出信号を足し合わせた信号を第2のRAMに書き込ませ、第1のコアは、第1のRAMに書き込まれた検出信号に基づいて内燃機関の制御量を演算し、第2のコアは、第2のRAMに書き込まれた検出信号を足し合わせた信号に基づいて内燃機関の制御量を演算し、第1のコアの演算した制御量と第2のコアの演算した制御量との比較に基づいて異常があるか否かを判定することが好ましい。   Alternatively, the internal combustion engine control apparatus according to the present invention further includes second conversion means for AD-converting the internal combustion engine state quantity detected by the state quantity detection means, and the internal combustion engine state quantity is obtained from a plurality of cylinders of the internal combustion engine. In-cylinder pressure, the first conversion means performs AD conversion on the detection signal of the in-cylinder pressure of each of the plurality of cylinders, and the second conversion means outputs a signal obtained by adding the detection signals of the in-cylinder pressure of the plurality of cylinders. The AD conversion and writing means causes the detection signal AD-converted by the first conversion means to be written in the first RAM, and the signal obtained by adding the detection signals AD-converted by the second conversion means is the second RAM. The first core calculates the control amount of the internal combustion engine based on the detection signal written in the first RAM, and the second core adds the detection signal written in the second RAM. Internal combustion engine based on the combined signal It calculates the control amount, it is preferable to determine whether there is an abnormality based on a comparison of the computed control amount calculated control amount of the first core and the second core.

この内燃機関制御装置によれば、第1の変換手段及び第1のRAMを介して第1のコアで演算された内燃機関の制御量と第2の変換手段及び第2のRAMを介して第2のコアで演算された内燃機関の制御量との比較に基づいて異常を判定するので、変換手段、RAM、コアの全要素の異常の有無について効率的に判定することができる。しかも、複数の気筒の燃焼タイミングがそれぞれ異なり筒内圧の変化も気筒ごとに相違するため複数の気筒の筒内圧の検出信号を足し合わせた信号から内燃機関の制御量を演算可能であることに基づき、第2の変換手段に入力される信号を一つにまとめることで、第2の変換手段の入力チャンネル数を少なくすることができる。従って、この内燃機関制御装置によれば、第2の変換手段の入力チャンネル数を少なくすることができるので、装置の構成の簡素化及び低コスト化を図ることができる。   According to this internal combustion engine control device, the control amount of the internal combustion engine calculated by the first core via the first conversion means and the first RAM and the second conversion means and the second RAM via the second RAM. Since abnormality is determined based on the comparison with the control amount of the internal combustion engine calculated by the core of No. 2, it is possible to efficiently determine the presence or absence of abnormality of all elements of the conversion means, RAM, and core. Moreover, since the combustion timings of the plurality of cylinders are different and the change in the in-cylinder pressure is also different for each cylinder, the control amount of the internal combustion engine can be calculated from the signal obtained by adding the in-cylinder pressure detection signals of the plurality of cylinders. By combining the signals input to the second conversion means into one, the number of input channels of the second conversion means can be reduced. Therefore, according to this internal combustion engine control device, the number of input channels of the second conversion means can be reduced, so that the configuration of the device can be simplified and the cost can be reduced.

本発明によれば、内燃機関の始動時間の短縮を図ることができる。   According to the present invention, the starting time of the internal combustion engine can be shortened.

本発明に係る内燃機関制御装置の一実施形態を示すブロック図である。1 is a block diagram showing an embodiment of an internal combustion engine control device according to the present invention. 内燃機関制御装置のCPUの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of CPU of an internal combustion engine control apparatus. 始動制御時の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process at the time of starting control. 通常制御時の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process at the time of normal control. 高回転制御時の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process at the time of high rotation control.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.

図1に示されるように、本実施形態に係る内燃機関制御装置1は、車両の内燃機関の制御を行うものである。本実施形態では、内燃機関として4気筒のレシプロエンジンを制御する場合について説明する。内燃機関制御装置1は、装置全体を統括的に制御するECU[Electronic Control Unit]2を備えている。   As shown in FIG. 1, an internal combustion engine control apparatus 1 according to the present embodiment controls an internal combustion engine of a vehicle. In the present embodiment, a case where a four-cylinder reciprocating engine is controlled as an internal combustion engine will be described. The internal combustion engine control device 1 includes an ECU [Electronic Control Unit] 2 that comprehensively controls the entire device.

ECU2は、クランクセンサ3、第1の筒内圧センサ4、第2の筒内圧センサ5、第3の筒内圧センサ6,及び第4の筒内圧センサ7と接続されている。クランクセンサ3は、内燃機関のクランク軸の回転角を検出するセンサである。クランクセンサ3が出力するクランク角信号は、例えば角度10CAで一周期のパルス信号として出力され、ECU2に入力される。   The ECU 2 is connected to the crank sensor 3, the first in-cylinder pressure sensor 4, the second in-cylinder pressure sensor 5, the third in-cylinder pressure sensor 6, and the fourth in-cylinder pressure sensor 7. The crank sensor 3 is a sensor that detects the rotation angle of the crankshaft of the internal combustion engine. The crank angle signal output from the crank sensor 3 is output as a one-cycle pulse signal at an angle of 10 CA, for example, and input to the ECU 2.

第1の筒内圧センサ4、第2の筒内圧センサ5、第3の筒内圧センサ6,及び第4の筒内圧センサ7は、内燃機関の4つの気筒にそれぞれ設けられ、気筒の筒内圧を検出するセンサである。筒内圧センサ4〜7の出力する筒内圧信号は、ECU2に入力され、所定の検出タイミングでサンプリングされる。筒内圧センサ4〜7は、特許請求の範囲に記載の状態量検出手段として機能し、気筒の筒内圧は特許請求の範囲に記載の内燃機関状態量に相当する。   The first in-cylinder pressure sensor 4, the second in-cylinder pressure sensor 5, the third in-cylinder pressure sensor 6, and the fourth in-cylinder pressure sensor 7 are provided in four cylinders of the internal combustion engine, respectively. It is a sensor to detect. The in-cylinder pressure signals output from the in-cylinder pressure sensors 4 to 7 are input to the ECU 2 and sampled at a predetermined detection timing. The in-cylinder pressure sensors 4 to 7 function as state quantity detection means described in the claims, and the in-cylinder pressure of the cylinder corresponds to the internal combustion engine state quantity described in the claims.

また、ECU2は、内燃機関の制御に関する演算処理を行うCPU[Central Processing Unit]10を有している。CPU10は、2つのCPUコア11,12を有するデュアルコアプロセッサである。このCPU10には、LPF[Low Pass Filter]によってフィルタリングされた筒内圧センサ4〜7の筒内圧信号とクランクセンサ3のクランク角信号とが入力される。   The ECU 2 has a CPU (Central Processing Unit) 10 that performs arithmetic processing related to control of the internal combustion engine. The CPU 10 is a dual core processor having two CPU cores 11 and 12. The CPU 10 receives the in-cylinder pressure signals of the in-cylinder pressure sensors 4 to 7 filtered by the LPF [Low Pass Filter] and the crank angle signal of the crank sensor 3.

また、CPU10は、第1のCPUコア11、第2のCPUコア12、第1のRAM[Random Access Memory]13、第2のRAM14、及びROM[Read Only Memory]15を有している。さらに、CPU10は、第1のADC[Analog to Digital Converter]16、第2のADC17、タイマ18、クランクタイマ19、DMAC[Direct Memory Access Controller]20、及び設定切り替え回路21を有している。CPU10内の各構成要素は内部バスを介して互いに接続されている。   The CPU 10 includes a first CPU core 11, a second CPU core 12, a first RAM [Random Access Memory] 13, a second RAM 14, and a ROM [Read Only Memory] 15. Further, the CPU 10 includes a first ADC [Analog to Digital Converter] 16, a second ADC 17, a timer 18, a crank timer 19, a DMAC [Direct Memory Access Controller] 20, and a setting switching circuit 21. Each component in the CPU 10 is connected to each other via an internal bus.

第1のCPUコア11は、筒内圧センサ4〜7から入力された筒内圧信号に基づいて、内燃機関の筒内圧制御量を演算するCPS[Cylinder Pressure Sensor]コアである。このような筒内圧制御量には、例えば点火制御に用いられる点火タイミング制御量等が含まれる。第1のCPUコア11は、演算した内燃機関の制御量を第1のCPUコア11自身に付随する第1のRAM13に書き込む。ここで、第1のRAM13が第1のCPUコア11に付随するとは、第1のCPUコア11と第1のRAM13とが専用バスで接続されている状態をいう他、第1のCPUコア11と共通バスのみで接続されている場合であっても第1のCPUコア11が第1のRAM13に対して優先的なアクセスが可能になっている状態等も含む。   The first CPU core 11 is a CPS (Cylinder Pressure Sensor) core that calculates the in-cylinder pressure control amount of the internal combustion engine based on the in-cylinder pressure signals input from the in-cylinder pressure sensors 4 to 7. Such in-cylinder pressure control amount includes, for example, an ignition timing control amount used for ignition control. The first CPU core 11 writes the calculated control amount of the internal combustion engine in the first RAM 13 attached to the first CPU core 11 itself. Here, the fact that the first RAM 13 is attached to the first CPU core 11 means a state in which the first CPU core 11 and the first RAM 13 are connected by a dedicated bus, as well as the first CPU core 11. This includes a state in which the first CPU core 11 can preferentially access the first RAM 13 even when they are connected only by the common bus.

第2のCPUコア12は、内燃機関の制御を行う内燃機関制御コアである。第2のCPUコア12は、設定切り替え回路21の設定に応じて、筒内圧センサ4〜7から入力された筒内圧信号に基づき筒内圧制御量を演算する。第2のCPUコア12は、演算した筒内圧制御量を第2のCPUコア12に付随する第2のRAM14に書き込む。第2のCPUコア12は、第1のRAM13又は第2のRAM14に書き込まれた筒内圧制御量に基づいて内燃機関の制御を実行する。第2のCPUコア12及び第1のCPUコア11は、主記憶装置として機能するROM15から各種アプリケーションプログラムをロードすることで各種演算処理や制御を実行する。   The second CPU core 12 is an internal combustion engine control core that controls the internal combustion engine. The second CPU core 12 calculates the in-cylinder pressure control amount based on the in-cylinder pressure signals input from the in-cylinder pressure sensors 4 to 7 in accordance with the setting of the setting switching circuit 21. The second CPU core 12 writes the calculated in-cylinder pressure control amount in the second RAM 14 attached to the second CPU core 12. The second CPU core 12 executes control of the internal combustion engine based on the in-cylinder pressure control amount written in the first RAM 13 or the second RAM 14. The second CPU core 12 and the first CPU core 11 execute various arithmetic processes and controls by loading various application programs from the ROM 15 functioning as a main storage device.

また、第2のCPUコア12は、設定切り替え回路21の設定に応じて、筒内圧センサ4〜7から入力された筒内圧信号に基づき筒内圧制御量の簡略演算を実行する。簡略演算とは、通常の演算より演算行程の一部が簡略化された演算時間の短い演算である。簡略演算の実行後、第2のCPUコア12は、第1のRAM13及び第2のRAM14にそれぞれ書き込まれた筒内圧制御量、すなわち第1のCPUコア11の演算した筒内圧制御量と第2のCPUコア12の演算した筒内圧制御量との差分が所定の閾値以下であるか否かを判定する。   Further, the second CPU core 12 performs a simple calculation of the in-cylinder pressure control amount based on the in-cylinder pressure signals input from the in-cylinder pressure sensors 4 to 7 in accordance with the setting of the setting switching circuit 21. A simple calculation is an operation with a short calculation time in which a part of the calculation process is simplified compared to a normal calculation. After execution of the simplified calculation, the second CPU core 12 determines the in-cylinder pressure control amount written in the first RAM 13 and the second RAM 14, that is, the in-cylinder pressure control amount calculated by the first CPU core 11 and the second in-cylinder pressure control amount. It is determined whether or not the difference from the in-cylinder pressure control amount calculated by the CPU core 12 is equal to or less than a predetermined threshold value.

第2のCPUコア12は、第1のCPUコア11の演算した筒内圧制御量と第2のCPUコア12の演算した筒内圧制御量との差分が所定の閾値以下であると判定した場合、CPU10に異常はないと判断して内燃機関の制御を続ける。第2のCPUコア12は、第1のCPUコア11の演算した筒内圧制御量と第2のCPUコア12の演算した筒内圧制御量との差分が所定の閾値を超えていると判定した場合、CPU10に異常があると判断して内燃機関の制御を中止する。   When the second CPU core 12 determines that the difference between the in-cylinder pressure control amount calculated by the first CPU core 11 and the in-cylinder pressure control amount calculated by the second CPU core 12 is equal to or less than a predetermined threshold value, The CPU 10 determines that there is no abnormality and continues to control the internal combustion engine. When the second CPU core 12 determines that the difference between the in-cylinder pressure control amount calculated by the first CPU core 11 and the in-cylinder pressure control amount calculated by the second CPU core 12 exceeds a predetermined threshold. The CPU 10 determines that there is an abnormality and stops the control of the internal combustion engine.

第1のADC16は、筒内圧センサ4〜7の各々に対応した4つの筒内圧用入力チャンネルを有している。第1のADC16は、筒内圧センサ4〜7の各々から入力された筒内圧信号のAD[Analog to Digital]変換を行う。第1のADC16は、タイマ18の時間同期又はクランクタイマ19のクランク角同期によりAD変換を行う。クランクタイマ19は、クランクセンサ3のクランク角信号に応じてクランク角同期の処理を行う。第1のADC16は、特許請求の範囲に記載の第1の変換手段として機能する。   The first ADC 16 has four in-cylinder pressure input channels corresponding to each of the in-cylinder pressure sensors 4 to 7. The first ADC 16 performs AD [Analog to Digital] conversion of the in-cylinder pressure signals input from the in-cylinder pressure sensors 4 to 7. The first ADC 16 performs AD conversion by time synchronization of the timer 18 or crank angle synchronization of the crank timer 19. The crank timer 19 performs crank angle synchronization processing according to the crank angle signal of the crank sensor 3. The first ADC 16 functions as a first conversion unit described in the claims.

第2のADC17は、筒内圧センサ4〜7から出力された筒内圧信号が足し合わされて入力される1つの筒内圧用入力チャンネルを有している。第2のADC17は、タイマ18の時間同期により筒内圧センサ4〜7を足し合わせた筒内圧信号のAD変換を行う。第2のADC17は、特許請求の範囲に記載の第2の変換手段として機能する。   The second ADC 17 has one in-cylinder pressure input channel to which the in-cylinder pressure signals output from the in-cylinder pressure sensors 4 to 7 are added and input. The second ADC 17 performs AD conversion of the in-cylinder pressure signal obtained by adding the in-cylinder pressure sensors 4 to 7 in synchronization with the timer 18. The second ADC 17 functions as second conversion means described in the claims.

DMAC20は、第1のCPUコア11及び第2のCPUコア12を介さないデータ転送方式であるDMA[Direct Memory Access]を実現する制御ユニットである。DMAC20は、第1のADC16のAD変換した筒内圧信号を第1のADC16から第1のRAM13又は第2のRAM14に直接書き込ませる。また、DMAC20は、第2のADC17のAD変換した筒内圧信号を第2のADC17から第1のRAM13に直接書き込ませる。DMAC20は、特許請求の範囲に記載の書き込み手段として機能する。   The DMAC 20 is a control unit that implements DMA [Direct Memory Access], which is a data transfer method that does not pass through the first CPU core 11 and the second CPU core 12. The DMAC 20 directly writes the in-cylinder pressure signal obtained by AD conversion of the first ADC 16 from the first ADC 16 to the first RAM 13 or the second RAM 14. Further, the DMAC 20 directly writes the in-cylinder pressure signal obtained by AD conversion of the second ADC 17 from the second ADC 17 to the first RAM 13. The DMAC 20 functions as a writing unit described in the claims.

設定切り替え回路21は、クランクセンサ3のクランク角信号に基づいて、内燃機関が始動制御、通常制御、及び高回転制御のいずれの制御状態であるかを判定する。設定切り替え回路21は、内燃機関が始動制御時であると判定した場合、始動制御設定処理を行う。設定切り替え回路21は、始動制御設定処理において、第1のADC16がタイマ18の時間同期により筒内圧信号のAD変換を開始すると共に、DMAC20が第1のADC16のAD変換した筒内圧信号を第2のRAM14に書き込ませるように設定を切り替える。   Based on the crank angle signal of the crank sensor 3, the setting switching circuit 21 determines whether the internal combustion engine is in a control state of start control, normal control, or high rotation control. The setting switching circuit 21 performs a start control setting process when it is determined that the internal combustion engine is in the start control. In the start control setting process, the setting switching circuit 21 starts AD conversion of the in-cylinder pressure signal by the first ADC 16 in time synchronization with the timer 18, and the DMAC 20 performs second conversion of the in-cylinder pressure signal obtained by AD conversion of the first ADC 16. The setting is switched so as to be written in the RAM 14.

また、設定切り替え回路21は、内燃機関が通常制御時であると判定した場合、通常制御設定処理を行う。設定切り替え回路21は、通常制御設定処理において、第1のADC16がクランクタイマ19のクランク角同期により筒内圧信号のAD変換を開始すると共に、DMAC20が第1のADC16のAD変換した筒内圧信号を第1のRAM13に書き込ませるように設定を切り替える。同時に、設定切り替え回路21は、第2のADC17がタイマ18の時間同期により筒内圧信号のAD変換を開始すると共に、DMAC20が第2のADC17のAD変換した筒内圧信号を第1のRAM13に書き込ませるように設定を切り替える。   The setting switching circuit 21 performs normal control setting processing when it is determined that the internal combustion engine is in normal control. In the normal control setting process, the setting switching circuit 21 starts AD conversion of the in-cylinder pressure signal when the first ADC 16 synchronizes with the crank angle of the crank timer 19, and the DMAC 20 converts the in-cylinder pressure signal obtained by AD conversion of the first ADC 16. The setting is switched so as to be written in the first RAM 13. At the same time, in the setting switching circuit 21, the second ADC 17 starts AD conversion of the in-cylinder pressure signal by time synchronization of the timer 18, and the DMAC 20 writes the in-cylinder pressure signal converted by the second ADC 17 into the first RAM 13. Change the settings so that

また、設定切り替え回路21は、内燃機関が高回転制御時であると判定した場合、高回転制御を行う。設定切り替え回路21は、高回転制御設定処理において、内燃機関の回転数から第1のCPUコア11及び第2のCPUコア12に対する演算処理の分担割合を決定する。分担割合の決定には、例えば回転数に応じた第1のCPUコア11及び第2のCPUコア12の処理負荷状況を考慮して、最適な処理状況となるように回転数と分担割合とを関連付けた分担割合マップデータが用いられる。設定切り替え回路21は、第1のADC16がクランクタイマ19のクランク角同期により筒内圧信号のAD変換を開始すると共に、決定した分担割合に応じて、DMAC20が第1のADC16のAD変換した筒内圧信号を第1のRAM13又は第2のRAM14に書き込ませるように設定を切り替える。この設定切り替え回路21では、ソフトウェア的な設定の切り替えではなく、より信頼性の高いハード的な設定の切り替えが実現される。   The setting switching circuit 21 performs high rotation control when it is determined that the internal combustion engine is in high rotation control. The setting switching circuit 21 determines the share of the arithmetic processing for the first CPU core 11 and the second CPU core 12 from the rotational speed of the internal combustion engine in the high rotation control setting process. In determining the sharing ratio, for example, considering the processing load status of the first CPU core 11 and the second CPU core 12 according to the rotation speed, the rotation speed and the sharing ratio are set so as to obtain an optimum processing status. The associated share ratio map data is used. The setting switching circuit 21 starts the AD conversion of the in-cylinder pressure signal by the first ADC 16 in synchronization with the crank angle of the crank timer 19, and the in-cylinder pressure that the DMAC 20 performs the AD conversion of the first ADC 16 according to the determined sharing ratio. The setting is switched so that the signal is written to the first RAM 13 or the second RAM 14. In the setting switching circuit 21, switching of hardware settings with higher reliability is realized instead of switching of software settings.

次に、上述した内燃機関制御装置1のCPU10における処理の流れについて図面を参照して説明する。   Next, the flow of processing in the CPU 10 of the above-described internal combustion engine control apparatus 1 will be described with reference to the drawings.

図2に示されるように、内燃機関制御装置1のCPU10には、まずクランクセンサ3のクランク角信号が入力される(S1)。なお、筒内圧センサ4〜7の筒内圧信号は、所定の検出タイミングで継続的にCPU10に入力されている。CPU10の設定切り替え回路21は、入力されたクランクセンサ3のクランク角信号に基づいて、内燃機関が始動制御時であるか否かを判定する(S2)。   As shown in FIG. 2, the crank angle signal of the crank sensor 3 is first input to the CPU 10 of the internal combustion engine controller 1 (S1). Note that the in-cylinder pressure signals of the in-cylinder pressure sensors 4 to 7 are continuously input to the CPU 10 at a predetermined detection timing. The setting switching circuit 21 of the CPU 10 determines whether or not the internal combustion engine is in starting control based on the input crank angle signal of the crank sensor 3 (S2).

図3に示されるように、設定切り替え回路21は、内燃機関が始動制御時であると判定した場合、始動制御設定処理を行う(S3)。始動制御設定処理の後、タイマ18の時間と同期した第1のADC16による筒内圧信号のAD変換処理が行われる(S4)。第1のADC16のAD変換した筒内圧信号はDMAC20により第2のRAM14に直接書き込まれる。   As shown in FIG. 3, the setting switching circuit 21 performs a start control setting process when it is determined that the internal combustion engine is in the start control (S3). After the start control setting process, the AD conversion process of the in-cylinder pressure signal is performed by the first ADC 16 in synchronization with the time of the timer 18 (S4). The in-cylinder pressure signal obtained by AD conversion of the first ADC 16 is directly written into the second RAM 14 by the DMAC 20.

その後、第2のCPUコア12は、第2のRAM14に書き込まれた筒内圧信号に基づき内燃機関の筒内圧制御量を演算する(S5)。第2のCPUコア12は、演算した筒内圧制御量を第2のCPUコア12に付随する第2のRAM14に書き込む。第2のCPUコア12は、第2のRAM14に書き込まれた筒内圧制御量に基づいて内燃機関の始動制御を実行する(S6)。始動制御の実行後、S1に戻る。   Thereafter, the second CPU core 12 calculates the in-cylinder pressure control amount of the internal combustion engine based on the in-cylinder pressure signal written in the second RAM 14 (S5). The second CPU core 12 writes the calculated in-cylinder pressure control amount in the second RAM 14 attached to the second CPU core 12. The second CPU core 12 executes start control of the internal combustion engine based on the in-cylinder pressure control amount written in the second RAM 14 (S6). After the start control is executed, the process returns to S1.

一方、図2に示されるように、設定切り替え回路21は、S2において内燃機関が始動制御時ではないと判定した場合、クランクセンサ3のクランク角信号に基づいて内燃機関が通常制御時であるか否かを判定する(S7)。   On the other hand, as shown in FIG. 2, when the setting switching circuit 21 determines in S2 that the internal combustion engine is not in the start control time, whether the internal combustion engine is in the normal control time based on the crank angle signal of the crank sensor 3 or not. It is determined whether or not (S7).

図4に示されるように、設定切り替え回路21は、内燃機関が通常制御時であると判定した場合、通常制御設定処理を行う(S8)。通常制御設定処理の後、クランクタイマ19のクランク角と同期した第1のADC16による筒内圧信号のAD変換処理が行われる(S9)。第1のADC16のAD変換した筒内圧信号はDMAC20により第1のRAM13に直接書き込まれる。その後、第1のCPUコア11は、第1のRAM13に書き込まれた筒内圧信号に基づき内燃機関の筒内圧制御量を演算する(S10)。第1のCPUコア11は、演算した筒内圧制御量を第1のRAM13に書き込む。   As shown in FIG. 4, the setting switching circuit 21 performs normal control setting processing when it is determined that the internal combustion engine is in normal control (S8). After the normal control setting process, the AD conversion process of the in-cylinder pressure signal by the first ADC 16 synchronized with the crank angle of the crank timer 19 is performed (S9). The in-cylinder pressure signal obtained by AD conversion of the first ADC 16 is directly written into the first RAM 13 by the DMAC 20. Thereafter, the first CPU core 11 calculates the in-cylinder pressure control amount of the internal combustion engine based on the in-cylinder pressure signal written in the first RAM 13 (S10). The first CPU core 11 writes the calculated in-cylinder pressure control amount in the first RAM 13.

同様に、S8の通常制御設定処理の後、タイマ18の時間と同期した第2のADC17による筒内圧信号(各気筒分の信号を足し合わせた信号)のAD変換処理が行われる(S11)。第2のADC17のAD変換した筒内圧信号はDMAC20により第2のRAM14に直接書き込まれる。その後、第2のCPUコア12は、第2のRAM14に書き込まれた筒内圧信号に基づき内燃機関の筒内圧制御量の簡略演算を行う(S12)。第2のCPUコア12は、演算した筒内圧制御量を第2のRAM14に書き込む。   Similarly, after the normal control setting process of S8, the AD conversion process of the in-cylinder pressure signal (the signal obtained by adding the signals for each cylinder) by the second ADC 17 synchronized with the time of the timer 18 is performed (S11). The in-cylinder pressure signal obtained by AD conversion of the second ADC 17 is directly written into the second RAM 14 by the DMAC 20. Thereafter, the second CPU core 12 performs a simple calculation of the in-cylinder pressure control amount of the internal combustion engine based on the in-cylinder pressure signal written in the second RAM 14 (S12). The second CPU core 12 writes the calculated in-cylinder pressure control amount in the second RAM 14.

その後、第2のCPUコア12は、第1のRAM13及び第2のRAM14にそれぞれ書き込まれた筒内圧制御量、すなわち第1のCPUコア11の演算した筒内圧制御量と第2のCPUコア12の演算した筒内圧制御量との差分が所定の閾値以下であるか否かを判定する(S13)。   Thereafter, the second CPU core 12 determines the in-cylinder pressure control amount written in the first RAM 13 and the second RAM 14, that is, the in-cylinder pressure control amount calculated by the first CPU core 11 and the second CPU core 12. It is determined whether or not the difference from the calculated in-cylinder pressure control amount is equal to or less than a predetermined threshold (S13).

第2のCPUコア12は、第1のCPUコア11の演算した筒内圧制御量と第2のCPUコア12の演算した筒内圧制御量との差分が所定の閾値以下であると判定した場合、CPU10に異常はないと判断して内燃機関の通常制御を実行する(S14)。通常制御の実行後、S1に戻る。また、第2のCPUコア12は、第1のCPUコア11の演算した筒内圧制御量と第2のCPUコア12の演算した筒内圧制御量との差分が所定の閾値を超えていると判定した場合、CPU10に異常があると判断して内燃機関の制御を中止する(S15)。   When the second CPU core 12 determines that the difference between the in-cylinder pressure control amount calculated by the first CPU core 11 and the in-cylinder pressure control amount calculated by the second CPU core 12 is equal to or less than a predetermined threshold value, The CPU 10 determines that there is no abnormality and executes normal control of the internal combustion engine (S14). After executing the normal control, the process returns to S1. The second CPU core 12 determines that the difference between the in-cylinder pressure control amount calculated by the first CPU core 11 and the in-cylinder pressure control amount calculated by the second CPU core 12 exceeds a predetermined threshold value. If so, the CPU 10 determines that there is an abnormality and stops the control of the internal combustion engine (S15).

図5に示されるように、設定切り替え回路21は、S7において内燃機関が通常制御時ではないと判定した場合、内燃機関は高回転制御時であると判定して、高回転制御設定処理を行う(S16)。高回転制御設定処理では、第1のCPUコア11及び第2のCPUコア12に対する演算処理の分配割合が内燃機関の回転数に応じて決定される。   As shown in FIG. 5, if the setting switching circuit 21 determines in S7 that the internal combustion engine is not in normal control, it determines that the internal combustion engine is in high rotation control and performs high rotation control setting processing. (S16). In the high rotation control setting process, the distribution ratio of the calculation process to the first CPU core 11 and the second CPU core 12 is determined according to the rotation speed of the internal combustion engine.

高回転制御設定処理の後、クランクタイマ19のクランク角と同期した第1のADC16による筒内圧信号のAD変換処理が行われる(S17)。その後、設定切り替え回路21の決定した演算処理の分配割合に応じて、第1のADC16のAD変換した筒内圧信号をDMAC20が第1のRAM13又は第2のRAM14に書き込ませる。   After the high rotation control setting process, the AD conversion process of the in-cylinder pressure signal by the first ADC 16 synchronized with the crank angle of the crank timer 19 is performed (S17). Thereafter, the in-cylinder pressure signal obtained by AD conversion of the first ADC 16 is written in the first RAM 13 or the second RAM 14 in accordance with the distribution ratio of the arithmetic processing determined by the setting switching circuit 21.

第1のCPUコア11及び第2のCPUコア12は、それぞれ第1のRAM13及び第2のRAM14に分配して書き込まれた筒内圧信号に基づいて筒内圧制御量の演算を行う(S18)。第1のCPUコア11は、演算した筒内圧制御量を第1のRAM13に書き込む。第2のCPUコア12は、演算した筒内圧制御量を第2のRAM14に書き込む。その後、第2のCPUコア12は、第2のRAM14に書き込まれた筒内圧制御量に基づいて内燃機関の高回転制御を実行する(S19)。高回転制御の実行後、S1に戻る。   The first CPU core 11 and the second CPU core 12 calculate the in-cylinder pressure control amount based on the in-cylinder pressure signal distributed and written to the first RAM 13 and the second RAM 14, respectively (S18). The first CPU core 11 writes the calculated in-cylinder pressure control amount in the first RAM 13. The second CPU core 12 writes the calculated in-cylinder pressure control amount in the second RAM 14. Thereafter, the second CPU core 12 executes high rotation control of the internal combustion engine based on the in-cylinder pressure control amount written in the second RAM 14 (S19). After executing the high rotation control, the process returns to S1.

次に、上述した内燃機関制御装置1の作用効果について説明する。   Next, the effect of the internal combustion engine control device 1 described above will be described.

本実施形態に係る内燃機関制御装置1によれば、2つのCPUコア11,12に演算処理を分担させるマルチコアプロセッサとして機能するCPU10において、内燃機関の通常制御時には第1のCPUコア11が気筒の圧力に基づいて内燃機関の筒内圧制御量の演算を行い、第2のCPUコア12が筒内圧制御量に基づいて内燃機関の制御を行うことで演算処理が分担され、処理能力の向上を図ることができる。さらに、内燃機関の始動制御時には第2のCPUコア12が筒内圧制御量の演算と内燃機関の始動制御との両方の処理を行うので、筒内圧信号が第1のCPUコア11及び第1のRAMを経由することによる通信時間の遅れがなくなり、内燃機関の始動時間の短縮を図ることができる。その結果、例えばアイドリングストップ機能を有する車両においては、内燃機関の再起動のスムーズさを向上させることができる。また、本発明によれば、スタータ動作用の電池容量を削減することが可能になり、車両の低コスト化が図られる。   According to the internal combustion engine control apparatus 1 according to the present embodiment, in the CPU 10 functioning as a multi-core processor in which the two CPU cores 11 and 12 share the arithmetic processing, the first CPU core 11 is the cylinder during normal control of the internal combustion engine. The in-cylinder pressure control amount of the internal combustion engine is calculated based on the pressure, and the second CPU core 12 controls the internal combustion engine based on the in-cylinder pressure control amount, so that the calculation processing is shared and the processing capacity is improved. be able to. Further, since the second CPU core 12 performs both the calculation of the in-cylinder pressure control amount and the start control of the internal combustion engine during the start control of the internal combustion engine, the in-cylinder pressure signal is transmitted to the first CPU core 11 and the first CPU core 11. There is no communication time delay due to passing through the RAM, and the start-up time of the internal combustion engine can be shortened. As a result, for example, in a vehicle having an idling stop function, the smoothness of restart of the internal combustion engine can be improved. Further, according to the present invention, the battery capacity for starter operation can be reduced, and the cost of the vehicle can be reduced.

また、この内燃機関制御装置1によれば、内燃機関の始動制御時において第1のADC16がAD変換した筒内圧信号を第2のRAM14に書き込ませるので、第2のCPUコア12は自身に付随する第2のRAM17から筒内圧信号を読み込んで筒内圧制御量の演算を行うことができる。従って、この内燃機関制御装置1によれば、第2のCPUコア12に付随しない第1のRAM13等に筒内圧信号が書き込まれる場合と比べて、第2のCPUコア12は筒内圧信号を高速で読み込むことができるので、第2のCPUコア12による筒内圧制御量の演算速度を向上させることができる。このことは内燃機関の始動時間の短縮に寄与する。   Further, according to the internal combustion engine control apparatus 1, the in-cylinder pressure signal AD-converted by the first ADC 16 is written in the second RAM 14 during the start control of the internal combustion engine, so that the second CPU core 12 is attached to itself. The in-cylinder pressure signal can be read from the second RAM 17 and the in-cylinder pressure control amount can be calculated. Therefore, according to the internal combustion engine control apparatus 1, the second CPU core 12 transmits the in-cylinder pressure signal at a higher speed than when the in-cylinder pressure signal is written in the first RAM 13 or the like not associated with the second CPU core 12. Therefore, the calculation speed of the in-cylinder pressure control amount by the second CPU core 12 can be improved. This contributes to shortening the starting time of the internal combustion engine.

さらに、この内燃機関制御装置1によれば、内燃機関の通常制御時において第1のCPUコア11で内燃機関の制御量を演算する際に、第2のCPUコア12でも内燃機関の制御量の演算を行うことにより、第1のCPUコア11で演算された内燃機関の筒内圧制御量と第2のCPUコア12で演算された内燃機関の筒内圧制御量との比較に基づいて装置の異常を判定することが可能になる。しかも、第1のADC16及び第1のRAM13を介して第1のCPUコア11で演算された内燃機関の筒内圧制御量と第2のADC17及び第2のRAM14を介して第2のCPUコア12で演算された内燃機関の筒内圧制御量との比較に基づいて異常を判定するので、CPUコア11,12、RAM13,14、ADC16,17の全要素の異常の有無について効率的に判定することができる。従って、この内燃機関制御装置1によれば、異常を判定して対処することが可能になるので、装置に対する信頼性の向上を図ることができる。   Furthermore, according to the internal combustion engine control apparatus 1, when the control amount of the internal combustion engine is calculated by the first CPU core 11 during the normal control of the internal combustion engine, the control amount of the internal combustion engine is also controlled by the second CPU core 12. By performing the calculation, the abnormality of the apparatus is determined based on a comparison between the in-cylinder pressure control amount of the internal combustion engine calculated by the first CPU core 11 and the in-cylinder pressure control amount of the internal combustion engine calculated by the second CPU core 12. Can be determined. In addition, the in-cylinder pressure control amount of the internal combustion engine calculated by the first CPU core 11 via the first ADC 16 and the first RAM 13 and the second CPU core 12 via the second ADC 17 and the second RAM 14. Since the abnormality is determined on the basis of the comparison with the in-cylinder pressure control amount of the internal combustion engine calculated in step 1, the presence / absence of abnormality of all the elements of the CPU cores 11, 12, RAMs 13, 14, and ADCs 16, 17 is efficiently determined. Can do. Therefore, according to the internal combustion engine control apparatus 1, it is possible to determine and deal with an abnormality, so that the reliability of the apparatus can be improved.

また、この内燃機関制御装置1によれば、4つの気筒の燃焼タイミングがそれぞれ異なり筒内圧の変化も気筒ごとに相違するため4つの気筒の筒内圧信号を足し合わせた信号から内燃機関の筒内圧制御量を演算可能であることに基づき、第2のADC17に入力される信号を一つにまとめることで、第2のADC17の入力チャンネル数を少なくすることができる。従って、この内燃機関制御装置1によれば、第2のADC17の入力チャンネル数を少なくすることができるので、装置の構成の簡素化及び低コスト化を図ることができる。   Further, according to the internal combustion engine control apparatus 1, since the combustion timings of the four cylinders are different and the changes in the in-cylinder pressure are also different for each cylinder, the in-cylinder pressure of the internal combustion engine is determined from the signal obtained by adding the in-cylinder pressure signals of the four cylinders. Based on the fact that the control amount can be calculated, the number of input channels of the second ADC 17 can be reduced by combining the signals input to the second ADC 17 into one. Therefore, according to the internal combustion engine control device 1, the number of input channels of the second ADC 17 can be reduced, so that the configuration of the device can be simplified and the cost can be reduced.

さらに、この内燃機関制御装置1によれば、内燃機関の高回転制御において、第1のCPUコア11及び第2のCPUコア12に筒内圧制御量の演算処理を処理負荷状況に応じて適切に分担させることで、処理負荷を低減させ、高回転制御における信頼性の高い筒内圧制御を実現することができる。   Furthermore, according to the internal combustion engine control apparatus 1, in the high speed control of the internal combustion engine, the first CPU core 11 and the second CPU core 12 are appropriately configured to perform the calculation process of the in-cylinder pressure control amount according to the processing load situation. By sharing, processing load can be reduced, and highly reliable in-cylinder pressure control in high rotation control can be realized.

本発明は、上述した実施形態に限定されるものではない。例えば、上述した実施形態では、内燃機関として4気筒のレシプロエンジンを制御する場合について説明したが、気筒数は4つのものに限られず、また駆動源としてのモータを備えたハイブリッドエンジン等に対しても好適に適用可能である。   The present invention is not limited to the embodiment described above. For example, in the above-described embodiment, a case where a four-cylinder reciprocating engine is controlled as an internal combustion engine has been described. However, the number of cylinders is not limited to four, and a hybrid engine including a motor as a drive source is used. Can also be suitably applied.

また、CPUコアの数は二個に限られず、三個以上であっても良い。さらに、特許請求の範囲に記載の内燃機関状態量は、気筒の筒内圧に限られない。   Further, the number of CPU cores is not limited to two, and may be three or more. Further, the state quantity of the internal combustion engine described in the claims is not limited to the in-cylinder pressure of the cylinder.

また、第1のCPUコア11及び第2のCPUコア12がADCやRAMを共通する構成であっても良い。このように、ADCやRAMが共通であっても、第1のCPUコア11及び第2のCPUコア12がそれぞれ筒内圧制御量を演算し、各CPUコア11,12の演算した筒内圧制御量を比較して異常を検出することで、第1のCPUコア11及び第2のCPUコア12並びに共通しない構成要素について異常があるか否かを適切に判定できる。   Further, the first CPU core 11 and the second CPU core 12 may have a common ADC and RAM. Thus, even if the ADC and RAM are common, the first CPU core 11 and the second CPU core 12 calculate the in-cylinder pressure control amount, and the in-cylinder pressure control amount calculated by each CPU core 11, 12. By detecting the abnormality by comparing the two, it is possible to appropriately determine whether or not there is an abnormality in the first CPU core 11 and the second CPU core 12 and the components that are not common.

1…内燃機関制御装置 2…ECU 3…クランクセンサ 4〜7…筒内圧センサ(状態量検出手段) 10…CPU(マルチコアプロセッサ) 11…第1のCPUコア 12…第2のCPUコア 13…第1のRAM 14…第2のRAM 16…第1のADC(第1の変換手段) 17…第2のADC(第2の変換手段) 20…DMAC(書き込み手段) 21…設定切り替え回路   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine control apparatus 2 ... ECU 3 ... Crank sensor 4-7 ... In-cylinder pressure sensor (state quantity detection means) 10 ... CPU (multi-core processor) 11 ... 1st CPU core 12 ... 2nd CPU core 13 ... 1st 1 RAM 14 ... second RAM 16 ... first ADC (first conversion means) 17 ... second ADC (second conversion means) 20 ... DMAC (writing means) 21 ... setting switching circuit

Claims (3)

複数のコアを有し、内燃機関の制御に関する演算を行うマルチコアプロセッサを備えた内燃機関制御装置であって、
前記内燃機関の状態に関する内燃機関状態量を検出する状態量検出手段と、
前記状態量検出手段の検出した前記内燃機関状態量に基づいて前記内燃機関の制御量を演算する第1のコアと、
前記内燃機関の制御を行う第2のコアと、
前記第1のコアに付随する第1のRAMと、
前記第2のコアに付随する第2のRAMと、
前記状態量検出手段による前記内燃機関状態量の検出信号をAD変換する第1の変換手段と、
前記第1の変換手段がAD変換した前記内燃機関状態量の検出信号を前記第1のRAM又は前記第2のRAMに書き込ませる書き込み手段と、
を備え、
通常制御時において、前記書き込み手段は前記第1の変換手段がAD変換した前記内燃機関状態量の検出信号を前記第1のRAMに書き込み、前記第1のコアが前記第1のRAMに書き込まれた前記内燃機関状態量の検出信号に基づいて演算した前記制御量に基づいて前記第2のコアが前記内燃機関の制御を行い、
始動制御時において、前記書き込み手段は前記第1の変換手段がAD変換した前記内燃機関状態量の検出信号を前記第2のRAMに書き込み、前記第2のコアが前記第2のRAMに書き込まれた前記内燃機関状態量の検出信号に基づいて演算した前記制御量に基づいて、前記第2のコアが前記内燃機関の始動制御を行うことを特徴とする内燃機関制御装置。
An internal combustion engine control device having a plurality of cores and including a multi-core processor that performs calculations related to control of the internal combustion engine,
State quantity detection means for detecting an internal combustion engine state quantity relating to the state of the internal combustion engine;
A first core for calculating a control amount of the internal combustion engine based on the internal combustion engine state quantity detected by the state quantity detection means;
A second core for controlling the internal combustion engine;
A first RAM associated with the first core;
A second RAM associated with the second core;
First conversion means for AD converting the detection signal of the internal combustion engine state quantity by the state quantity detection means;
Writing means for writing the detection signal of the internal combustion engine state quantity AD-converted by the first conversion means into the first RAM or the second RAM;
With
During normal control, the writing means writes the detection signal of the internal combustion engine state quantity AD-converted by the first converting means to the first RAM, and the first core is written to the first RAM. The second core controls the internal combustion engine based on the control amount calculated based on the detection signal of the internal combustion engine state quantity;
At the start control time, the writing means writes the detection signal of the internal combustion engine state quantity AD-converted by the first conversion means to the second RAM, and the second core is written to the second RAM. An internal combustion engine control device, wherein the second core performs start control of the internal combustion engine based on the control amount calculated based on the detection signal of the internal combustion engine state quantity.
前記内燃機関状態量は前記内燃機関が有する複数の気筒の筒内圧であり、
前記第1のコア及び前記第2のコアは、前記内燃機関の通常制御時において、前記複数の気筒の筒内圧に基づいて前記内燃機関の制御量を演算し、
前記第1のコアの演算した前記制御量と前記第2のコアの演算した前記制御量との比較に基づいて異常があるか否かを判定することを特徴とする請求項1に記載の内燃機関制御装置。
The internal combustion engine state quantity is an in-cylinder pressure of a plurality of cylinders of the internal combustion engine,
The first core and the second core calculate a control amount of the internal combustion engine based on in-cylinder pressures of the plurality of cylinders during normal control of the internal combustion engine,
2. The internal combustion engine according to claim 1, wherein it is determined whether or not there is an abnormality based on a comparison between the control amount calculated by the first core and the control amount calculated by the second core. Engine control device.
前記状態量検出手段の検出した前記内燃機関状態量をAD変換する第2の変換手段を更に備え、
前記内燃機関状態量は前記内燃機関が有する複数の気筒の筒内圧であり、
前記第1の変換手段は、前記複数の気筒の各々の筒内圧の検出信号をAD変換し、
前記第2の変換手段は、前記複数の気筒の筒内圧の検出信号を足し合わせた信号をAD変換し、
前記書き込み手段は、前記第1の変換手段がAD変換した前記検出信号を前記第1のRAMに書き込ませると共に、前記第2の変換手段がAD変換した前記検出信号を足し合わせた信号を前記第2のRAMに書き込ませ、
前記第1のコアは、前記第1のRAMに書き込まれた前記検出信号に基づいて前記内燃機関の制御量を演算し、
前記第2のコアは、前記第2のRAMに書き込まれた前記検出信号を足し合わせた信号に基づいて前記内燃機関の制御量を演算し、
前記第1のコアの演算した前記制御量と前記第2のコアの演算した前記制御量との比較に基づいて異常があるか否かを判定することを特徴とする請求項2に記載の内燃機関制御装置。
A second conversion means for AD converting the internal combustion engine state quantity detected by the state quantity detection means;
The internal combustion engine state quantity is an in-cylinder pressure of a plurality of cylinders of the internal combustion engine,
The first conversion means performs AD conversion on a detection signal of in-cylinder pressure of each of the plurality of cylinders,
The second conversion means performs AD conversion on a signal obtained by adding the detection signals of the in-cylinder pressures of the plurality of cylinders,
The writing means writes the detection signal AD-converted by the first conversion means into the first RAM, and adds a signal obtained by adding the detection signals AD-converted by the second conversion means to the first RAM. 2 to the RAM
The first core calculates a control amount of the internal combustion engine based on the detection signal written in the first RAM,
The second core calculates a control amount of the internal combustion engine based on a signal obtained by adding the detection signals written in the second RAM,
The internal combustion engine according to claim 2, wherein it is determined whether or not there is an abnormality based on a comparison between the control amount calculated by the first core and the control amount calculated by the second core. Engine control device.
JP2010049088A 2010-03-05 2010-03-05 Internal combustion engine control device Expired - Fee Related JP5365551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049088A JP5365551B2 (en) 2010-03-05 2010-03-05 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049088A JP5365551B2 (en) 2010-03-05 2010-03-05 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2011185117A JP2011185117A (en) 2011-09-22
JP5365551B2 true JP5365551B2 (en) 2013-12-11

Family

ID=44791709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049088A Expired - Fee Related JP5365551B2 (en) 2010-03-05 2010-03-05 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP5365551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11265005B2 (en) 2019-12-27 2022-03-01 Hyundai Autoever Corp. Device and method for analog-digital conversion

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066165A (en) * 2012-09-25 2014-04-17 Toyota Motor Corp Engine control device
JP6981512B2 (en) * 2016-12-13 2021-12-15 株式会社デンソー Electronic control device
JP7132837B2 (en) * 2018-12-03 2022-09-07 株式会社Subaru Independent interlocking redundant system
JP7318439B2 (en) * 2019-09-13 2023-08-01 株式会社デンソー electronic controller

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573930B2 (en) * 1986-08-28 1997-01-22 日産自動車株式会社 Fuel supply control device for internal combustion engine
JPH02136547A (en) * 1988-11-18 1990-05-25 Hitachi Ltd Engine controller
JP3050337B2 (en) * 1991-07-31 2000-06-12 株式会社デンソー Electronic control unit for internal combustion engine
JP3345817B2 (en) * 1992-10-27 2002-11-18 本田技研工業株式会社 Engine electronic control unit
JPH0771307A (en) * 1993-09-02 1995-03-14 Nippondenso Co Ltd Control valve drive device of engine
JP3818218B2 (en) * 2002-05-22 2006-09-06 トヨタ自動車株式会社 Electronic control device for vehicle
JP2006017054A (en) * 2004-07-02 2006-01-19 Toyota Motor Corp Internal combustion engine control device
JP4419943B2 (en) * 2005-11-11 2010-02-24 株式会社デンソー Data transfer device between CPUs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11265005B2 (en) 2019-12-27 2022-03-01 Hyundai Autoever Corp. Device and method for analog-digital conversion

Also Published As

Publication number Publication date
JP2011185117A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5515792B2 (en) Internal combustion engine control device
JP5365551B2 (en) Internal combustion engine control device
US20130338906A1 (en) Control apparatus for internal combustion engine, method of controlling internal combustion engine, and computer-readable storage medium
RU2659312C2 (en) Method for processing signal supplied by bi-directional sensor and corresponding device
KR102101639B1 (en) Method for processing a signal supplied by a bi-directional sensor and corresponding device
JP5753824B2 (en) In-vehicle electronic control unit
US10746113B2 (en) Method for compensating noise of crank sensor
JP2019035377A (en) Ad-conversion processor
JP2006161645A (en) Sensor signal processing device for power train control
US10513258B2 (en) Device for controlling hybrid vehicle and method for controlling hybrid vehicle
JP6747346B2 (en) Engine control device and electronic control device
JP6094387B2 (en) Control device
JP2010113419A (en) Multicore controller
EP2667199B1 (en) Semiconductor data processing apparatus and engine control apparatus
JP6350196B2 (en) Control device
JP4186655B2 (en) Knock sensor abnormality detection device and abnormality detection method
US9760163B2 (en) Sensor signal processor
JP6981512B2 (en) Electronic control device
JP2013104387A (en) Engine control device
US10975826B2 (en) Method for engine start control based on fail safe logic and a vehicle having same
JP6071697B2 (en) Internal combustion engine control device, internal combustion engine control method, and program
JP5223845B2 (en) Control device for internal combustion engine
JP2023003171A (en) Vehicle electronic control unit
JP2019007369A (en) On-vehicle electronic control device
JP2014096042A (en) Electronic control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R151 Written notification of patent or utility model registration

Ref document number: 5365551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees