JP5362638B2 - Production of oxygen separation membrane material and method for measuring reduction expansion coefficient of the material - Google Patents

Production of oxygen separation membrane material and method for measuring reduction expansion coefficient of the material Download PDF

Info

Publication number
JP5362638B2
JP5362638B2 JP2010088834A JP2010088834A JP5362638B2 JP 5362638 B2 JP5362638 B2 JP 5362638B2 JP 2010088834 A JP2010088834 A JP 2010088834A JP 2010088834 A JP2010088834 A JP 2010088834A JP 5362638 B2 JP5362638 B2 JP 5362638B2
Authority
JP
Japan
Prior art keywords
separation membrane
oxygen separation
expansion coefficient
reduction
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010088834A
Other languages
Japanese (ja)
Other versions
JP2011220776A (en
Inventor
洋祐 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2010088834A priority Critical patent/JP5362638B2/en
Publication of JP2011220776A publication Critical patent/JP2011220776A/en
Application granted granted Critical
Publication of JP5362638B2 publication Critical patent/JP5362638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring a reduction expansion rate of oxygen separation membrane material appropriately. <P>SOLUTION: A method for measuring a reduction expansion rate provided by the invention is a measuring method of a reduction expansion rate of oxygen separation membrane material and includes the steps of: determining a lattice constant in a reductive atmosphere for a measuring object material 16 by measuring x-ray diffraction in the reductive atmosphere for the material 16; determining a lattice constant under air atmosphere for the material 16 by measuring x-ray diffraction under air atmosphere for the material 16; and calculating a reduction expansion rate of the material based on the lattice constant determined in the reductive atmosphere and the lattice constant determined under the air atmosphere. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、酸素分離膜材料とその製造に関し、詳しくは該材料の還元膨張率を測定する方法に関する。   The present invention relates to an oxygen separation membrane material and its production, and more particularly to a method for measuring the reduction expansion coefficient of the material.

酸素イオン(典型的にはO2−;酸化物イオンとも呼ばれる。)伝導性を有する酸素イオン伝導体として、いわゆるペロブスカイト型構造の酸化物セラミックスが知られている。特に、酸素イオン伝導体であることに加え、電子伝導性を兼ね備えた酸素イオン−電子混合伝導体(混合伝導体)であるペロブスカイト型酸化物からなる緻密なセラミック材、典型的には膜状に形成されたセラミック材は、その両面を短絡させるための外部電極や外部回路を用いることなく一方の面から他方の面に連続して酸素イオンを透過させることができる。このため、一方の面に供給された酸素含有ガス(例えば空気)から酸素を他方の面に選択的に透過させる酸素分離膜用材料として、特に使用温度が800℃以上1000℃未満というような高温域で好適に使用することができる。 As an oxygen ion conductor having oxygen ions (typically also called O 2− ; oxide ions), oxide ceramics having a so-called perovskite structure are known. In particular, in addition to being an oxygen ion conductor, a dense ceramic material composed of a perovskite oxide, which is an oxygen ion-electron mixed conductor (mixed conductor) that has electronic conductivity, typically in the form of a film The formed ceramic material can transmit oxygen ions continuously from one surface to the other surface without using an external electrode or an external circuit for short-circuiting both surfaces thereof. For this reason, as a material for an oxygen separation membrane that selectively permeates oxygen from an oxygen-containing gas (for example, air) supplied to one surface to the other surface, the operating temperature is particularly high such as 800 ° C. or more and less than 1000 ° C. It can be suitably used in the region.

例えば、ペロブスカイト型酸化物等の混合伝導体から構成される酸素分離膜は、多孔質基材(多孔質支持体)上に形成されて酸素分離膜エレメントとして用いられ、深冷分離法やPSA(Pressure Swing Adsorption)法に代わる有効な酸素精製手段として好適に使用することができる。また、かかる構成の酸素分離膜エレメントは、酸素含有ガス(空気)と炭化水素ガスとを隔絶し、酸素を選択的に透過させて炭化水素の部分酸化反応を行うための酸化反応装置、いわゆる隔膜リアクタの構成要素として好適に利用することができる。すなわち、酸素分離膜の一方側の表面に酸素含有ガス、他方側の表面に炭化水素ガス(例えばメタン)をそれぞれ接触させると、一方の表面から酸素分離膜内を透過して供給される酸素イオンによって、他方の面において炭化水素が部分酸化される。このように酸素分離膜を利用して炭化水素を部分酸化する技術は、合成液体燃料(メタノール等)を製造するGTL(Gas To Liquid)技術、あるいは燃料電池分野で好適に使用される。   For example, an oxygen separation membrane composed of a mixed conductor such as a perovskite oxide is formed on a porous substrate (porous support) and used as an oxygen separation membrane element. It can be suitably used as an effective oxygen purification means to replace the Pressure Swing Adsorption) method. In addition, the oxygen separation membrane element having such a structure is an oxidation reaction device for separating oxygen-containing gas (air) and hydrocarbon gas and selectively permeating oxygen to perform partial oxidation reaction of hydrocarbon, so-called diaphragm. It can be suitably used as a component of the reactor. That is, when an oxygen-containing gas is brought into contact with the surface on one side of the oxygen separation membrane and a hydrocarbon gas (for example, methane) is brought into contact with the surface on the other side, oxygen ions that are supplied through the oxygen separation membrane from one surface are supplied. The hydrocarbon is partially oxidized on the other side. Thus, the technique of partially oxidizing hydrocarbons using an oxygen separation membrane is suitably used in the GTL (Gas To Liquid) technique for producing a synthetic liquid fuel (such as methanol) or the fuel cell field.

この種の従来技術として、特許文献1〜6には、混合伝導体であるペロブスカイト型酸化物としてLaSrCoFe系酸化物、LaGaO系酸化物を用いることが記載されている。また、特許文献7、8には、混合伝導体であるペロブスカイト型酸化物としてLaSrTiCoFeO系酸化物、LaSrZrFeO系酸化物を用いることが記載されている。 As this type of prior art, Patent Documents 1 to 6 describe the use of LaSrCoFe-based oxides and LaGaO 3 -based oxides as perovskite oxides that are mixed conductors. Patent Document 7,8, LaSrTiCoFeO 3 based oxide as a perovskite oxide is a mixed conductor, it is described that the use of LaSrZrFeO 3 based oxide.

特開平11−228136号公報Japanese Patent Laid-Open No. 11-228136 特開平11−335164号公報Japanese Patent Laid-Open No. 11-335164 特開2000−251534号公報JP 2000-251534 A 特開2000−251535号公報JP 2000-251535 A 特表2000−511507号公報Special Table 2000-511507 特開2001−93325号公報JP 2001-93325 A 国際公開第WO2003/040058号パンフレットInternational Publication No. WO2003 / 040058 Pamphlet 特開2007−51036号公報JP 2007-51036 A

ところで、上記GTL技術や燃料電池分野に用いられる酸素分離膜用材料としては、酸素イオンが透過した側、即ち炭化水素ガス供給側(燃料極側)が還元雰囲気となるため、そのような雰囲気で且つ高温域で使用する際にもクラック(割れ)が発生し難い還元雰囲気に対する耐久性(以下、単に「還元耐久性」という。)が求められている。かかる還元耐久性は、酸素分離膜用材料を構成する金属元素の比率や、酸素分離膜用材料を合成するときの合成条件(焼成時間や焼成温度等の合成条件)によって容易に変わるため、酸素分離膜材料の還元耐久性を事前に検査しておくことが望ましい。従来、酸素分離膜用材料の還元耐久性を検査する方法の一つとして、TMA(Thermo Mechanical Analysis)が用いられている。TMAによる検査では、酸素分離膜用材料粉末から棒状(円柱状)の試験片を作製し、その試験片を還元雰囲気下で加熱したときの寸法変化から還元耐久性の目安(還元膨張係数、即ち還元雰囲気における膨張率)を定量的に算出する。   By the way, the oxygen separation membrane material used in the GTL technology and the fuel cell field has a reducing atmosphere on the side through which oxygen ions permeate, that is, the hydrocarbon gas supply side (fuel electrode side). In addition, there is a demand for durability against a reducing atmosphere (hereinafter simply referred to as “reduction durability”) in which cracks do not easily occur even when used in a high temperature range. Such reduction durability easily varies depending on the ratio of the metal elements constituting the oxygen separation membrane material and the synthesis conditions (synthesis conditions such as the firing time and the firing temperature) when the oxygen separation membrane material is synthesized. It is desirable to inspect the reduction durability of the separation membrane material in advance. Conventionally, TMA (Thermo Mechanical Analysis) is used as one of the methods for inspecting the reduction durability of the oxygen separation membrane material. In the inspection by TMA, a rod-shaped (cylindrical) test piece is prepared from the oxygen separation membrane material powder, and the reduction durability is determined from the dimensional change when the test piece is heated in a reducing atmosphere (reduction expansion coefficient, that is, (Expansion coefficient in reducing atmosphere) is quantitatively calculated.

しかしながら、上記TMAで得られる還元膨張係数は、試験片全体の還元雰囲気下における膨張率(還元膨張率)を測定したマクロな材料評価にすぎず、結晶粒オーダーで生じる微小な膨張量(寸法変化)を厳密に測定したものではない。そのため、TMAによる検査では、個々の結晶粒レベルで生じる微小な還元応力を正確に把握することができなかった。また、TMAに用いられる試験片の寸法は、例えば、直径3mm×長さ15mmのミリオーダーであり、その試験片の作製は、材料粉末を棒状に加工することにより行われる。そのため、測定のたびに上記サイズを持つ棒状の試験片の作製が必要となり、作業時間と手間がかかる。また、測定後の試験片は再利用できないので、上記サイズを持つミリオーダーの材料が無駄となり、その分コスト高になる。さらに、薄膜製造時に材料の還元耐久性を検査しようとすると、ロット毎にサンプリング抽出する必要があるため、個々の薄膜が本当に所要の還元耐久性を有するものであるかどうかは確認することができなかった。   However, the reductive expansion coefficient obtained with the above TMA is only a macroscopic material evaluation by measuring the expansion coefficient (reduction expansion coefficient) in the reducing atmosphere of the entire test piece, and a minute expansion amount (dimensional change) generated on the order of crystal grains. ) Is not strictly measured. For this reason, the inspection by TMA cannot accurately grasp the minute reduction stress generated at the individual crystal grain level. Moreover, the dimension of the test piece used for TMA is a millimeter order of diameter 3mm x length 15mm, for example, The production of the test piece is performed by processing material powder into a rod shape. Therefore, it is necessary to produce a rod-shaped test piece having the above-mentioned size for each measurement, which requires work time and labor. Further, since the test piece after the measurement cannot be reused, the millimeter-order material having the above size is wasted, and the cost is increased accordingly. In addition, when attempting to check the reduction durability of a material during thin film manufacturing, it is necessary to sample and extract for each lot, so it is possible to confirm whether each thin film really has the required reduction durability. There wasn't.

本発明はかかる点に鑑みてなされたものであり、その主な目的は、酸素分離膜用材料の還元膨張率をより適切に把握することができる還元膨張率測定方法を提供することである。また、他の目的は、そのような還元膨張率測定方法を好適に用いた酸素分離膜の製造方法を提供することである。   This invention is made | formed in view of this point, The main objective is to provide the reduction expansion coefficient measuring method which can grasp | ascertain the reduction expansion coefficient of the material for oxygen separation membrane more appropriately. Another object is to provide a method for producing an oxygen separation membrane suitably using such a method for measuring the reduction expansion coefficient.

本発明によって提供される測定方法は、酸素分離膜用材料の還元膨張率を測定する方法である。この測定方法は、測定対象となる材料について還元雰囲気下でX線回折測定を行い、その材料の還元雰囲気下における還元雰囲気下格子定数を求める工程と、上記材料について空気雰囲気下でX線回折測定を行い、その材料の空気雰囲気下における空気雰囲気下格子定数を求める工程と、上記得られた還元雰囲気下格子定数と空気雰囲気下格子定数とに基づいて、上記材料の還元膨張率を算出する工程とを包含する。   The measurement method provided by the present invention is a method for measuring the reduction expansion coefficient of the oxygen separation membrane material. In this measurement method, a material to be measured is subjected to X-ray diffraction measurement under a reducing atmosphere, and a lattice constant under a reducing atmosphere in the reducing atmosphere of the material is obtained. And calculating the lattice constant under the air atmosphere of the material under the air atmosphere and calculating the reduction expansion coefficient of the material based on the obtained lattice constant under the reduced atmosphere and the lattice constant under the air atmosphere. Including.

本発明の還元膨張率測定方法によれば、X線回折を用いて酸素分離膜用材料の結晶格子間に生じる微小な寸法変化(膨張量)から還元膨張率を算出するので、従来のTMA(試験片全体の膨張量から還元膨張係数を算出する方法)に比べて、還元膨張率を精度よく求めることができる。また、従来のような棒状の試験片の作製が不要となるため、還元膨張率を簡易に測定できる。さらに、X線を用いて非破壊で測定できるので、測定後の酸素分離膜用材料を廃棄しなくてもよい。このため、かかる還元膨張率測定方法を、酸素分離膜の製造プロセスに容易に組み込むことができる。   According to the method for measuring the reduction expansion coefficient of the present invention, the reduction expansion coefficient is calculated from a small dimensional change (expansion amount) generated between crystal lattices of the oxygen separation membrane material by using X-ray diffraction. Compared to the method of calculating the reduction expansion coefficient from the expansion amount of the entire test piece), the reduction expansion coefficient can be obtained with high accuracy. Moreover, since it is not necessary to produce a rod-shaped test piece as in the prior art, the reduction expansion coefficient can be easily measured. Furthermore, since measurement can be performed non-destructively using X-rays, it is not necessary to discard the oxygen separation membrane material after measurement. For this reason, such a method of measuring the reduction expansion coefficient can be easily incorporated into the manufacturing process of the oxygen separation membrane.

ここに開示される測定方法の好ましい一態様では、上記材料を粉末状にして上記X線回折測定を行う。この場合、従来のような棒状の試験片の作製が不要になるため、還元膨張率を簡易に測定できる。また、ここに開示される測定方法の好ましい一態様では、上記材料を膜状にして上記X線回折測定を行う。この場合、実際の使用形態(薄膜状)と同じ形態で測定できるので、より的確な還元膨張率が得られる。   In a preferred embodiment of the measurement method disclosed herein, the material is powdered and the X-ray diffraction measurement is performed. In this case, since it is not necessary to produce a rod-shaped test piece as in the prior art, the reduction expansion coefficient can be easily measured. In a preferred embodiment of the measurement method disclosed herein, the X-ray diffraction measurement is performed with the material as a film. In this case, since it can be measured in the same form as the actual use form (thin film form), a more accurate reduction expansion coefficient can be obtained.

ここに開示される測定方法の好ましい一態様では、上記還元雰囲気として、少なくとも水素を含む還元性ガス雰囲気を形成する。この場合、本発明の目的に適した還元雰囲気を簡易に形成することができる。   In a preferred embodiment of the measurement method disclosed herein, a reducing gas atmosphere containing at least hydrogen is formed as the reducing atmosphere. In this case, a reducing atmosphere suitable for the purpose of the present invention can be easily formed.

また、本発明によると、ここで開示されるいずれかの還元膨張率測定方法の実施を包含する酸素分離膜を製造する方法が提供される。
即ち、ここで開示される酸素分離膜製造方法は、
酸素分離膜用材料を用意し、該材料の還元膨張率をここで開示されるいずれかの還元膨張率測定方法により測定すること、
上記測定された還元膨張率に基づいて上記材料が良品であるか否かを判定すること、および、
上記判定において良品とされた材料を用いて構成された酸素分離膜を採用すること、
を包含する。例えば、上記酸素分離膜用材料としての粉末状材料を用意して該材料の還元膨張率を測定した場合には、上記判定において良品とされた粉末状材料を用いて(換言すれば不良と判定された材料は使用しないで)酸素分離膜を作製することを包含する。
In addition, according to the present invention, there is provided a method for producing an oxygen separation membrane including any one of the methods for measuring the reduction expansion coefficient disclosed herein.
That is, the oxygen separation membrane manufacturing method disclosed here is:
Preparing an oxygen separation membrane material and measuring the reduction expansion coefficient of the material by any of the reduction expansion coefficient measurement methods disclosed herein;
Determining whether the material is non-defective based on the measured reduction expansion rate; and
Adopting an oxygen separation membrane configured using a material that has been judged as good in the above determination,
Is included. For example, when a powdery material is prepared as the material for the oxygen separation membrane and the reduction expansion coefficient of the material is measured, the powdery material determined as good in the above determination is used (in other words, determined as defective). Including the production of oxygen separation membranes (without the use of materials made).

本発明の製造方法によれば、酸素分離膜用材料(典型的には粉末状材料若しくは膜状に形成した後の材料)の還元膨張率を、上述したX線回折により測定し、その測定された還元膨張率に基づいて該材料が良品であるか否かを判定し、その判定において良品とされた材料のみを採用するので、所望の還元耐久性を満たす高品質な酸素分離膜が効率よく提供できる。また、X線を用いて非破壊で検査できるので、従来のようなロット毎のサンプリング抽出を行う必要がなく、薄膜の全件検査が可能になる。そのため、予め不良品が形成されるリスクを軽減し、信頼性の高い酸素分離膜を効率よく製造することができる。   According to the production method of the present invention, the reductive expansion coefficient of the oxygen separation membrane material (typically a powdery material or a material after being formed into a membrane shape) is measured by the X-ray diffraction described above, and the measurement is performed. Since it is determined whether or not the material is a non-defective product based on the reduced expansion coefficient, and only the material determined to be non-defective in the determination is adopted, a high-quality oxygen separation membrane that satisfies the desired reduction durability is efficiently obtained. Can be provided. In addition, since non-destructive inspection can be performed using X-rays, it is not necessary to perform sampling extraction for each lot as in the prior art, and it is possible to inspect all thin films. Therefore, the risk that a defective product is formed in advance can be reduced, and a highly reliable oxygen separation membrane can be efficiently manufactured.

ここに開示される製造方法の好ましい一態様では、上記判定において上記材料の還元膨張率が0.50%以下のときに良品と判定する。これにより、還元耐久性に優れた酸素分離膜が効率よく得られる。   In a preferable aspect of the production method disclosed herein, the material is determined to be non-defective when the reduction expansion coefficient of the material is 0.50% or less in the determination. Thereby, an oxygen separation membrane excellent in reduction durability can be obtained efficiently.

ここに開示される製造方法の好ましい一態様では、上記酸素分離膜用材料は、酸素イオン伝導体であるペロブスカイト構造の酸化物セラミックスから成る材料である。ペロブスカイト構造酸化物セラミックスは、酸素分離膜として好ましい性質を有する一方で、還元雰囲気下に晒されると還元膨張しやすい性質がある。そのため、上記酸素分離膜用材料がペロブスカイト構造酸化物セラミックスで構成された場合、本発明を適用して酸素分離膜用材料の還元膨張率を検査することによる効果が特によく発揮され得る。   In a preferred embodiment of the production method disclosed herein, the material for the oxygen separation membrane is a material made of an oxide ceramic having a perovskite structure which is an oxygen ion conductor. Perovskite structure oxide ceramics have properties that are favorable as an oxygen separation membrane, while they tend to undergo reductive expansion when exposed to a reducing atmosphere. Therefore, when the oxygen separation membrane material is composed of perovskite structure oxide ceramics, the effect of examining the reduction expansion coefficient of the oxygen separation membrane material by applying the present invention can be exhibited particularly well.

また、本発明によると、酸素分離膜を検査(性能評価)する方法が提供される。この製造方法は、ここで開示されるいずれかの還元膨張率測定方法により酸素分離膜の還元膨張率を測定し、得られた還元膨張率に基づいて該酸素分離膜の還元耐久性を検査する(評価する)ことを特徴とする。このことによって、所望の還元耐久性を有する高品質な酸素分離膜を容易に選抜することができるとともに、還元耐久性の低い酸素分離膜を使用前に排除することができるため、信頼性の高い酸素分離膜を効率よく提供することができる。   The present invention also provides a method for inspecting (performance evaluation) an oxygen separation membrane. In this manufacturing method, the reduction expansion coefficient of the oxygen separation membrane is measured by any of the reduction expansion coefficient measurement methods disclosed herein, and the reduction durability of the oxygen separation membrane is inspected based on the obtained reduction expansion coefficient. (Evaluate). This makes it possible to easily select a high-quality oxygen separation membrane having a desired reduction durability and to eliminate an oxygen separation membrane having a low reduction durability before use. An oxygen separation membrane can be provided efficiently.

本発明の一実施形態に係るX線回折測定装置を示す模式図である。It is a schematic diagram which shows the X-ray-diffraction measuring apparatus which concerns on one Embodiment of this invention. 一実施例に係るペロブスカイト型酸化物セラミックス粉末のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the perovskite type oxide ceramic powder which concerns on one Example. 一試験例に係る還元耐久性評価用モジュールを模式的に説明する部分断面図である。It is a fragmentary sectional view which explains typically the module for evaluation of reduction durability concerning one test example.

以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、本発明は以下の実施形態に限定されない。   Embodiments according to the present invention will be described below with reference to the drawings. In the following drawings, members / parts having the same action are described with the same reference numerals. In addition, this invention is not limited to the following embodiment.

本発明の一実施形態に係る還元膨張率の測定方法は、酸素分離膜用材料の還元膨張率を測定する方法である。この測定方法では、測定対象となる材料について還元雰囲気下でX線回折(XRD:X-ray diffraction)測定を行い、その材料の還元雰囲気下における還元雰囲気下格子定数を求める。また、測定対象となる材料について空気雰囲気下でX線回折測定を行い、その材料の空気雰囲気下における空気雰囲気下格子定数を求める。そして、得られた還元雰囲気下格子定数と空気雰囲気下格子定数とに基づいて、酸素分離膜用材料の還元膨張率を算出する。かかる測定方法によれば、X線回折を用いて酸素分離膜用材料の結晶格子間に生じる微小な寸法変化(膨張量)から還元膨張率を算出するので、従来のTMA(試験片全体の膨張量から還元膨張係数を算出する方法)に比べて、還元膨張率を精度よく求めることができる。   The measuring method of the reductive expansion coefficient which concerns on one Embodiment of this invention is a method of measuring the reductive expansion coefficient of the material for oxygen separation membranes. In this measurement method, X-ray diffraction (XRD) measurement is performed on a material to be measured in a reducing atmosphere, and a lattice constant in the reducing atmosphere of the material in the reducing atmosphere is obtained. Further, X-ray diffraction measurement is performed on the material to be measured in an air atmosphere, and a lattice constant under the air atmosphere of the material in the air atmosphere is obtained. Then, the reduction expansion coefficient of the oxygen separation membrane material is calculated based on the obtained lattice constant under reducing atmosphere and lattice constant under air atmosphere. According to such a measuring method, since the reduction expansion coefficient is calculated from a small dimensional change (expansion amount) generated between crystal lattices of the oxygen separation membrane material using X-ray diffraction, the conventional TMA (expansion of the entire test piece) is calculated. Compared with the method of calculating the reductive expansion coefficient from the amount), the reductive expansion coefficient can be obtained with higher accuracy.

以下、本実施形態の還元膨張率測定方法についてさらに説明する。図1は、本実施形態に係るX線回折測定装置20を示す概略図である。本実施形態のX線回折測定では、X線発生源10から照射されるX線14を試料16(酸素分離膜用材料)の試料面16aに入射する。試料面16aは、材料粉末からなる面である。この際、試料16を所定の走査軸で回転走査しながら試料16に対する入射角度をステップ的または連続的に変化させてX線14を照射し、試料16によって回析されたX線18を検査器12でとらえる。そして、X線の回析方向と入射方向の角度差(回折角2θ)と、回析X線強度を測定する。かかるX線回折測定は、種々の測定装置メーカーから市販されているX線回折測定装置20を用いて検査できる。例えば、株式会社リガク製のX線回折測定装置RINT−2000を用いることができる。   Hereinafter, the reduction expansion coefficient measuring method of this embodiment will be further described. FIG. 1 is a schematic diagram showing an X-ray diffraction measurement apparatus 20 according to this embodiment. In the X-ray diffraction measurement of the present embodiment, X-rays 14 irradiated from the X-ray generation source 10 are incident on the sample surface 16a of the sample 16 (oxygen separation membrane material). The sample surface 16a is a surface made of material powder. At this time, while the sample 16 is rotationally scanned with a predetermined scanning axis, the incident angle to the sample 16 is changed stepwise or continuously to irradiate the X-ray 14, and the X-ray 18 diffracted by the sample 16 is inspected. 12 Then, the angle difference (diffraction angle 2θ) between the X-ray diffraction direction and the incident direction and the diffraction X-ray intensity are measured. Such an X-ray diffraction measurement can be inspected using an X-ray diffraction measurement apparatus 20 commercially available from various measurement apparatus manufacturers. For example, Rigaku Corporation X-ray diffraction measuring device RINT-2000 can be used.

本実施形態においては、まず、測定対象となる酸素分離膜用材料について還元雰囲気下で上記X線回折測定を行う。X線回折測定時に還元雰囲気下とするためには、X線回折測定時に水素(H)などの還元性のガスが存在する状態とすればよい。例えば、X線回折測定装置のチャンバ22内に水素(H)などの還元性ガス26を供給することによって還元雰囲気下とすることができる。還元性ガスとしては、水素ガス若しくは水素ガスやアンモニアガスを含む混合ガスの他にメタン(CH)ガス、炭酸(CO)ガス等を用いることができる。還元性ガスは、チャンバ22内に直接供給してもよく、あるいは、窒素(N)やアルゴン(Ar)等の不活性ガスで希釈して供給してもよい。希釈の程度については特に限定されないが、通常は、還元性ガス濃度が5vol%以上であれば十分であり、例えば5vol%〜50vol%にすることが好ましい。還元性ガスを供給する際には、チャンバ22内の酸素(O)の供給を完全に遮断することが好ましいが、酸素分圧が概ね10−10MPa以下(例えば10−24MPa程度)となるように調整すれば十分である。 In the present embodiment, first, the X-ray diffraction measurement is performed in a reducing atmosphere for the oxygen separation membrane material to be measured. In order to obtain a reducing atmosphere during the X-ray diffraction measurement, a reducing gas such as hydrogen (H 2 ) may be present during the X-ray diffraction measurement. For example, a reducing atmosphere such as hydrogen (H 2 ) can be supplied into the chamber 22 of the X-ray diffraction measurement apparatus to create a reducing atmosphere. As the reducing gas, methane (CH 4 ) gas, carbon dioxide (CO 2 ) gas, or the like can be used in addition to hydrogen gas or a mixed gas containing hydrogen gas or ammonia gas. The reducing gas may be supplied directly into the chamber 22 or may be supplied after being diluted with an inert gas such as nitrogen (N 2 ) or argon (Ar). Although the degree of dilution is not particularly limited, it is usually sufficient that the reducing gas concentration is 5 vol% or more, and it is preferably 5 vol% to 50 vol%, for example. When supplying the reducing gas, it is preferable to completely shut off the supply of oxygen (O 2 ) in the chamber 22, but the oxygen partial pressure is approximately 10 −10 MPa or less (for example, about 10 −24 MPa). It is sufficient to adjust so that

ここに開示される技術では、酸素分離膜の実際の使用時に近い還元雰囲気をチャンバ22内に形成することが好ましい。例えば、実際の使用時に酸素分離膜が水素(H)と窒素(N)の混合ガス雰囲気下に晒される場合には、水素(H)と窒素(N)の混合ガス雰囲気をチャンバ22内に形成することが好ましい。また、実際の使用時に酸素分離膜が高温雰囲気(例えば800℃〜1000℃)に晒される場合には、該高温雰囲気(例えば800℃〜1000℃)をチャンバ22内に形成することが好ましい。かかる高温雰囲気の加熱は、例えばチャンバ内に配置された試料16のまわりに加熱装置(ヒータ等)24を付設して行うとよい。このように実際の使用時に近い還元雰囲気を形成することによって、酸素分離膜の実際の使用時における還元耐久性を正確に把握することができる。 In the technique disclosed herein, it is preferable to form a reducing atmosphere in the chamber 22 close to the actual use of the oxygen separation membrane. For example, when the oxygen separation membrane is exposed to a mixed gas atmosphere of hydrogen (H 2 ) and nitrogen (N 2 ) during actual use, a mixed gas atmosphere of hydrogen (H 2 ) and nitrogen (N 2 ) is used in the chamber. Preferably, it is formed within 22. When the oxygen separation membrane is exposed to a high temperature atmosphere (for example, 800 ° C. to 1000 ° C.) during actual use, the high temperature atmosphere (for example, 800 ° C. to 1000 ° C.) is preferably formed in the chamber 22. The heating in the high temperature atmosphere may be performed by attaching a heating device (a heater or the like) 24 around the sample 16 disposed in the chamber, for example. Thus, by forming a reducing atmosphere close to that during actual use, the reduction durability during actual use of the oxygen separation membrane can be accurately grasped.

このようにして還元雰囲気下でX線回折測定を行ったら、次いで、測定対象となる酸素分離膜用材料について空気雰囲気下でX線回折測定を行う。X線回折測定時に空気雰囲気下とするためには、X線回折測定時に空気が存在する状態とすればよい。例えば、X線回折測定装置のチャンバ22内に大気組成ガスを供給することによって空気雰囲気下とすることができる。大気組成ガスを供給する際には、チャンバ内の酸素分圧が概ね0.1MPa以下(例えば0.02MPa程度)となるように調整するとよい。なお、X線回折測定を行う順番は上記に限定されず、空気雰囲気下でX線回折測定を行った後、還元雰囲気下でX線回折測定を行ってもよい。   If X-ray diffraction measurement is performed in a reducing atmosphere in this way, then X-ray diffraction measurement is performed in an air atmosphere for the oxygen separation membrane material to be measured. In order to obtain an air atmosphere during X-ray diffraction measurement, air may be present during X-ray diffraction measurement. For example, an air atmosphere can be obtained by supplying an atmospheric composition gas into the chamber 22 of the X-ray diffraction measurement apparatus. When supplying the atmospheric composition gas, the oxygen partial pressure in the chamber may be adjusted to be approximately 0.1 MPa or less (for example, about 0.02 MPa). Note that the order of performing the X-ray diffraction measurement is not limited to the above, and the X-ray diffraction measurement may be performed in a reducing atmosphere after the X-ray diffraction measurement is performed in an air atmosphere.

図2に、酸素分離膜用材料がLa0.6Sr0.4Ti0.1Fe0.93−δである場合のX線回折パターンを示している。図2中、x1は還元雰囲気下(水素5(vol%)と窒素95(vol%)との混合ガス雰囲気下)で1000℃に晒したときの回折パターンであり、x2は空気雰囲気下で1000℃に晒したときの回折パターンである。図2に示すように、La0.6Sr0.4Ti0.1Fe0.93−δの回折パターンでは、回折角20°〜65°の範囲において、(110)面、(112)面、(202)面、(220)面、(310)面、(204)面に由来する回折ピークが生じる。これら何れのピークにおいても還元雰囲気x1のピーク位置が空気雰囲気x2のピーク位置よりも低角度側へシフトする。 FIG. 2 shows an X-ray diffraction pattern when the oxygen separation membrane material is La 0.6 Sr 0.4 Ti 0.1 Fe 0.9 O 3-δ . In FIG. 2, x1 is a diffraction pattern when exposed to 1000 ° C. in a reducing atmosphere (mixed gas atmosphere of hydrogen 5 (vol%) and nitrogen 95 (vol%)), and x2 is 1000 in an air atmosphere. It is a diffraction pattern when exposed to ℃. As shown in FIG. 2, in the diffraction pattern of La 0.6 Sr 0.4 Ti 0.1 Fe 0.9 O 3-δ , the (110) plane (112) in the diffraction angle range of 20 ° to 65 °. ), (202), (220), (310), and (204) planes. In any of these peaks, the peak position of the reducing atmosphere x1 is shifted to a lower angle side than the peak position of the air atmosphere x2.

このようにして得られた還元雰囲気下での回折パターンx1から材料の還元雰囲気下における還元雰囲気下格子定数を求める。また、空気雰囲気下での回折パターンx2から材料の空気雰囲気下における空気雰囲気下格子定数を求める。回折パターンx1,x2から格子定数を求める方法としては、従来の回折パターンから格子定数を算出する場合と同じであればよく特に制限されない。例えば、各回折パターンx1,x2にリートベルト法を適用することにより格子定数を求めてもよい。この場合、格子定数を正確に得ることができる。あるいは、結晶構造が立方晶である場合には、回折パターンの(hkl)面に由来するピーク位置からa=d×(h+k+l1/2の式を用いて格子定数を求めてもよい。ここで、a:格子定数、d=λ/(2sinθ)、λ:測定X線波長、θ:ブラッグ角(回折角/2)である。この場合、格子定数が簡易に得られる。 The lattice constant under the reducing atmosphere in the reducing atmosphere of the material is obtained from the diffraction pattern x1 under the reducing atmosphere thus obtained. Further, the lattice constant under the air atmosphere in the air atmosphere of the material is obtained from the diffraction pattern x2 under the air atmosphere. The method for obtaining the lattice constant from the diffraction patterns x1 and x2 is not particularly limited as long as it is the same as that for calculating the lattice constant from the conventional diffraction pattern. For example, the lattice constant may be obtained by applying the Rietveld method to each diffraction pattern x1, x2. In this case, the lattice constant can be obtained accurately. Alternatively, when the crystal structure is a cubic crystal, the lattice constant is obtained from the peak position derived from the (hkl) plane of the diffraction pattern using the formula a = d × (h 2 + k 2 + l 2 ) 1/2. May be. Here, a: lattice constant, d = λ / (2 sin θ), λ: measurement X-ray wavelength, θ: Bragg angle (diffraction angle / 2). In this case, the lattice constant can be easily obtained.

表1に、図2の回折パターンx1、x2にリートベルト法を適用して得られた格子定数の一例を示す。この例では、La0.6Sr0.4Ti0.1Fe0.93−δの結晶構造は斜方晶(空間群:Pbnm62)であり、回折パターンx1から得られた還元雰囲気下格子定数はa=5.6225Å,b=5.6074Å,c=7.9331Åとなり、回折パターンx2から得られた空気雰囲気下格子定数はa=5.6070Å,b=5.5907Å,c=7.9148Åとなる。 Table 1 shows an example of lattice constants obtained by applying the Rietveld method to the diffraction patterns x1 and x2 in FIG. In this example, the crystal structure of La 0.6 Sr 0.4 Ti 0.1 Fe 0.9 O 3-δ is orthorhombic (space group: Pbnm62), and under a reducing atmosphere obtained from the diffraction pattern x1. The lattice constants are a 1 = 5.6225 Å, b 1 = 5.6074 Å, c 1 = 7.9331 、, and the lattice constants in the air atmosphere obtained from the diffraction pattern x2 are a 2 = 5.6070 Å, b 2 = 5. 5907 cm, c 2 = 7.9148 cm.

Figure 0005362638
Figure 0005362638

このようにして得られた還元雰囲気下格子定数(a,b,c)と空気雰囲気下格子定数(a,b,c)とに基づいて、酸素分離膜用材料の還元膨張率αを算出する。還元膨張率αの算出は、例えば、下記(1)式に従って行うとよい。 Based on the lattice constant (a 1 , b 1 , c 1 ) under the reducing atmosphere and the lattice constant (a 2 , b 2 , c 2 ) under the air atmosphere thus obtained, the reduction of the oxygen separation membrane material is performed. The expansion coefficient α is calculated. For example, the reduction expansion coefficient α may be calculated according to the following equation (1).

α=[(v−v)/v]×100 (1)
α = [(v 1 −v 2 ) / v 2 ] × 100 (1)

ここで、α:還元膨張率、v:還元雰囲気下格子定数(a,b,c)から得られた還元雰囲気下結晶格子体積、v:空気雰囲気下格子定数(a,b,c)から得られた空気雰囲気下結晶格子体積である。例えば、結晶構造が斜方晶の場合、還元雰囲気下結晶格子体積v=a×b×cより算出され、空気雰囲気下結晶格子体積v=a×b×cより算出され得る。La0.6Sr0.4Ti0.1Fe0.93−δの場合、還元雰囲気下結晶格子体積v=250.1(Å)となり、空気雰囲気下結晶格子体積v=248.1(Å)となる。そして、還元膨張率α=0.81(%)と算出され得る。このようにして、還元雰囲気下格子定数(a,b,c)と空気雰囲気下格子定数(a,b,c)とに基づいて、酸素分離膜用材料の還元膨張率αを算出することができる。 Here, α: reduction expansion coefficient, v 1 : crystal lattice volume under reducing atmosphere obtained from lattice constant (a 1 , b 1 , c 1 ) under reducing atmosphere, v 2 : lattice constant (a 2 , under air atmosphere) b 2 , c 2 ) is the crystal lattice volume under air atmosphere. For example, when the crystal structure is orthorhombic, it is calculated from the crystal lattice volume v 1 = a 1 × b 1 × c 1 in a reducing atmosphere, and from the crystal lattice volume v 2 = a 2 × b 2 × c 2 in an air atmosphere. Can be calculated. In the case of La 0.6 Sr 0.4 Ti 0.1 Fe 0.9 O 3-δ , the crystal lattice volume v 1 = 250.1 (Å 3 ) in a reducing atmosphere, and the crystal lattice volume v 2 in an air atmosphere = 248.1 (Å 3 ). Then, the reduction expansion coefficient α = 0.81 (%) can be calculated. In this way, based on the lattice constant (a 1 , b 1 , c 1 ) under a reducing atmosphere and the lattice constant (a 2 , b 2 , c 2 ) under an air atmosphere, the reductive expansion coefficient of the material for the oxygen separation membrane α can be calculated.

このようにして得られた還元膨張率αは、結晶粒オーダーで生じた微小な膨張量(寸法変化)を厳密に反映したものとなるので、従来のTMA(試験片全体の膨張量から還元膨張係数を算出する方法)に比べて、還元膨張率を精度よく求めることができる。また、従来のような棒状の試験片の作製が不要となるため、還元膨張率を簡易に測定できる。さらに、X線を用いて非破壊で測定できるので、測定後の酸素分離膜用材料を廃棄しなくてもよい。このため、かかる還元膨張率測定方法を、酸素分離膜の製造プロセスに容易に組み込むことができる。   The reduction expansion coefficient α thus obtained strictly reflects the minute expansion amount (dimensional change) generated in the order of crystal grains, so that the conventional TMA (reduction expansion from the expansion amount of the entire test piece). Compared with the method for calculating the coefficient, the reduction expansion coefficient can be obtained with higher accuracy. Moreover, since it is not necessary to produce a rod-shaped test piece as in the prior art, the reduction expansion coefficient can be easily measured. Furthermore, since measurement can be performed non-destructively using X-rays, it is not necessary to discard the oxygen separation membrane material after measurement. For this reason, such a method of measuring the reduction expansion coefficient can be easily incorporated into the manufacturing process of the oxygen separation membrane.

次に、実際に、上述した還元膨張率測定方法の実施を包含する酸素分離膜の製造方法について説明する。   Next, a method for manufacturing an oxygen separation membrane that actually includes the implementation of the above-described method for measuring the reduction expansion coefficient will be described.

ここに開示される方法は、上記のとおり、酸素分離膜に用いられる酸素分離膜用材料について、還元雰囲気下でのX線回折測定により得られた還元雰囲気下格子定数(a,b,c)と、空気雰囲気下でのX線回折測定により得られた空気雰囲気下格子定数(a,b,c)とに基づいて、酸素分離膜用材料を検査する検査工程を包含することによって特徴付けられるものであり、その他の条件(酸素分離膜用材料の合成方法や、酸素分離膜用材料をエレメントとして酸素分離膜を構築する方法)は特に制限されない。 As described above, the method disclosed herein uses a lattice constant (a 1 , b 1 , b) in a reducing atmosphere obtained by X-ray diffraction measurement in a reducing atmosphere for an oxygen separation membrane material used for an oxygen separation membrane. c 1 ) and an inspection step of inspecting the material for the oxygen separation membrane based on the lattice constant (a 2 , b 2 , c 2 ) in the air atmosphere obtained by the X-ray diffraction measurement in the air atmosphere The other conditions (method for synthesizing the oxygen separation membrane material and method for constructing the oxygen separation membrane using the oxygen separation membrane material as an element) are not particularly limited.

例えば、酸素分離膜の形状(外形)は特に限定されない。例えば、板状(平面状、球面状等を含む。)、管状(両端が開口した開管状、一端が開口し他端が閉じている閉管状等を含む。)、ハニカム状、あるいはこれらが組み合わさった形状等とすることができる。例えば、燃料電池やGTLに好適に使用し得る板状や膜状のものが特に好適な形状の例として挙げられる。厚さ10mm以下、特に5mm以下、さらに1mm以下の酸素分離膜は、高い酸素透過性能を発揮し易く好ましい。この膜の両側で酸素分圧を異ならせることにより、膜の一方の面から他方の面へと酸素イオンを効率よく透過させることができる。製造される酸素分離膜は緻密であって実質的にガス不透性であることが好ましい。   For example, the shape (outer shape) of the oxygen separation membrane is not particularly limited. For example, a plate shape (including a flat shape, a spherical shape, etc.), a tubular shape (including an open tube with both ends open, a closed tube with one end open and the other closed), a honeycomb shape, or a combination thereof It can be set as a shape. For example, a plate-like or membrane-like material that can be suitably used for a fuel cell or GTL is an example of a particularly suitable shape. An oxygen separation membrane having a thickness of 10 mm or less, particularly 5 mm or less, and further 1 mm or less is preferable because high oxygen permeation performance is easily exhibited. By varying the oxygen partial pressure on both sides of the membrane, oxygen ions can be efficiently transmitted from one surface of the membrane to the other. The produced oxygen separation membrane is preferably dense and substantially impermeable to gas.

ここに開示される製造方法で用いられる酸素分離膜用材料は、従来の酸素分離膜に用いられる酸素分離膜用材料と同様であればよく特に制限されない。この実施形態では、酸素イオン伝導体であるペロブスカイト構造の複合酸化物セラミックス粉末を酸素分離膜用材料として使用する。或いは当該複合酸化物セラミックス粉末から成形された膜状材料を採用してもよい。   The oxygen separation membrane material used in the manufacturing method disclosed herein is not particularly limited as long as it is the same as the oxygen separation membrane material used for the conventional oxygen separation membrane. In this embodiment, a composite oxide ceramic powder having a perovskite structure, which is an oxygen ion conductor, is used as a material for an oxygen separation membrane. Or you may employ | adopt the film-form material shape | molded from the said complex oxide ceramic powder.

上記酸化物セラミックスとしては、特定の構成元素のものに限られないが、酸素イオン伝導性と電子伝導性の両方を有する優れた混合伝導体となるような元素で構成されることが好ましい。ここで開示される酸素分離膜材が混合伝導性を有する場合には、酸素分離膜の一方の側(酸素含有ガスが供給される側)と他方の側(酸素分離膜材を透過した酸素イオンが酸素ガスとして酸化される側、あるいは供給された炭化水素ガスと反応する側)とを短絡させるための外部電極や外部回路を用いることなく、一方から他方へと連続的に酸素イオンを透過させることができるとともに、酸素イオンの透過速度を上げることができるため好ましい。   The oxide ceramic is not limited to a specific constituent element, but is preferably composed of an element that provides an excellent mixed conductor having both oxygen ion conductivity and electron conductivity. When the oxygen separation membrane material disclosed herein has mixed conductivity, one side of the oxygen separation membrane (the side to which the oxygen-containing gas is supplied) and the other side (oxygen ions that have passed through the oxygen separation membrane material) Oxygen ions are continuously permeated from one to the other without using an external electrode or an external circuit for short-circuiting the side that is oxidized as oxygen gas or the side that reacts with the supplied hydrocarbon gas) In addition, the oxygen ion permeation rate can be increased.

この種の酸化物セラミックスとしては、一般式(1):Ln1−xMO3−δで表わされる組成のペロブスカイト型酸化物が好ましい。ここで、式中のLnは、ランタノイドから選択される少なくとも一種(典型的にはランタン(La))である。Aは、ストロンチウム(Sr)、バリウム(Ba)およびカルシウム(Ca)のうちの1種または2種以上の元素であり、特に好ましくはSrである。また、Mは、ペロブスカイト型構造を構成し得る金属元素であり、例えばマグネシウム(Mg)、マンガン(Mn)、ガリウム(Ga)、チタン(Ti)、コバルト(Co)、ニッケル(Ni)、アルミニウム(Al)、鉄(Fe、銅(Cu)、インジウム(In)、錫(Sn)、ジルコニウム(Zr)、バナジウム(V)、クロム(Cr)、亜鉛(Zn)、ゲルマニウム(Ge)、スカンジウム(Sc)およびイットリウム(Y)のうちの1種または2種以上である。 The oxide ceramics of this type, the general formula (1): perovskite oxide having a composition represented by Ln 1-x A x MO 3 -δ is preferred. Here, Ln in the formula is at least one selected from lanthanoids (typically lanthanum (La)). A is one or more elements of strontium (Sr), barium (Ba), and calcium (Ca), and particularly preferably Sr. M is a metal element that can form a perovskite structure. For example, magnesium (Mg), manganese (Mn), gallium (Ga), titanium (Ti), cobalt (Co), nickel (Ni), aluminum ( Al), iron (Fe, copper (Cu), indium (In), tin (Sn), zirconium (Zr), vanadium (V), chromium (Cr), zinc (Zn), germanium (Ge), scandium (Sc) ) And yttrium (Y).

また、上記一般式(1)における「x」は、このペロブスカイト型構造においてLn(典型的にはLa)がAによって置き換えられた割合を示す値である。このxの取り得る範囲は、ペロブスカイト型構造を崩すことなく該構造を維持し得る限りにおいて特に限定されないが、0≦x<1が適当であり、好ましくは0.4≦x≦0.6である。なお、上記δは電荷中性条件を満たすように定まる値である。上記一般式における酸素原子数は、ペロブスカイト型構造の一部を置換する原子の種類および置換割合その他の条件により変動するため正確に表示することが困難である。このため、電荷中性条件を満たすように定まる値として、1を超えない正の数δ(0<δ<1)を採用し、酸素原子数を3−δと表示する。   Further, “x” in the general formula (1) is a value indicating the ratio of Ln (typically La) replaced by A in this perovskite structure. The range that x can take is not particularly limited as long as the structure can be maintained without destroying the perovskite structure, but 0 ≦ x <1 is appropriate, and preferably 0.4 ≦ x ≦ 0.6. is there. Note that δ is a value determined so as to satisfy the charge neutrality condition. The number of oxygen atoms in the above general formula varies depending on the type of atom substituting a part of the perovskite structure, the substitution ratio, and other conditions, so that it is difficult to display accurately. For this reason, a positive number δ (0 <δ <1) not exceeding 1 is adopted as a value determined to satisfy the charge neutrality condition, and the number of oxygen atoms is displayed as 3-δ.

上記ペロブスカイト型酸化物は、予め所定の組成に調製されている市販のペロブスカイト型酸化物を用いることができる。あるいは、製造しようとするペロブスカイト型酸化物を構成する金属元素を含む酸化物あるいは加熱により酸化物となり得る化合物(当該金属原子の炭酸塩、硝酸塩、硫酸塩、リン酸塩、酢酸塩、シュウ酸塩、ハロゲン化物、水酸化物、オキシハロゲン化物等)がそれぞれ該ペロブスカイト型酸化物の組成比に対応するような配合比で配合されたものを出発原料(粉末)とし、これを焼成(仮焼)することにより得られたものを上記酸素分離膜用の材料として用いることもできる。   As the perovskite oxide, a commercially available perovskite oxide prepared in advance with a predetermined composition can be used. Alternatively, an oxide containing a metal element constituting the perovskite oxide to be produced or a compound that can be converted into an oxide by heating (a carbonate, nitrate, sulfate, phosphate, acetate, oxalate of the metal atom) , Halides, hydroxides, oxyhalides, etc.) are blended at a blending ratio corresponding to the composition ratio of the perovskite type oxide, respectively, as a starting material (powder), and this is fired (calcined) What was obtained by doing so can also be used as a material for the oxygen separation membrane.

ここで、上記酸素分離膜用材料(ペロブスカイト型酸化物)としては、酸素イオンが透過した側が還元雰囲気となるため、そのような雰囲気で且つ高温域で使用する際にもクラック(割れ)が発生し難い還元耐久性が求められている。かかる還元耐久性は、酸素分離膜用材料を構成する金属元素の比率や、酸素分離膜用材料を合成するときの合成条件(焼成時間や焼成温度等の合成条件)によって容易に変わるため、酸素分離膜製造時には材料の還元耐久性を事前に検査しておくことが望ましい。しかしながら、従来のTMAによる検査では、検査のたびに棒状の試験片を作製する必要があり、作業時間と手間がかかる。また、検査後の試験片を再利用できないので、ミリオーダーの材料が無駄となる。さらに、ロット毎のサンプリング抽出であるため、個々の薄膜が本当に所要の還元耐久性を有するものであるかどうかは確認することができない等の問題があった。   Here, the oxygen separation membrane material (perovskite oxide) has a reducing atmosphere on the side through which oxygen ions permeate, so cracks occur even when used in such an atmosphere and in a high temperature range. There is a demand for reduction durability that is difficult to achieve. Such reduction durability easily varies depending on the ratio of the metal elements constituting the oxygen separation membrane material and the synthesis conditions (synthesis conditions such as the firing time and the firing temperature) when the oxygen separation membrane material is synthesized. It is desirable to inspect the reduction durability of the material in advance when manufacturing the separation membrane. However, in the inspection by the conventional TMA, it is necessary to produce a rod-shaped test piece for each inspection, which requires work time and labor. In addition, since the test piece after the inspection cannot be reused, the material on the millimeter order is wasted. Further, since sampling is performed for each lot, there is a problem that it cannot be confirmed whether each thin film has the required reduction durability.

そこで、本構成においては、まず、酸素分離膜に用いられるセラミックス材料(ペロブスカイト型酸化物;典型的には粉末状材料若しくは膜状に形成した後の材料)について、X線回折を用いて還元膨張率αを測定し、その測定された還元膨張率αに基づいてセラミックス材料が良品であるか否かを判定する。そして、その判定において良品とされたセラミックス材料を用いて構成された酸素分離膜を採用する。例えば、上記セラミックス材料としての粉末状材料を用意して該材料の還元膨張率を測定した場合には、上記判定において良品とされた粉末状材料を用いて(換言すれば不良と判定された材料は使用しないで)酸素分離膜を作製するとよい。   Therefore, in this configuration, first, reduction expansion using X-ray diffraction is performed on a ceramic material (perovskite oxide; typically formed into a powdery material or a film-like material) used for an oxygen separation membrane. The rate α is measured, and it is determined whether or not the ceramic material is a good product based on the measured reduction expansion rate α. And the oxygen separation membrane comprised using the ceramic material made into the quality goods in the determination is employ | adopted. For example, when a powdery material as the ceramic material is prepared and the reduction expansion coefficient of the material is measured, the powdery material that is determined to be non-defective in the above determination (in other words, a material that is determined to be defective) Oxygen separation membrane should be prepared.

例えば、本発明者の検討によると、製造に用いられるセラミックス材料(ペロブスカイト型酸化物)の還元膨張率が凡そ0.60%を上回ると、該セラミックス材料を用いて構築された酸素分離膜の還元耐久試験においてリークが発生し易くなることが分かった。即ち、還元膨張率が凡そ0.60%を上回るようなセラミックス材料を用いて構築された酸素分離膜では、還元雰囲気下で生じた応力により膜の破壊が進行する可能性が高いと考えられる。この場合、例えば、製造に用いられるセラミックス材料について、X線回折を用いて還元膨張率αを測定し、その測定された還元膨張率が0.50%以下の場合にセラミックス材料を良品として判定し、当該還元膨張率が0.50%を上回る場合にセラミックス材料を不良とするとよい。そして、その判定において良品とされたセラミックス材料のみを用いた酸素分離膜を採用するとよい。   For example, according to the study of the present inventor, when the reduction expansion coefficient of a ceramic material (perovskite oxide) used for manufacturing exceeds about 0.60%, the reduction of the oxygen separation membrane constructed using the ceramic material It was found that leaks are likely to occur in the durability test. That is, it is considered that an oxygen separation membrane constructed using a ceramic material having a reductive expansion rate exceeding about 0.60% is likely to break down the membrane due to stress generated in a reducing atmosphere. In this case, for example, for a ceramic material used for manufacturing, the reduction expansion coefficient α is measured using X-ray diffraction, and the ceramic material is determined to be non-defective when the measured reduction expansion coefficient is 0.50% or less. When the reductive expansion coefficient exceeds 0.50%, the ceramic material is good. And it is good to employ | adopt the oxygen separation membrane using only the ceramic material made into the quality goods in the determination.

なお、上記セラミックス材料を用いて酸素分離膜を構築する方法は特に限定されず、従来公知の種々の手法を採用することができる。一好適例としては、まず、上記ペロブスカイト型酸化物からなるセラミックス材料粉末を適当なバインダー、分散剤、可塑剤、溶媒等と混合してスラリーを調製し、スプレードライヤ等の造粒機を用いて所望する粒径(例えば平均粒径が10μm〜100μm)に造粒する。次いで、得られた造粒粉末を一軸圧縮成形、静水圧プレス(CIP)その他のプレス成形のような従来公知の成形法を用いて加圧成形し、所定形状の成形体を形成する。そして、得られた成形体を適当な温度で焼成し、得られた焼結体を加工する(例えば機械的研磨を施す)することによって、例えば膜厚が5mm以下、好ましくは1mm以下のような薄膜状の酸素分離膜を製造することができる。   The method for constructing the oxygen separation membrane using the ceramic material is not particularly limited, and various conventionally known methods can be employed. As a preferred example, first, a ceramic material powder composed of the perovskite oxide is mixed with an appropriate binder, a dispersant, a plasticizer, a solvent, etc. to prepare a slurry, and a granulator such as a spray dryer is used. Granulate to a desired particle size (for example, an average particle size of 10 μm to 100 μm). Next, the obtained granulated powder is pressure-molded by using a conventionally known molding method such as uniaxial compression molding, isostatic pressing (CIP) or other press molding to form a molded body having a predetermined shape. Then, the obtained molded body is fired at an appropriate temperature, and the obtained sintered body is processed (for example, mechanically polished), so that the film thickness is, for example, 5 mm or less, preferably 1 mm or less. A thin-film oxygen separation membrane can be manufactured.

なお、必要に応じて、酸素分離膜(例えば薄板状の酸素分離材を含む。)の表面の触媒を付着させて酸素分離性能及び/又は酸素イオンによる酸化反応性を向上させることができる。例えば、酸素分離膜の空気を送り込む側(以下「空気側」という。)の表面に、酸素イオンの透過を促進する触媒が付着した構成とすることができる。かかる酸素イオン透過触媒としては(LaSr1−x)M’O(ただし)、0.1≦x<1であり、M’はCo,Cu,Fe,Mnから選択される一種以上である)を含むものが好ましく用いられる。このような酸素イオン促進触媒を含む酸素分離膜は、酸素分離装置や種々の酸化対象ガスを酸化するための酸化用反応装置(例えば炭化水素部分酸化用反応装置)等に好ましく試用することができる。 If necessary, a catalyst on the surface of an oxygen separation membrane (for example, including a thin plate-like oxygen separation material) can be attached to improve oxygen separation performance and / or oxidation reactivity with oxygen ions. For example, a structure in which a catalyst for promoting permeation of oxygen ions is attached to the surface of the oxygen separation membrane on the air feeding side (hereinafter referred to as “air side”) can be employed. As such an oxygen ion permeable catalyst, (La x Sr 1-x ) M′O 3 (provided that 0.1 ≦ x <1), and M ′ is one or more selected from Co, Cu, Fe, and Mn. And the like are preferably used. Such an oxygen separation membrane containing an oxygen ion promoting catalyst can be preferably used in an oxygen separation device, an oxidation reaction device (for example, a hydrocarbon partial oxidation reaction device) for oxidizing various gases to be oxidized, or the like. .

また、酸素分離膜の他の面側、即ち透過した酸素イオンを対象ガス(例えばメタンのような燃料ガス)と酸化反応させる側(以下「反応側」という。)の表面には、酸化反応を促進する触媒が付着した構成とすることができる。かかる酸化反応促進触媒としては、Ni,Rh,Ag,Au,Bi,Mn,V,Pt,Pd,Ru,Cu,Zn,Co,Cr,Fe,In−Pr混合物およびIn−Sn混合物からなる群から選択される少なくとも一種の金属及び/又は金属酸化物を含有する化合物のような従来公知の酸化触媒及び/又は脱水素触媒などを用いることができる。これらのうち、ニッケル触媒またはロジウム触媒を好ましく用いることができる。   On the other side of the oxygen separation membrane, that is, the surface of the side where the permeated oxygen ions are oxidized with the target gas (for example, a fuel gas such as methane) (hereinafter referred to as “reaction side”), an oxidation reaction is performed. It can be set as the structure which the catalyst to promote adheres. Such oxidation reaction promoting catalysts include the group consisting of Ni, Rh, Ag, Au, Bi, Mn, V, Pt, Pd, Ru, Cu, Zn, Co, Cr, Fe, In-Pr mixture and In-Sn mixture. A conventionally known oxidation catalyst and / or dehydrogenation catalyst such as a compound containing at least one metal selected from the group consisting of metal oxides and / or metal oxides can be used. Among these, a nickel catalyst or a rhodium catalyst can be preferably used.

酸素分離膜の表面に上記のような触媒を付着させる方法は特に限定されない。例えば、触媒粉末を含むスラリーを調製し、このスラリーを酸素分離膜(緻密な焼結体)の表面に塗布して乾燥させることにより目的の触媒を付着(コーティング)させることができる。その後に付着触媒粉末をさらに焼成することによって酸素分離膜の表面に担持させてもよい。なお、かかる酸素イオン透過促進触媒や酸化反応促進触媒を付与する方法自体は従来公知の方法であればよく特に本発明を特徴付けるものではないためこれ以上の詳細な説明は省略する。   The method of attaching the above catalyst to the surface of the oxygen separation membrane is not particularly limited. For example, a slurry containing catalyst powder is prepared, and the slurry is applied to the surface of an oxygen separation membrane (dense sintered body) and dried to adhere (coating) the target catalyst. Thereafter, the adhered catalyst powder may be further baked to be supported on the surface of the oxygen separation membrane. It should be noted that the method for providing the oxygen ion permeation promoting catalyst or the oxidation reaction promoting catalyst itself may be any conventionally known method and does not particularly characterize the present invention, and therefore will not be described in further detail.

本実施形態の製造方法によれば、酸素分離膜用材料の還元膨張率をX線回折により測定し、その測定された還元膨張率に基づいて材料が良品であるか否かを判定し、その判定において良品とされた材料を用いた酸素分離膜を採用するので、所望の還元耐久性を満たす高品質な酸素分離膜を効率よく提供できる。また、X線を用いて非破壊で検査できるため、従来のようなロット毎のサンプリング抽出を行う必要がなく、予め製造しておいた膜状材料(酸素分離膜として作製したものを包含する。)の全件検査(還元耐久性の評価)を行うこともできる。そのため、不良品のみを廃棄してコスト削減を図るとともに、信頼性の高い酸素分離膜を製造することができる。   According to the manufacturing method of the present embodiment, the reductive expansion coefficient of the oxygen separation membrane material is measured by X-ray diffraction, and it is determined whether or not the material is a non-defective product based on the measured reductive expansion coefficient. Since an oxygen separation membrane using a material determined to be non-defective in the determination is adopted, a high-quality oxygen separation membrane satisfying a desired reduction durability can be efficiently provided. Further, since non-destructive inspection can be performed using X-rays, it is not necessary to perform sampling extraction for each lot as in the prior art, and includes a previously manufactured membrane material (produced as an oxygen separation membrane). ) All inspections (reduction durability evaluation). Therefore, it is possible to reduce the cost by discarding only defective products and to manufacture a highly reliable oxygen separation membrane.

以下、本発明に関する実施例を説明するが、本発明を以下の実施例に示すものに限定することを意図したものではない。   EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the following examples.

<X線回折を用いた還元膨張率の測定>
酸素分離膜材料粉末として、組成が異なる5種類のペロブスカイト型酸化物セラミックス粉末(下記表2参照)を用意し、それぞれ還元雰囲気下において粉末X線回折測定を行った。具体的には、X線回折測定装置のチャンバ内に収容された試料(ペロブスカイト型酸化物セラミックス粉末)を1000℃に加熱した。かかる温度条件下でチャンバ内に水素(4vol%)と窒素(96vol%)との混合ガスを凡そ100mL/分の流量で供給し、チャンバ内の酸素分圧が10−24MPaとなるように調節した。そして、得られた回折パターンにリートベルト法を適用することによって還元雰囲気下格子定数(a,b,c)を導出した。なお、上記X線回折測定条件としては、Rigaku RINT2000を用いて(X 線源にCuKα(波長0.154nm)を使用)、2θ=20°〜70°の範囲でステップ幅0.02°、ステップ時間2sに設定した。
<Measurement of reduction expansion coefficient using X-ray diffraction>
Five types of perovskite oxide ceramic powders (see Table 2 below) having different compositions were prepared as oxygen separation membrane material powders, and powder X-ray diffraction measurements were performed in a reducing atmosphere. Specifically, a sample (perovskite oxide ceramic powder) accommodated in the chamber of the X-ray diffraction measurement apparatus was heated to 1000 ° C. Under such temperature conditions, a mixed gas of hydrogen (4 vol%) and nitrogen (96 vol%) is supplied into the chamber at a flow rate of about 100 mL / min, and the oxygen partial pressure in the chamber is adjusted to 10 −24 MPa. did. Then, the lattice constant (a 1 , b 1 , c 1 ) under a reducing atmosphere was derived by applying the Rietveld method to the obtained diffraction pattern. As the X-ray diffraction measurement conditions, Rigaku RINT2000 was used (CuKα (wavelength 0.154 nm) was used for the X-ray source), step width 0.02 ° in the range of 2θ = 20 ° to 70 °, step Time was set to 2s.

また、上記5種類のペロブスカイト型酸化物セラミックス粉末について、それぞれ空気雰囲気下において粉末X線回折測定を行った。具体的には、X線回折測定装置のチャンバ内に収容された試料(ペロブスカイト型酸化物セラミックス粉末)を1000℃に加熱した。かかる温度条件下でチャンバ内に空気組成ガスを凡そ100mL/分の流量で供給し、チャンバ内の酸素分圧が0.02MPaとなるように調節した。そして、得られたX線回折パターンにリートベルト法を適用することによって空気雰囲気下格子定数(a,b,c)を導出した。使用した5種類のペロブスカイト型酸化物セラミックス粉末は、何れも斜方晶であり、空間群はPbnm62となった。一例として、La0.6Sr0.4Ti0.1Fe0.93−δを用いた場合のX線回折パターンを図2に示す。図2中、x1は還元雰囲気下の回折パターンであり、x2は空気雰囲気下の回折パターンである。また、回折パターンx1、x2から導出された還元雰囲気下格子定数(a,b,c)及び空気雰囲気下格子定数(a,b,c)を表1に示す。なお、空気雰囲気下のX線回折測定条件としては、チャンバ内に空気組成ガスを導入したこと以外は上述した還元雰囲気下と同じ条件に設定した。 Further, powder X-ray diffraction measurement was performed on each of the five types of perovskite oxide ceramic powders in an air atmosphere. Specifically, a sample (perovskite oxide ceramic powder) accommodated in the chamber of the X-ray diffraction measurement apparatus was heated to 1000 ° C. Under such temperature conditions, the air composition gas was supplied into the chamber at a flow rate of about 100 mL / min, and the oxygen partial pressure in the chamber was adjusted to 0.02 MPa. The lattice constant (a 2 , b 2 , c 2 ) was derived under the air atmosphere by applying the Rietveld method to the obtained X-ray diffraction pattern. The five types of perovskite oxide ceramic powders used were orthorhombic and the space group was Pbnm62. As an example, an X-ray diffraction pattern in the case of using La 0.6 Sr 0.4 Ti 0.1 Fe 0.9 O 3-δ is shown in FIG. In FIG. 2, x1 is a diffraction pattern under a reducing atmosphere, and x2 is a diffraction pattern under an air atmosphere. Table 1 shows the lattice constants (a 1 , b 1 , c 1 ) under the reducing atmosphere and the lattice constants (a 2 , b 2 , c 2 ) under the air atmosphere derived from the diffraction patterns x 1 and x 2 . The X-ray diffraction measurement conditions under the air atmosphere were set to the same conditions as those under the reducing atmosphere described above except that the air composition gas was introduced into the chamber.

上記得られた還元雰囲気下格子定数(a,b,c)と空気雰囲気下格子定数(a,b,c)とから前述した(1)式に従って還元膨張率αを算出した。その結果を表2に示す。表2に示すように、使用した5種類のペロブスカイト型酸化物セラミックス粉末の還元膨張率は、互いに異なるものとなった。 From the obtained lattice constant (a 1 , b 1 , c 1 ) under the reducing atmosphere and the lattice constant (a 2 , b 2 , c 2 ) under the air atmosphere, the reduction expansion coefficient α is calculated according to the above-described equation (1). did. The results are shown in Table 2. As shown in Table 2, the reduction expansion coefficients of the five types of perovskite oxide ceramic powders used were different from each other.

Figure 0005362638
Figure 0005362638

<TMAを用いた還元膨張率の測定>
さらに、参考のために、上述した5種類のペロブスカイト型酸化物セラミックス粉末について、示差膨張方式(TMA)に基づく熱膨張係数(室温(25℃)〜1000℃の間の平均値))を測定した。ここで、TMAによる還元膨張率は、25℃〜1000℃の間での還元雰囲気中(水素(5vol%)と窒素(95vol%)との混合ガス雰囲気中)における熱膨張率(%)をEred、空気(大気)中における熱膨張率(%)をEairとしたとき、以下の式より求められる値である。
<Measurement of reduction expansion coefficient using TMA>
For reference, the thermal expansion coefficient (average value between room temperature (25 ° C.) and 1000 ° C.) based on the differential expansion method (TMA) was measured for the five types of perovskite oxide ceramic powders described above. . Here, the reductive expansion coefficient by TMA is the coefficient of thermal expansion (%) in a reducing atmosphere between 25 ° C. and 1000 ° C. (in a mixed gas atmosphere of hydrogen (5 vol%) and nitrogen (95 vol%)). red is a value obtained from the following equation, where E air is the coefficient of thermal expansion (%) in air (atmosphere).

TMAによる還元膨張率(%)=[{(1+Ered/100)−(1+Eair/100)}/(1+Eair/100)]×100
Reduction expansion rate (%) by TMA = [{(1 + E red / 100) − (1 + E air / 100)} / (1 + E air / 100)] × 100

<酸素分離膜の作製>
上述したペロブスカイト型酸化物セラミックス粉末に、適当量の一般的なバインダーと溶剤(水)を混合してスラリーを調製し、スプレードライヤ等の造粒機を用いて粒径が約50μmの粒子に造粒した。かかる造粒粒子をプレス成形し、直径約30mm、厚さ約4mmの円板形状のプレス成形体を得た。得られたプレス成形体を大気中凡そ1400℃で6時間焼成することにより上記成形体を焼成した。こうして本実施例に係る焼結体を得た。
<Production of oxygen separation membrane>
An appropriate amount of a general binder and a solvent (water) are mixed with the perovskite oxide ceramic powder described above to prepare a slurry, which is then formed into particles having a particle size of about 50 μm using a granulator such as a spray dryer. Grained. The granulated particles were press-molded to obtain a disk-shaped press-molded body having a diameter of about 30 mm and a thickness of about 4 mm. The obtained press-molded body was fired at about 1400 ° C. in the atmosphere for 6 hours, thereby firing the above-mentioned molded body. Thus, a sintered body according to this example was obtained.

<モジュールの製造と還元耐久性の評価>
以上のようにして得られた円板形状の焼結体を用いて図3に示す還元耐久性評価用モジュール50を作製した。即ち、上記円板形状の焼結体を機械研磨して厚みが0.5mmの酸素分離膜(直径30mm)30を作製した。次いで、得られた酸素分離膜30の一方の面(反応側)の表面30aには、酸素反応促進触媒としてのNi酸化物をコーティングした。さらに、他方の面(空気側)の表面30bには、酸素イオン透過促進触媒としてLaSrCo酸化物をコーティングした。
<Manufacture of modules and evaluation of reduction durability>
A reduction durability evaluation module 50 shown in FIG. 3 was produced using the disk-shaped sintered body obtained as described above. That is, the disk-shaped sintered body was mechanically polished to prepare an oxygen separation membrane (diameter 30 mm) 30 having a thickness of 0.5 mm. Next, one surface (reaction side) surface 30a of the obtained oxygen separation membrane 30 was coated with Ni oxide as an oxygen reaction promoting catalyst. Further, the other surface (air side) surface 30b was coated with LaSrCo oxide as an oxygen ion permeation promoting catalyst.

そして、図3に模式的に示すように、触媒付き酸素分離膜30を、一方の面30aの反応側(図の上側)、他方の面が空気側(図の下側)となるようにして、当該反応(燃料)側のアルミナ製円筒管32及び空気側のアルミナ製円筒管34の間に挟んで配置した。これらアルミナ製円筒管32,34と酸素分離膜30との接触部分はガラス系シール部材35によって密閉した。また、反応側及び空気側のアルミナ製円筒管32,34の内部には、それぞれ、燃料ガス(ここではCHガス)供給用のアルミナ内管36及び空気(Air)供給用のアルミナ内管38を設置した。また、アルミナ製円筒管32,34の外方にはヒータ40を設置した。 Then, as schematically shown in FIG. 3, the catalyst-attached oxygen separation membrane 30 is set so that one side 30a is on the reaction side (upper side in the figure) and the other side is on the air side (lower side in the figure). The alumina tube 32 made of alumina on the reaction (fuel) side and the alumina tube 34 made of air on the air side were disposed. The contact portion between the alumina cylindrical tubes 32 and 34 and the oxygen separation membrane 30 was sealed with a glass-based sealing member 35. The reaction side and air side alumina cylindrical tubes 32 and 34 are respectively provided with an alumina inner tube 36 for supplying fuel gas (here, CH 4 gas) and an alumina inner tube 38 for supplying air (Air). Was installed. A heater 40 was installed outside the alumina cylindrical tubes 32 and 34.

このように構築されたモジュール50において、ヒータ40により内部を約1000℃まで加熱した。そして先ず、反応側のアルミナ内管36から混合ガス(水素5%+窒素95%)を導入してNi酸化物を還元した。次いで、このアルミナ内管36から純メタンガスを10mL/分〜200mL/分で導入し、空気側のアルミナ内管38からは空気を10mL/分〜500mL/分で導入した。この試験を3〜10時間連続して行った。この間に反応側のアルミナ製円筒管32から放出された合成ガスをガスクロマトグラフで測定し、ガスクロマトグラフによる組成測定から合成ガス中に含有する窒素量を測定した。そして、合成ガス全体に含まれる窒素量の割合をリーク率(%)とし、酸素分離膜の還元耐久性を評価した。ここで3〜10時間でリーク率が1%以下のものを良好(○)、3時間以内のリーク率が1%を超えて3%以下のものを適(△)、3時間以内のリーク率が3%を超えたものを不適(×)とした。なお、メタンガス流入前の段階ではリーク率は1%以下であった。即ち還元応力により膜の破壊が進行するとリークの割合が増大することを反映している。   In the module 50 constructed as described above, the inside was heated to about 1000 ° C. by the heater 40. First, a mixed gas (5% hydrogen + 95% nitrogen) was introduced from the alumina inner tube 36 on the reaction side to reduce the Ni oxide. Subsequently, pure methane gas was introduced from the alumina inner pipe 36 at a rate of 10 mL / min to 200 mL / min, and air was introduced from the air side alumina inner pipe 38 at a rate of 10 mL / min to 500 mL / min. This test was performed continuously for 3 to 10 hours. During this time, the synthesis gas released from the alumina cylindrical tube 32 on the reaction side was measured by a gas chromatograph, and the amount of nitrogen contained in the synthesis gas was measured from the composition measurement by the gas chromatograph. Then, the ratio of the amount of nitrogen contained in the entire synthesis gas was defined as a leak rate (%), and the reduction durability of the oxygen separation membrane was evaluated. Here, 3 to 10 hours has a leak rate of 1% or less, good (◯), 3 hours or less leak rate is more than 1%, and 3% or less is suitable (Δ), 3 hours or less leak rate A value exceeding 3% was regarded as inappropriate (x). The leak rate was 1% or less before the methane gas flow. In other words, this reflects the increase in the leak rate as the film breaks down due to reducing stress.

結果を表2の該当欄に示す。この結果から明らかなように、本実施例により得られた還元膨張率と還元耐久性との間に一定の相関があることが確かめられた。具体的には、酸素分離膜材料の還元膨張率が減少するに従い、膜の還元耐久性が向上することが確認された。特に還元膨張率が0.50%以下になると、ガスリークが1%以下となり、高い還元耐久性が得られた。この結果から、本発明を適用して酸素分離膜用材料の還元耐久性を検査する場合には、凡そ0.50%を材料の良否判定の閾値にすればよいことが確かめられた。   The results are shown in the corresponding column of Table 2. As is clear from this result, it was confirmed that there was a certain correlation between the reduction expansion coefficient and reduction durability obtained in this example. Specifically, it was confirmed that the reduction durability of the membrane improves as the reduction expansion coefficient of the oxygen separation membrane material decreases. In particular, when the reduction expansion coefficient was 0.50% or less, the gas leak was 1% or less, and high reduction durability was obtained. From this result, it was confirmed that when the reduction durability of the material for oxygen separation membrane is inspected by applying the present invention, about 0.50% should be used as the threshold value for determining the quality of the material.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.

例えば、上述した例では、酸素分離膜材料を粉末状にしてX線回折測定を行う場合を例示したが、これに限定されない。例えば、材料粉末を膜状にして(典型的には酸素分離膜を構築してから)、その膜に対してX線回折測定を行ってもよい。この場合、実際の使用形態(酸素分離膜)と同じ形態で測定できるので、より的確な還元膨張率が得られる。   For example, in the above-described example, the case where the oxygen separation membrane material is powdered and X-ray diffraction measurement is performed is illustrated, but the present invention is not limited to this. For example, the material powder may be formed into a film (typically after an oxygen separation membrane is constructed), and X-ray diffraction measurement may be performed on the membrane. In this case, since it can be measured in the same form as the actual use form (oxygen separation membrane), a more accurate reduction expansion coefficient can be obtained.

また、本発明により得られる還元膨張率は、酸素分離膜材料の還元耐久性を相対的に評価する指標となり得るものであればよく、種々の改変が可能である。例えば、上述した例では、酸素分離膜材料(ペロブスカイト型酸化物セラミックス)の結晶構造が斜方晶であり、前述した(1)式を用いて結晶格子の体積変化から還元膨張率αを算出する場合を例示したが、これに限定されない。例えば、酸素分離膜材料が等方的または異方的な還元膨張を示す場合には、格子定数の一軸の寸法(長さ)変化から還元膨張率α’=[(a−a)/a]×100を算出してもよい。ここで、a:還元雰囲気下格子定数の所定軸の一辺の長さ、a:空気雰囲気下格子定数の所定軸の一辺の長さである。この場合でも、酸素分離膜材料の還元耐久性を相対的に評価する指標を得ることができる。 Further, the reduction expansion coefficient obtained by the present invention may be any one that can be an index for relatively evaluating the reduction durability of the oxygen separation membrane material, and various modifications are possible. For example, in the above-described example, the crystal structure of the oxygen separation membrane material (perovskite oxide ceramics) is orthorhombic, and the reduction expansion coefficient α is calculated from the volume change of the crystal lattice using the above-described equation (1). Although the case was illustrated, it is not limited to this. For example, when the oxygen separation membrane material exhibits isotropic or anisotropic reductive expansion, the reductive expansion coefficient α ′ = [(a 1 −a 2 ) / from the uniaxial dimension (length) change of the lattice constant. a 2 ] × 100 may be calculated. Here, a 1 is the length of one side of the predetermined axis of the lattice constant under a reducing atmosphere, and a 2 is the length of one side of the predetermined axis of the lattice constant under an air atmosphere. Even in this case, an index for relatively evaluating the reduction durability of the oxygen separation membrane material can be obtained.

なお、本発明によって製造される酸素分離膜の一形態として、酸素イオン伝導体であるペロブスカイト構造の複合酸化物セラミックスから成る酸素分離膜の少なくとも一方の面側に、この複合酸化物セラミックス(酸素分離膜)を機械的に支持する多孔質支持体を備える構成としてもよい。   As one form of the oxygen separation membrane produced according to the present invention, this composite oxide ceramic (oxygen separation) is provided on at least one surface side of an oxygen separation membrane made of a composite oxide ceramic having a perovskite structure which is an oxygen ion conductor. It is good also as a structure provided with the porous support body which supports a film | membrane mechanically.

10 X線発生源
12 検査器
14 X線
16 試料
16a 試料面
18 X線
20 X線回折測定装置
22 チャンバ
24 加熱装置
26 還元性ガス
30 酸素分離膜
32、34 アルミナ製円筒管
35 ガラス系シール部材
36、38 アルミナ内管
40 ヒータ
50 還元耐久性評価用モジュール
DESCRIPTION OF SYMBOLS 10 X-ray generation source 12 Inspection device 14 X-ray 16 Sample 16a Sample surface 18 X-ray 20 X-ray diffraction measuring device 22 Chamber 24 Heating device 26 Reducing gas 30 Oxygen separation membrane 32, 34 Alumina cylindrical tube 35 Glass-based seal member 36, 38 Alumina inner tube 40 Heater 50 Reduction durability evaluation module

Claims (7)

酸素分離膜用材料の還元膨張率を測定する方法であって、
測定対象となる材料について還元雰囲気下でX線回折測定を行い、その材料の還元雰囲気下における還元雰囲気下格子定数を求める工程と、
前記材料について空気雰囲気下でX線回折測定を行い、その材料の空気雰囲気下における空気雰囲気下格子定数を求める工程と、
前記得られた還元雰囲気下格子定数と空気雰囲気下格子定数とに基づいて、前記材料の還元膨張率を算出する工程と
を包含する、還元膨張率測定方法。
A method for measuring the reduction expansion coefficient of an oxygen separation membrane material,
A step of performing X-ray diffraction measurement in a reducing atmosphere for a material to be measured to obtain a lattice constant in a reducing atmosphere in the reducing atmosphere of the material;
Performing an X-ray diffraction measurement on the material in an air atmosphere to obtain a lattice constant under the air atmosphere of the material in an air atmosphere;
A reduction expansion coefficient measuring method including a step of calculating a reduction expansion coefficient of the material based on the obtained lattice constant under a reducing atmosphere and the lattice constant under an air atmosphere.
前記材料を粉末状または膜状にして前記X線回折測定を行う、請求項1に記載の還元膨張率測定方法。   The method of measuring a reduction expansion coefficient according to claim 1, wherein the X-ray diffraction measurement is performed with the material in a powder form or a film form. 前記還元雰囲気として、少なくとも水素を含む還元性ガス雰囲気を形成する、請求項1または2に記載の還元膨張率測定方法。   The reducing expansion coefficient measuring method according to claim 1, wherein a reducing gas atmosphere containing at least hydrogen is formed as the reducing atmosphere. 酸素分離膜を製造する方法であって、
酸素分離膜用材料を用意し、該材料の還元膨張率を、請求項1〜3のいずれかに記載の方法により測定すること、
前記測定された還元膨張率に基づいて前記材料が良品であるか否かを判定すること、および、
前記判定において良品とされた材料を用いて構成された酸素分離膜を採用すること
を包含する、酸素分離膜の製造方法。
A method for producing an oxygen separation membrane, comprising:
Preparing an oxygen separation membrane material and measuring the reductive expansion coefficient of the material by the method according to claim 1;
Determining whether the material is non-defective based on the measured reduction expansion rate; and
A method for manufacturing an oxygen separation membrane, comprising adopting an oxygen separation membrane configured using a material that has been determined to be good in the determination.
前記判定において前記材料の還元膨張率が0.50%以下のときに良品と判定する、請求項4に記載の製造方法。   The manufacturing method according to claim 4, wherein in the determination, the material is determined to be non-defective when the reduction expansion coefficient of the material is 0.50% or less. 前記酸素分離膜用材料は、酸素イオン伝導体であるペロブスカイト構造の酸化物セラミックスから成る材料である、請求項4または5に記載の製造方法。   6. The manufacturing method according to claim 4, wherein the material for the oxygen separation membrane is a material made of an oxide ceramic having a perovskite structure which is an oxygen ion conductor. 酸素分離膜を検査する方法であって、請求項1〜3のいずれかに記載の方法により酸素分離膜の還元膨張率を測定し、得られた還元膨張率に基づいて該酸素分離膜の還元耐久性を検査することを特徴とする、酸素分離膜の検査方法。   A method for inspecting an oxygen separation membrane, wherein the reduction expansion coefficient of the oxygen separation membrane is measured by the method according to any one of claims 1 to 3, and the reduction of the oxygen separation membrane is performed based on the obtained reduction expansion coefficient. A method for inspecting an oxygen separation membrane, characterized by inspecting durability.
JP2010088834A 2010-04-07 2010-04-07 Production of oxygen separation membrane material and method for measuring reduction expansion coefficient of the material Active JP5362638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010088834A JP5362638B2 (en) 2010-04-07 2010-04-07 Production of oxygen separation membrane material and method for measuring reduction expansion coefficient of the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010088834A JP5362638B2 (en) 2010-04-07 2010-04-07 Production of oxygen separation membrane material and method for measuring reduction expansion coefficient of the material

Publications (2)

Publication Number Publication Date
JP2011220776A JP2011220776A (en) 2011-11-04
JP5362638B2 true JP5362638B2 (en) 2013-12-11

Family

ID=45037962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010088834A Active JP5362638B2 (en) 2010-04-07 2010-04-07 Production of oxygen separation membrane material and method for measuring reduction expansion coefficient of the material

Country Status (1)

Country Link
JP (1) JP5362638B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248046A1 (en) * 2022-06-24 2023-12-28 株式会社半導体エネルギー研究所 Material search method, material search system, program, and recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211678A (en) * 1998-01-26 1999-08-06 Rigaku Denki Kk Sample high-temperature device and x-ray apparatus using the same
AU1211002A (en) * 2000-11-14 2002-05-27 Forskningsct Riso Conductive material comprising at least two phases
JP4320531B2 (en) * 2001-11-12 2009-08-26 株式会社豊田中央研究所 Mixed conductive composite oxide for oxygen separation and method for producing the same
JP4336591B2 (en) * 2004-01-30 2009-09-30 三菱マテリアル株式会社 Cement quality prediction method and cement production management system

Also Published As

Publication number Publication date
JP2011220776A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5033620B2 (en) Mixed proton / electron conducting ceramic membrane for hydrogen separation
Rebollo et al. Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe 0.65 Zr 0.20 Y 0.15 O 3− δ and Y-or Gd-doped ceria
Thursfield et al. The use of dense mixed ionic and electronic conducting membranes for chemical production
US8845768B2 (en) Proton conducting membranes for hydrogen production and separation
Klande et al. Effect of doping, microstructure, and CO2 on La2NiO4+ δ-based oxygen-transporting materials
Kovalevsky et al. Processing and oxygen permeation studies of asymmetric multilayer Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ membranes
Kura et al. Hydrogen separation by nanocrystalline titanium nitride membranes with high hydride ion conductivity
Sahini et al. BaxSr1-xCoyFe1-yO3-δ (BSCF) mixed ionic-electronic conducting (MIEC) materials for oxygen separation membrane and SOFC applications: insights into processing, stability, and functional properties
JP4153132B2 (en) LaGaO3 system electron-oxygen ion mixed conductor and oxygen permeable membrane using the same
Ciftyürek et al. High temperature selective sensing of hydrogen with MgO-modified SrMoO4 micro-fibers
Kura et al. Enhanced hydrogen permeability of hafnium nitride nanocrystalline membranes by interfacial hydride conduction
JP2005336022A (en) Proton conductive ceramic
Chen et al. Further performance improvement of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ perovskite membranes for air separation
Wang et al. SrCe 0.95 Y 0.05 O 3− δ–ZnO dual-phase membranes for hydrogen permeation
Cvejin et al. Impedancemetric NO sensor based on YSZ/perovskite neodymium cobaltite operating at high temperatures
JP4918315B2 (en) Oxygen separation membrane
JP5362638B2 (en) Production of oxygen separation membrane material and method for measuring reduction expansion coefficient of the material
Etchegoyen et al. Microstructure and oxygen permeability of a La0. 6Sr0. 4Fe0. 9Ga0. 1O3− δ membrane containing magnesia as dispersed second phase particles
JP4149337B2 (en) Oxygen separation membrane element and manufacturing method thereof
JP5031616B2 (en) Oxygen separator and method for producing the same
JP5837593B2 (en) CO2-resistant mixed conducting oxide and its use for hydrogen separation
JP2005095718A (en) Oxygen separation membrane element and manufacturing method therefor
Ngamou et al. Tailoring the structure and gas permeation properties of silica membranes via binary metal oxides doping
Nithyavathy et al. Investigation into gas-sensing mechanism of nanostructured magnesium aluminate as a function of temperature
Li et al. Characterization of La0· 6Sr0· 4CoO3-δ oxygen selective hollow fiber made from acetate precursor-derived powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130904

R150 Certificate of patent or registration of utility model

Ref document number: 5362638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250