JP5362523B2 - Calculation method to set the step width etc. by calculating the snow pressure resistance such as slope snow pressure and step width on the slope. - Google Patents

Calculation method to set the step width etc. by calculating the snow pressure resistance such as slope snow pressure and step width on the slope. Download PDF

Info

Publication number
JP5362523B2
JP5362523B2 JP2009256518A JP2009256518A JP5362523B2 JP 5362523 B2 JP5362523 B2 JP 5362523B2 JP 2009256518 A JP2009256518 A JP 2009256518A JP 2009256518 A JP2009256518 A JP 2009256518A JP 5362523 B2 JP5362523 B2 JP 5362523B2
Authority
JP
Japan
Prior art keywords
snow
slope
step width
small step
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009256518A
Other languages
Japanese (ja)
Other versions
JP2011085007A (en
Inventor
孝幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIKO KENZAI LTD.
Original Assignee
SHIKO KENZAI LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIKO KENZAI LTD. filed Critical SHIKO KENZAI LTD.
Priority to JP2009256518A priority Critical patent/JP5362523B2/en
Publication of JP2011085007A publication Critical patent/JP2011085007A/en
Application granted granted Critical
Publication of JP5362523B2 publication Critical patent/JP5362523B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately calculate a small step width in the case of using a small step of a slope also for snowslide prevention and the like or a small step width formed of a snowslide prevention fence by setting a friction coefficient of a slant face, an inclination of the slant face, and an area of a load sphere of a snow layer on the slant face. <P>SOLUTION: The snow layer on the slant face is always made to flow down and deformed by the geothermal melting of snow at the bottom of the snow layer and the consolidation settlement and the gravitating of the snow layer to generate slope snow pressure on the small step and the like, whereby the snow layer accumulated on the small step width is pushed out to be broken and fallen when the small step width is narrow. The small step width La is calculated which secures snow weight accumulated on the small step width corresponding to the slope snow pressure P and resists by a snow pressure resistance force Pa to prevent the breakage and fall of the snow layer on the small step. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

積雪地方の法面の雪崩予防を図るため小段幅等を確保する算定方法に関する。  The present invention relates to a calculation method for securing a step width to prevent avalanches on slopes in snowy regions.

積雪地方の斜面の積雪層は、図1のように地熱による積雪層底面の融雪や積雪層の圧密沈下、及び重力作用により常時谷側に移動(斜面積雪層のクリープ現象)し斜面積雪層の表面の等厚線1が変形し積雪層表面2に変化し、斜面雪圧Pが発生している。このような要因により平場の小段幅La区間等に堆積している積雪層を押出し雪庇3が発生し崩落して斜面の雪崩の要因につながっている。  As shown in Fig. 1, the snow layer on the slope in the snowy region always moves to the valley side due to the melting of snow on the bottom of the snow layer due to geothermal heat, the subsidence of the snow layer, and the gravitational action (creep phenomenon of the snow area). The contour line 1 on the surface is deformed and changed to the snow layer surface 2, and the slope snow pressure P is generated. Due to such factors, the snow layer accumulated in the small step width La section or the like of the flat field is pushed out and the snow plow 3 is generated and collapses, leading to the cause of the avalanche on the slope.

積雪地方の法面等の小段は、法面の土質や法面直高さ、施設の管理等により標準として1.5mで設定されている。このような法面の小段幅は法面に堆積する積雪層の崩壊を防止して雪崩抑止につながっているが、明確な因果関係が解明されていない状況で、現在は下記の様な方法で小段幅を設定してきている。
▲1▼ 小段幅L=0.8h方式・・・・h=設計積雪深採用
▲2▼ 最大積雪深方式 ・・・・ 30年再現確立最大積雪深採用
▲3▼ 道路の全層雪崩対策における防雪小段幅の検討方式・・・「19961998・(社団法人・雪センター資料・法面の直高等を考慮)」
しかし何れも積雪深さHを主体にした小段幅Laの設定方法であり、斜面積雪層の滑りを大きく左右する法面の地表面の摩擦係数等や斜面雪圧を考慮しておらず、合理的な設定方法ではなかった。
The steps of the slope in the snowy region are set at 1.5m as a standard, depending on the soil texture, slope height, management of the facility, etc. Such a step width of the slope prevents the collapse of the snow layer that accumulates on the slope and leads to avalanche suppression. However, a clear causal relationship has not yet been elucidated. The step width has been set.
▲ 1 ▼ Step width L = 0.8 h method ・ ・ ・ h = Designed snow depth adoption ▲ 2 ▼ Maximum snow depth method ・ ・ ・ Established 30-year reproduction Established maximum snow depth ▲ 3 ▼ In all layer avalanche countermeasures snow study method ... of the small stage width "1996-1998, (taking into account the direct higher of Japan, snow Center materials and method surface)"
However, each is a method of setting the step width La mainly based on the snow depth H, and it does not take into account the friction coefficient of the ground surface on the slope and the slope snow pressure, which greatly affects the slip of the snow covered area, and is rational. It was not a typical setting method.

斜面雪圧の主な算出方法としてはスイス方式や特許文献1が挙げられるが下記内容により本発明とは異なっている。
(1)スイス方式による斜面雪圧SNは下式で現されているが、斜面勾配が平場に近い小段幅に堆積している積雪層による雪圧抵抗力等を算出することは困難である。また斜面積雪層は変形しないものとして等厚で考えていることから、斜面積雪圧等による柵頭部に形成された雪庇の崩落等は考えていない。
SN=H/2・K・N
S・・斜面雪圧
K・・クリープ係数(K/sin2θ)斜面勾配が小さい場合算定困難
N・・グライド係数
(2)[特許文献1]
「斜面上の突起体に作用する斜面雪圧による雪荷重の算定方法」は斜面上に設置された斜面積雪層に埋没した杭等に作用する斜面雪圧の算定方法であり、法面の斜面雪圧Pと小段幅に堆積した積雪層による雪圧抵抗力Paを面的に捉えて両方の雪圧の均衡を確認し小段幅を設定する算出方法には適用が困難である。
特許第4358893号
The main method for calculating the slope snow pressure includes the Swiss method and Patent Document 1, but differs from the present invention depending on the following contents.
(1) Although the slope snow pressure SN by the Swiss method is expressed by the following formula, it is difficult to calculate the snow pressure resistance force and the like due to the snow layer in which the slope gradient is deposited in a small step width close to a flat field. In addition, since the slant area snow layer is considered to be the same thickness as it does not deform, we do not consider the collapse of the snow ridge formed on the fence head due to the slant area snow pressure or the like.
SN = H 2/2 · K · N
S · Slope snow pressure K ·· Creep coefficient (K / sin 2θ) Difficult to calculate when slope slope is small N ·· Glide coefficient (2) [Patent Document 1]
“Calculation method of snow load by slope snow pressure acting on protrusion on slope” is a method of calculating slope snow pressure acting on piles buried in slope area snow layer installed on slope. It is difficult to apply to a calculation method in which the snow pressure P and the snow pressure resistance Pa due to the snow layer accumulated in the step width are grasped in a plane, the balance between both snow pressures is confirmed, and the step width is set.
Japanese Patent No. 4358893

これまでの雪崩予防柵4の設置位置は一般的に図2の様に、基礎工5の安全性を確保するため、小段の山側に設定しており、小段幅Laの積雪重量Waで対応できる雪圧抵抗力Paの活用が無効になっている。  The conventional avalanche prevention fence 4 installation position is generally set on a small mountain side in order to ensure the safety of the foundation work 5 as shown in FIG. 2, and can be handled by the snow weight Wa of the small width La. Use of snow pressure resistance Pa is disabled.

斜面上の小段等で斜面積雪層の雪崩を抑止する効果の程は、小段幅や積雪深さ、雪質、斜面勾配、方位等の現場条件により大きく左右されるものであるが、図3において斜面雪圧力P、小段の雪圧抵抗力Paを算出し雪圧の均衡状況により小段幅Laを合理的に算定して調整し、小段幅に堆積した積雪層の崩落を防止する必要がある。  The effect of suppressing the avalanche of the slanted snow layer on the slope on the slope depends greatly on the field conditions such as the width of the stage, snow depth, snow quality, slope gradient, direction, etc. It is necessary to calculate the slope snow pressure P and the snow pressure resistance Pa of the small steps, and rationally calculate and adjust the small step width La according to the balance of the snow pressures to prevent the fall of the snow layer deposited in the small step width.

斜面の積雪層は降雪期の密度が小さく柔らかい雪質が、時間の経過とともに締め固まり雪塊状態となる。図3により概略を説明すると積雪層の滑り程度は斜面勾配θと積雪底面の地表の凹凸状況等(摩擦係数μ)により大きく左右され、法面の斜面雪圧力Pが小段幅の平場La区間の積雪層を谷側に押出し崩落することは、小段の積雪層による雪圧抵抗力Pa大きさが原因となる。なお、両方の雪圧は斜面勾配θや摩擦係数μにより大きく左右されることとなるが、算出方法の標準化を考慮し斜面上の斜面積雪圧Pに及ぼす荷重圏の範囲をLとし設定(L=1.5H〜2.0H積雪層の密度で調整)、小段の雪圧抵抗力Paに及ぼす荷重圏の範囲をLaとして設定する。また摩擦係数μは1.0以内の係数として法面の凹凸状況により判断し斜面延長方向1m当たりのP、Paを算出して雪圧の均衡状況を確認し小段幅Laを算出する。  The snow layer on the slope has a soft snow quality with a small density during the snowfall season, and it becomes compacted as time passes and becomes a snow mass. Referring to FIG. 3, the outline of the snow layer is greatly affected by the slope gradient θ and the surface roughness of the snow cover (friction coefficient μ), and the slope snow pressure P on the slope is in the flat field La section with a small step width. The fact that the snow layer is pushed and collapsed to the valley side is caused by the magnitude of the snow pressure resistance Pa due to the small snow layer. Both snow pressures are greatly affected by the slope gradient θ and the friction coefficient μ. However, considering the standardization of the calculation method, the range of the load sphere affecting the slope snow pressure P on the slope is set as L (L = Adjusted by the density of the snow layer of 1.5H to 2.0H), and the range of the load zone that affects the snow pressure resistance Pa of the small step is set as La. Further, the friction coefficient μ is determined as a coefficient within 1.0 based on the unevenness state of the slope, P and Pa per 1 m of the slope extending direction are calculated, the equilibrium state of the snow pressure is confirmed, and the small step width La is calculated.

積雪地方の斜面の小段は雪崩抑止施設に兼用されているが斜面積雪層の滑り状況と小段による抑止効果が斜面勾配θや摩擦係数μ等により大きく左右されていることが判明したことにより、斜面雪圧力P、小段の雪圧抵抗力Paを算出し雪圧の均衡状況を確認して小段幅Laを合理的に算出し、小段の積雪層が谷側に押出され崩落することを防止することが可能となった。図3の様に斜面の断面計画等に当たっては当初より積雪深さや斜面勾配θ、斜面の摩擦係数μにより小段幅Laの算出を図って計画を図ることが可能となった。  The small steps on the slopes in the snowy area are also used as avalanche prevention facilities, but it was found that the slipping condition of the sloping snow layer and the suppression effect by the steps greatly depended on the slope gradient θ and friction coefficient μ, etc. Calculate the snow pressure P and the snow pressure resistance Pa of the small step, check the equilibrium state of the snow pressure and rationally calculate the small step width La, and prevent the snow layer of the small step from being pushed to the valley side and collapsing. Became possible. As shown in FIG. 3, it has become possible to plan the slope by calculating the small step width La from the beginning with the snow depth, slope gradient θ, and slope friction coefficient μ.

また図4や図8の様に既設の小段幅Laが不足している場合には雪崩予防柵4や張出工7等により小段幅の拡幅Lbを図り、全体の目標小段幅Lcを合理的に設定することが可能となった。さらには図5の様にこれまでは斜面積雪層Hにより雪崩予防柵4の高さh3を設定している。本発明により法面の積雪層の荷重圏の影響範囲Lを設定し小段幅LaやLbによりLcを確認して、合理的に雪崩予防柵4の高さh3の算出が可能となった。  In addition, when the existing small step width La is insufficient as shown in FIG. 4 or FIG. 8, the wide width Lb of the small step width is planned by the avalanche prevention fence 4 or the overhanging work 7 to rationalize the overall target step width Lc. It became possible to set to. Furthermore, as shown in FIG. 5, the height h3 of the avalanche prevention fence 4 has been set so far by the slant area snow layer H. According to the present invention, it is possible to rationally calculate the height h3 of the avalanche prevention fence 4 by setting the influence range L of the load range of the snow layer on the slope and checking Lc by the step widths La and Lb.

以下、本発明の実施の形態を図3〜図8に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図3は新たに法面計画を図る場所の法面の小段幅Laの算出方法である。
なお積雪深さHについては法尻A点を境に積雪層の盛上がり現象が発生し大きくなるが法面も小段部分も盛上がることから相殺するものとして、現場条件を仮定し等厚の積雪深さHで算出する。また摩擦係数μについては摩擦係数の大きい現場では積雪層の剪断強度(0.1〜0.5t/m)を参考に設定する。
(1)斜面雪圧力Pの算出
斜面積雪深さH=2.0m、 斜面勾配θ=40度、摩擦係数μ=0.25、荷重圏の範囲(m)L1=Lcosθ(L=1.5H) 積雪層の単位重量(密度)σ=0.35、荷重圏の範囲の積雪重量(t/m) W=L1・H・σ
斜面雪圧P=W(sinθ−μ・cosθ)=0.726(t/m)
(2)小段幅Laの算出
積雪深さH=2.0m、 斜面勾配θ1=0度、摩擦係数μa=0.35(排水溝等考慮)、積雪層の単位重量(密度)σ=0.35、小段幅Laの積雪重量(t/m) Wa=La・H・σ
小段幅の雪圧抵抗力(t/m)はP<Paとして算出 Pa>0.726(t/m)
Pa=Wa(sinθ1−μa・cosθ1)=0.726(t/m)より La=2.96m
以上の算出により小段幅を(La≒3.0m)に設定して法面の雪崩対策を図る。
FIG. 3 shows a method for calculating the step width La of the slope at the place where the slope planning is newly planned.
It should be noted that the snow depth H increases with the rise of the snow layer from the slope A point, but this is offset by the fact that both the slope and the stepped part rise. Calculate with H. Further, the friction coefficient μ is set with reference to the shear strength (0.1 to 0.5 t / m 2 ) of the snow layer at the site where the friction coefficient is large.
(1) Calculation of slope snow pressure P Slope area snow depth H = 2.0 m, slope slope θ = 40 degrees, friction coefficient μ = 0.25, load range (m) L1 = L cos θ (L = 1.5H ) Unit weight (density) of snow layer σ = 0.35, snow weight in load range (t / m) W = L1 · H · σ
Slope snow pressure P = W (sin θ−μ · cos θ) = 0.726 (t / m)
(2) Calculation of the step width La Snow depth H = 2.0 m, slope gradient θ1 = 0 degree, friction coefficient μa = 0.35 (considering drainage grooves, etc.), unit weight (density) of the snow layer σ = 0. 35, Snow cover weight of tread width La (t / m) Wa = La · H · σ
Snow pressure resistance (t / m) of the step width is calculated as P <Pa Pa> 0.726 (t / m)
From Pa = Wa (sin θ1-μa · cos θ1) = 0.726 (t / m), La = 2.96 m
Based on the above calculation, the step width is set to (La≈3.0 m) to prevent avalanche on the slope.

図4は既設の小段幅La(La=1.5mと仮定)が狭いことから斜面雪圧Pによる押出が発生し雪庇の崩落が懸念されることから、雪崩予防柵4によりLbの拡幅を算出し、全体の小段幅Lcを形成して雪崩抑止を図る計画断面図である。
(1)拡幅小段幅Lb、及び雪圧抵抗力Pbの算出
現場条件を前記で説明した図3と同様とすると雪圧関係は(Pa+Pb=0.726t/m)小段幅関係は(Lc=La+Lb=3.0m)となる。
拡幅小段幅Lb=Lc−La=1.5m (既設の小段幅La「La=1.5mと仮定」)
雪圧抵抗力Pb=0.726/Lc・Lb=0.363(t/m)
(2)アンカーの引張力Tbの算出
次に雪崩予防柵4等に作用する雪圧等に対する応力の算出については下記に述べる。図4において法面の小段幅(Lb=1.5m)とすることから、雪崩予防柵4の基礎工5には(Wb=Lb区間の積雪重量)と(雪圧抵抗力Pbによる側圧Sが作用)し、基礎工5を通じてアンカー6にはアンカー引張力Tbが発生することになる。アンカー引張力Tbの算出には下式により摩擦抵抗力Rと設計アンカー力Tbを算出し雪崩予防柵4の安全性を確保することが出来る。このような雪崩予防柵4と基礎工5、及びアンカー工6の組み合わせた断面構造の算出資料として下記を明示する。なお設計に当たっては斜面雪圧等は1m当たりで算出していることからアンカーの間隔によりアンカー力Tbが変動する。
R>S S=(Pb・cosθ)+(Wb+PCFW)・sinθ
Pb=Wb(sinθ−μcosθ)
R=μ1・(S・cosθ・Tb)
ここで
S:雪崩予防柵4に作用する側圧
μ1:地盤と基礎工の摩擦係数 μ1=tanφ
φ:斜面の土砂の内部摩擦角
θ:斜面勾配
PCFW:法枠基礎の自重
Tb:設計アンカー力(斜面垂直方向の設計アンカー力)
Fig. 4 shows that the existing step width La (assuming La = 1.5 m) is narrow, so there is concern about the collapse of the snowfall due to the occurrence of extrusion due to the slope snow pressure P, so the avalanche prevention fence 4 calculates the widening of Lb FIG. 6 is a plan cross-sectional view for preventing avalanche by forming the entire small step width Lc.
(1) Calculation of widening small step width Lb and snow pressure resistance Pb If the on-site conditions are the same as in FIG. 3 described above, the snow pressure relationship is (Pa + Pb = 0.726 t / m), and the small step width relationship is (Lc = La + Lb). = 3.0 m).
Widening small step width Lb = Lc−La = 1.5 m (existing small step width La “assuming La = 1.5 m”)
Snow pressure resistance Pb = 0.726 / Lc · Lb = 0.363 (t / m)
(2) Calculation of Anchor Tensile Force Tb Calculation of stress against snow pressure acting on the avalanche prevention fence 4 and the like will be described below. Since the slope width of the slope in FIG. 4 is set to Lb = 1.5 m, the foundation work 5 of the avalanche prevention fence 4 has (Wb = snow load in the Lb section) and (the side pressure S due to the snow pressure resistance Pb). The anchor tension force Tb is generated in the anchor 6 through the foundation work 5. In calculating the anchor tensile force Tb, the friction resistance force R and the design anchor force Tb can be calculated by the following formula to ensure the safety of the avalanche prevention fence 4. The following is specified as calculation data for the cross-sectional structure in which the avalanche prevention fence 4, the foundation work 5, and the anchor work 6 are combined. In designing, since the slope snow pressure and the like are calculated per meter, the anchor force Tb varies depending on the anchor interval.
R> S S = (Pb · cos θ) + (Wb + PCFW) · sin θ
Pb = Wb (sin θ−μcos θ)
R = μ1 · (S · cos θ · Tb)
Where S: lateral pressure acting on avalanche prevention fence 4 μ1: friction coefficient between ground and foundation work μ1 = tanφ
φ: Internal friction angle of the earth and sand on the slope θ: Slope gradient PCFW: Weight of the frame base Tb: Design anchor force (design anchor force in the vertical direction of the slope)

図5は法面に小段等が無く、雪崩予防柵4を独自に計画する断面図である。これまでは等厚の積雪深さHを主体に雪崩予防柵4の高さh3を設定してきたが柵頭部に図2に明示のような雪庇3等が発生し崩落の危険があることから、斜面雪圧Pを算出して小段幅Lbを算出し対応する必要がある。なお雪崩予防柵4を独自に計画する場合には、図4と同様の斜面勾配や摩擦係数でも図4のh2と比較した場合、h2<h3 となり、小段と雪崩予防柵4を合わせた一体的な断面構造が経済的で効果が大きい。  FIG. 5 is a cross-sectional view in which the avalanche prevention fence 4 is independently planned without a step or the like on the slope. So far, the height h3 of the avalanche prevention fence 4 has been set mainly with the same snow depth H, but there is a risk of collapse due to the occurrence of a snow leopard 3 etc. as clearly shown in FIG. It is necessary to calculate the slope snow pressure P and calculate the step width Lb to cope with it. In addition, when the avalanche prevention fence 4 is planned independently, h2 <h3 when compared with h2 in FIG. 4 even with the same slope gradient and friction coefficient as in FIG. 4, and the step and the avalanche prevention fence 4 are integrated. A simple cross-sectional structure is economical and effective.

図6は小段と雪崩予防柵4を合わせて計画した法面の全体の横断図である。図7は本発明を具体化するための雪崩予防柵4の正面図で、斜面下から見た連続した雪崩予防柵4を現していろ。なお雪崩予防柵4の形状は現場の落石等や柵と柵の間の積雪層の中抜け現象を考慮し連続性で明示しているが、雪崩予防柵4の設置箇所の法面状況により柵の長さが4m〜6m程度の単体でもよい。また中間部のワイヤーロープ等は鋼材でもよく金網は現場の落石状況等により設置するものである。
また図8においても本発明を具体化するための擁護壁等による張出により小段幅の拡幅を図った断面構造図である。
FIG. 6 is a cross-sectional view of the entire slope planned by combining the steps and the avalanche prevention fence 4. FIG. 7 is a front view of the avalanche prevention fence 4 for embodying the present invention, showing the continuous avalanche prevention fence 4 as seen from the bottom of the slope. The shape of the avalanche prevention fence 4 is clearly indicated in terms of continuity in consideration of falling rocks at the site and the phenomenon of falling through the snow layer between the fence and the fence. The length of about 4 m to 6 m may be used. The wire rope etc. in the middle part may be steel, and the wire mesh is installed according to the falling rock situation at the site.
FIG. 8 is also a cross-sectional structure diagram in which the width of the step is widened by overhanging with a protective wall or the like for embodying the present invention.

道路法面小段の雪崩発生状況の横断面図。A cross-sectional view of the avalanche occurrence on a road slope. 雪崩予防柵が小段山側直近に設置していることから小段の積雪層重量による雪圧抵抗力Paが活用されていない状況を現した拡大断面図。The enlarged sectional view showing the situation where the snow pressure resistance Pa due to the weight of the snow layer of the step is not utilized because the avalanche prevention fence is installed in the immediate vicinity of the step terrace. 本発明による小段幅を算出する場合の拡大断面図。The expanded sectional view in the case of calculating the step width by this invention. 本発明の考え方により小段下に雪崩予防柵を設置して小段幅の有効活用を図った状態の拡大断面図。The expanded sectional view of the state which installed the avalanche prevention fence under the step by the idea of this invention, and aimed at effective utilization of the step width. 雪崩予防柵のみで雪崩対策を図る場合の小段幅を算出する拡大断面図。The expanded sectional view which calculates the step width in the case of aiming at an avalanche countermeasure only with an avalanche prevention fence. 小段を活用し雪崩予防柵と組合わせ雪崩対策を図った全体の横断図。A cross-sectional view of the entire avalanche prevention fence combined with an avalanche prevention fence. 本発明により具体的に表した雪崩予防柵の法面下から見た正面図。The front view seen from the slope of the avalanche prevention fence specifically expressed by this invention. 本発明により具体的に表した小段の拡幅工法の一例。An example of the widening method of the small step specifically expressed by the present invention.

1・・・・斜面に等厚に降雪が降積もった場合を仮定した積雪層の表面
2・・・・斜面積雪層が地熱融雪や圧密沈下により変形した状態を表した積雪層の表面
3・・・・崩落の危険を有する雪庇等
4・・・・雪崩予防柵。
4▲1▼・・・鋼材から成る同柵の支柱
4▲2▼・・・鋼材から成る同柵の笠木
4▲3▼・・・ワイヤーロープや鋼材から成る同柵の横材
4▲4▼・・・同柵のメッシュ
4▲5▼・・・同柵の控材
5・・・・同柵の基礎工
6・・・・同柵のアンカー
7・・・・擁護壁
7▲1▼・・・盛土等
A・・・・法尻と小段平場との交点
D・・・・道路幅
H・・・・斜面に等厚に降雪が降積もった場合を仮定した積雪深さ
H1・・・柵高さの余裕高さ
h1・・・雪崩予防柵を小段の山側直近に設置している場合の柵高さ
h2・・・雪崩抑止柵を小段谷側直近に設置した場合の柵高さ
h3・・・雪崩抑止柵を単独で設置した場合の柵高さ
L・・・・法面における交点Aからの斜面雪圧Pの荷重圏の影響範囲
L1・・・Lを斜面補正し水平にした場合の荷重圏の影響範囲
La・・・小段幅
Lb・・・雪崩予防柵等により形成される小段幅
Lc・・・小段幅LaとLbを合成した小段幅
P・・・・L区間の斜面雪圧
Pa・・・小段幅La区間の雪圧抵抗力
Pb・・・雪崩予防柵等によるLb区間の雪圧抵抗力
R・・・・基礎工が必要とする抵抗剪断力
S・・・・雪崩予防柵より基礎工に伝達する雪圧
Tb・・・剪断力Rを確保するためのアンカーの引張力
θ・・・・斜面勾配
1 ... Snow surface of the snow layer assuming that snow has accumulated on the slope at the same thickness 2 .... Snow surface of the snow layer 3 showing the deformation of the slant area snow layer due to geothermal melting and subsidence 3.・ ・ ・ Snow traps, etc. that have a risk of collapsing 4. ・ ・ ・ Avalanche prevention fences.
4 (1) ... Stand 4 of the same fence made of steel material 4 (2) ... Secret 4 of the same fence made of steel material 4 (3) ... Side material 4 of the same fence made of wire rope or steel material 4 (4)・ ・ ・ Mesh 4 of the same fence ▲ 5 ▼ ・ ・ ・ Patent 5 of the fence ・ ・ ・ ・ Basic foundation 6 of the fence ・ ・ ・ ・ ・ ・ Anchor 7 of the fence ・ ・ ・ ・ ・ ・ Protection wall 7 ▲ 1 ▼ ・·························· Intersection D between Hoshijiri and Kokoro flats ··· Road width H ··· Snow depth H1 assuming that snow is deposited on the slope at an equal thickness Spare height h1 of the fence height: fence height h2 when the avalanche prevention fence is installed in the immediate vicinity of the mountain side of the small step ... fence height h3 when the avalanche prevention fence is installed in the immediate vicinity of the small step valley side ····················· When the avalanche deterrent fence is installed alone, the fence height L ··· The affected range L1 ··· L of the slope snow pressure P from the intersection A on the slope is leveled by correcting the slope Case load range Range of influence La ... Step width Lb ... Step width Lc formed by an avalanche prevention fence ... Step width P combined with step width La and Lb ... Snow pressure Pa of slope in the L section ...・ Snow pressure resistance force Pb in the step width La section ・ ・ ・ Snow pressure resistance force R in the Lb section due to the avalanche prevention fence, etc. ・ ・ ・ Resistive shear force S required by the foundation work ・ ・ ・ ・ Basics from the avalanche prevention fence Snow pressure Tb transmitted to the work ... Anchor pulling force θ to secure shear force R ··· Slope gradient

Claims (4)

法面上の斜面雪圧により小段幅を設定する算定方法であって、積雪深さをHとしたとき、法面と小段の交点Aを境とする法面L区間と小段幅La区間に区分し積雪重量による荷重圏の影響範囲を設定し、それぞれの法面の摩擦係数と斜面勾配により、法面の雪圧Pと小段の雪圧抵抗力Paを算出し、小段の積雪層が谷側方向に押出され崩落するのを防止するための小段幅の算定方法。  A calculation method for setting the step width based on the slope snow pressure on the slope. When the snow depth is H, the slope is divided into a slope L section and a section width La section at the intersection A of the slope and the step. Set the range of influence of the load area depending on the weight of the snow cover, calculate the snow pressure P of the slope and the snow pressure resistance Pa of the step from the coefficient of friction and slope of each slope, and the snow layer of the step is on the valley side A method for calculating the step width to prevent the material from being pushed out and collapsing. 請求項1において既設の小段幅Laが積雪深さH、斜面勾配θにより算出し斜面雪圧がP>Paとなった場合に、小段幅Laの拡幅を図るための小段幅Lbの算定方法。  The method of calculating the small step width Lb for widening the small step width La when the existing small step width La is calculated from the snow accumulation depth H and the slope gradient θ and the slope snow pressure is P> Pa in claim 1. 請求項2の算定方法により算出した小段幅Lbを、雪崩予防柵と基礎工、及びアンカーを組合せにより確保し、積雪層の崩落を防止する雪崩予防施設。  An avalanche prevention facility that secures the small step width Lb calculated by the calculation method according to claim 2 by a combination of an avalanche prevention fence, a foundation work, and an anchor, and prevents a snow layer from collapsing. 請求項2の算定方法により算出した小段幅Lbを、擁護壁により確保し積雪層の崩落を防止する雪崩予防施設。  An avalanche prevention facility that secures the step width Lb calculated by the calculation method according to claim 2 by a protective wall and prevents the fall of a snow layer.
JP2009256518A 2009-10-19 2009-10-19 Calculation method to set the step width etc. by calculating the snow pressure resistance such as slope snow pressure and step width on the slope. Expired - Fee Related JP5362523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256518A JP5362523B2 (en) 2009-10-19 2009-10-19 Calculation method to set the step width etc. by calculating the snow pressure resistance such as slope snow pressure and step width on the slope.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256518A JP5362523B2 (en) 2009-10-19 2009-10-19 Calculation method to set the step width etc. by calculating the snow pressure resistance such as slope snow pressure and step width on the slope.

Publications (2)

Publication Number Publication Date
JP2011085007A JP2011085007A (en) 2011-04-28
JP5362523B2 true JP5362523B2 (en) 2013-12-11

Family

ID=44078149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256518A Expired - Fee Related JP5362523B2 (en) 2009-10-19 2009-10-19 Calculation method to set the step width etc. by calculating the snow pressure resistance such as slope snow pressure and step width on the slope.

Country Status (1)

Country Link
JP (1) JP5362523B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7084897B2 (en) * 2018-12-10 2022-06-15 公益財団法人鉄道総合技術研究所 Risk assessment method for snowmelt slope disasters and risk assessment system for snowmelt slope disasters

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785008U (en) * 1980-11-12 1982-05-26
JPS59183905U (en) * 1983-05-25 1984-12-07 瀬戸内金網商工株式会社 Rockfall protection fence
JPH02104806A (en) * 1988-10-11 1990-04-17 Kobe Steel Ltd Avalanche preventing fence
JPH1150407A (en) * 1997-07-31 1999-02-23 Kawasaki Steel Corp Road and construction method thereof
JP2004076331A (en) * 2002-08-13 2004-03-11 Giken Seisakusho Co Ltd Structure and work execution method thereof
JP3845094B2 (en) * 2004-01-26 2006-11-15 小野田ケミコ株式会社 Protection network design calculation program and design calculation method
JP4225417B2 (en) * 2004-01-30 2009-02-18 東京製綱株式会社 Avalanche prevention fence
JP2010024691A (en) * 2008-07-17 2010-02-04 Purotekku Engineering:Kk Designing method for avalanche preventing protrusion, the avalanche preventing protrusion, and avalanche preventing structure

Also Published As

Publication number Publication date
JP2011085007A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
Yoo et al. Measured behavior of a geosynthetic-reinforced segmental retaining wall in a tiered configuration
Shukla et al. A state-of-the-art review of geosynthetic-reinforced slopes
CN111236299A (en) Municipal road pipeline reinforcement protection system and construction method thereof
CN208105292U (en) A kind of water conservancy or highway engineering side slope equipped with draining with protective device
JP5362523B2 (en) Calculation method to set the step width etc. by calculating the snow pressure resistance such as slope snow pressure and step width on the slope.
JP5771030B2 (en) Avalanche prevention structure
JP6420090B2 (en) Ground liquefaction countermeasure method
CN210482099U (en) Light rockfall interception structure for high and steep slope
Margreth et al. Avalanche Mitigation Measures for Siglufjörður–Realization of the Largest Project with Snow Supporting Structures in Iceland
JP2013057217A (en) Method for preventing earth-flow disaster
Busslinger et al. Log Crib Check Dam Performance under Multiple Debris-Flow Loadings–East Gate Landslide, British Columbia, Canada
JPS6317969B2 (en)
Stuedlein et al. Factors affecting the development of MSE wall reinforcement strain
JP2015010367A (en) Liquefaction countermeasure structure of construction, and construction method of liquefaction countermeasure structure of construction
Bo et al. Planning Geotechnical Instrumentation Project
JP2024000282A (en) Liquefaction countermeasure structure
Smith et al. Soil nailing the green way: sustainable stabilisation of a failing slope using innovative soil nail head design to give a fully vegetated green slope finish
CN211571737U (en) Deep foundation pit supporting structure
JPH11172635A (en) Preventing pile for falling mater
Fabius et al. Stabilization Of A 30 M High Riverbank In Canada With Nails, Plates And Roots
Cotton et al. Recent advances in the top-down construction of a 26.4 meter deep soil nail retention system-Bellevue technology tower
Margreth et al. Effectiveness of long term avalanche defence measures in winter 1999 in Switzerland
Uchida et al. Comparison of current Japanese design specifications for pile foundations in liquefiable and laterally spreading ground
Kirsten Design and construction of the Kowyn's Pass rockfall shelter
Margreth et al. Structural avalanche defense: design and construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130904

R150 Certificate of patent or registration of utility model

Ref document number: 5362523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees