JP5361276B2 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP5361276B2
JP5361276B2 JP2008204158A JP2008204158A JP5361276B2 JP 5361276 B2 JP5361276 B2 JP 5361276B2 JP 2008204158 A JP2008204158 A JP 2008204158A JP 2008204158 A JP2008204158 A JP 2008204158A JP 5361276 B2 JP5361276 B2 JP 5361276B2
Authority
JP
Japan
Prior art keywords
rotor
stator
windings
teeth
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008204158A
Other languages
Japanese (ja)
Other versions
JP2010041874A (en
Inventor
義雄 吉桑
晴之 米谷
幸典 竹腰
正樹 亀山
学 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008204158A priority Critical patent/JP5361276B2/en
Publication of JP2010041874A publication Critical patent/JP2010041874A/en
Application granted granted Critical
Publication of JP5361276B2 publication Critical patent/JP5361276B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate vibration and noise caused by eccentricity of a rotor. <P>SOLUTION: In a rotary electric machine, a stator and a rotor are eccentric and opposing windings of the stator are wound different number of turns so as to balance a magnetic flux induced from the opposing windings of the stator. Under a state where the centers of the stator and rotor coincide with each other, the length of a space between the tip of tooth on the stator side and the rotor is made &le;1/2 as large as the distance between the yoke of the stator and the rotor. A terminal for measuring a voltage induced in the windings is provided. The magnetic flux is balanced, thereby the rotary electric machine with low vibration and low noise can be manufactured at a low cost. Moreover, the magnetic flux can be balanced just by adjusting the number of turns a little. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は回転電機に関し、特に、例えば家電製品のファン駆動などに使用される低振動化および低騒音化が要求される回転電機に関するものである。   The present invention relates to a rotating electrical machine, and more particularly, to a rotating electrical machine that is required to reduce vibration and noise, for example, used for driving a fan of home appliances.

従来の低振動・低騒音化の要求される回転電機では、防振材を用いたり、回転子の回転軸と固定子の中心軸を高精度に合わせることにより、回転時に発生する振動伝達を低減したり、加振力を小さくしたりしている。しかしながら、このような回転電機では、防振材によるコストアップや、高精度加工によるコストアップが避けられない。また、近年の回転電機は小型で高効率化が必要とされており、回転子と固定子の間の空隙長は非常に小さい。回転子の回転軸と固定子の中心軸を高精度に合わせた場合でも、軸ずれが全くない状態にするのは事実上不可能である。   In conventional rotating electrical machines that require low vibration and low noise, vibration transmission generated during rotation is reduced by using anti-vibration materials or by precisely aligning the rotor rotation axis and stator center axis. Or reducing the excitation force. However, in such a rotating electrical machine, an increase in cost due to the vibration-proof material and an increase in cost due to high-precision processing are inevitable. Further, recent rotary electric machines are required to be small and highly efficient, and the gap length between the rotor and the stator is very small. Even when the rotation axis of the rotor and the center axis of the stator are matched with high accuracy, it is virtually impossible to achieve a state in which there is no axial deviation.

従って、有効な低振動化および低騒音化を実現するために、巻線の施し方により画一的に発生する巻線不釣合のデータと、個々の電機子コアの不釣合の測定データと、に基づいて、巻線を施した後の電機子の不釣合がなくなるように、巻線の巻数を決定し、通常の巻線加工工程において同時にバランスを修正する方法が提案されている。これにより、特別な作業工程や専用の加工設備を要することがなく、また、電機子の一部を削除したり修正材を付着させる構成ではないためモータの効率低下を防止することもできる(例えば特許文献1参照)。   Therefore, in order to realize effective vibration reduction and noise reduction, it is based on winding unbalance data generated uniformly by the winding method and measurement data on unbalance of individual armature cores. Thus, a method has been proposed in which the number of turns of the winding is determined so as to eliminate the unbalance of the armature after the winding is applied, and the balance is simultaneously corrected in a normal winding processing step. As a result, no special work process or dedicated processing equipment is required, and the efficiency of the motor can be prevented from being lowered because it is not configured to delete a part of the armature or attach a correction material (for example, Patent Document 1).

特開平8−98477号公報JP-A-8-98477

このような回転電機では、低振動・低騒音の回転電機を低コストで実現できるが、巻線および巻線を巻回するティースは、固定子のヨークと回転子との間の比較的狭い空間内に設けられることになり、調整可能な巻線数には限界が生じて巻線数の調整による低振動化および低騒音化が困難なことがある。   In such a rotating electric machine, a low-vibration and low-noise rotating electric machine can be realized at low cost, but the winding and the teeth that wind the winding are in a relatively narrow space between the stator yoke and the rotor. The number of windings that can be adjusted is limited, and it may be difficult to reduce vibration and noise by adjusting the number of windings.

従ってこの発明の目的は、巻線の巻線数を変えるという手段を用いて低振動化および低騒音化を図る場合に、現実的な巻線数の調整範囲で、比較的少ない巻線数の調整により磁束を平衡にして、低振動かつ低騒音の回転電機を得ることである。   Therefore, an object of the present invention is to reduce the number of windings within a practical adjustment range of the number of windings when reducing vibration and noise by using means for changing the number of windings. The adjustment is to balance the magnetic flux to obtain a rotating machine with low vibration and low noise.

この発明に係る回転電機は、固定子の中心と回転子の中心とが偏心していて、上記固定子の対向する巻線から誘起される磁束が平衡になるよう、上記固定子の対向する巻線が異なる巻線数になっている回転電機において、固定子の中心と回転子の中心とが一致した状態での固定子のティースの先端と回転子との間の空隙長が、固定子のヨーク部と回転子との間の距離の1/2以下であることを特徴とするものである。   In the rotating electrical machine according to the present invention, the opposing windings of the stator are arranged such that the center of the stator and the center of the rotor are eccentric and the magnetic flux induced from the opposing windings of the stator is balanced. In a rotating electrical machine having different numbers of windings, the gap length between the stator tooth tip and the rotor when the center of the stator and the center of the rotor coincide with each other is The distance between the rotor and the rotor is ½ or less of the distance between the rotor and the rotor.

この発明によれば、現実的な巻線数の調整範囲で、比較的少ない巻線数の調整により磁束を平衡にして、低振動かつ低騒音の回転電機を得ることができる。   According to the present invention, it is possible to obtain a rotating machine with low vibration and low noise by balancing the magnetic flux by adjusting a relatively small number of windings within a practical adjustment range of the number of windings.

実施の形態1.
図1には本発明の実施の形態1による回転電機を軸心に垂直な断面図で示してある。図2には回転電機は、中空円筒形の固定子1と、固定子1内で回転できる回転子2とを備えている。固定子1は、コア3と巻線4a〜4dとを備え、コア3は、外周面5および内周面6を持つ中空円筒形のヨーク7と、ヨーク7の周方向に90°ずつ離間して配置され、内周面6から回転子2に向かって延びた4本のティース8a〜8dとを備えている。巻線4a〜4dはティース8a〜8dにそれぞれ巻回されている。
Embodiment 1 FIG.
FIG. 1 shows a rotary electric machine according to Embodiment 1 of the present invention in a cross-sectional view perpendicular to the axis. In FIG. 2, the rotating electrical machine includes a hollow cylindrical stator 1 and a rotor 2 that can rotate within the stator 1. The stator 1 includes a core 3 and windings 4a to 4d. The core 3 is separated from a hollow cylindrical yoke 7 having an outer peripheral surface 5 and an inner peripheral surface 6 by 90 ° in the circumferential direction of the yoke 7. And four teeth 8 a to 8 d extending from the inner peripheral surface 6 toward the rotor 2. The windings 4a to 4d are wound around the teeth 8a to 8d, respectively.

図1の回転電機においては、固定子1の中心9に対して回転子2の中心10が僅かにティース8aからティース8cに向かう方向(図1で左方向)にだけ偏心している。また、互いに対向する巻線4aおよび4cの対から誘起される主な磁束は、磁束Fa〜Ffとして示す通りであるが、これらの磁束Fa〜Ffが平衡になるようにされている。図1の回転電機の場合には、回転子2が上述のとおり偏心しているので、対向する巻線4aと4cとが異なる巻線数にされているが、対向する巻線4bと4dとはそれらの対向方向に偏心が無いため巻線数は同じにされている。   In the rotating electrical machine of FIG. 1, the center 10 of the rotor 2 is slightly eccentric with respect to the center 9 of the stator 1 only in the direction from the teeth 8a to the teeth 8c (leftward in FIG. 1). The main magnetic flux induced from the pair of windings 4a and 4c facing each other is as shown as magnetic fluxes Fa to Ff, and these magnetic fluxes Fa to Ff are balanced. In the case of the rotating electrical machine of FIG. 1, since the rotor 2 is eccentric as described above, the opposing windings 4a and 4c have different numbers of windings, but the opposing windings 4b and 4d are different from each other. Since there is no eccentricity in the facing direction, the number of windings is the same.

更に、固定子1の中心9と回転子2の中心10とが一致した状態での、固定子1のティース8a〜8dの先端と回転子2の円筒形の外周面12との間の空隙ga〜gdの大きさ即ち空隙長gは、固定子1の外輪部分であるヨーク7の内周面6と回転子2の外周面12との間の距離hの1/2以下、すなわちg≦h/2にされている。   Further, the gap ga between the tips of the teeth 8a to 8d of the stator 1 and the cylindrical outer peripheral surface 12 of the rotor 2 in a state where the center 9 of the stator 1 and the center 10 of the rotor 2 coincide with each other. The size of ˜gd, that is, the gap length g is ½ or less of the distance h between the inner peripheral surface 6 of the yoke 7 that is the outer ring portion of the stator 1 and the outer peripheral surface 12 of the rotor 2, that is, g ≦ h / 2.

図1に示す回転電機において、固定子1の中心9に対して回転子2の中心10が僅かに偏心しているため、回転子2と4つのティース8a〜8dとの間の4つの空隙長gは、偏心の大きさ(偏心量)および方向(偏心方向)に応じて相違しており、このため、巻線4a〜4dが発生する磁束の磁路の磁気抵抗も偏心量および偏心方向によって相違していて、空隙ga〜gdを通って回転子2に入る磁束の量に不平衡が発生する。しかしながら、図1において、例えば、回転子2が固定子1に対して右方向にだけ偏心しているとすると、空隙gaが空隙gcよりも小さくなり、そこを通る磁路の磁気抵抗の不平衡による磁束の不平衡が発生するが、誘起される磁束Fa〜Ffが平衡するように互いに対向する巻線4aの巻回数を巻線4cの巻回数よりも大きくすることによって解消されていて、その結果、図1に示すように、対向する巻線4a、4cから出て空隙ga、gcを通って回転子2内に入る磁束Fa〜Ffが平衡状態になっている。   In the rotating electrical machine shown in FIG. 1, since the center 10 of the rotor 2 is slightly eccentric with respect to the center 9 of the stator 1, the four gap lengths g between the rotor 2 and the four teeth 8a to 8d. Differs depending on the magnitude (eccentricity) and direction (eccentric direction) of the eccentricity. For this reason, the magnetic resistance of the magnetic path of the magnetic flux generated by the windings 4a to 4d is also different depending on the eccentricity and the eccentricity direction. Thus, an imbalance occurs in the amount of magnetic flux that enters the rotor 2 through the gaps ga to gd. However, in FIG. 1, for example, if the rotor 2 is eccentric only in the right direction with respect to the stator 1, the gap ga is smaller than the gap gc, which is due to the unbalance of the magnetic resistance of the magnetic path passing therethrough. The magnetic flux unbalance occurs, but is eliminated by making the number of turns of the windings 4a facing each other larger than the number of turns of the winding 4c so that the induced magnetic fluxes Fa to Ff are balanced. As shown in FIG. 1, the magnetic fluxes Fa to Ff that come out of the windings 4a and 4c facing each other and enter the rotor 2 through the gaps ga and gc are in an equilibrium state.

図1ではティースが4個の回転電機を示しており、ティース8a〜8dにはそれぞれ巻線4a〜4dが巻かれている。なお、固定子1のコア3は通常は鉄などの磁性材料でつくられており、図1は各ティース8a〜8dにそれぞれ巻線4a〜4dが巻かれている集中巻き方式を示している。また巻線4a〜4dの巻回数の調整は、偏心量および偏心方向によって、一組あるいは二組の互いに対向する巻線について巻回数を異ならしめればよい。従って、例えば回転子2が固定子1に対して図1で右方向にだけ偏心している場合には、巻線4aの巻回数を巻線4cの巻回数よりも小さくするか、巻線4cの巻回数を巻線4aの巻回数よりも大きくすればよい。偏心方向が、図1で上方向あるいは下方向の成分を持っている場合には、巻線4bおよび4cの対についても巻回数を異ならしめる必要がある。   FIG. 1 shows a rotating electric machine having four teeth, and windings 4a to 4d are wound around the teeth 8a to 8d, respectively. The core 3 of the stator 1 is usually made of a magnetic material such as iron, and FIG. 1 shows a concentrated winding method in which the windings 4a to 4d are wound around the teeth 8a to 8d, respectively. The number of turns of the windings 4a to 4d may be adjusted by changing the number of turns for one set or two sets of mutually opposing windings depending on the amount of eccentricity and the direction of eccentricity. Therefore, for example, when the rotor 2 is eccentric only to the right in FIG. 1 with respect to the stator 1, the number of turns of the winding 4a is made smaller than the number of turns of the winding 4c or the winding 4c The number of turns may be made larger than the number of turns of the winding 4a. When the eccentric direction has an upward or downward component in FIG. 1, it is necessary to make the number of turns different for the pair of windings 4b and 4c.

固定子1の内側には回転子2が設置されている。巻線4a〜4dに電流が流れることにより、磁束Fa〜Ffが発生する。図1では巻線4aと4cとに電流が流れた場合を示しており、このときの主な磁束は、巻線4aおよび4cにより発生する磁束Fa〜Ffであって、磁束FaおよびFbはティース8aから、ティース8aと回転子2との間の空隙gaを通り、回転子2を通り、回転子2とティース8cとの間の空隙gcを通り、ティース8cを通り、ティース8cとコア3のヨーク7との結合部分で2つの磁束FaおよびFbに分岐して、磁束Faはヨーク7の上半円環部を半周にわたって流れてティース8aに戻り、磁束Fbはヨーク7の下半円環部を半周にわたって流れてティース8aに戻り、磁束FaとFbは再びティース8aで合流する。   A rotor 2 is installed inside the stator 1. Magnetic fluxes Fa to Ff are generated when current flows through the windings 4a to 4d. FIG. 1 shows a case where current flows through the windings 4a and 4c. The main magnetic fluxes at this time are magnetic fluxes Fa to Ff generated by the windings 4a and 4c, and the magnetic fluxes Fa and Fb are teeth. 8a, through the gap ga between the teeth 8a and the rotor 2, through the rotor 2, through the gap gc between the rotor 2 and the teeth 8c, through the teeth 8c, and between the teeth 8c and the core 3 The magnetic flux Fa branches into two magnetic fluxes Fa and Fb at the joint with the yoke 7, and the magnetic flux Fa flows through the upper semicircular portion of the yoke 7 over a half circumference and returns to the teeth 8 a. And then returns to the tooth 8a, and the magnetic fluxes Fa and Fb join again at the tooth 8a.

また、ティース8a内の磁束は、空隙gaを通って回転子2に流入し、そこからティース8bとの間の空隙gbを通ってティース8bに入り、ヨーク7を1/4円周だけ図1で時計方向に流れて再びティース8aに入る磁束Fcと、回転子2から空隙gdを通ってティース8dに入り、ヨーク7を1/4円周だけ図1で反時計方向に流れて再びティース8aに入る磁束Fdとを形成している。   Further, the magnetic flux in the teeth 8a flows into the rotor 2 through the gap ga, enters the teeth 8b through the gap gb between the teeth 8b, and enters the yoke 7 by a quarter circumference. The magnetic flux Fc that flows in the clockwise direction and enters the teeth 8a again, and enters the teeth 8d from the rotor 2 through the gap gd and flows through the yoke 7 in the counterclockwise direction in FIG. And a magnetic flux Fd that enters.

また、ティース8c内の磁束は、ヨーク7を1/4円周だけ図1で時計方向に流れてティース8bに入り、空隙gbを通って回転子2に流入し、そこから空隙gcを通って再びティース8cに入る磁束Feと、ヨーク7を1/4円周だけ図1で反時計方向に流れてティース8dに入り、空隙gdを通って回転子2に流入し、そこから空隙gcを通って再びティース8cに入る磁束Ffとを形成している。さらに図には示していないが、回転子2から直接コア3の外輪部分であるヨーク7に漏れる磁束なども存在する。   Further, the magnetic flux in the teeth 8c flows through the yoke 7 in the clockwise direction in FIG. 1 by a quarter circumference, enters the teeth 8b, flows into the rotor 2 through the gap gb, and then passes through the gap gc. The magnetic flux Fe that again enters the teeth 8c and the yoke 7 flows counterclockwise in FIG. 1 by a quarter circumference, enters the teeth 8d, flows into the rotor 2 through the gap gd, and then passes through the gap gc. Thus, a magnetic flux Ff entering the teeth 8c again is formed. Further, although not shown in the drawing, there is a magnetic flux that leaks directly from the rotor 2 to the yoke 7 that is the outer ring portion of the core 3.

理想的な回転電機の場合には、固定子1の中心9と回転子2の中心10とが完全に一致しており、対向する巻線4aと4cの巻線数が等しく、また対向する巻線4bと4dの巻線数が等しい。ここでは巻線4a、4cを主巻線とし、巻線4b、4dを補助巻線とした、2極のコンデンサモータについて説明する。巻線4aと4cに電流が流れた場合、主な磁束Fa〜Ffは図1に示すように分布するが、理想的な回転電機では固定子1の中心9と回転子2の中心10が完全に一致しているため、磁束FaとFbは等しく、磁束FcとFdとFeとFfは等しくなる。したがって、磁束の分布は中心9、10に対して対称になるため、半径方向の力は発生しない。   In the case of an ideal rotating electrical machine, the center 9 of the stator 1 and the center 10 of the rotor 2 are completely coincident with each other, the number of windings of the opposing windings 4a and 4c is equal, and the opposing windings are the same. The number of windings of lines 4b and 4d is equal. Here, a two-pole capacitor motor in which the windings 4a and 4c are main windings and the windings 4b and 4d are auxiliary windings will be described. When current flows through the windings 4a and 4c, main magnetic fluxes Fa to Ff are distributed as shown in FIG. 1, but in an ideal rotating electrical machine, the center 9 of the stator 1 and the center 10 of the rotor 2 are completely Therefore, the magnetic fluxes Fa and Fb are equal, and the magnetic fluxes Fc, Fd, Fe, and Ff are equal. Accordingly, since the magnetic flux distribution is symmetric with respect to the centers 9 and 10, no radial force is generated.

このように、固定子1の中心9と回転子2の中心10が完全に一致している理想的な回転電機では、巻線4aと4cの巻線数が等しく、また巻線4bと4dの巻線数が等しい場合、回転軸に対して半径方向の加振力は発生せず、したがって振動・騒音はほとんど発生しないと考えられる。   Thus, in an ideal rotating electrical machine in which the center 9 of the stator 1 and the center 10 of the rotor 2 completely coincide, the number of windings of the windings 4a and 4c is equal, and the windings 4b and 4d When the number of windings is equal, it is considered that no radial excitation force is generated with respect to the rotating shaft, and therefore vibration and noise are hardly generated.

実際の回転電機において、巻線4aと4cの巻線数が等しく、巻線4bと4dの巻線数が等しく、固定子1の中心9と回転子2の中心10とがずれている場合には、振動・騒音が発生するため、固定子1の中心9と回転子2の中心10を一致させるように多くの検討がなされている。しかしながら実際の回転電機では、固定子1の中心9と回転子2の中心10を完全に一致させることは困難であって、程度の差はあるが、固定子1の中心9と回転子2の中心10がずれた状態となっている。すなわち、実際の回転電機ではたいていの場合、固定子1の中心と回転子2の中心が偏心した状態にある。   In an actual rotating electrical machine, when the number of windings 4a and 4c is equal, the number of windings 4b and 4d is equal, and the center 9 of the stator 1 and the center 10 of the rotor 2 are shifted. Since vibration and noise are generated, many studies have been made to make the center 9 of the stator 1 coincide with the center 10 of the rotor 2. However, in an actual rotating electrical machine, it is difficult to make the center 9 of the stator 1 and the center 10 of the rotor 2 completely coincide with each other. The center 10 is in a shifted state. That is, in an actual rotating electric machine, in most cases, the center of the stator 1 and the center of the rotor 2 are in an eccentric state.

図1の回転電機において、巻線4aと4cの巻線数が等しく、巻線4bと4dの巻線数が等しく、固定子1の中心9に対して回転子2の中心10が紙面左側に偏心した場合を考えてみる。このとき、ティース8aと回転子2の間の空隙gaの空隙長は、偏心がない場合に比べて大きくなるため、この空隙gaの磁気抵抗は偏心がない場合に比べて大きくなる。一方で、ティース8cと回転子2の間の空隙gcの空隙長は偏心がない場合に比べて小さくなるため、この空隙gcの磁気抵抗は偏心がない場合に比べて小さくなる。また、ティース8bと回転子2の間の空隙gbの空隙長、あるいはティース8dと回転子2の間の空隙gdの空隙長は、偏心がない場合とほぼ同じであるとする。磁束の強さ(大きさ)は磁気抵抗に反比例するため、磁束FcとFdは弱く(小さく)なり、磁束FeとFfは強く(大きく)なる。また、磁束FaとFbの強さは、磁気抵抗が大きくなる空隙gaと小さくなる空隙gcの両方が含まれるため、あまり変化しないと考えられる。なお、実際は図1に示す磁束Fa、Fb、Fc、Fd、FeおよびFf以外の磁束も存在するため、それらを含めて考える必要がある。   In the rotating electrical machine of FIG. 1, the number of windings 4a and 4c is equal, the number of windings 4b and 4d is equal, and the center 10 of the rotor 2 is on the left side of the page with respect to the center 9 of the stator 1. Consider the case of eccentricity. At this time, the gap length of the gap ga between the teeth 8a and the rotor 2 is larger than that when there is no eccentricity. Therefore, the magnetic resistance of the gap ga is larger than when there is no eccentricity. On the other hand, since the gap length of the gap gc between the teeth 8c and the rotor 2 is smaller than that when there is no eccentricity, the magnetic resistance of the gap gc is smaller than when there is no eccentricity. Further, the gap length of the gap gb between the teeth 8b and the rotor 2 or the gap length of the gap gd between the teeth 8d and the rotor 2 is assumed to be substantially the same as when there is no eccentricity. Since the strength (magnitude) of the magnetic flux is inversely proportional to the magnetic resistance, the magnetic fluxes Fc and Fd are weak (small) and the magnetic fluxes Fe and Ff are strong (large). Further, it is considered that the strengths of the magnetic fluxes Fa and Fb do not change so much because both the gap ga where the magnetic resistance increases and the gap gc where the magnetic resistance decreases are included. Actually, there are magnetic fluxes other than the magnetic fluxes Fa, Fb, Fc, Fd, Fe, and Ff shown in FIG. 1, and it is necessary to consider them.

以上のことから、固定子1の中心9に対して回転子2の中心10が紙面左側に偏心した場合、ティース8aと回転子2の間の空隙gaを通る磁束が弱くなり、ティース8cと回転子2の間の空隙gcを通る磁束が強くなる。したがって磁束の分布が非対称になる。電磁力は磁束の強さの2乗に比例するため、この場合は回転子2に対して紙面左方向の電磁力が働くことになる。モータ回転時にはこの電磁力が変動するため、半径方向の加振力が発生し、振動・騒音の原因となる。本発明では、程度の多少はあるが偏心した状態にある実際の回転電機に対して、偏心状態に応じて巻線の巻回数を調整することにより半径方向の加振力を低減して、振動・騒音を低減するものである。   From the above, when the center 10 of the rotor 2 is eccentric to the left side of the page with respect to the center 9 of the stator 1, the magnetic flux passing through the gap ga between the teeth 8a and the rotor 2 becomes weak and rotates with the teeth 8c. The magnetic flux passing through the gap gc between the children 2 becomes stronger. Therefore, the magnetic flux distribution becomes asymmetric. Since the electromagnetic force is proportional to the square of the strength of the magnetic flux, in this case, the electromagnetic force in the left direction on the paper acts on the rotor 2. Since this electromagnetic force fluctuates during motor rotation, a radial excitation force is generated, causing vibration and noise. In the present invention, for an actual rotating electrical machine that is in an eccentric state to some extent, the radial excitation force is reduced by adjusting the number of turns of the winding according to the eccentric state.・ To reduce noise.

なお、巻線数の調整方法は多くの手段が考えられる。同じ量産ラインで製造された回転電機の寸法を高精度に測定した結果を参考にして、磁束が平衡になるようにその量産ラインに対応した巻回数を決める方法が考えられる。また、回転電機を組み立てる途中で各巻線から誘起される磁束を測定し、巻回数を変えながら磁束が平衡になるように調整する方法が考えられる。また、回転電機を組み立てて各巻線から誘起される磁束を測定し、調整用の巻線を追加することにより磁束が平衡になるようにする方法も考えられる。各巻線から誘起される磁束については、各巻線が巻き込まれているティースを通る磁束を測定する方法、各巻線が巻き込まれているティースと回転子の間の空隙部分の磁束を測定する方法、巻線のインダクタンスを測定する方法などがある。また各巻線から誘起される磁束量と調整する巻回数の関係については、磁束等を測定しながら巻回数を調整していく方法、磁束等の測定結果と調整する巻回数の関係をあらかじめ把握して巻回数を調整する方法、寸法の測定結果と調整する巻回数の関係をあらかじめ把握して巻回数を調整する方法などが考えられる。   There are many means for adjusting the number of windings. A method of determining the number of turns corresponding to the mass production line so that the magnetic flux is balanced can be considered by referring to the result of measuring the dimensions of the rotating electrical machines manufactured on the same mass production line with high accuracy. Further, a method of measuring the magnetic flux induced from each winding during the assembly of the rotating electrical machine and adjusting the magnetic flux to be balanced while changing the number of turns can be considered. Another possible method is to assemble a rotating electrical machine, measure the magnetic flux induced from each winding, and add a winding for adjustment to balance the magnetic flux. For the magnetic flux induced from each winding, a method for measuring the magnetic flux passing through the teeth in which each winding is wound, a method for measuring the magnetic flux in the gap portion between the teeth and the rotor in which each winding is wound, There is a method of measuring the inductance of a wire. Also, regarding the relationship between the amount of magnetic flux induced from each winding and the number of turns to be adjusted, grasp the relationship between the method of adjusting the number of turns while measuring the magnetic flux, etc., and the relationship between the measurement result of magnetic flux and the number of turns to be adjusted. A method of adjusting the number of windings and a method of adjusting the number of windings by grasping in advance the relationship between the dimension measurement result and the number of windings to be adjusted are conceivable.

本実施の形態では、ティースが4個あり、各ティースに巻線が巻き込まれている集中巻方式の場合について説明したが、ティースの数が多い場合や分布巻の場合でも基本的に同様である。また巻線が主巻線と補助巻線からなる2極のコンデンサモータについて記述したが、多相の回転電機でも同様であり、極数が多い回転電機でも同様である。また、永久磁石を含む回転電機でも同様である。本発明によると半径方向の加振力が低減できるため振動・騒音低減効果があると記述しているが、磁束分布が平衡になるため、回転方向の加振力低減効果もあり、また軸方向の加振力低減効果もあると考えられる。なお、ティースに巻き込む巻線をそれぞれ独立した回路で構成して、各巻線の電流を制御することにより半径方向の力を制御でき、その結果として半径方向の加振力を低減することは可能であるが、そのためには回路が複雑になるためコストアップをともなう。それに対して本発明では、巻線の巻線数を変える方式であるため、低コストで回転電機の加振力が低減でき、低振動・低騒音の回転電機を実現できる。   In the present embodiment, the case of the concentrated winding method in which there are four teeth and the winding is wound around each tooth has been described, but the same is basically applied to the case where the number of teeth is large or distributed winding. . Further, although a two-pole capacitor motor in which the winding is composed of a main winding and an auxiliary winding has been described, the same applies to a multi-phase rotating electric machine, and the same applies to a rotating electric machine having a large number of poles. The same applies to a rotating electrical machine including a permanent magnet. According to the present invention, it is described that there is a vibration / noise reduction effect because the radial excitation force can be reduced. However, since the magnetic flux distribution is balanced, there is also an effect of reducing the excitation force in the rotational direction, and the axial direction. It is considered that there is also an effect of reducing the excitation force. In addition, it is possible to control the radial force by configuring the windings wound around the teeth with independent circuits and controlling the current of each winding. As a result, it is possible to reduce the radial excitation force. However, this increases the cost because the circuit becomes complicated. On the other hand, in the present invention, since the number of windings is changed, the excitation force of the rotating electrical machine can be reduced at low cost, and a rotating electrical machine with low vibration and noise can be realized.

次に、本発明の回転電機におけるティース部分の寸法について述べる。固定子1の中心9と回転子2の中心10が一致した状態で、中心9から回転子2の外周面12までの距離(半径)をriとし、固定子1のティース8a〜8dの内側(先端)までの距離をroとし、固定子1のヨーク7の内周面6までの距離(半径)をrbとする。このとき、回転子2とティース8a〜8dとの間の空隙ga〜gdの空隙長をgとすると、g=ro−riとなる。また、回転子2の外周面12と固定子1のヨーク7の内周面6との間の距離をhとすると、h=rb−riとなる。   Next, the dimensions of the teeth portion in the rotating electrical machine of the present invention will be described. In a state where the center 9 of the stator 1 and the center 10 of the rotor 2 coincide with each other, the distance (radius) from the center 9 to the outer peripheral surface 12 of the rotor 2 is defined as ri, and the inside of the teeth 8a to 8d of the stator 1 ( The distance to the tip) is ro, and the distance (radius) to the inner peripheral surface 6 of the yoke 7 of the stator 1 is rb. At this time, if the gap length of the gaps ga to gd between the rotor 2 and the teeth 8a to 8d is g, g = ro-ri. Further, when the distance between the outer peripheral surface 12 of the rotor 2 and the inner peripheral surface 6 of the yoke 7 of the stator 1 is h, h = rb−ri.

図2には、固定子1に対して偏心量e(回転子2が固定子1のティース8a〜8dに接触してはいけないので、e<gである)だけ偏心し、各巻線4a〜4dの巻回数が等しい回転電機において、通電時に巻線4aによって誘起される主な磁束Fa、Fb、Fc、Fd、Fg、Fh、Fi、Fjを示す。磁束Fa〜Fdは図1に示すものと同じ磁路を通る磁束である。磁束FgおよびFhは、巻線4aが巻かれるティース8aと回転子2の間の空隙gaを通り、そこで分岐して回転子2を出て固定子1のヨーク7に戻る2つの磁路を通る磁束である。磁束FiおよびFjは、ティース8aと回転子2の間の空隙gaを通り、回転子2から回転子2とティース8bの間の空隙部分を通り、そこで分岐して回転子2を出て固定子1のヨーク7に戻る2つの磁束である。   FIG. 2 shows the eccentricity e with respect to the stator 1 (e <g because the rotor 2 must not contact the teeth 8a to 8d of the stator 1), and each winding 4a to 4d. The main magnetic fluxes Fa, Fb, Fc, Fd, Fg, Fh, Fi, Fj that are induced by the winding 4a when energized are shown in a rotating electrical machine having the same number of turns. Magnetic fluxes Fa to Fd are magnetic fluxes passing through the same magnetic path as that shown in FIG. The magnetic fluxes Fg and Fh pass through the gap ga between the tooth 8a around which the winding 4a is wound and the rotor 2, branch there, and pass through two magnetic paths that exit the rotor 2 and return to the yoke 7 of the stator 1. Magnetic flux. The magnetic fluxes Fi and Fj pass through the gap ga between the teeth 8a and the rotor 2, pass from the rotor 2 through the gap between the rotor 2 and the teeth 8b, branch there, exit the rotor 2, and exit from the stator. Two magnetic fluxes returning to one yoke 7.

磁束Fa〜FdおよびFg〜Fjが通る磁路の磁気抵抗を比較するために、空隙ga〜gdの空隙長を簡単に検討する。磁束FgおよびFhの磁路に関して、ティース8aと回転子2の間の空隙gaの大きさはg+e(gは固定子1と回転子2とに偏心が無い場合の空隙ga〜gdの大きさ即ち空隙長)と表わされ、回転子2と固定子1のヨーク7の偏心方向と反対側の部分の内周面6との間の空隙部分の長さを簡単にh+e(hは偏心が無い場合の回転子2とヨーク7の内周面6との間の距離)と表すと、磁束Fgが通る磁路における空隙の合計も、磁束Fhが通る磁路における空隙の合計もともにg+h+2eとなる。磁束FcおよびFdの磁路に関して、ティース8aと回転子2の間の空隙gaの長さはg+eであり、回転子2とティース8bあるいは8dとの間の空隙gbあるいはgdの長さはgであるので、これらの磁路における空隙の合計はともに2g+eとなる。磁束FiおよびFjの磁路に関して、ティース8aと回転子2の間の空隙gaの長さはg+eであり、回転子2と固定子1のヨーク7の偏心方向の側の内周面6との間の空隙部分の長さをh−eと表すと、これらの磁路における空隙の合計はともにg+hとなる。磁束FaおよびFbの磁路に関して、ティース8aと回転子2との間の空隙gaの長さはg+eであり、回転子2とティース8cとの間の空隙gcの長さはg−eであり、これらの磁路における空隙部の合計はともに2gとなる。磁束FcおよびFdの磁路に関して、ティース8aと回転子2との間の空隙gaの長さはg+eであり、回転子2とティース8bあるいは8dとの間の空隙gbあるいはgdの長さはともにgであり、これらの磁路における空隙部の合計はともに2g+eとなる。   In order to compare the magnetic resistances of the magnetic paths through which the magnetic fluxes Fa to Fd and Fg to Fj pass, the gap lengths of the gaps ga to gd are briefly examined. Regarding the magnetic paths of the magnetic fluxes Fg and Fh, the size of the gap ga between the teeth 8a and the rotor 2 is g + e (g is the size of the gaps ga to gd when the stator 1 and the rotor 2 are not eccentric, that is, The length of the gap portion between the rotor 2 and the inner peripheral surface 6 of the portion opposite to the eccentric direction of the yoke 7 of the stator 1 is simply expressed as h + e (h is no eccentricity). The distance between the rotor 2 and the inner peripheral surface 6 of the yoke 7) is expressed as g + h + 2e in both the total gap in the magnetic path through which the magnetic flux Fg passes and the total gap in the magnetic path through which the magnetic flux Fh passes. . Regarding the magnetic paths of the magnetic fluxes Fc and Fd, the length of the gap ga between the teeth 8a and the rotor 2 is g + e, and the length of the gap gb or gd between the rotor 2 and the teeth 8b or 8d is g. Therefore, the sum of the gaps in these magnetic paths is 2 g + e. Regarding the magnetic paths of the magnetic fluxes Fi and Fj, the length of the gap ga between the teeth 8a and the rotor 2 is g + e, and the rotor 2 and the inner peripheral surface 6 of the stator 1 on the side in the eccentric direction of the yoke 7 are arranged. When the length of the gap portion between them is expressed as he, the total of the gaps in these magnetic paths is g + h. Regarding the magnetic paths of the magnetic fluxes Fa and Fb, the length of the gap ga between the teeth 8a and the rotor 2 is g + e, and the length of the gap gc between the rotor 2 and the teeth 8c is ge. The sum of the gaps in these magnetic paths is 2 g. Regarding the magnetic paths of the magnetic fluxes Fc and Fd, the length of the gap ga between the tooth 8a and the rotor 2 is g + e, and the length of the gap gb or gd between the rotor 2 and the teeth 8b or 8d is both g, and the sum of the gaps in these magnetic paths is 2 g + e.

これらの磁束により、回転子2に様々な電磁力が働く。図2において紙面左右方向の力について記述する。磁束Fg、Fhの影響で、回転子2に右方向の力が働く。磁束Fc、Fdの影響でも、回転子2に右方向の力が作用する。磁束Fi、Fjの影響では、回転子2に右方向の力と、それより小さいが左方向の力とが作用し、紙面左右方向の力は小さくなる。磁束Fa、Fbの影響では、回転子2に右方向の力と左方向の力の両方が働く。巻線4a〜4dは固定子1の内部に巻かれるため、巻線4a〜4dが占める容積には上限がある。したがって巻線4a〜4dから誘起される磁束による力をより効果的に作用させることが望ましい。これらのことから、ティース8aと8bおよびティース8aと8dを通り、回転子2に対して紙面右方向に力を働かせる磁束FcおよびFdは、磁束Fi、Fjよりも大きいことが望ましいと考えられる。   Various electromagnetic forces act on the rotor 2 by these magnetic fluxes. In FIG. 2, the force in the left-right direction on the paper is described. A rightward force acts on the rotor 2 due to the influence of the magnetic fluxes Fg and Fh. A rightward force acts on the rotor 2 even under the influence of the magnetic fluxes Fc and Fd. Under the influence of the magnetic fluxes Fi and Fj, a rightward force and a smaller but leftward force act on the rotor 2, and the leftward / rightward force on the paper surface is reduced. Under the influence of the magnetic fluxes Fa and Fb, both a rightward force and a leftward force act on the rotor 2. Since the windings 4a to 4d are wound inside the stator 1, the volume occupied by the windings 4a to 4d has an upper limit. Therefore, it is desirable to make the force caused by the magnetic flux induced from the windings 4a to 4d more effective. From these facts, it is considered desirable that the magnetic fluxes Fc and Fd that pass through the teeth 8a and 8b and the teeth 8a and 8d and act on the rotor 2 in the right direction on the paper surface are larger than the magnetic fluxes Fi and Fj.

磁束の強さ(大きさ)は磁気抵抗の大きさに反比例するため、磁束Fc、Fdが磁束Fi、Fjよりも強くなるための条件は、2g+e<g+hとなる。これを解くとg+e<hとなるが、0≦e<gであるため、磁束Fc、Fdが偏心状態によらずに常に磁束Fi、Fjよりも大きくなるための条件は、g<h/2となる。以上のことから、本発明では、固定子1の中心9と回転子2の中心10とが一致した状態での、固定子1のティース8a〜8dの内側(先端)と回転子2の外周面12との間の空隙長ga〜gdが、固定子1のヨーク7の内周面6と回転子2の外周面12との間の距離hに対して、1/2以下とされている。回転電機をこのような構成とすることにより、比較的少ない巻線数の調整により磁束を平衡にすることができ、現実的な巻線数の調整範囲で、低振動・低騒音の回転電機が実現可能になる。   Since the strength (magnitude) of the magnetic flux is inversely proportional to the magnitude of the magnetic resistance, the condition for the magnetic fluxes Fc and Fd to be stronger than the magnetic fluxes Fi and Fj is 2g + e <g + h. When this is solved, g + e <h, but 0 ≦ e <g. Therefore, the condition for the magnetic fluxes Fc and Fd to always be larger than the magnetic fluxes Fi and Fj regardless of the eccentric state is g <h / 2. It becomes. From the above, in the present invention, the inner side (tip) of the teeth 8a to 8d of the stator 1 and the outer peripheral surface of the rotor 2 in a state where the center 9 of the stator 1 and the center 10 of the rotor 2 coincide with each other. The gap lengths ga to gd with respect to 12 are set to 1/2 or less with respect to the distance h between the inner peripheral surface 6 of the yoke 7 of the stator 1 and the outer peripheral surface 12 of the rotor 2. By configuring the rotating electric machine in this way, it is possible to balance the magnetic flux by adjusting the number of windings that is relatively small, and a rotating machine with low vibration and noise can be achieved within a practical adjustment range of the number of windings. It becomes feasible.

実施の形態2.
図3は本発明の実施の形態2による回転電機の中心軸に沿った断面図である。回転電機は、コア3に巻線4a〜4dが巻回され、ハウジング13内に収容された固定子1と、ハウジング13によって支持されて、固定子1内で回転できるように軸受14、15によって支持され、回転軸16上に設けられた回転子2とを備えている。回転磁界により回転子2および回転軸16が固定子1内で回転する。図3に示すのはコンデンサモータであり、コンデンサ18が回転電機のハウジング13内に収納されている。巻線4a〜4dは絶縁体17で覆われており、この絶縁体17内に巻線4a〜4dの端子電圧を測定するための端子19が埋め込まれて設置されている。この端19子は、各巻線4a〜4dの端子電圧が測定可能なように設置される。
Embodiment 2. FIG.
FIG. 3 is a sectional view taken along the central axis of the rotating electrical machine according to the second embodiment of the present invention. The rotating electrical machine includes windings 4 a to 4 d wound around a core 3, a stator 1 accommodated in the housing 13, and supported by the housing 13, and bearings 14 and 15 so as to be able to rotate within the stator 1. The rotor 2 is supported and provided on the rotating shaft 16. The rotor 2 and the rotating shaft 16 are rotated in the stator 1 by the rotating magnetic field. FIG. 3 shows a capacitor motor, in which a capacitor 18 is housed in a housing 13 of a rotating electrical machine. The windings 4a to 4d are covered with an insulator 17, and a terminal 19 for measuring the terminal voltage of the windings 4a to 4d is embedded in the insulator 17 and installed. The end 19 is installed so that the terminal voltages of the windings 4a to 4d can be measured.

次に端子19による効果について記述する。固定子1と回転子2との間に偏心がない回転電機では、対向する巻線4a〜4dの電流が等しい場合には、各巻線4a〜4dの端子電圧は等しくなる。しかし偏心がある通常の回転電機では、対向する巻線4a〜4dの電流が等しい場合には、各巻線4a〜4dの端子電圧が異なる。これは偏心の影響で巻線4a〜4dのインダクタンスが異なるためであり、この原理を利用することにより、各巻線4a〜4dの端子電圧から偏心状態が把握できる。このように、端子19は従来から多く用いられているもので、端子電圧も多くの測定で利用されているものであるが、端子電圧から偏心状態を把握することはほとんどなされていない。さらに本発明の特徴は、各巻線4a〜4dの端子電圧が等しくなるように対向する巻線4a〜4dの巻回数を異ならしめることである。なお、巻線4a〜4dの巻回数を変える手段としては、1本の導線の巻回数を変えてもよいし、最初に巻いた巻線とは別の巻線を後で追加してもよい。このような構成とすることにより、対向する巻線から誘起される磁束が平衡になるため、低振動・低騒音の回転電機を低コストで実現できる。   Next, the effect of the terminal 19 will be described. In a rotating electrical machine in which there is no eccentricity between the stator 1 and the rotor 2, when the currents of the opposing windings 4a to 4d are equal, the terminal voltages of the windings 4a to 4d are equal. However, in a normal rotating electrical machine with eccentricity, when the currents of the opposing windings 4a to 4d are equal, the terminal voltages of the windings 4a to 4d are different. This is because the inductances of the windings 4a to 4d are different due to the influence of the eccentricity, and by using this principle, the eccentric state can be grasped from the terminal voltages of the windings 4a to 4d. As described above, the terminal 19 has been widely used in the past, and the terminal voltage is also used in many measurements. However, it is rarely possible to grasp the eccentric state from the terminal voltage. Further, the present invention is characterized in that the number of turns of the opposing windings 4a to 4d is made different so that the terminal voltages of the windings 4a to 4d are equal. As a means for changing the number of turns of the windings 4a to 4d, the number of turns of one conductive wire may be changed, or a winding different from the winding wound first may be added later. . With such a configuration, since the magnetic flux induced from the opposing windings is balanced, a rotating machine with low vibration and low noise can be realized at low cost.

この発明の実施の形態1による回転電機の概略説明図である。It is a schematic explanatory drawing of the rotary electric machine by Embodiment 1 of this invention. この発明の実施の形態1による回転電機の磁束を示す概略説明図である。It is a schematic explanatory drawing which shows the magnetic flux of the rotary electric machine by Embodiment 1 of this invention. 本発明の実施の形態2による回転電機の概略断面図である。It is a schematic sectional drawing of the rotary electric machine by Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 固定子、9、10 中心、4a〜4d 巻線、Fa〜Ff 磁束、8a〜8d ティース、ga〜gd 空隙、7 ヨーク、g 空隙長、h 距離、19 端子。   1 Stator, 9, 10 center, 4a to 4d winding, Fa to Ff magnetic flux, 8a to 8d teeth, ga to gd gap, 7 yoke, g gap length, h distance, 19 terminals.

Claims (2)

ヨーク、及び、該ヨークの内側に設けられた4つのティース、を有する固定子と、
前記固定子の内側に回転可能に設けられた回転子とを備えた、回転電機であって、
前記固定子の中心と、前記回転子の中心とは、偏心しており、
前記偏心は、前記固定子の中心と前記回転子の中心とが一致している状態において該固定子の前記ティースの先端と該回転子との間の空隙の空隙長が、該固定子の前記ヨークと該回転子との間の距離の1/2以下である構成、からの偏心であり、
前記偏心により前記回転子が近づく側の前記ティースの巻線の巻回数が、前記偏心により前記回転子が離れる側の前記ティースの巻線の巻回数よりも多く、前記固定子の対向する巻線から誘起される磁束が平衡になるよう、径方向に対向する一対の前記ティースにおいて巻線の巻回数が異なっている、
ことを特徴とする回転電機。
A stator having a yoke and four teeth provided inside the yoke;
A rotating electrical machine comprising a rotor rotatably provided inside the stator,
The center of the stator and the center of the rotor are eccentric,
In the state where the center of the stator and the center of the rotor coincide with each other, the eccentricity is such that the gap length of the gap between the tip of the teeth of the stator and the rotor is the stator of the stator. An eccentricity from a configuration that is ½ or less of the distance between the yoke and the rotor;
The winding of the teeth on the side approaching the rotor due to the eccentricity is greater than the number of windings of the teeth on the side away from the rotor due to the eccentricity, and the windings facing the stator The number of winding turns is different between the pair of teeth facing in the radial direction so that the magnetic flux induced from
Rotating electric machine characterized by that.
上記巻線に生じる誘起電圧を測定可能な端子を備えたことを特徴とする請求項1に記載の回転電機。   The rotating electrical machine according to claim 1, further comprising a terminal capable of measuring an induced voltage generated in the winding.
JP2008204158A 2008-08-07 2008-08-07 Rotating electric machine Expired - Fee Related JP5361276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204158A JP5361276B2 (en) 2008-08-07 2008-08-07 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204158A JP5361276B2 (en) 2008-08-07 2008-08-07 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2010041874A JP2010041874A (en) 2010-02-18
JP5361276B2 true JP5361276B2 (en) 2013-12-04

Family

ID=42013832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204158A Expired - Fee Related JP5361276B2 (en) 2008-08-07 2008-08-07 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP5361276B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164482U (en) * 1983-04-15 1984-11-05 三洋電機株式会社 induction motor
JPS6039352A (en) * 1983-08-12 1985-03-01 Hitachi Ltd Core for small-sized capacitor induction motor
JP3552458B2 (en) * 1997-05-09 2004-08-11 三菱電機株式会社 Rotating electric machine and method of manufacturing the same
JP4579170B2 (en) * 2006-02-27 2010-11-10 三菱電機株式会社 Condenser motor, inspection device and ventilation fan

Also Published As

Publication number Publication date
JP2010041874A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP4983022B2 (en) motor
US10090741B2 (en) Double-stator rotating electric machine
JP6192854B2 (en) Rotation angle detection device, rotating electric machine, and elevator hoisting machine
JP2013005683A (en) Stator and motor
EP2566019B1 (en) Winding method for stator of rotation detector, winding structure therefor, and electric motor using rotation detector
JP2017127151A (en) Dynamo-electric machine and stator
KR101278348B1 (en) Switched reluctance motor
JP5683103B2 (en) Universal motor
JP2010259290A (en) Rotating device
JP2018082600A (en) Double-rotor dynamoelectric machine
US8415850B2 (en) Universal motor
EP3295544A1 (en) Switched reluctance machine with odd pole-phase index
US6323569B1 (en) Stepping motor
JP2003250254A (en) Permanent magnet type brushless motor for electric power steering apparatus
US20180138792A1 (en) Switched reluctance machine with even pole-phase index
JP5361276B2 (en) Rotating electric machine
JP2010011611A (en) Permanent magnet-type rotary electric machine and power steering system
JP2007318998A (en) Permanent magnet brushless motor for motor power steering system
KR101289188B1 (en) Switched reluctance motor
JP2006025486A (en) Electric electric machine
JP2022076731A (en) Rotary electric machine
JP2011151914A (en) Stator for brushless motors and brushless motor
JP7006103B2 (en) Rotor and motor
JP2017042007A (en) motor
JP4387348B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R150 Certificate of patent or registration of utility model

Ref document number: 5361276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees