JP5360587B2 - N-type semiconductor thin film, homo pn junction element and thin film solar cell, and n-type semiconductor thin film and homo pn junction element manufacturing method - Google Patents

N-type semiconductor thin film, homo pn junction element and thin film solar cell, and n-type semiconductor thin film and homo pn junction element manufacturing method Download PDF

Info

Publication number
JP5360587B2
JP5360587B2 JP2009276867A JP2009276867A JP5360587B2 JP 5360587 B2 JP5360587 B2 JP 5360587B2 JP 2009276867 A JP2009276867 A JP 2009276867A JP 2009276867 A JP2009276867 A JP 2009276867A JP 5360587 B2 JP5360587 B2 JP 5360587B2
Authority
JP
Japan
Prior art keywords
sno
thin film
type semiconductor
type
junction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009276867A
Other languages
Japanese (ja)
Other versions
JP2011119547A (en
Inventor
秀雄 細野
利夫 神谷
正浩 平野
洋一 小郷
秀典 平松
研二 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2009276867A priority Critical patent/JP5360587B2/en
Publication of JP2011119547A publication Critical patent/JP2011119547A/en
Application granted granted Critical
Publication of JP5360587B2 publication Critical patent/JP5360587B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor having a band gap ranging from 2 eV inclusive to below 3 eV and capable of controlling electric characteristics to both pn polarities, in order to utilize light that is not completely absorbed by the currently available thin film solar battery. <P>SOLUTION: An n-type semiconductor thin film is made of a tin oxide (SnO) which contains an impurity of trivalent positive ion selected from Al<SP>3+</SP>, Ga<SP>3+</SP>, In<SP>3+</SP>, and Sb<SP>3+</SP>and shows n-type conductivity. This n-type semiconductor thin film and a p-type semiconductor thin film made of SnO are laminated together to form a homogeneous pn-junction element. A thin film solar battery is manufactured by using the homogeneous pn-junction element. Oxide powder, which is a source for a trivalent positive ion selected from Al<SP>3+</SP>, Ga<SP>3+</SP>, In<SP>3+</SP>, and Sb<SP>3+</SP>, is added/mixed to SnO powder, and the mixture powder is sintered to form an SnO target. Using this SnO target, the n-type semiconductor thin film made of SnO is manufactured by a physical deposition method. A p-type SnO thin film formed using an SnO target made by sintering SnO powder by the physical deposition method and an n-type SnO thin film manufactured by the same method are laminated together to manufacture the homogeneous pn-junction element. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、酸化第一錫(SnO)からなるn型伝導性半導体薄膜、該n型伝導性半導体薄
膜を活性層に用いたホモpn接合素子、及び該ホモpn接合素子を用いた薄膜太陽電池、
並びにn型半導体膜及びホモpn接合素子の製造方法に関する。
The present invention relates to an n-type conductive semiconductor thin film made of stannous oxide (SnO), a homo pn junction element using the n-type conductive semiconductor thin film as an active layer, and a thin film solar cell using the homo pn junction element ,
The present invention also relates to a method for manufacturing an n-type semiconductor film and a homo pn junction element.

近年、環境負荷の軽減のためにクリーンエネルギーである太陽光を発電に利用する太陽電
池が活発に研究されている。太陽電池の更なる発電効率向上のため、互いに異なる吸収帯
を有する半導体材料を積層し、pn接合した薄膜太陽電池の開発がなされている(特許文
献1,2,3)。薄膜太陽電池に用いられる半導体材料の代表例はCu(InGa)Se2
であるが、そのバンドギャップは約1.2eVである。
In recent years, solar cells that use sunlight, which is clean energy, for power generation in order to reduce environmental burdens have been actively researched. In order to further improve the power generation efficiency of solar cells, thin film solar cells in which semiconductor materials having mutually different absorption bands are stacked and pn-junctioned have been developed (Patent Documents 1, 2, and 3). A typical example of a semiconductor material used for a thin film solar cell is Cu (InGa) Se 2.
However, the band gap is about 1.2 eV.

したがって、2eV以上のバンドギャップを有する半導体を用いてCu(InGa)Se2等に
積層したpn接合を形成することで、現在は発電に寄与していない波長の太陽光を発電に
用いることができるようになる。そこで、ワイドギャップ半導体を作ることが容易な酸化
物半導体の中から2eV以上3eV未満のバンドギャップを有するpn制御可能な半導体材料の
探索が行われている。
Therefore, by using a semiconductor having a band gap of 2 eV or more to form a pn junction laminated on Cu (InGa) Se 2 or the like, it is possible to use sunlight having a wavelength not currently contributing to power generation for power generation. It becomes like this. In view of this, a pn-controllable semiconductor material having a band gap of 2 eV or more and less than 3 eV is being searched for from among oxide semiconductors that are easy to produce a wide gap semiconductor.

本発明者らは、2001年にpn制御可能な酸化物半導体CuInO2を発表した(非特許文
献1,2)。しかし、そのバンドギャップは約3.9eVと大きく、太陽電池の活性層とする
のは適当ではない。
In 2001, the present inventors announced a pn-controllable oxide semiconductor CuInO 2 (Non-patent Documents 1 and 2). However, the band gap is as large as about 3.9 eV, and it is not suitable for the active layer of a solar cell.

また、1998年から2003年にかけて、本発明者らは、SrCu22やLaCuOCh(Ch=S,
Se,Te)等のp型酸化物半導体を報告してきた(非特許文献3〜5)。しかし、これらのp型
酸化物半導体に対する電子ドーピングは報告されていない。
Further, from 1998 to 2003, the present inventors have made SrCu 2 O 2 and LaCuOCh (Ch = S,
A p-type oxide semiconductor such as Se, Te) has been reported (Non-Patent Documents 3 to 5). However, no electron doping has been reported for these p-type oxide semiconductors.

本発明者らは、2008年にSnOをチャネル層とした薄膜トランジスタを報告し(非特許文
献6)、さらに、気相法において、SnOをターゲットとして用いて、基板上に堆積する
Snの酸化度合いを基板温度及び雰囲気酸素分圧により制御し、SnO中のSn4+及びS
0(錫金属)の含有量が合計で10原子%未満、すなわちSn2+イオンの含有量が90
原子%以上のp型SnO薄膜を成膜する方法、及び該p型SnO薄膜をチャネル層とした
薄膜トランジスタに関する発明を特許出願した(特許文献4)。
The present inventors reported a thin film transistor using SnO as a channel layer in 2008 (Non-Patent Document 6), and further, in a vapor phase method, using SnO as a target, the degree of oxidation of Sn deposited on a substrate was measured. Controlled by substrate temperature and atmospheric oxygen partial pressure, Sn 4+ and S in SnO
The total content of n 0 (tin metal) is less than 10 atomic%, that is, the content of Sn 2+ ions is 90
A patent application was filed for an invention relating to a method of forming a p-type SnO thin film of at least atomic% and a thin film transistor using the p-type SnO thin film as a channel layer (Patent Document 4).

酸化第一錫(SnO)については、p型半導体であることが知られており(非特許文献7
、特許文献5)、非特許文献7では、SnO2原料を電子ビーム蒸発させてサファイア基
板に成膜すると基板温度に応じてアモルファス又は準安定多結晶SnOx薄膜が形成され
ることが報告されている。SnOを半導体材料として利用したデバイス例としては、Pb
O-SnOの傾斜組成膜によるヘテロ接合を利用した光電池とその製法に関するものがあ
る(特許文献6,7)程度で、導電膜や半導体材料として用いられるSnO2に比較して
SnOの利用や研究開発は殆どなされていない。
It is known that stannous oxide (SnO) is a p-type semiconductor (Non-patent Document 7).
(Patent Document 5) and Non-Patent Document 7 report that when SnO 2 raw material is evaporated by electron beam to form a film on a sapphire substrate, an amorphous or metastable polycrystalline SnO x thin film is formed according to the substrate temperature. Yes. Examples of devices using SnO as a semiconductor material include Pb
There is a photovoltaic cell using a heterojunction with a graded composition film of O-SnO and a manufacturing method thereof (Patent Documents 6 and 7), and the use and research of SnO compared to SnO 2 used as a conductive film or semiconductor material. Little development has been done.

特開平9-181345号公報JP-A-9-181345 特開平11-87750号公報JP 11-87750 A 特開2008-235794号公報JP 2008-235794 A PCT/JP2009/62196PCT / JP2009 / 62196 特開2002-235177号公報JP 2002-235177 A 米国特許第4099199号明細書U.S. Pat.No. 4,099,199 米国特許第4199383号明細書US Patent No. 4199383

H. Yanagi et al., Appl. Phys. Lett. 78, (2001) 1583-1585H. Yanagi et al., Appl. Phys. Lett. 78, (2001) 1583-1585 H. Yanagi et al., Sol. State Comm. 121, (2002) 15-18H. Yanagi et al., Sol. State Comm. 121, (2002) 15-18 A. Kudo, Appl. Phys. Lett. 73, (1998) 220A. Kudo, Appl. Phys. Lett. 73, (1998) 220 K. Ueda, Appl. Phys. Lett. 77, (2000) 2701-2703K. Ueda, Appl. Phys. Lett. 77, (2000) 2701-2703 K. Ueda, Chem. Mater. 15, (2003) 3692-3695K. Ueda, Chem. Mater. 15, (2003) 3692-3695 Y. Ogo, Appl. Phys. Lett. 93, 032113 (2008)Y. Ogo, Appl. Phys. Lett. 93, 032113 (2008) X.Q.Pan et al.,J.Electroceram.,7,(2001) 35-46X.Q.Pan et al., J. Electroceram., 7, (2001) 35-46

ZnOやCuInO2がpn接合を作製できる酸化物半導体として報告されているが、こ
れらの酸化物半導体は3eVを超えるワイドバンドギャップ半導体材料である。積層型の太
陽電池への酸化物の応用を考えた場合、2eV以上3eV未満のバンドギャップをもつ半導体材
料によるpn接合を作製する必要がある。
ZnO and CuInO 2 have been reported as oxide semiconductors capable of forming a pn junction, but these oxide semiconductors are wide band gap semiconductor materials exceeding 3 eV. When considering the application of oxides to stacked solar cells, it is necessary to produce a pn junction made of a semiconductor material having a band gap of 2 eV or more and less than 3 eV.

酸化物において3eV以上のワイドバンドギャップ材料が多い理由は、価電子帯が電気陰性
度の強い酸素の2p軌道で形成されるためである。酸素2p軌道は電子を強く束縛するため結
合エネルギーが大きくなり、結果として真空準位からの価電子帯上端の位置が深くなるた
めにバンドギャップが大きくなる。
The reason why there are many wide band gap materials of 3 eV or more in oxide is that the valence band is formed by oxygen 2p orbitals having strong electronegativity. Since the oxygen 2p orbitals strongly bind electrons, the binding energy increases, and as a result, the position of the upper end of the valence band from the vacuum level becomes deeper, and the band gap increases.

一般に、太陽電池において、同一種類の半導体のp型薄層とn型薄層とが直接面接触して
pn接合を形成していることが望ましい。ホモ接合では、原理的に結晶格子間のミスマッ
チが存在しないために、格子歪のない良質な接合を形成することができる。しかし、その
ようなホモpn接合構造をもつ薄膜太陽電池は、その吸収係数の大きさにも関わらず、II
-VI族化合物半導体であるCdTe等ごく一部の材料に限られる。
In general, in a solar cell, it is desirable that a p-type thin layer and an n-type thin layer of the same type of semiconductor are in direct surface contact to form a pn junction. In the homojunction, since there is no mismatch between crystal lattices in principle, a high-quality junction without lattice distortion can be formed. However, a thin film solar cell having such a homo pn junction structure is not limited to II, regardless of its absorption coefficient.
-Limited to some materials such as CdTe, which is a group VI compound semiconductor.

さらに、薄膜太陽電池のpn接合材料は、バンドギャップと太陽光のスペクトルとの整合
性をよくすることにより発電効率を向上することができ、薄膜化が容易であり、高温での
変換効率の低下が少なく、光吸収係数が大きく、薄膜でも太陽光を十分吸収できるなどの
特性が必要であるとともに、材料コスト及び成膜方法が安価である必要がある。
Furthermore, the pn junction material of a thin film solar cell can improve the power generation efficiency by improving the consistency between the band gap and the sunlight spectrum, can be easily made into a thin film, and has a low conversion efficiency at high temperatures. Therefore, it is necessary that the light absorption coefficient is small, the characteristics such as sufficient absorption of sunlight even with a thin film are necessary, and the material cost and the film formation method are inexpensive.

酸化第一錫(SnO)のバンドギャップは間接遷移で0.7eV、直接遷移で2.7eVであり、直
接遷移により2.7eV以上のエネルギーを持つ光を吸収する。よって、SnOのpn制御が
でき、ホモ接合ができれば半導体材料として太陽電池への応用が期待できる。本発明では
、3eV以下のバンドギャップを有するpn制御可能な酸化物半導体を実現するために間接
遷移で0.7eVのバンドギャップ、直接遷移で2.7eVのバンドギャップを有するp型酸化物半
導体SnOに対して電子ドーピングを行うことを特徴とする。
The band gap of stannous oxide (SnO) is 0.7 eV for indirect transition and 2.7 eV for direct transition, and absorbs light having energy of 2.7 eV or more by direct transition. Therefore, if SnO pn control can be performed and a homojunction can be achieved, application to a solar cell as a semiconductor material can be expected. In the present invention, in order to realize a pn-controllable oxide semiconductor having a band gap of 3 eV or less, a p-type oxide semiconductor SnO having a band gap of 0.7 eV in an indirect transition and a band gap of 2.7 eV in a direct transition is used. And electron doping.

SnOの結晶構造は、空間群P42/mnmであるSnO2とは異なり、空間群P4/nm
mである。SnOは酸化物であるが、その価電子帯上端は酸素2p軌道ではなくSn5s
軌道によって形成されていることが理論的、実験的に確かめられている(非特許文献8、
9)。
The crystal structure of SnO is different from SnO 2 which is space group P42 / mnm, and space group P4 / nm.
m. SnO is an oxide, but the top of its valence band is Sn5s, not oxygen 2p orbital.
It is confirmed theoretically and experimentally that it is formed by orbits (Non-Patent Document 8,
9).

G. W. Watson, J. Chem. Phys. 114, (2001) 758G. W. Watson, J. Chem. Phys. 114, (2001) 758 Y. Ogo et al., Phys. Stat. Solidi (A) 206, (2009) 2187-2191Y. Ogo et al., Phys. Stat. Solidi (A) 206, (2009) 2187-2191

本発明者らは、このSnOにAl3+、Ga3+、In3+、Sb3+から選ばれる3価の陽イオ
ンをドーピングすることによって、n型伝導性を示すSnOからなるn型半導体薄膜が得
られることを見出した。これにより、2eV以上3eV未満のバンドギャップを有し、かつpn
制御可能な酸化物半導体を提供することが可能になり、SnOからなるp型とn型のホモ
pn接合素子を実現した。
The present inventors doped this SnO with a trivalent cation selected from Al 3+ , Ga 3+ , In 3+ , and Sb 3+ to thereby make an n-type semiconductor composed of SnO exhibiting n-type conductivity. It has been found that a thin film can be obtained. As a result, it has a band gap of 2 eV or more and less than 3 eV, and pn
It became possible to provide a controllable oxide semiconductor, and a p-type and n-type homo pn junction element made of SnO was realized.

ドーピングの方法は、SnOのSn2+イオンの一部をSb3+、Al3+、Ga3+、In3+
ら選ばれる3価の陽イオンで置換することにより行う。置換のための3価陽イオンのドーピ
ング方法としては、例えば、これらの3価陽イオンをドナーとして添加したターゲットを
用いてパルスレーザ堆積法(PLD法)やスパッタ法等の物理的成膜法によってSnO薄膜を
作製する方法が挙げられる。ターゲットは、例えば、SnO粉末にAl3+、Ga3+、In
3+、Sb3+から選ばれる3価の陽イオン源の酸化物粉末を添加混合して焼結することによ
り得られる。
The doping method is performed by substituting a part of Sn 2+ ions of SnO with a trivalent cation selected from Sb 3+ , Al 3+ , Ga 3+ and In 3+ . As a doping method of trivalent cations for substitution, for example, by using a target obtained by adding these trivalent cations as a donor by a physical film formation method such as a pulse laser deposition method (PLD method) or a sputtering method. The method of producing a SnO thin film is mentioned. The target is, for example, Sn 3 powder, Al 3+ , Ga 3+ , In
It is obtained by adding and sintering a trivalent cation source oxide powder selected from 3+ and Sb 3+ .

ホモpn接合素子は、SnO粉末を焼結したSnOターゲットを用いて物理的成膜法によ
り成膜したp型SnO薄膜と、SnO粉末にAl3+、Ga3+、In3+、Sb3+から選ばれ
る3価の陽イオン源の酸化物粉末を添加混合して焼結したSnOターゲットを用いて物理
的成膜法により成膜したn型SnO薄膜とを積層することによって製造できる。
The homo pn junction element includes a p-type SnO thin film formed by a physical film forming method using a SnO target obtained by sintering SnO powder, and Al 3+ , Ga 3+ , In 3+ , Sb 3+ on the SnO powder. Can be manufactured by laminating an n-type SnO thin film formed by a physical film formation method using a SnO target obtained by adding and sintering a trivalent cation source oxide powder selected from the following.

なお、本明細書において、ターゲット中の添加物濃度を陽イオン中の添加物元素の割合で
表すものとする。つまり、Sbを加えた場合には、Sbの濃度は、100×nSb/(nSn+
Sb)%の式で表す。ここで、nSnとnSbはそれぞれSn原子とSb原子の数である
In the present specification, the additive concentration in the target is represented by the ratio of the additive element in the cation. That is, when Sb is added, the concentration of Sb is 100 × n Sb / (n Sn +
n Sb )%. Here, n Sn and n Sb are the numbers of Sn atoms and Sb atoms, respectively.

本発明によれば、ホモpn接合をSnOを用いて形成できる。Cu(InGa)Se2を用
いた太陽電池上にSnOによるpn接合を作製することで2.7eV以上のエネルギーを持つ
光を発電に利用できるようになり、発電効率の向上がなされる。
According to the present invention, a homo pn junction can be formed using SnO. By producing a pn junction of SnO on a solar cell using Cu (InGa) Se 2 , light having an energy of 2.7 eV or more can be used for power generation, and power generation efficiency is improved.

Sb濃度0%、1%、5%、8%、10%のターゲットを使用して成膜したSnO薄膜のXRDパターン。図1(a)は、基板面に平行な結晶面からの回折を観測する通常の2θ-θスキャンによるXRDパターン。図1(b)は、入射角を0.5°に固定して検出器の角度2θを走査した場合のXRDパターン。XRD patterns of SnO thin films formed using targets with Sb concentrations of 0%, 1%, 5%, 8%, and 10%. FIG. 1 (a) is an XRD pattern by a normal 2θ-θ scan for observing diffraction from a crystal plane parallel to the substrate surface. FIG. 1B shows an XRD pattern when the angle 2θ of the detector is scanned with the incident angle fixed at 0.5 °. Sb濃度0%、1%、5%、8%、10%のターゲットを使用して成膜したSnO薄膜の室温から77Kまでの温度域でのキャリア濃度の温度依存性を示すグラフ。The graph which shows the temperature dependence of the carrier density | concentration in the temperature range from room temperature to 77K of the SnO thin film formed into a film using the target of Sb density | concentration 0%, 1%, 5%, 8%, and 10%. SbをドープしたSnO薄膜につてのO1s、Sb3d3/2内殻準位のXPS測定スペクトル。XPS measurement spectrum of O1 s and Sb3d 3/2 core levels for SnO thin film doped with Sb. p型SnOとn型SnOによるホモ接合ダイオードの積層断面概念図。The laminated cross-section conceptual diagram of the homojunction diode by p-type SnO and n-type SnO. 実施例3で製造したp型SnOとn型SnO によるホモ接合ダイオードの電流-電圧特性グラフ。4 is a current-voltage characteristic graph of a homojunction diode made of p-type SnO and n-type SnO 2 manufactured in Example 3. FIG.

以下、本発明の実施の形態について図面を用いて詳細に説明する。まず、本発明の第1の
実施形態として、p型SnOの成膜とSnOへの電子ドーピングを行ってn型SnOを成
膜する方法を、そして、第2の実施形態として、ホモ接合ダイオードについて説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, as a first embodiment of the present invention, a method of forming n-type SnO by forming p-type SnO and electron doping into SnO, and a homojunction diode as a second embodiment. explain.

電子ドーピングのための不純物にはAl3+、Ga3+、In3+、Sb3+から選ばれる3価の
陽イオンを用いる。これらの不純物は物理的成膜法に用いるターゲット作製の時点でSn
Oに添加する。具体的には、SnO粉末とSb23、Al23、Ga23、In23等の
上記の3価の陽イオン源の酸化物粉末を混合し焼結する。これらの酸化物粉末は市販品と
して入手できる。ターゲットに添加混合する必要量については成膜条件等により異なるの
で、成膜条件に応じてSnO薄膜がn型導電性を示すようになる適切な条件を選択する。
焼結中の雰囲気はSnO組成の焼結体が得られるように調整する。このような不純物元素
を所望量含有するターゲットを使用し、PLD法やスパッタ法などによりSnO薄膜を成膜
する。また、Sb、Al、Ga、In原子を含むガス雰囲気でスパッタして、成膜する方
法でもよい。
A trivalent cation selected from Al 3+ , Ga 3+ , In 3+ and Sb 3+ is used as an impurity for electron doping. These impurities are Sn at the time of preparation of the target used in the physical film formation method.
Add to O. Specifically, SnO powder and oxide powder of the above trivalent cation source such as Sb 2 O 3 , Al 2 O 3 , Ga 2 O 3 , and In 2 O 3 are mixed and sintered. These oxide powders are commercially available. Since the necessary amount to be added and mixed with the target varies depending on the film forming conditions and the like, an appropriate condition is selected so that the SnO thin film exhibits n-type conductivity according to the film forming conditions.
The atmosphere during sintering is adjusted so as to obtain a sintered body of SnO composition. Using a target containing a desired amount of such an impurity element, a SnO thin film is formed by a PLD method, a sputtering method, or the like. Alternatively, a film may be formed by sputtering in a gas atmosphere containing Sb, Al, Ga, and In atoms.

ここで、電子ドープのための不純物となる3価の陽イオンはSn2+のアレニウスイオン半
径0.93Å未満のものとする。非特許文献10によると、Sb3+、Al3+、Ga3+、In3+
のイオン半径は、それぞれ0.76Å, 0.51Å, 0.62Å, 0.81Åであり、Sn2+イオンと置換
し得る。しかし、比較例1で用いたBi3+のイオン半径は0.96ÅとSn2+のイオン半径よ
りも大きく、SnOに対しては電子ドーパントとならない。
Here, a trivalent cation serving as an impurity for electron doping is Sn 2+ having an Arrhenius ion radius of less than 0.93 mm. According to Non-Patent Document 10, Sb 3+ , Al 3+ , Ga 3+ , In 3+
Have ion radii of 0.76Å, 0.51Å, 0.62Å, and 0.81Å, respectively, and can replace Sn 2+ ions. However, the ionic radius of Bi 3+ used in Comparative Example 1 is 0.96Å, which is larger than the ionic radius of Sn 2+ , and does not become an electron dopant for SnO.

R.D.Shannon and C.T.Prewitt,Acta Cryst.B25,(1969) 925R.D.Shannon and C.T.Prewitt, Acta Cryst.B25, (1969) 925

PLD法の好ましい条件としては、p型SnOを成膜する場合も、n型SnOを成膜する場
合も、300℃以上600℃未満に保持した(001)YSZ単結晶基板上にSnOの焼結体をターゲッ
トとして用い、酸素分圧を1×10-2Pa以上1×10-1Pa未満として成膜する。酸素ガスの分圧
の制御は、流量計を通して、O2ガスを導入して行う。
Preferred conditions for the PLD method include the sintering of SnO on a (001) YSZ single crystal substrate held at 300 ° C. or higher and lower than 600 ° C. for both p-type SnO film formation and n-type SnO film formation. The body is used as a target and the oxygen partial pressure is set to 1 × 10 −2 Pa or more and less than 1 × 10 −1 Pa. The partial pressure of oxygen gas is controlled by introducing O 2 gas through a flow meter.

基板温度が300℃未満では、SnO相が得られず、基板温度が600℃以上では、SnO相は
得られるものの、配向性が悪くなりはじめ、基板温度700℃の場合には成長速度が0.1nmt/
min以下になりSnO膜が成長しなくなる。これはSnOの融点が700〜950℃であり、700
℃以上ではSnOが分解することが理由であると考えられる。成膜時の酸素分圧が1×10-
2Pa未満ではSnO相は存在するものの、膜内に金属Sn(Sn0)が含まれる。また、1
×10-1Pa以上の酸素分圧では無配向SnO層が成長する。このように、基板上に堆積する
Snの酸化度合いを基板温度及び雰囲気酸素分圧により制御することによって、SnO中
のSn4+及びSn0(錫金属)の含有量が合計で10原子%未満のSnO薄膜を成膜する
ことができる。
If the substrate temperature is less than 300 ° C, the SnO phase cannot be obtained. If the substrate temperature is 600 ° C or higher, the SnO phase can be obtained, but the orientation begins to deteriorate, and when the substrate temperature is 700 ° C, the growth rate is 0.1 nmt. /
The SnO film does not grow below the min. This is because SnO has a melting point of 700-950 ° C.
It is considered that the reason is that SnO decomposes at a temperature higher than or equal to ° C. The oxygen partial pressure during film formation is 1 × 10
If it is less than 2 Pa, SnO phase exists, but metal Sn (Sn 0 ) is contained in the film. Also 1
An unoriented SnO layer grows at an oxygen partial pressure of × 10 −1 Pa or higher. In this way, by controlling the oxidation degree of Sn deposited on the substrate by the substrate temperature and the atmospheric oxygen partial pressure, the total content of Sn 4+ and Sn 0 (tin metal) in SnO is less than 10 atomic%. The SnO thin film can be formed.

図4に、SnOからなるp型半導体薄膜と上記のn型半導体薄膜とを積層したホモpn接
合素子からなるダイオードの積層構造の一例を示す。SnOホモ接合ダイオードは、p-S
nO層(1)、p-SnO層(2)、n-SnO層(3)からなる積層を基板(4)に成
膜した背面電極層(5)の上に形成し、SnOホモ接合層にオーミック接触する最上部の
電極(6)と背面電極層(5)に接触する電極(7)を形成する。不純物濃度の小さいp
-SnO層(2)は、整流特性を改善するために用いられる。図4に示す構造に限らず
、ホモpn接合を備えていれば、他の積層構造や異なるキャリア濃度で作製することも可
能である。
FIG. 4 shows an example of a laminated structure of a diode composed of a homo pn junction element in which a p-type semiconductor thin film made of SnO and the n-type semiconductor thin film are laminated. SnO homojunction diodes are p-S
A stack composed of an nO layer (1), a p -SnO layer (2), and an n-SnO layer (3) is formed on the back electrode layer (5) formed on the substrate (4), and an SnO homojunction layer The uppermost electrode (6) in ohmic contact with the electrode and the electrode (7) in contact with the back electrode layer (5) are formed. P with low impurity concentration
The -SnO layer (2) is used to improve the rectification characteristics. Not only the structure shown in FIG. 4 but also other stacked structures and different carrier concentrations can be used as long as a homo pn junction is provided.

背面電極層(5)としては、錫ドープ酸化インジウム(In23:Sn)、Alドープ酸
化亜鉛(ZnO:Al)、Gaドープ酸化亜鉛(ZnO:Ga)、又は、Bドープ酸化亜
鉛(ZnO:B)等に代表される透明導電性酸化物電極材料を用いることができる。電極
(6)、電極(7)に用いられる材料は、導電性を有していれば特に限定されないが、好
適には、Au/Niを用いる。
As the back electrode layer (5), tin-doped indium oxide (In 2 O 3 : Sn), Al-doped zinc oxide (ZnO: Al), Ga-doped zinc oxide (ZnO: Ga), or B-doped zinc oxide (ZnO) : Transparent conductive oxide electrode materials represented by B) and the like can be used. The material used for the electrode (6) and the electrode (7) is not particularly limited as long as it has conductivity, but Au / Ni is preferably used.

p-SnO層(1)の正孔濃度範囲は1017cm-3以上1019cm-3未満、好ましい膜厚範囲は100n
m以上である。p-SnO層(2)の正孔濃度範囲は1016cm-3未満、好ましい膜厚範囲は1
00nm以上200nm未満である。n-SnO層(3)の電子濃度範囲は1017cm-3以上1019cm-3
満、好ましい膜厚範囲は50nm以上200nm未満である。
The hole concentration range of the p-SnO layer (1) is 10 17 cm -3 or more and less than 10 19 cm -3 , and the preferred film thickness range is 100 n
m or more. The hole concentration range of the p -SnO layer (2) is less than 10 16 cm −3 , and the preferred film thickness range is 1
00 nm or more and less than 200 nm. The electron concentration range of the n-SnO layer (3) is 10 17 cm −3 or more and less than 10 19 cm −3 , and the preferred film thickness range is 50 nm or more and less than 200 nm.

ホモ接合層の製造方法としては、PLD法、MBE法、CVD法、蒸着法、近接昇華法、
スパッタ法、ゾルゲル法、スプレー法、CBD(ケミカル・バス・デポジション)法、ス
クリーン印刷法等の作製方法を用いることができる。
As a manufacturing method of the homojunction layer, PLD method, MBE method, CVD method, vapor deposition method, proximity sublimation method,
A production method such as a sputtering method, a sol-gel method, a spray method, a CBD (chemical bath deposition) method, or a screen printing method can be used.

SnO粉末のみ、及びSnO粉末にSb23粉末を添加混合して作製したターゲットを用
いて、PLD法により(001)YSZ単結晶基板上にSnO薄膜を成膜した。ターゲット中のSb
濃度は、前記の濃度式で0%, 1%, 5%, 8%, 10%とした。
A SnO thin film was formed on a (001) YSZ single crystal substrate by a PLD method using only a SnO powder and a target prepared by adding and mixing Sb 2 O 3 powder to SnO powder. Sb in the target
The concentration was set to 0%, 1%, 5%, 8%, 10% in the above concentration formula.

SnO薄膜を作製した際の成膜条件は基板温度550℃、酸素分圧4×10-2Paである。図1に
、Sb濃度 0%, 1%, 5%, 8%, 10%のターゲットを使用した場合における薄膜のX線回折(XR
D)パターンを示す。Sb濃度にかかわらず、XRDパターンではSnOの00l (l = 自然数)
面に由来するピークのみが観測され、作製した薄膜がc軸配向していることを示している
。また、斜入射X線回折(GIXRD)パターンでは試料が配向膜であるために明瞭な回折は観測
されていない。微弱な回折線はSnOに帰属されるものであり、配向していないSnO結
晶子からの回折である。
The film forming conditions for producing the SnO thin film are a substrate temperature of 550 ° C. and an oxygen partial pressure of 4 × 10 −2 Pa. Figure 1 shows the X-ray diffraction (XR) of the thin film when using targets with Sb concentrations of 0%, 1%, 5%, 8%, and 10%.
D) shows the pattern. Regardless of the Sb concentration, the XRD pattern shows SnO 00l (l = natural number)
Only peaks originating from the surface are observed, indicating that the produced thin film is c-axis oriented. In the oblique incidence X-ray diffraction (GIXRD) pattern, no clear diffraction is observed because the sample is an alignment film. The weak diffraction line is attributed to SnO, and is diffraction from an unoriented SnO crystallite.

図2に、これらの薄膜についてのHAll測定結果を示す。HAll測定はvan der Pauw電極配置
を用いて、温度は室温から77Kの範囲で行った。表1に、550℃で成膜した薄膜の室温での
電気特性を示している。
FIG. 2 shows HAll measurement results for these thin films. The HAll measurement was performed using a van der Pauw electrode arrangement and the temperature was in the range of room temperature to 77K. Table 1 shows the electrical characteristics at room temperature of the thin film formed at 550 ° C.

Figure 0005360587
Figure 0005360587

550℃で成膜した薄膜の場合、ターゲット中のSbの添加量の増加とともに正孔濃度が減
少し、8%以上のSb濃度を有するターゲットを使った場合にn型電子伝導性を示すSnO
薄膜が得られた。また、図2のキャリア濃度の温度変化に示すとおり、キャリア濃度は熱
活性化型を示し、8%以上のSb濃度を有するターゲットを使った場合には室温から77Kの
温度範囲でn型を示した。以上の結果からSnOはSbを不純物として含有させることに
より導電型をp型からn型に制御できることが分かる。
In the case of a thin film formed at 550 ° C., the hole concentration decreases as the amount of Sb added in the target increases, and SnO exhibiting n-type electron conductivity when a target having an Sb concentration of 8% or more is used.
A thin film was obtained. Further, as shown in the temperature change of the carrier concentration in FIG. 2, the carrier concentration shows a thermal activation type, and when a target having an Sb concentration of 8% or more is used, it shows an n type in a temperature range from room temperature to 77K. It was. From the above results, it can be seen that SnO can control the conductivity type from p-type to n-type by containing Sb as an impurity.

ここで、ターゲット中のSb添加量が1%から5%の時にp型伝導性を示した理由は、Sbの
蒸気圧が高いために550℃の高温成膜によってSbが蒸発してドーピングが進行していな
いためである。
Here, the reason why the p-type conductivity was exhibited when the amount of Sb added in the target was 1% to 5% was that Sb was evaporated by high-temperature film formation at 550 ° C. because of the high vapor pressure of Sb, and doping proceeded. This is because they have not.

Sb濃度5%のターゲットを使用して、基板温度を400℃とした以外は実施例1と同じ条件
でSnO薄膜を成膜した。図3に、Sbを5%添加したターゲットを用いて400℃で成膜し
た薄膜中の、XPSによるSbの分析結果を示す。Sb3d3/2のピーク面積から、薄膜中には約
7×1019cm-3のSbが含まれていたと考えられる。この薄膜はHAll測定の結果、n型伝導
性を示し、電子濃度は9.9×1018cm-3、移動度は0.4cm2/Vsであった。
[比較例1]
An SnO thin film was formed under the same conditions as in Example 1 except that the substrate temperature was set to 400 ° C. using a target having an Sb concentration of 5%. FIG. 3 shows the result of Sb analysis by XPS in a thin film formed at 400 ° C. using a target containing 5% Sb. From the peak area of Sb3d 3/2 ,
It is thought that 7 × 10 19 cm −3 of Sb was contained. As a result of HAll measurement, this thin film showed n-type conductivity, the electron concentration was 9.9 × 10 18 cm −3 , and the mobility was 0.4 cm 2 / Vs.
[Comparative Example 1]

比較例として、電子ド―プのための不純物にBi3+を用いた場合について示す。Sb3+
の場合と同様に、Bi23粉末とSnO粉末をBi濃度が10%になるように混合して焼結
しターゲットを作製した。このターゲットを用いてPLD法によりSnO薄膜を作製した。
その際の成膜条件は基板温度550℃、酸素分圧4×10-2Paとし、実施例1と同じ条件とした
As a comparative example, the case where Bi 3+ is used as an impurity for electron doping will be described. Sb 3+
As in the case of, Bi 2 O 3 powder and SnO powder were mixed and sintered so that the Bi concentration was 10% to prepare a target. Using this target, an SnO thin film was produced by the PLD method.
The film forming conditions at that time were the substrate temperature of 550 ° C., the oxygen partial pressure of 4 × 10 −2 Pa, and the same conditions as in Example 1.

しかし、HAll測定の結果、得られたSnO薄膜はp型伝導を示し、正孔濃度1.7×1017cm-
3、移動度1.2cm2/Vsであった。Biをターゲットに添加した場合の正孔濃度は、何も添加
しないSnOターゲットを使用した場合のSnOの正孔濃度2.5×1017cm-3とほとんど変
化がないことから、物理的成膜法では、電子ドープのための不純物として働かないことを
意味する。これは、Bi3+は、Sn2+のアレニウスイオン半径0.93Å未満という要件を満
たしていないことが原因と考えられる。
However, as a result of HAll measurement, the obtained SnO thin film showed p-type conduction, and the hole concentration was 1.7 × 10 17 cm −.
3. The mobility was 1.2 cm 2 / Vs. The hole concentration when Bi is added to the target is almost the same as the hole concentration of SnO 2.5 × 10 17 cm -3 when using an SnO target to which nothing is added. This means that it does not act as an impurity for electron doping. This is considered to be because Bi 3+ does not satisfy the requirement that the Sn 2+ radius of the Arrhenius ion is less than 0.93 mm.

図4に示す構造のSnOホモ接合によるダイオードを作製した。本実施例で作製したホモ
接合は、3×1017cm-3の正孔濃度を有するp-SnO層(1)と、1016cm-3以下の正孔濃度
を有するp-SnO層(2)と、1019cm-3の電子濃度を有するn-SnO:Sb層(3)を
備える。p-SnO層のみでは直列抵抗が増加するため、100nmのp-SnO層(1)と15
0nmのp-SnO層(2)を用いてp-p-n接合ダイオードを作製した。
A diode with a SnO homojunction having the structure shown in FIG. 4 was produced. The homojunction fabricated in this example includes a p-SnO layer (1) having a hole concentration of 3 × 10 17 cm −3 and a p —SnO layer having a hole concentration of 10 16 cm −3 or less ( 2) and an n-SnO: Sb layer (3) having an electron concentration of 10 19 cm −3 . Since only the p -SnO layer increases the series resistance, a 100 nm p-SnO layer (1) and 15
It was prepared -n junction diodes - pp using -SnO layer (2) - 0 nm by p.

1016cm-3以下の小さい正孔濃度を有するp-SnO層(2)を用いることにより空乏層の
厚さが増加し整流特性が改善される。n-SnO:Sb層(3)の電子濃度は1019cm-3と高
濃度であるため、n層側の空乏層は2nm未満であり、pn接合の空乏層の大半はp層側に
伸びる。3×1017cm-3の正孔濃度を有するp-SnO層(1)をn-SnO層(3)と接合さ
せた場合、p層側の空乏層は約60nmである。ここで、正孔濃度1016cm-3程度のp-Sn
O層を導入することにより空乏層は250nmまで増加し、ダイオードの整流性が向上する。
By using the p —SnO layer (2) having a small hole concentration of 10 16 cm −3 or less, the thickness of the depletion layer is increased and the rectification characteristics are improved. Since the electron concentration of the n-SnO: Sb layer (3) is as high as 10 19 cm −3 , the depletion layer on the n layer side is less than 2 nm, and most of the depletion layer of the pn junction extends to the p layer side. . When the p-SnO layer (1) having a hole concentration of 3 × 10 17 cm −3 is joined to the n-SnO layer (3), the depletion layer on the p-layer side is about 60 nm. Here, p -Sn having a hole concentration of about 10 16 cm −3.
By introducing the O layer, the depletion layer is increased to 250 nm, and the rectification of the diode is improved.

基板にはYSZ001単結晶基板(4)を用いた。PLD法により、まず、下部背面電極とするた
めに透明導電膜であるSnドープIn23(ITO)層(5)を成膜した。その後、100nm
のp-SnO層(1)、150nmのp-SnO層(2)、100nmのn-SnO:Sb層(3)の
順に積層した。ここで、各層の成膜条件は以下のとおりである。p-SnO層(1)は、不
純物を添加しないSnO粉末の焼結体をターゲットとして、基板温度550℃、酸素分圧4×
10-2Paとした。p-SnO層(1)を成膜後に、p-SnO層(2)は、不純物を添加しな
いターゲットをそのまま用い、基板温度550℃、酸素分圧4×10-1Paとして成膜した。n層
(3)は、不純物を添加しないターゲットに取り替えて、前記の濃度式で5%のSb濃度と
なるようにSb23粉末を添加したSnO粉末の焼結体をターゲットとして基板温度400
℃、 酸素分圧4×10-2Paの条件で成膜した 。
A YSZ001 single crystal substrate (4) was used as the substrate. First, a Sn-doped In 2 O 3 (ITO) layer (5), which is a transparent conductive film, was formed by the PLD method to form a lower back electrode. Then 100nm
The p-SnO layer (1), the 150 nm p -SnO layer (2), and the 100 nm n-SnO: Sb layer (3) were laminated in this order. Here, the film forming conditions of each layer are as follows. The p-SnO layer (1) has a substrate temperature of 550 ° C. and an oxygen partial pressure of 4 × with a sintered body of SnO powder to which no impurities are added as a target.
10 -2 Pa. p-SnO layer (1) after deposition, p - -SnO layer (2) is used as the target without the addition of impurities, the substrate temperature 550 ° C., was deposited as an oxygen partial pressure of 4 × 10 -1 Pa. The n layer (3) is replaced with a target to which no impurities are added, and a substrate temperature of 400 is used with a sintered body of SnO powder added with Sb 2 O 3 powder so that the Sb concentration is 5% in the above concentration formula.
The film was formed under the conditions of ° C. and oxygen partial pressure of 4 × 10 −2 Pa.

図4に示すメサ構造を作製するために、積層膜上にフォトリソグラフィによりエッチング
のための保護膜を作製した。その後、Arイオンによる反応性イオンエッチング装置を用い
て不要な部分のSnO層を削り取り、ITO層を露出させた。最後に電子線加熱蒸着法を
用いて、最上部のn型SnO層とITO層の上にそれぞれAu/Ni電極(6、7)を形
成した。
In order to produce the mesa structure shown in FIG. 4, a protective film for etching was produced on the laminated film by photolithography. Thereafter, an unnecessary portion of the SnO layer was scraped off using a reactive ion etching apparatus using Ar ions to expose the ITO layer. Finally, Au / Ni electrodes (6, 7) were formed on the uppermost n-type SnO layer and ITO layer, respectively, using electron beam heating vapor deposition.

図5に,SnO薄膜によるホモ接合ダイオードの電流電圧特性を示す。-2Vの逆バイアス
時には1mA以下の電流しか流れていないのに対して、+2Vの順方向バイアス時には10mA以上
の電流が得られることからダイオードとして動作していることが分かる。以上により、S
nO薄膜に対する電子ドーピングが成されていること、及びSnO薄膜を用いてホモ接合
ダイオードが作製できることが示された。
FIG. 5 shows the current-voltage characteristics of a homojunction diode using a SnO thin film. While a current of less than 1mA flows at -2V reverse bias, a current of more than 10mA is obtained at + 2V forward bias, indicating that the diode is operating. Thus, S
It has been shown that electron doping is performed on the nO thin film and that a homojunction diode can be fabricated using the SnO thin film.

SnO薄膜によるpn接合が作製できたことで、薄膜太陽電池にSnO層による約2.7eV
以上のエネルギーを持つ光を吸収する発電層を追加することが可能になり、発電効率の向
上が期待できる。また、安価な材料を用いてホモ接合を作成できるので、製造コストの低
い、薄膜太陽電池を提供できる。
Since a pn junction using a SnO thin film has been fabricated, a thin film solar cell can be formed with a SnO layer of about 2.7 eV.
It becomes possible to add a power generation layer that absorbs light having the above energy, and an improvement in power generation efficiency can be expected. In addition, since a homojunction can be created using an inexpensive material, a thin film solar cell with low manufacturing cost can be provided.

Claims (5)

酸化第一錫(SnO)にAl3+、Ga3+、In3+、Sb3+から選ばれる3価の陽イオンを
不純物として含有し、n型伝導性を示すことを特徴とするSnOからなるn型半導体薄膜
From SnO, characterized in that stannous oxide (SnO) contains a trivalent cation selected from Al 3+ , Ga 3+ , In 3+ , Sb 3+ as an impurity and exhibits n-type conductivity. An n-type semiconductor thin film.
SnOからなるp型半導体薄膜と請求項1記載のn型半導体薄膜とを積層したホモpn接
合素子。
A homo pn junction element in which a p-type semiconductor thin film made of SnO and the n-type semiconductor thin film according to claim 1 are laminated.
請求項2記載のホモpn接合素子を用いた薄膜太陽電池。 A thin film solar cell using the homo pn junction element according to claim 2. SnO粉末にAl3+、Ga3+、In3+、Sb3+から選ばれる3価の陽イオン源の酸化物粉
末を添加混合して焼結したSnOターゲットを用いて物理的成膜法により成膜することを
特徴とする請求項1に記載のSnOからなるn型半導体薄膜の製造方法。
By using a SnO target obtained by adding and mixing an oxide powder of a trivalent cation source selected from Al 3+ , Ga 3+ , In 3+ and Sb 3+ to a SnO powder, a physical film-forming method is used. The method for producing an n-type semiconductor thin film made of SnO according to claim 1, wherein the film is formed.
酸化第一錫(SnO)粉末を焼結したSnOターゲットを用いて物理的成膜法により成膜
したp型SnO薄膜と、SnO粉末にAl3+、Ga3+、In3+、Sb3+から選ばれる3価
の陽イオン源の酸化物粉末を添加混合して焼結したSnOターゲットを用いて物理的成膜
法により成膜したn型SnO薄膜とを積層してホモpn接合を形成することを特徴とする
請求項2に記載のホモpn接合素子の製造方法。
A p-type SnO thin film formed by a physical film forming method using a SnO target obtained by sintering a stannous oxide (SnO) powder, and Al 3+ , Ga 3+ , In 3+ , Sb 3+ on the SnO powder. A homo-pn junction is formed by laminating an n-type SnO thin film formed by a physical film forming method using an SnO target sintered by adding and mixing oxide powder of a trivalent cation source selected from The method for producing a homo pn junction element according to claim 2.
JP2009276867A 2009-12-04 2009-12-04 N-type semiconductor thin film, homo pn junction element and thin film solar cell, and n-type semiconductor thin film and homo pn junction element manufacturing method Expired - Fee Related JP5360587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009276867A JP5360587B2 (en) 2009-12-04 2009-12-04 N-type semiconductor thin film, homo pn junction element and thin film solar cell, and n-type semiconductor thin film and homo pn junction element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009276867A JP5360587B2 (en) 2009-12-04 2009-12-04 N-type semiconductor thin film, homo pn junction element and thin film solar cell, and n-type semiconductor thin film and homo pn junction element manufacturing method

Publications (2)

Publication Number Publication Date
JP2011119547A JP2011119547A (en) 2011-06-16
JP5360587B2 true JP5360587B2 (en) 2013-12-04

Family

ID=44284510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009276867A Expired - Fee Related JP5360587B2 (en) 2009-12-04 2009-12-04 N-type semiconductor thin film, homo pn junction element and thin film solar cell, and n-type semiconductor thin film and homo pn junction element manufacturing method

Country Status (1)

Country Link
JP (1) JP5360587B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101171A (en) * 1993-10-05 1995-04-18 Konica Corp Photothermal conversion type heat mode recording material and image receiving material
JPH08241626A (en) * 1995-03-03 1996-09-17 Hitachi Ltd Transparent conductive film, and manufacture and application thereof
JP4083866B2 (en) * 1998-04-28 2008-04-30 シャープ株式会社 Semiconductor laser element
US7692204B2 (en) * 2003-08-29 2010-04-06 Osram Gmbh Radiation emitting semi-conductor element
US7194173B2 (en) * 2004-07-16 2007-03-20 The Trustees Of Princeton University Organic devices having a fiber structure
KR100590775B1 (en) * 2004-12-08 2006-06-19 한국전자통신연구원 Silicon-based light emitting diode
US8038911B2 (en) * 2006-08-10 2011-10-18 Idemitsu Kosan Co., Ltd. Lanthanoid-containing oxide target
JP5506213B2 (en) * 2009-03-06 2014-05-28 キヤノン株式会社 Method for forming semiconductor device

Also Published As

Publication number Publication date
JP2011119547A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
Liu et al. Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies
Lee et al. Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells
Wang et al. Device performance of the mott insulator LaVO 3 as a photovoltaic material
Gao et al. Photovoltaic properties of the p-CuO/n-Si heterojunction prepared through reactive magnetron sputtering
Park et al. Co‐optimization of SnS absorber and Zn (O, S) buffer materials for improved solar cells
Dhawale et al. Impact of various dopant elements on the properties of kesterite compounds for solar cell applications: a status review
US8575478B2 (en) Integrated structure of CIS based solar cell
Lin et al. Characteristics of Cu2ZnSn (SxSe1− x) 4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment
TWI455333B (en) Solar cell
US8093684B2 (en) Iron sulfide semiconductor doped with Mg or Zn, junction devices and photoelectric converter comprising same
US20140238479A1 (en) Thin film solar cell
WO2003105238A1 (en) Polycrystalline thin-film solar cells
Kim et al. Narrow-bandgap Cu2Sn1− xGexSe3 thin film solar cells
Wang et al. Interface engineering of antimony selenide solar cells: A review on the optimization of energy band alignments
Hegde et al. Preparation and characterization of SnS thin films for solar cell application
Wang et al. Heteroepitaxial growth of Cu2O films on Nb-SrTiO3 substrates and their photovoltaic properties
JP2017135329A (en) Copper nitride semiconductor and manufacturing method of the same
JP5360587B2 (en) N-type semiconductor thin film, homo pn junction element and thin film solar cell, and n-type semiconductor thin film and homo pn junction element manufacturing method
Zhao et al. P-type Ca doped SrCu2O2 thin film: Synthesis, optical property and photovoltaic application
Chen et al. A review of Cu2O solar cell
KR20160133727A (en) Preparing method of metal chacogenide film
Khadka et al. Passivation of the Recombination Activities with Rubidium incorporation for Efficient and Stable Sn-HaP Solar Cells
Kangsabanik et al. A comprehensive review on the recent strategy of cation substitution in CZTS (Se) thin films to achieve highly efficient kesterite solar cells
Gezgin et al. The Investigation of Photovoltaic and Electrical Properties of Bi Doped CTS/Si Hetero-Junction Structure for the Solar Cell Application
Deguchi Application of solar cell using II‐III‐VI compound thin film fabricated by conventional sputtering process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5360587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees