JP5359573B2 - Multi-tube burner manufacturing method and multi-tube burner - Google Patents

Multi-tube burner manufacturing method and multi-tube burner Download PDF

Info

Publication number
JP5359573B2
JP5359573B2 JP2009136586A JP2009136586A JP5359573B2 JP 5359573 B2 JP5359573 B2 JP 5359573B2 JP 2009136586 A JP2009136586 A JP 2009136586A JP 2009136586 A JP2009136586 A JP 2009136586A JP 5359573 B2 JP5359573 B2 JP 5359573B2
Authority
JP
Japan
Prior art keywords
tube
quartz tube
burner
quartz
base end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009136586A
Other languages
Japanese (ja)
Other versions
JP2010280549A (en
Inventor
利已 幅崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009136586A priority Critical patent/JP5359573B2/en
Publication of JP2010280549A publication Critical patent/JP2010280549A/en
Application granted granted Critical
Publication of JP5359573B2 publication Critical patent/JP5359573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a multiple pipe burner which can improve assembling accuracy in the longitudinal direction of a multiple pipe burner, and can suppress consumption and breakage at the tip of a quartz burner, and to provide a multiple pipe burner. <P>SOLUTION: In the method for producing the multiple pipe burner, quartz pipes are arranged into a multiple way, and are assembled so as to produce the multiple pipe burner. The method comprises: a stage where annular spacers 35a to 35g are externally inserted into an external quartz pipe; a stage where an external quartz pipe is inserted from the base end side into the outside of the internal quartz pipe, and further, the internal circumferences of the base end parts 19a to 31a are externally inserted into the annular spacers 35a to 35g; and a stage where the base end parts 19a to 31a of the external quartz pipe are heated and deformed in a size reduction direction over the circumferential direction of the base end parts 19a to 31a of the outside quartz pipe, and assembling is performed. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、径の異なる複数本の石英管を多重管構造に溶接してバーナ本体が形成される多重管バーナの製造方法及び多重管バーナに関し、特に、多重管構造の精度を向上させるための改良技術に関する。   The present invention relates to a multi-tube burner manufacturing method and a multi-tube burner in which a burner body is formed by welding a plurality of quartz tubes having different diameters to a multi-tube structure, and in particular, for improving the accuracy of the multi-tube structure. Related to improved technology.

光ファイバ用多孔質母材の製造法として、H2ガスを燃焼ガスとし、O2ガスを助燃ガスとし、Arガス又はN2ガスなどの不活性ガスをキャリアガス又はシールガスとし、SiCl4、ドープ剤としてのGeCl4などの各種の原料ガスをバーナに供給し、これら原料ガスの加水分解反応により生じたガラス微粒子を、堆積基準点に設置した出発ターゲット材に向けて噴出・堆積させる方法が知られている。 As a method for producing a porous preform for an optical fiber, H 2 gas is used as a combustion gas, O 2 gas is used as a combustion gas, an inert gas such as Ar gas or N 2 gas is used as a carrier gas or a seal gas, SiCl 4 , There is a method in which various source gases such as GeCl 4 as a dopant are supplied to a burner, and glass fine particles generated by hydrolysis reaction of these source gases are ejected and deposited toward a starting target material set at a deposition reference point. Are known.

光ファイバ用多孔質母材は、製造時に金属系の不純物が混入すると光ファイバ化した際に伝送損失の増大を招くため、製造時の金属系不純物の混入を防止する目的で石英バーナが用いられる(例えば、特許文献1,2参照)。   Since a porous preform for optical fiber causes an increase in transmission loss when it is made into an optical fiber if metallic impurities are mixed during manufacturing, a quartz burner is used for the purpose of preventing mixing of metallic impurities during manufacturing. (For example, refer to Patent Documents 1 and 2).

図6(a),(b)は、従来の石英多重管(4重管)バーナを示したものである。
石英多重管バーナ500は、各種の原料ガス用に複数のガス導入路501a〜501dを備えたバーナ本体501と、バーナ本体501の各ガス導入路501a〜501dに接続される複数個のガス供給用枝管503a〜503dとを備えている。
6 (a) and 6 (b) show a conventional quartz multiple tube (quadruple tube) burner.
The quartz multi-tube burner 500 is used for supplying a plurality of gases connected to each of the gas introduction paths 501a to 501d of the burner body 501 and a burner body 501 having a plurality of gas introduction paths 501a to 501d for various source gases. Branch pipes 503a to 503d are provided.

バーナ本体501は、径の異なる複数本の石英管505,507,509,511相互を同心状に嵌合配置すると共に、隣接する石英管同士は内側の石英管の外周に外側の石英管の基端部507a,509a,511aを溶接することで同心状多重管構造に形成される。このバーナ本体501は、最内側の石英管505の内部空間と、隣接する石英管相互間の隙間とが、それぞれ原料ガスなどを導くガス導入路501a〜501dとなる。   The burner body 501 has a plurality of quartz tubes 505, 507, 509, and 511 having different diameters concentrically fitted to each other, and adjacent quartz tubes are connected to each other on the outer periphery of the inner quartz tube. The end portions 507a, 509a, and 511a are welded to form a concentric multiple tube structure. In the burner main body 501, the inner space of the innermost quartz tube 505 and the gap between adjacent quartz tubes serve as gas introduction paths 501a to 501d for introducing a raw material gas and the like, respectively.

また、各ガス供給用枝管503a〜503dは、石英ガラス製の管体で、図示せぬガス供給装置からのガス供給用チューブを前述した各ガス導入路501a〜501dに接続するために、各石英管505〜511の基端部505a,507a,509a,511a寄り位置に溶接装備される。以上の石英多重管バーナ500は、同心状多重管構造をなしたバーナ本体501の先端に、複数種の原料ガスによる火炎を形成する。   Each of the gas supply branch pipes 503a to 503d is a quartz glass tube, and each of the gas supply branch pipes 503a to 503d is connected to each of the gas introduction paths 501a to 501d described above. The quartz tubes 505 to 511 are welded at positions close to the base end portions 505a, 507a, 509a, and 511a. The quartz multi-tube burner 500 described above forms a flame with a plurality of types of source gases at the tip of the burner body 501 having a concentric multi-tube structure.

従来、この種の石英多重管バーナ500は、精度の良い石英管505〜511を製作し、隣接する石英管相互の溶接部において、図6(a)に示すように、外側の石英管の基端部507a,509a,511aを、徐々に縮径する湾曲面形態で内側の石英管の外周に繋がる溶接構造にて組み付けられている。   Conventionally, this type of quartz multiple tube burner 500 has produced quartz tubes 505 to 511 with high accuracy, and at the welded portion between adjacent quartz tubes, as shown in FIG. The ends 507a, 509a, and 511a are assembled in a welded structure that is connected to the outer periphery of the inner quartz tube in the form of a curved surface that gradually decreases in diameter.

特開2003−246627号公報JP 2003-246627 A 特開2004−51378号公報JP 2004-51378 A

しかしながら、従来の石英多重管バーナ500は、組付け溶接に際し、特許文献2に開示されるように、先端部に精度の良い調芯用治具やスペーサを挿入し先端の精度を維持しながら組み付けを実施し、溶接後に先端の調芯用治具等を外して組み付けられる。このため、先端の間隙S1(図7参照)は、調芯用治具を入れるので精度良く製作できるが、基端部507a,509a,511aが溶接時に偏り、図7(a)に示すように、多重管バーナの長手方向全長においてガス導入路501の間隙S2が一定とならず、長手方向に精度がでない場合がある。長手方向の精度が悪いと、図7(b)に示すように、例えば外側石英管509の基端部509aと内側石英管507が偏心し、多重管バーナから出る火炎が安定しない。なお、図7,8中、Gは多重管バーナ500(図6参照)の軸線を表す。このような偏心により長手方向の精度が悪いと、図8に示すように、例えば、径の異なる8本の石英管が相互に配置され、内側の石英管(群)505が生成する火炎512と、外側の石英管群507,509が生成する火炎513とで複数の火炎512,513を生成し、外側の火炎513を生成する外側の石英管群507,509の先端位置より、内側の火炎512を生成する内側の石英管(群)505の先端位置が内側に後退した2重火炎バーナにおいては、内側の火炎512が不安定になり、外側の石英管507,509等の先端(特に内周部分507b,509b)を自身の内側の火炎512で消耗したり、破損したりする。   However, as disclosed in Patent Document 2, the conventional quartz multiple tube burner 500 is assembled while maintaining the accuracy of the tip by inserting an accurate alignment jig or spacer at the tip as disclosed in Patent Document 2. After the welding, the tip aligning jig is removed and assembled. For this reason, the gap S1 at the distal end (see FIG. 7) can be manufactured with high accuracy by inserting an alignment jig, but the base end portions 507a, 509a, and 511a are biased during welding, as shown in FIG. 7 (a). The gap S2 of the gas introduction path 501 is not constant over the entire length in the longitudinal direction of the multi-tube burner, and the accuracy in the longitudinal direction may not be achieved. If the accuracy in the longitudinal direction is poor, as shown in FIG. 7B, for example, the base end portion 509a of the outer quartz tube 509 and the inner quartz tube 507 are eccentric, and the flame emitted from the multi-tube burner is not stable. 7 and 8, G represents the axis of the multi-tube burner 500 (see FIG. 6). When the accuracy in the longitudinal direction is poor due to such eccentricity, as shown in FIG. 8, for example, eight quartz tubes having different diameters are mutually arranged, and the flame 512 generated by the inner quartz tube (group) 505 The plurality of flames 512 and 513 are generated by the flame 513 generated by the outer quartz tube group 507 and 509, and the inner flame 512 is formed from the tip position of the outer quartz tube group 507 and 509 that generates the outer flame 513. In the double flame burner in which the tip position of the inner quartz tube (group) 505 generating the inner side is retreated inward, the inner flame 512 becomes unstable, and the tips (particularly the inner circumference) of the outer quartz tubes 507, 509, etc. The parts 507b, 509b) are consumed or broken by the flame 512 inside them.

本発明は上記状況に鑑みてなされたもので、その目的は、多重管バーナの長手方向の組付け精度を向上させることができ、石英バーナ先端の消耗や、破損を抑止できる多重管バーナの製造方法及び多重管バーナを提供することにある。   The present invention has been made in view of the above situation, and the object thereof is to manufacture a multi-tube burner that can improve the assembly accuracy in the longitudinal direction of the multi-tube burner and suppress consumption and breakage of the tip of the quartz burner. It is to provide a method and a multi-tube burner.

本発明に係る上記目的は、下記構成により達成される。
(1) 石英管を多重に配置し、組み付けることにより製造される多重管バーナの製造方法であって、
内側石英管の外側石英管を溶着する位置近傍に環状スペーサを外挿する工程と、
前記外側石英管を基端側から前記内側石英管の外側に外挿するとともに前記外側石英管の基端部を前記環状スペーサに外挿する工程と、
前記外側石英管の基端部を円周方向に渡って縮径方向に加熱変形させて前記内側石英管の外周に溶着する工程と、を実施し、
前記スペーサの厚みにより設定した間隔で前記石英管を多重に組み付けることを特徴とする多重管バーナの製造方法。
The above object of the present invention is achieved by the following configuration.
(1) A method of manufacturing a multi-tube burner manufactured by arranging and assembling a plurality of quartz tubes,
Extrapolating an annular spacer near the position where the outer quartz tube of the inner quartz tube is welded;
Extrapolating the outer quartz tube from the proximal side to the outside of the inner quartz tube and extrapolating the proximal end of the outer quartz tube to the annular spacer; and
Performing a step of heat-deforming the base end portion of the outer quartz tube in the direction of diameter reduction in the circumferential direction and welding the outer end of the inner quartz tube,
A method of manufacturing a multi-tube burner, wherein the quartz tubes are assembled in multiple intervals at intervals set by the thickness of the spacer.

この多重管バーナの製造方法によれば、内側石英管の外周に精度の良い環状スペーサが挿入され、この内側石英管に外挿された外側石英管の基端部が環状スペーサの厚みにより設定した間隔で外挿され、環状スペーサを入れた状態で溶接されることで基端部の位置決めが確実に実施されるので、基端部における半径方向の石英管の位置精度が向上する。   According to this multi-tube burner manufacturing method, an accurate annular spacer is inserted on the outer periphery of the inner quartz tube, and the base end portion of the outer quartz tube that is extrapolated to the inner quartz tube is set by the thickness of the annular spacer. Since the base end is positioned with certainty by extrapolating at intervals and welding with the annular spacer inserted, the positional accuracy of the quartz tube in the radial direction at the base end is improved.

(2) (1)の多重管バーナの製造方法であって、
前記内側石英管の先端外周と前記外側石英管の内周との間に、先端部の位置決め治具を挿入し、前記内側石英管の先端と前記外側石英管との間隔が、前記位置決め治具の厚みにより設定した間隔となるように位置決めすることを特徴とする多重管バーナの製造方法。
(2) A method of manufacturing a multi-tube burner according to (1),
A positioning jig at the tip is inserted between the outer periphery of the inner quartz tube and the inner periphery of the outer quartz tube, and the distance between the tip of the inner quartz tube and the outer quartz tube is the positioning jig. A method of manufacturing a multi-tube burner, characterized in that positioning is performed so as to have an interval set according to the thickness of the tube.

この多重管バーナの製造方法によれば、内側石英管と外側石英管の長手方向の両端において、半径方向の位置決めが確実に実施され、長手方向全長に渡る石英管の位置精度が確実に確保される。   According to this multi-tube burner manufacturing method, the radial positioning is reliably performed at both ends in the longitudinal direction of the inner quartz tube and the outer quartz tube, and the positional accuracy of the quartz tube is ensured over the entire length in the longitudinal direction. The

(3) (1)又は(2)の多重管バーナの製造方法であって、
石英製の前記環状スペーサを使用し、
該環状スペーサを前記基端部と共に前記内側石英管の外周に溶着することを特徴とする多重管バーナの製造方法。
(3) A method of manufacturing a multi-tube burner according to (1) or (2),
Using the annular spacer made of quartz,
A method of manufacturing a multi-tube burner, wherein the annular spacer is welded to the outer periphery of the inner quartz tube together with the base end portion.

この多重管バーナの製造方法によれば、環状スペーサの一部分が外側石英管の基端部と共に内側石英管の外周に溶着され、位置精度が向上する。   According to this multi-tube burner manufacturing method, a part of the annular spacer is welded to the outer periphery of the inner quartz tube together with the base end portion of the outer quartz tube, so that the positional accuracy is improved.

(4) (1)又は(2)の多重管バーナの製造方法であって、
カーボン製の前記環状スペーサを使用し、
前記基端部を前記内側石英管の外周に溶着した後、前記環状スペーサを酸化除去することを特徴とする多重管バーナの製造方法。
(4) A method of manufacturing a multi-tube burner according to (1) or (2),
Using the annular spacer made of carbon,
After the base end portion is welded to the outer periphery of the inner quartz tube, the annular spacer is oxidized and removed.

この多重管バーナの製造方法によれば、内側石英管の外周に挿入された環状スペーサにて外側石英管の基端部が高精度に位置決めされて溶着された後、燃焼等により環状スペーサが除去されることにより、通常の石英管と同じ形状の多重管を、溶着部付近における半径方向の位置精度を向上して製造することができる。カーボンの場合、石英より寸法精度を高く加工することができるので、より位置精度を高くすることが可能である。   According to this multi-tube burner manufacturing method, after the base end of the outer quartz tube is positioned and welded with high accuracy by the annular spacer inserted on the outer periphery of the inner quartz tube, the annular spacer is removed by combustion or the like. As a result, a multiple tube having the same shape as a normal quartz tube can be manufactured with improved radial position accuracy in the vicinity of the welded portion. In the case of carbon, since the dimensional accuracy can be processed higher than that of quartz, the positional accuracy can be further increased.

(5) 内側石英管と、
該内側石英管に外挿した環状スペーサと、
前記内側石英管の外側に基端側から挿入され基端部が前記環状スペーサに外挿されるとともに円周方向に渡って縮径方向に加熱変形された該基端部が前記内側石英管の外周に溶着される外側石英管と、
を具備することを特徴とする多重管バーナ。
(5) inner quartz tube;
An annular spacer extrapolated to the inner quartz tube;
The base end portion inserted from the base end side to the outside of the inner quartz tube, the base end portion being extrapolated by the annular spacer, and being thermally deformed in the diameter reducing direction in the circumferential direction is the outer periphery of the inner quartz tube. An outer quartz tube welded to the
A multi-tube burner comprising:

この多重管バーナによれば、外側石英管基端部の内面と内側石英管の外面の隙間がスペーサの厚みにより任意に設定した値となることで基端部における半径方向の石英管の位置精度が向上し、ガスの流れが安定する結果、火炎が安定する。   According to this multi-tube burner, the gap between the inner surface of the outer quartz tube base end and the outer surface of the inner quartz tube becomes a value set by the thickness of the spacer so that the position accuracy of the quartz tube in the radial direction at the base end As a result, the gas flow is stabilized and the flame is stabilized.

(6) (5)の多重管バーナであって、
径の異なる複数の前記石英管が相互に配置され、
内側の石英管群が生成する火炎と、外側の石英管群が生成する火炎とで複数の火炎を生成し、外側の火炎を生成する前記外側の石英管群の先端位置より、内側の火炎を生成する前記内側の石英管群の先端位置が内側に後退して設けられたことを特徴とする多重管バーナ。
(6) The multi-tube burner of (5),
A plurality of the quartz tubes having different diameters are arranged mutually,
A plurality of flames are generated by the flame generated by the inner quartz tube group and the flame generated by the outer quartz tube group, and the inner flame is moved from the tip position of the outer quartz tube group that generates the outer flame. A multi-tube burner characterized in that a tip position of the inner quartz tube group to be generated is provided so as to recede inward.

この多重管バーナによれば、2重火炎などの複数火炎となるバーナにおいて、内側火炎の精度(傾き)を上げることができるので、外側の石英管が内側の火炎により損傷を受けることが少なくなり、多重管バーナの耐久性を高めることができる。   According to this multi-tube burner, the accuracy (inclination) of the inner flame can be increased in a burner having multiple flames such as a double flame, so that the outer quartz tube is less likely to be damaged by the inner flame. The durability of the multi-tube burner can be increased.

本発明に係る多重管バーナの製造方法によれば、内側石英管に環状スペーサを外挿し、外側石英管を基端側から内側石英管に挿入して環状スペーサの外周に外挿し、その基端部を円周方向に渡って縮径方向に加熱変形させて内側石英管の外周に溶着するので、外側石英管の基端部における半径方向の位置精度を向上させることができる。さらに先端部にも位置決め治具を挿入してから溶着させることで、多重管バーナの長手方向の組付け精度を向上させることができる。   According to the method of manufacturing a multi-tube burner according to the present invention, an annular spacer is extrapolated to the inner quartz tube, an outer quartz tube is inserted into the inner quartz tube from the proximal end side, and is extrapolated to the outer periphery of the annular spacer. Since the portion is heated and deformed in the direction of diameter reduction in the circumferential direction and welded to the outer periphery of the inner quartz tube, the positional accuracy in the radial direction at the base end portion of the outer quartz tube can be improved. Furthermore, the assembly accuracy in the longitudinal direction of the multi-tube burner can be improved by inserting a positioning jig into the tip portion and then welding.

本発明に係る多重管バーナによれば、内側石英管に外挿した環状スペーサと、内側石英管に外挿され基端部が環状スペーサに外挿されるとともに、この基端部が内側石英管の外周に溶着される外側石英管とを備えるので、溶着部付近における半径方向の石英管の位置精度が向上し、多重管バーナの長手方向の精度が高まり、ガスの流れが安定する。その結果、火炎が安定し、石英バーナ先端の消耗や、破損を抑止できる。   According to the multiple tube burner of the present invention, an annular spacer that is extrapolated to the inner quartz tube, and a base end portion that is extrapolated to the inner quartz tube is extrapolated to the annular spacer. Since the outer quartz tube welded to the outer periphery is provided, the positional accuracy of the quartz tube in the radial direction in the vicinity of the welded portion is improved, the accuracy in the longitudinal direction of the multi-tube burner is increased, and the gas flow is stabilized. As a result, the flame is stabilized, and consumption and damage of the tip of the quartz burner can be suppressed.

(a)は実施の形態による多重管バーナの縦断面図、(b)は(a)のC−C断面図である。(A) is a longitudinal cross-sectional view of the multiple tube burner by embodiment, (b) is CC sectional drawing of (a). 図1のD部拡大図である。It is the D section enlarged view of FIG. 図1に示した多重管バーナの組付け工程を(a)〜(e)に示した組付け手順説明図である。It is an assembly procedure explanatory view showing the assembly process of the multiple tube burner shown in Drawing 1 in (a)-(e). 内側石英管と外側石英管の先端部における位置規制状況を(a)(b)で表した要部断面図である。It is principal part sectional drawing which represented the position control condition in the front-end | tip part of an inner side quartz tube and an outer side quartz tube with (a) (b). 他の実施の形態による多重管バーナの要部拡大断面図である。It is a principal part expanded sectional view of the multiple tube burner by other embodiment. 従来の石英多重管バーナの構造説明図で、(a)は縦断面図、(b)は(a)のA矢視図である。It is structure explanatory drawing of the conventional quartz multiple tube burner, (a) is a longitudinal cross-sectional view, (b) is A arrow directional view of (a). 従来の石英多重管バーナにおける内側石英管と外側石英管の偏心状況を表す図で、(a)は縦断面図、(b)は(a)のB−B断面図である。It is a figure showing the eccentric condition of the inner side quartz tube and the outer side quartz tube in the conventional quartz multiple tube burner, (a) is a longitudinal cross-sectional view, (b) is BB sectional drawing of (a). 火炎を受けて損傷の生じる石英管先端の縦断面図である。It is a longitudinal cross-sectional view of the tip of the quartz tube which is damaged by receiving a flame.

以下、本発明の実施の形態を図面を参照して説明する。
図1(a)は実施の形態による多重管バーナの縦断面図、(b)は(a)のC−C断面図である。
多重管バーナ(本例では8重管を図示)100は、光ファイバ用多孔質ガラス母材の製造に使用するもので、詳しくは、H2ガスを燃焼ガスとし、O2ガスを助燃ガスとし、Arガス又はN2 ガスなどの不活性ガスをキャリアガス又はシールガスとして、SiCl4、ドープ剤としてのGeCl4などの各種の原料ガスによる火炎の加水分解反応により生じたガラス微粒子を、堆積基準点に設置した出発ターゲット材に向けて噴出・堆積させる製造法で使用するバーナである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Fig.1 (a) is a longitudinal cross-sectional view of the multi-tube burner by embodiment, (b) is CC sectional drawing of (a).
A multi-tube burner (in this example, an eight-fold tube is shown) 100 is used for manufacturing a porous glass preform for optical fiber. Specifically, H 2 gas is used as a combustion gas, and O 2 gas is used as a combustion gas. Deposition standards for glass particles generated by flame hydrolysis reaction with various source gases such as SiCl 4 and GeCl 4 as a dopant using inert gas such as Ar gas or N 2 gas as carrier gas or seal gas It is a burner that is used in a manufacturing method that ejects and deposits toward a starting target material installed at a point.

この多重管バーナ100は、各種の原料ガス用に複数のガス導入路11a〜11hを備えたバーナ本体13と、バーナ本体13の各ガス導入路11a〜11hに接続される複数個のガス供給用枝管15a〜15hとを備えている。軸線Gに沿う方向の全長は、数100mm程度にて製作される。   This multi-tube burner 100 is provided with a burner body 13 having a plurality of gas introduction paths 11a to 11h for various source gases, and a plurality of gas supply units connected to the gas introduction paths 11a to 11h of the burner body 13. Branch pipes 15a to 15h. The total length in the direction along the axis G is about several hundred mm.

このバーナ本体13は、径の異なる複数本の石英管17,19,21,23,25,27,29,31(17〜31)相互を同心状に嵌合配置すると共に、隣接する石英管同士は内側石英管の外周に外側石英管の基端部19a〜31aを溶接することで、同心状多重管構造に形成されている。バーナ本体13は、最内側の石英管17の内部空間と、隣接する石英管相互間の隙間が、それぞれガス導入路11a〜11hとなっている。   The burner body 13 has a plurality of quartz tubes 17, 19, 21, 23, 25, 27, 29, 31 (17 to 31) having different diameters fitted and arranged concentrically with each other and adjacent quartz tubes to each other. Is formed in a concentric multiple tube structure by welding the base end portions 19a to 31a of the outer quartz tube to the outer periphery of the inner quartz tube. In the burner body 13, the internal space of the innermost quartz tube 17 and the gaps between adjacent quartz tubes are gas introduction paths 11 a to 11 h, respectively.

また、各ガス供給用枝管15a〜15hは、石英ガラス製の管体で、図示せぬガス供給装置からのガス供給用チューブを接続するために、各石英管17〜31の基端部17a〜31a寄り位置に溶接装備されている。また、本実施の形態による多重管バーナ100は、石英管23〜31の先端が軸線Gに直交する垂直面33上に配置され、石英管21〜17が垂直面33よりも後退した位置に配置される。以上の多重管バーナ100は、同心状多重管構造を成したバーナ本体13の先端に、複数種の原料ガスによる火炎を形成する。なお、この多重管バーナ100は、一例として2重火炎となる8重管バーナの構造を記載し説明したが、3重火炎となる12重管バーナ、4重火炎となる16重管バーナなどの、他の多重管バーナの構造においても、同様な構成にすることができる。   Each of the gas supply branch pipes 15a to 15h is a quartz glass tube, and a base end portion 17a of each of the quartz pipes 17 to 31 is connected to connect a gas supply tube from a gas supply device (not shown). It is equipped with welding at a position close to ~ 31a. Further, in the multi-tube burner 100 according to the present embodiment, the tips of the quartz tubes 23 to 31 are arranged on a vertical surface 33 orthogonal to the axis G, and the quartz tubes 21 to 17 are arranged at a position retracted from the vertical surface 33. Is done. The multiple tube burner 100 described above forms a flame with a plurality of types of source gases at the tip of the burner body 13 having a concentric multiple tube structure. The multi-tube burner 100 is described and described as an example of the structure of an 8-fold tube burner that becomes a double flame, but a 12-fold tube burner that becomes a triple flame, a 16-fold tube burner that becomes a double flame, and the like. The same structure can be applied to other multi-tube burner structures.

多重管バーナ100は、内側石英管に同心円状に外挿した石英製の環状スペーサ35a,35b,35c,35d,35e,35f,35g(35a〜35g)を、外側石英管の基端部19a〜31aとの間に有する。環状スペーサ35a〜35gは、ガス供給用枝管15a〜15hよりも基端部19a〜31a寄りに配置される。環状スペーサ35a〜35gは、内周が内側石英管の外周に密着し、外周が外側石英管の内周に密着する。 Multi-tube burner 100, quartz annular spacer 35a extrapolated in the heart circle inside a quartz tube, 35b, 35c, 35d, 35e , 35f, 35g and (35a~35g), the proximal end portion of the outer quartz tube Between 19a and 31a. The annular spacers 35a to 35g are disposed closer to the base end portions 19a to 31a than the gas supply branch pipes 15a to 15h. In the annular spacers 35a to 35g, the inner periphery is in close contact with the outer periphery of the inner quartz tube, and the outer periphery is in close contact with the inner periphery of the outer quartz tube.

図2は図1のD部拡大図である。
環状スペーサ35a〜35gは、半径方向が所定厚(定められた厚み)dで高精度に形成される。具体的にはd=1mmの寸法で交差が±0.05mm程度で製作される。精度±0.05mmの環状スペーサ35a〜35gを設けることにより、全長の隙間精度が±0.1〜0.2mm程度以下に確保可能となる。なお、環状スペーサ35a〜35gの軸線Gに沿う方向の寸法Tは、例えば5mm程度で製作されるが、特にこの値に限定されるものではなく、1mmであっても10mmであってもよい。
FIG. 2 is an enlarged view of a portion D in FIG.
The annular spacers 35a to 35g are formed with high accuracy with a predetermined thickness (defined thickness) d in the radial direction. Specifically, it is manufactured with a dimension of d = 1 mm and an intersection of about ± 0.05 mm. By providing the annular spacers 35a to 35g with an accuracy of ± 0.05 mm, the clearance accuracy over the entire length can be secured to about ± 0.1 to 0.2 mm. The dimension T of the annular spacers 35a to 35g in the direction along the axis G is, for example, about 5 mm, but is not particularly limited to this value, and may be 1 mm or 10 mm.

外側石英管は、内側石英管の外側に基端部19a〜31a側から挿入され、基端部19a〜31aの内周が環状スペーサ35a〜35gに同心円状に外挿される。環状スペーサ35a〜35gに外挿された基端部19a〜31aは、円周方向に渡って縮径方向に加熱変形され、溶着部37にて内側石英管の外周に溶着されている。本実施の形態では、環状スペーサ35a〜35gは直接溶融しないが、内側石英管と外側石英管との間に嵌め込まれ、多重管バーナ100に一体的に設けられる。   The outer quartz tube is inserted into the outer side of the inner quartz tube from the base end portions 19a to 31a, and the inner circumferences of the base end portions 19a to 31a are extrapolated concentrically to the annular spacers 35a to 35g. The base end portions 19 a to 31 a that are extrapolated to the annular spacers 35 a to 35 g are heat-deformed in the diameter-reducing direction over the circumferential direction, and are welded to the outer periphery of the inner quartz tube by the welding portion 37. In the present embodiment, the annular spacers 35 a to 35 g are not directly melted, but are fitted between the inner quartz tube and the outer quartz tube and are provided integrally with the multi-tube burner 100.

このように、内側石英管の外周と外側石英管の間に、環状スペーサ35a〜35gを挟持した多重管バーナ100では、外側石英管の内面と内側石英管の外面の隙間(ガス導入路11a〜11hの半径方向の隙間)Sが一定となることで、環状のガス流路断面積が長手方向全長に渡る石英管の任意の位置でほぼ等しくなり、ガスの流れが安定し、その結果、火炎が安定する。   As described above, in the multi-tube burner 100 in which the annular spacers 35a to 35g are sandwiched between the outer periphery of the inner quartz tube and the outer quartz tube, the gap between the inner surface of the outer quartz tube and the outer surface of the inner quartz tube (gas introduction path 11a to 11a). 11h radial gap) S is constant, the annular gas flow path cross-sectional area becomes almost equal at any position of the quartz tube over the entire length in the longitudinal direction, and the gas flow is stabilized, resulting in a flame. Is stable.

次に、上記構成を有する多重管バーナ100の製造方法を説明する。
図3は図1に示した多重管バーナの組付け工程を(a)〜(e)に示した組付け手順説明図、図4は内側石英管と外側石英管の先端部における位置規制状況を(a)(b)で表した要部断面図である。
本実施の形態では、最内側石英管17の外周に、外側石英管19を溶着するが、本発明に係る製造方法は、全ての石英管19〜31を予め挿入しておき、基端部19a〜31aを一工程で溶着するものであってもよい。
例えば、内側石英管17に外側石英管19を溶着するには、先ず、図3(a)に示すように、内側石英管17の外周に環状スペーサ35aを同心円状に外挿し、図3(b)に示すように、環状スペーサ35aを内側石英管17の軸線G方向の所定位置に配置する。
Next, a method for manufacturing the multi-tube burner 100 having the above configuration will be described.
FIG. 3 is an explanatory diagram of the assembling procedure shown in (a) to (e) of the assembling process of the multi-tube burner shown in FIG. 1, and FIG. 4 shows the position regulation status at the tip portions of the inner and outer quartz tubes. It is principal part sectional drawing represented by (a) and (b).
In the present embodiment, the outer quartz tube 19 is welded to the outer periphery of the innermost quartz tube 17, but the manufacturing method according to the present invention inserts all the quartz tubes 19 to 31 in advance, and the base end 19a. ˜31a may be welded in one step.
For example, in order to weld the outer quartz tube 19 to the inner quartz tube 17, first, as shown in FIG. 3A, an annular spacer 35 a is extrapolated concentrically around the outer periphery of the inner quartz tube 17, and FIG. The annular spacer 35a is disposed at a predetermined position in the direction of the axis G of the inner quartz tube 17 as shown in FIG.

次いで、図3(c)に示すように、外側石英管19を成形前の基端部19b側から内側石英管17の外側に挿入する。外側石英管19は、図3(d)に示すように、基端部19bの内周が、環状スペーサ35aに同心円状に外挿されるまで挿入する。基端部19bは、溶接代を環状スペーサ35aよりも挿入方向側(図3の右側)へ突出させておく。   Next, as shown in FIG. 3C, the outer quartz tube 19 is inserted into the outer side of the inner quartz tube 17 from the base end 19b side before molding. As shown in FIG. 3D, the outer quartz tube 19 is inserted until the inner circumference of the base end portion 19b is extrapolated concentrically to the annular spacer 35a. The base end portion 19b projects the welding allowance to the insertion direction side (right side in FIG. 3) from the annular spacer 35a.

次いで、内側石英管17の先端外周と、外側石英管19の内周との間に、図4(a)に示すように、半径方向所定厚dの位置決め治具39を挿入し、内側石英管17の先端と外側石英管19を同心円状に位置決めする。位置決め治具39は、円周方向に複数のものを挿入してもよく、環状のものであってもよい。また、内側石英管の先端が外側石英管の先端よりも後退する例えば内側石英管21と外側石英管23の場合には、図4(b)に示すように、内側石英管21の先端外周と、外側石英管23の内周との間に位置決め治具39を挿入する。   Next, as shown in FIG. 4A, a positioning jig 39 having a predetermined thickness d in the radial direction is inserted between the outer periphery of the tip of the inner quartz tube 17 and the inner periphery of the outer quartz tube 19, and the inner quartz tube The tip of 17 and the outer quartz tube 19 are positioned concentrically. A plurality of positioning jigs 39 may be inserted in the circumferential direction, or may be annular. For example, in the case of the inner quartz tube 21 and the outer quartz tube 23 in which the tip of the inner quartz tube recedes from the tip of the outer quartz tube, as shown in FIG. A positioning jig 39 is inserted between the inner periphery of the outer quartz tube 23.

このように、先端側に位置決め治具39を挿入することで、内側石英管と外側石英管の長手方向の両端において、半径方向の位置決めが確実に実施され、長手方向全長に渡る石英管17〜31の位置精度が確実に確保される。   In this way, by inserting the positioning jig 39 on the distal end side, the radial positioning is reliably performed at both ends in the longitudinal direction of the inner quartz tube and the outer quartz tube, and the quartz tube 17 to the entire length in the longitudinal direction. The position accuracy of 31 is reliably ensured.

内側石英管17と外側石英管19の両端が位置決めされたなら、図3(e)に示すように、外側石英管19の基端部19aを、バーナ等の加熱手段39にて円周方向に渡って縮径方向に加熱変形させ、変形先端を内側石英管17の外周に溶着する。この間、基端部19aは、内側石英管17との間に挟入された環状スペーサ35aにより同心円状に高精度に位置保持され続ける。   When both ends of the inner quartz tube 17 and the outer quartz tube 19 are positioned, as shown in FIG. 3 (e), the base end portion 19a of the outer quartz tube 19 is circumferentially moved by a heating means 39 such as a burner. It is heated and deformed in the direction of diameter reduction, and the deformed tip is welded to the outer periphery of the inner quartz tube 17. During this time, the base end portion 19a is kept concentrically with high accuracy by the annular spacer 35a sandwiched between the inner quartz tube 17 and the base end portion 19a.

この製造方法では、内側石英管17の外周に精度の良い環状スペーサ35aが挿入され、この内側石英管17に外挿された外側石英管19の基端部19bが環状スペーサ35aに同心状となって外挿される。環状スペーサ35aを入れた状態で溶接を実施することで、成形後の基端部19aの位置決めが確実に実施される。これにより、長手方向全長に渡って石英管17,19の位置精度が向上することになる。
なお、上述においてはスペーサの厚みが均一で、バーナを同心円状に配置することを前提として記載したが、例えば、バーナ上部の間隔を広く、下部を狭くしたい場合などは、そのように設定する間隔に合わせ、スペーサの厚みを調整すればよい。
In this manufacturing method, an accurate annular spacer 35a is inserted into the outer periphery of the inner quartz tube 17, and the base end portion 19b of the outer quartz tube 19 that is externally inserted into the inner quartz tube 17 is concentric with the annular spacer 35a. Extrapolated. By performing welding with the annular spacer 35a inserted, positioning of the base end portion 19a after molding is reliably performed. Thereby, the positional accuracy of the quartz tubes 17 and 19 is improved over the entire length in the longitudinal direction.
In the above description, the spacers have a uniform thickness and are described on the assumption that the burners are arranged concentrically. For example, when the interval between the upper portions of the burner is wide and the lower portion is desired to be narrowed, the interval is set as such. The thickness of the spacer may be adjusted according to the above.

本実施の形態による製造方法では、内側石英管17と外側石英管19のみの溶着を例に説明したが、本発明に係る製造方法は、上記したように全ての石英管19〜31を同時に溶着するものであってもよい。この場合、各内側石英管の外周に環状スペーサ35a〜35gを介して各外側石英管を外挿し、これら石英管17〜31の先端を位置決め治具39にて位置決めした状態で、基端部19a〜31aを溶着する。このような一括溶着を行う場合の先端部位置決め治具39としては、例えば特許文献2に開示される調心用治具を好適に併用することができる。   In the manufacturing method according to the present embodiment, the welding of only the inner quartz tube 17 and the outer quartz tube 19 has been described as an example. However, the manufacturing method according to the present invention welds all the quartz tubes 19 to 31 simultaneously as described above. You may do. In this case, each outer quartz tube is extrapolated to the outer periphery of each inner quartz tube via annular spacers 35a to 35g, and the distal end of these quartz tubes 17 to 31 is positioned by the positioning jig 39, and the base end portion 19a. Weld ~ 31a. As the tip portion positioning jig 39 for performing such collective welding, for example, an alignment jig disclosed in Patent Document 2 can be suitably used in combination.

したがって、本実施の形態による多重管バーナ100の製造方法によれば、内側石英管に環状スペーサ35a〜35gを外挿し、外側石英管を基端側から内側石英管に挿入して環状スペーサ35a〜35gの外周に外挿し、その基端部19a〜31aを円周方向に渡って縮径方向に加熱変形させて内側石英管の外周に溶着するので、外側石英管の基端部における半径方向の位置精度を向上させることができる。さらに先端部にも位置決め治具39を挿入してから溶着させることで、多重管バーナ100の長手方向の組付け精度を向上させることができる。   Therefore, according to the manufacturing method of the multi-tube burner 100 according to the present embodiment, the annular spacers 35a to 35g are extrapolated to the inner quartz tube, and the outer quartz tube is inserted to the inner quartz tube from the base end side to insert the annular spacers 35a to 35g. Since the base end portions 19a to 31a are heat-deformed in the direction of diameter reduction in the circumferential direction and welded to the outer periphery of the inner quartz tube, the outer end of the outer quartz tube is welded to the outer end of the outer quartz tube. Position accuracy can be improved. Furthermore, the assembly accuracy in the longitudinal direction of the multi-tube burner 100 can be improved by inserting the positioning jig 39 into the tip portion and then welding.

また、このようにして組み付けられた本実施の形態による多重管バーナ100によれば、内側石英管に外挿した環状スペーサ35a〜35gと、内側石英管に外挿され基端部19a〜31aが環状スペーサ35a〜35gに外挿されるとともに、この基端部19a〜31aが内側石英管の外周に溶着される外側石英管とを備えるので、溶着部付近における半径方向の石英管の位置精度が向上し、多重管バーナ100の長手方向の精度が高まり、ガスの流れが安定する。その結果、火炎が安定し、石英バーナ先端の消耗や、破損を抑止できる。本実施の形態による8重管による2重火炎バーナ(多重管バーナ100)においては、バーナ間隔の精度を上げることができるので、内側火炎の精度(傾き)も上げることができ、外側の石英管が内側の火炎により損傷を受けることが少なくなり、多重管バーナの耐久性を高めることができる。   Further, according to the multi-tube burner 100 according to the present embodiment assembled in this way, the annular spacers 35a to 35g extrapolated to the inner quartz tube and the base end portions 19a to 31a extrapolated to the inner quartz tube are provided. Since the base end portions 19a to 31a are provided with the outer quartz tube welded to the outer periphery of the inner quartz tube while being extrapolated to the annular spacers 35a to 35g, the positional accuracy of the radial quartz tube in the vicinity of the welded portion is improved. And the precision of the longitudinal direction of the multi-tube burner 100 increases, and the gas flow is stabilized. As a result, the flame is stabilized, and consumption and damage of the tip of the quartz burner can be suppressed. In the double flame burner (multiple tube burner 100) according to the present embodiment, since the accuracy of the burner interval can be increased, the accuracy (tilt) of the inner flame can also be increased, and the outer quartz tube can be increased. Is less damaged by the inner flame and the durability of the multi-tube burner can be increased.

このようにして長手方向全長の精度を向上させた多重管バーナ100では、従来2ヶ月〜1年であった石英多重管バーナの寿命が、平均2年の連続使用可能となる程に延長されることが確認された。また、寿命が長くなる分、多重管バーナ100のトータルのコストとしては安価で済むことになる。さらに、バーナの長手方向の精度を向上させているため、このバーナを使用して堆積する光ファイバ用多孔質母材の品質の向上も図ることができる。   In the multi-tube burner 100 improved in accuracy in the overall length in the longitudinal direction in this way, the life of the quartz multi-tube burner, which was conventionally 2 months to 1 year, is extended to the extent that it can be used continuously for an average of 2 years. It was confirmed. In addition, the total cost of the multi-tube burner 100 can be reduced because the lifetime is increased. Furthermore, since the accuracy in the longitudinal direction of the burner is improved, the quality of the optical fiber porous preform deposited using this burner can be improved.

次に、本発明に係る他の実施の形態について説明する。
図5は他の実施の形態による多重管バーナの要部拡大断面図である。なお、以下の説明において、上記した図1〜図4に示す部材、部位と同等の部材、部位には同一の符号を付し重複する説明は省略する。
本実施の形態による多重管バーナ100Aは、上記同様の石英製環状スペーサ35a〜35gを使用する。上記実施の形態では、環状スペーサ35a〜35gは、直接溶融せず、基端部19a〜31aの溶着温度にて内側石英管或いは外側石英管との接触面に溶融接合されたが、本実施の形態では、環状スペーサ35a〜35gの一部分が直接溶着される。
Next, another embodiment according to the present invention will be described.
FIG. 5 is an enlarged cross-sectional view of a main part of a multi-tube burner according to another embodiment. In addition, in the following description, the same code | symbol is attached | subjected to the member and site | part equivalent to the above-mentioned member and site | part shown in FIGS.
The multi-tube burner 100A according to the present embodiment uses the same quartz annular spacers 35a to 35g as described above. In the above embodiment, the annular spacers 35a to 35g are not melted directly, but are melt bonded to the contact surface with the inner quartz tube or the outer quartz tube at the welding temperature of the base end portions 19a to 31a. In form, a portion of the annular spacers 35a-35g is welded directly.

すなわち、環状スペーサ35a〜35gは、後端部41を溶融して基端部19aと共に内側石英管17の外周に溶着される。溶融させるのは環状スペーサ35a〜35g全体でも良いし、後端部41のみとして前端部は内側石英管17と外側石英管19の位置規制のために形状を保持させたまま残しても良い。なお、このようにスペーサを溶着する場合は、熱処理の条件によっては熱歪で割れてしまう可能性も出てくるので、熱歪が生じないように熱処理する必要がある。   That is, the annular spacers 35a to 35g are welded to the outer periphery of the inner quartz tube 17 together with the base end portion 19a by melting the rear end portion 41. The whole annular spacers 35a to 35g may be melted, or only the rear end portion 41 may be left with its front end portion held in shape for regulating the positions of the inner quartz tube 17 and the outer quartz tube 19. When the spacers are welded in this way, there is a possibility that the spacers are cracked due to thermal strain depending on the heat treatment conditions. Therefore, it is necessary to perform heat treatment so that thermal strain does not occur.

この実施の形態による製造方法及び多重管バーナ100Aによれば、環状スペーサ35a〜35gの一部分が外側石英管の基端部19a〜31aと共に内側石英管の外周に溶着され、環状スペーサ35a〜35gが接合部の一部分となる。   According to the manufacturing method and the multi-tube burner 100A according to this embodiment, a part of the annular spacers 35a to 35g is welded to the outer periphery of the inner quartz tube together with the base end portions 19a to 31a of the outer quartz tube, and the annular spacers 35a to 35g are formed. It becomes a part of the joint.

次に、本発明に係るさらなる他の実施の形態について説明する。
上記実施の形態では、環状スペーサ35a〜35gが石英製である場合を例に説明したが、他の実施の形態に係る多重管バーナは、環状スペーサ35a〜35gがカーボン製となる。
Next, still another embodiment according to the present invention will be described.
In the above embodiment, the case where the annular spacers 35a to 35g are made of quartz has been described as an example. However, in the multi-tube burner according to another embodiment, the annular spacers 35a to 35g are made of carbon.

図示は省略するが、カーボン製環状スペーサは、上記同様にして内側石英管に外挿され、外側石英管の基端部19a〜31aを溶着する際の外側石英管を位置決めし、高精度な組付けを実現する。そして、カーボン製環状スペーサは、基端部19a〜31aを内側石英管の外周に溶着した後、酸化除去される。したがって、カーボン製環状スペーサは、基端部19a〜31aの溶着にて燃焼しない位置に離間配置されることが好ましい。   Although not shown, the carbon annular spacer is inserted into the inner quartz tube in the same manner as described above, and the outer quartz tube is positioned when welding the base end portions 19a to 31a of the outer quartz tube. Realize the attachment. The carbon annular spacer is oxidized and removed after the base end portions 19a to 31a are welded to the outer periphery of the inner quartz tube. Therefore, it is preferable that the carbon annular spacers are spaced apart from each other at a position where the carbon end spacers 19a to 31a are not burned by welding.

このようなカーボン製環状スペーサを用いた多重管バーナの製造方法及び多重管バーナによれば、内側石英管の外周に挿入されたカーボン製環状スペーサにて外側石英管の基端部19a〜31aが高精度に位置決めされて溶着された後、燃焼等によりカーボン製環状スペーサが除去されるので、通常の石英管と同じ形状の多重管を、溶着部付近における半径方向の位置精度を向上させて製造することができる。さらに先端部にも位置決め治具を挿入してから溶着させることで、長手方向の位置精度を向上して製造することができる。カーボンの場合、石英より寸法精度を高く加工することができるので、より位置精度を高くすることが可能である。カーボンが酸化除去されるので、多重管バーナが石英管のみの多重管となる。   According to the multi-tube burner manufacturing method and multi-tube burner using such a carbon annular spacer, the base end portions 19a to 31a of the outer quartz tube are formed by the carbon annular spacer inserted in the outer periphery of the inner quartz tube. After positioning and welding with high accuracy, the annular spacer made of carbon is removed by combustion, etc., so that multiple tubes with the same shape as ordinary quartz tubes are manufactured with improved radial position accuracy near the weld can do. Furthermore, by inserting a positioning jig into the tip portion and then welding it, it is possible to manufacture with improved longitudinal position accuracy. In the case of carbon, since the dimensional accuracy can be processed higher than that of quartz, the positional accuracy can be further increased. Since the carbon is oxidized and removed, the multi-tube burner becomes a multi-tube consisting of only a quartz tube.

17 内側石英管
19 外側石英管
19a〜31a 基端部
35a〜35g 環状スペーサ
39 位置決め治具
41 環状スペーサの後端部
100 多重管バーナ
d 所定厚
17 inner quartz tube 19 outer quartz tube 19a to 31a base end 35a to 35g annular spacer 39 positioning jig 41 rear end of annular spacer 100 multiple tube burner d predetermined thickness

Claims (6)

石英管を多重に配置し、組み付けることにより製造される多重管バーナの製造方法であって、
内側石英管の外側石英管を溶着する位置近傍に環状スペーサを外挿する工程と、
前記外側石英管を基端側から前記内側石英管に外挿するとともに前記外側石英管の基端部を前記環状スペーサに外挿する工程と、
前記外側石英管の基端部を円周方向に渡って縮径方向に加熱変形させて前記内側石英管の外周に溶着する工程と、を実施し、
前記スペーサの厚みにより設定した間隔で前記石英管を多重に組み付けることを特徴とする多重管バーナの製造方法。
A method of manufacturing a multi-tube burner which is manufactured by arranging and assembling quartz tubes in multiples,
Extrapolating an annular spacer near the position where the outer quartz tube of the inner quartz tube is welded;
Extrapolating the outer quartz tube from the proximal side to the inner quartz tube and extrapolating the proximal end of the outer quartz tube to the annular spacer;
Performing a step of heat-deforming the base end portion of the outer quartz tube in the direction of diameter reduction in the circumferential direction and welding the outer end of the inner quartz tube,
A method of manufacturing a multi-tube burner, wherein the quartz tubes are assembled in multiple intervals at intervals set by the thickness of the spacer.
請求項1記載の多重管バーナの製造方法であって、
前記内側石英管の先端外周と前記外側石英管の内周との間に、先端部の位置決め治具を挿入し、前記内側石英管の先端と前記外側石英管との間隔が、前記位置決め治具の厚みにより設定した間隔となるように位置決めすることを特徴とする多重管バーナの製造方法。
A method of manufacturing a multi-tube burner according to claim 1,
A positioning jig at the tip is inserted between the outer periphery of the inner quartz tube and the inner periphery of the outer quartz tube, and the distance between the tip of the inner quartz tube and the outer quartz tube is the positioning jig. A method of manufacturing a multi-tube burner, characterized in that positioning is performed so as to have an interval set according to the thickness of the tube.
請求項1又は請求項2記載の多重管バーナの製造方法であって、
石英製の前記環状スペーサを使用し、
該環状スペーサを前記基端部と共に前記内側石英管の外周に溶着することを特徴とする多重管バーナの製造方法。
A method of manufacturing a multi-tube burner according to claim 1 or claim 2,
Using the annular spacer made of quartz,
A method of manufacturing a multi-tube burner, wherein the annular spacer is welded to the outer periphery of the inner quartz tube together with the base end portion.
請求項1又は請求項2記載の多重管バーナの製造方法であって、
カーボン製の前記環状スペーサを使用し、
前記基端部を前記内側石英管の外周に溶着した後、前記環状スペーサを酸化除去することを特徴とする多重管バーナの製造方法。
A method of manufacturing a multi-tube burner according to claim 1 or claim 2,
Using the annular spacer made of carbon,
After the base end portion is welded to the outer periphery of the inner quartz tube, the annular spacer is oxidized and removed.
内側石英管と、
該内側石英管に外挿した環状スペーサと、
前記内側石英管の外側に基端側から挿入され基端部が前記環状スペーサに外挿されるとともに円周方向に渡って縮径方向に加熱変形された該基端部が前記内側石英管の外周に溶着される外側石英管と、
を具備することを特徴とする多重管バーナ。
An inner quartz tube,
An annular spacer extrapolated to the inner quartz tube;
The base end portion inserted from the base end side to the outside of the inner quartz tube, the base end portion being extrapolated by the annular spacer, and being thermally deformed in the diameter reducing direction in the circumferential direction is the outer periphery of the inner quartz tube. An outer quartz tube welded to the
A multi-tube burner comprising:
請求項5記載の多重管バーナであって、
径の異なる複数の前記石英管が相互に配置され、
内側の石英管群が生成する火炎と、外側の石英管群が生成する火炎とで複数の火炎を生成し、外側の火炎を生成する前記外側の石英管群の先端位置より、内側の火炎を生成する前記内側の石英管群の先端位置が内側に後退して設けられたことを特徴とする多重管バーナ。
A multi-tube burner according to claim 5,
A plurality of the quartz tubes having different diameters are arranged mutually,
A plurality of flames are generated by the flame generated by the inner quartz tube group and the flame generated by the outer quartz tube group, and the inner flame is moved from the tip position of the outer quartz tube group that generates the outer flame. A multi-tube burner characterized in that a tip position of the inner quartz tube group to be generated is provided so as to recede inward.
JP2009136586A 2009-06-05 2009-06-05 Multi-tube burner manufacturing method and multi-tube burner Active JP5359573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136586A JP5359573B2 (en) 2009-06-05 2009-06-05 Multi-tube burner manufacturing method and multi-tube burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009136586A JP5359573B2 (en) 2009-06-05 2009-06-05 Multi-tube burner manufacturing method and multi-tube burner

Publications (2)

Publication Number Publication Date
JP2010280549A JP2010280549A (en) 2010-12-16
JP5359573B2 true JP5359573B2 (en) 2013-12-04

Family

ID=43537683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136586A Active JP5359573B2 (en) 2009-06-05 2009-06-05 Multi-tube burner manufacturing method and multi-tube burner

Country Status (1)

Country Link
JP (1) JP5359573B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726789B2 (en) * 2012-02-29 2015-06-03 株式会社東芝 Burner and reformer
JP6826910B2 (en) 2017-02-22 2021-02-10 古河電気工業株式会社 Multiple tube burner for porous body synthesis and porous body synthesis device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228812A (en) * 1984-04-27 1985-11-14 Furukawa Electric Co Ltd:The Glass burner and manufacture thereof
JP2005029396A (en) * 2003-07-07 2005-02-03 Sumitomo Electric Ind Ltd Production method for glass fine particle deposit, and burner for forming glass fine particle
JP4663605B2 (en) * 2006-09-06 2011-04-06 株式会社フジクラ Apparatus and method for manufacturing glass preform for optical fiber
JP5343715B2 (en) * 2009-06-05 2013-11-13 住友電気工業株式会社 Multi-tube burner manufacturing method and multi-tube burner inspection method

Also Published As

Publication number Publication date
JP2010280549A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
US9032761B2 (en) Porous glass matrix producing burner and porous glass matrix producing method
EP2380855B1 (en) Burner for manufacturing porous glass preform
JP3973422B2 (en) Method and apparatus for manufacturing optical fiber preforms by plasma deposition
JP5359573B2 (en) Multi-tube burner manufacturing method and multi-tube burner
JP5229957B2 (en) Burner for manufacturing glass base material for optical fiber
CN102303950A (en) Method for drawing optical fibers by using large-size optical fiber prefabricated rod and auxiliary device thereof
US8181487B2 (en) Optical fiber preform manufacturing method
JP2010173895A (en) Device for manufacturing optical fiber and method for manufacturing optical fiber
CN103032889A (en) Combustion liner for a turbine engine
JP5619696B2 (en) Burner for glass fine particle synthesis and method for producing glass fine particle deposit
US20140083140A1 (en) Method of manufacturing porous glass deposition body for optical fiber
JP4663605B2 (en) Apparatus and method for manufacturing glass preform for optical fiber
JP5343715B2 (en) Multi-tube burner manufacturing method and multi-tube burner inspection method
CN101519270B (en) Burner for fabricating optical fiber preform
EP2226302B1 (en) Method for manufacturing optical fiber base material
JPH1095623A (en) Production of porous glass preform and burner for producing the same preform
EP2380856B1 (en) Burner for producing porous glass preform
JP2004051378A (en) Quartz burner
JP5392851B2 (en) Method for producing porous glass base material
JP5485003B2 (en) Optical fiber preform manufacturing method
US11820691B2 (en) Manufacturing apparatus and manufacturing method for optical fiber porous preform
JP2011051825A (en) Quartz burner and method for manufacturing the same
JP2010076982A (en) Burner and apparatus for manufacturing porous glass
JP3045719B1 (en) Optical fiber preform burner
JPH11116256A (en) Burner for producing synthetic quartz glass and method for repairing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5359573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250