JP5359103B2 - Charge / discharge control method for power storage device - Google Patents

Charge / discharge control method for power storage device Download PDF

Info

Publication number
JP5359103B2
JP5359103B2 JP2008203682A JP2008203682A JP5359103B2 JP 5359103 B2 JP5359103 B2 JP 5359103B2 JP 2008203682 A JP2008203682 A JP 2008203682A JP 2008203682 A JP2008203682 A JP 2008203682A JP 5359103 B2 JP5359103 B2 JP 5359103B2
Authority
JP
Japan
Prior art keywords
discharge
power storage
charge
double layer
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008203682A
Other languages
Japanese (ja)
Other versions
JP2010041865A (en
Inventor
正 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2008203682A priority Critical patent/JP5359103B2/en
Publication of JP2010041865A publication Critical patent/JP2010041865A/en
Application granted granted Critical
Publication of JP5359103B2 publication Critical patent/JP5359103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電力貯蔵装置の充放電制御方法に係り、特に放電挙動の異なる異種電力貯蔵媒体を並列接続して構成した電力貯蔵装置の充放電制御方法に関するものである。   The present invention relates to a charge / discharge control method for a power storage device, and more particularly to a charge / discharge control method for a power storage device configured by connecting different power storage media having different discharge behaviors in parallel.

電力貯蔵媒体として、例えば、電気二重層キャパシタと蓄電池を並列接続して電力貯蔵装置を構成した場合、両者は電荷の蓄積原理や蓄積容量などの相違によって充放電挙動(充放電による端子電圧の変化)が大きく異なる。すなわち、電気二重層キャパシタの充放電時における端子電圧は大きく変化するが、蓄電池の端子電圧変動は電気二重層キャパシタに比して小さい。このため、電気二重層キャパシタと蓄電池を並列接続して使用すると、充電時には蓄電池からの電荷によって電気二重層キャパシタへの充電動作が行われて電気二重層キャパシタは常に満充電状態となり、電気二重層キャパシタの特徴の一つである急速充電が実行されない。また、蓄電池から電気二重層キャパシタに急速充電を行うことで蓄電池の放電深度が大きくなり蓄電池の寿命が短くなる。   For example, when a power storage device is configured by connecting an electric double layer capacitor and a storage battery in parallel as the power storage medium, the charge / discharge behavior (change in terminal voltage due to charge / discharge) varies depending on the charge storage principle and storage capacity. ) Is very different. That is, the terminal voltage during charging / discharging of the electric double layer capacitor greatly changes, but the terminal voltage fluctuation of the storage battery is smaller than that of the electric double layer capacitor. For this reason, when the electric double layer capacitor and the storage battery are connected in parallel and used, the electric double layer capacitor is always charged by the charge from the storage battery during charging, and the electric double layer capacitor is always in a fully charged state. The quick charge which is one of the characteristics of the capacitor is not performed. In addition, rapid charging from the storage battery to the electric double layer capacitor increases the depth of discharge of the storage battery and shortens the life of the storage battery.

なお、異種電力貯蔵媒体を並列接続することについては、特許文献1が公開されている。この文献は、車両用電源装置の小型軽量化、及び長寿命化を図ることを目的として、電気二重層コンデンサの自己放電性に対し、この自己放電電流分の電流のみを補充する専用の鉛電池を設けたことが記載されている。
特開平9−247850号の特に図2
Note that Patent Document 1 has been disclosed for connecting different types of power storage media in parallel. This document describes a dedicated lead battery that replenishes only the self-discharge current for the self-discharge property of the electric double layer capacitor for the purpose of reducing the size and weight of the power supply device for the vehicle and extending its life. Is described.
Japanese Patent Application Laid-Open No. 9-247850, especially FIG.

特許文献1に代表されるように、長時間経過すると電気二重層キャパシタと鉛蓄電池の端子電圧が同一となる。この状態で充電した場合、電気二重層キャパシタと鉛蓄電池の端子電圧に差がないことから電気二重層キャパシタの充電電流を大きくすることができず、結局、電気二重層キャパシタの充電電流が低下し、蓄電池の充電電流が増加するため鉛蓄電池の寿命延長にはならない。また、電気二重層キャパシタと鉛蓄電池間に接続された抵抗R1と、この抵抗R1と並列に接続されたダイオード+R2の並列接続のため、抵抗R1の抵抗値をダイオード+R2の抵抗値より大きくしなければR1を経由して鉛蓄電池から電気二重層キャパシタに電流が流れてダイオードの効果が減少する。この現象を防止するために抵抗R1の抵抗値を大きくするが、大きくすることから抵抗R1による損失が大きくなる。   As represented by Patent Document 1, the terminal voltages of the electric double layer capacitor and the lead storage battery become the same after a long time. When charging in this state, there is no difference between the terminal voltage of the electric double layer capacitor and the lead storage battery, so the charging current of the electric double layer capacitor cannot be increased, and eventually the charging current of the electric double layer capacitor decreases. Since the charging current of the storage battery increases, the life of the lead storage battery is not extended. In addition, since the resistor R1 connected between the electric double layer capacitor and the lead storage battery and the diode + R2 connected in parallel with the resistor R1 are connected in parallel, the resistance value of the resistor R1 must be larger than the resistance value of the diode + R2. For example, current flows from the lead storage battery to the electric double layer capacitor via R1, and the effect of the diode is reduced. In order to prevent this phenomenon, the resistance value of the resistor R1 is increased. However, since the resistance value is increased, the loss due to the resistor R1 increases.

上記のように電気二重層キャパシタと蓄電池を並列接続した場合、蓄電池の電圧変動幅が少ないことから、電気二重層キャパシタの充電時には電源と蓄電池の両方から充電が行われ、並列接続したことのメリットが少なくなる。そこで、従来では、電気二重層キャパシタと蓄電池の両方にそれぞれ昇降圧チョッパ回路を設け、各々を制御することで電気二重層キャパシタと蓄電池の特性を有効利用している。そのために2個の昇降圧チョッパ回路が必要となり、装置として高価になるとともに制御が複雑になる問題を有している。   When an electric double layer capacitor and a storage battery are connected in parallel as described above, since the voltage fluctuation range of the storage battery is small, the electric double layer capacitor is charged from both the power source and the storage battery, and the merit of connecting in parallel Less. Therefore, conventionally, a step-up / step-down chopper circuit is provided for both the electric double layer capacitor and the storage battery, and the characteristics of the electric double layer capacitor and the storage battery are effectively used by controlling each of them. For this reason, two step-up / step-down chopper circuits are required, which causes a problem that the apparatus is expensive and the control is complicated.

本発明が目的とするとこは、充放電挙動の異なる異種電力貯蔵媒体を並列接続した電力貯蔵装置での充放電を可能とした充放電制御方法を提供することにある。   An object of the present invention is to provide a charge / discharge control method that enables charge / discharge in a power storage device in which different types of power storage media having different charge / discharge behaviors are connected in parallel.

本発明は、充放電挙動の異なる充放電時の端子電圧の変化が小さい電力貯蔵媒体と端子電圧の変化が大きい電力貯蔵媒体を並列接続して構成した電力貯蔵装置であって
前記端子電圧の変化が小さい電力貯蔵媒体と電源間にのみ充放電抑制部を設け、この充放電抑制部を、充電に対しては順方向に設けられるダイオードと充電抑制抵抗の直列回路と、この直列回路と並列に接続された放電抑制抵抗とスイッチ体の直列回路により構成し、並列接続された各電力貯蔵媒体の充電時には前記スイッチ体を開放し、並列接続された各電力貯蔵媒体の放電時には前記スイッチ体を閉路するよう構成した電力貯蔵装置の充放電制御方法において、
前記充放電挙動の異なる電力貯蔵媒体として、電気二重層キャパシタを用いて電池を並列接続し、前記電気二重層キャパシタの(内部抵抗×放電電流)が、前記蓄電池の((内部抵抗+放電抑制抵抗)×放電電流)より大きくなるようにしたことを特徴としたものである。
The present invention is a power storage device configured to power storage medium change is large different charge and discharge time of the terminal voltage is small power storage medium and the terminal voltage change of the charging and discharging behavior in parallel connection,
A charge / discharge suppression unit is provided only between the power storage medium and the power source where the change in the terminal voltage is small, and this charge / discharge suppression unit is a series circuit of a diode and a charge suppression resistor provided in the forward direction for charging, Consists of a series circuit of a discharge suppression resistor and a switch body connected in parallel with the series circuit, and when the power storage medium connected in parallel is charged, the switch body is opened, and when the power storage medium connected in parallel is discharged In the charge / discharge control method of the power storage device configured to close the switch body ,
Examples different power storage medium of charging and discharging behavior, are connected in parallelbattery with an electric double layer capacitor, the electric double layer capacitor (internal resistance × discharge current), the battery ((internal resistance + discharge suppression (Resistance) × Discharge current) .

本発明は、前記電気二重層キャパシタと蓄電池の放電電流を監視し、一定電流以下となったときに前記スイッチ体を開路して電気二重層キャパシタ側のみでの放電を継続することを特徴としたものである。 The present invention is characterized in that the discharge current of the electric double layer capacitor and the storage battery is monitored, and when the electric current drops below a certain current, the switch body is opened to continue the discharge only on the electric double layer capacitor side . Is.

以上のとおり、本発明によれば、充放電時の端子電圧の変化が小さい電力貯蔵媒体と電源間にのみ充放電抑制部を設け、電力貯蔵媒体の充電時にはスイッチ体を開放し、放電時にはスイッチ体を閉路するよう制御することで端子電圧の変化が大きい電力貯蔵媒体で大電流充放電ができ、端子電圧の変化が小さい電力貯蔵媒体で長時間の充放電ができ、充放電挙動の異なる電力貯蔵媒体の特徴を有効利用できるものである。また、電力貯蔵媒体の充電時に、ダイオードより蓄電池のように充放電時の端子電圧の変化が小さい電力貯蔵媒体から電気二重層キャパシタのように端子電圧の変化が大きい電力貯蔵媒体への充電が阻止されると共に、ダイオードに直列に設けた抵抗により充電電流が抑制されるため、蓄電池寿命の長期化が図れるものである。
また、放電時には、並列接続された電力貯蔵媒体から放電されるが、蓄電池のように、充放電時の端子電圧の変化が小さい電力貯蔵媒体からは抵抗により放電電流が抑制されるため、過大な放電電流は防止される。
As described above, according to the present invention, the charging / discharging suppression unit is provided only between the power storage medium and the power source, in which the terminal voltage change during charging / discharging is small, the switch body is opened when the power storage medium is charged, By controlling to close the body, it is possible to charge and discharge a large current with a power storage medium with a large change in terminal voltage, charge and discharge for a long time with a power storage medium with a small change in terminal voltage, and power with different charge and discharge behavior The characteristics of the storage medium can be used effectively. In addition, when charging the power storage medium, charging from a power storage medium with a small terminal voltage change during charging / discharging, such as a storage battery than a diode, to a power storage medium with a large terminal voltage change, such as an electric double layer capacitor, is prevented. In addition, since the charging current is suppressed by the resistor provided in series with the diode, the life of the storage battery can be extended.
Moreover, at the time of discharge, it is discharged from the power storage medium connected in parallel. However, since the discharge current is suppressed by the resistance from the power storage medium such as a storage battery in which the change of the terminal voltage at the time of charging and discharging is small, it is excessive. Discharge current is prevented.

図1、及び図2は、本発明の実施例を示す電力貯蔵装置の等価回路で、図1は充電時の等価回路、図2は放電時の等価回路を示したものである。充放電時に電圧変動幅を異にする異種電力貯蔵媒体としては、ここでは電気二重層キャパシタ2と鉛などの蓄電池3を用いた場合を示している。1は負荷へ電力を供給する電源、4は充放電抑制部で、この充放電抑制部4は、蓄電池3への充電に対しては順方向に設けられるダイオードDと充電抑制抵抗R1の直列回路と、この直列回路と並列に接続された放電抑制抵抗R2とIGBT等よりなるスイッチ体SWの直列回路によって構成される。なお、電源1におけるVsは電源電圧、Rsは電源抵抗である。また、電気二重層キャパシタ2のCcは電気二重層キャパシタの容量、Rcは電気二重層キャパシタ等価内部抵抗である。更に、蓄電池3のEbは蓄電池容量、Rbは蓄電池等価内部抵抗である。

1 and 2 are equivalent circuits of a power storage device according to an embodiment of the present invention. FIG. 1 shows an equivalent circuit during charging, and FIG. 2 shows an equivalent circuit during discharging. Here, the case where the electric double layer capacitor 2 and the storage battery 3 such as lead are used as the different power storage medium having different voltage fluctuation ranges during charging and discharging is shown. 1 is a power supply for supplying power to a load, 4 is a charge / discharge suppression unit, and this charge / discharge suppression unit 4 is a series circuit of a diode D and a charge suppression resistor R1 provided in the forward direction for charging the storage battery 3. And a series circuit of a switch body SW including a discharge suppression resistor R2 and an IGBT or the like connected in parallel with the series circuit. In the power supply 1, Vs is a power supply voltage, and Rs is a power supply resistance. Further, Cc of the electric double layer capacitor 2 is a capacitance of the electric double layer capacitor, and Rc is an electric double layer capacitor equivalent internal resistance. Further, Eb of the storage battery 3 is a storage battery capacity, and Rb is a storage battery equivalent internal resistance.

電源1の電圧が電気二重層キャパシタ2の端子電圧より高くなると電力貯蔵装置は充電モードとなる。この時、スイッチ体SWは開放状態で、後述の通りに前回の放電時に電気二重層キャパシタ2の端子電圧より蓄電池3の端子電圧が高くなるように設計されている。これにより、蓄電池3への充電電流Ibは充電抑制抵抗R1により抑制されて蓄電池3を充電するが、電気二重層キャパシタ2への充電電流Icは抑制されることなく、且つ蓄電池3の端子電圧より電気二重層キャパシタ2の端子電圧が低いので電気二重層キャパシタ2に短時間大電流の充電が行われる。
充電後は、蓄電池3から電気二重層キャパシタ2への充電電流はダイオードDによりブロックされ、且つスイッチ体SWは開路されていることにより流れない。
反対に電気二重層キャパシタ2から蓄電池3への充電電流は流れるので、電気二重層キャパシタ2の端子電圧は蓄電池3の端子電圧と等しくなる。
したがって、電気二重層キャパシタ2の定格電圧を蓄電池3の端子電圧より高くしておけば電気二重層キャパシタ2は常に満充電状態となることはなく、また、抑制抵抗R2の抵抗値を大きくしても充電時での電流損失は発生しない。
When the voltage of the power source 1 becomes higher than the terminal voltage of the electric double layer capacitor 2, the power storage device enters the charging mode. At this time, the switch body SW is in an open state, and the terminal voltage of the storage battery 3 is designed to be higher than the terminal voltage of the electric double layer capacitor 2 during the previous discharge as described later. Thereby, the charging current Ib to the storage battery 3 is suppressed by the charging suppression resistor R1 to charge the storage battery 3, but the charging current Ic to the electric double layer capacitor 2 is not suppressed and from the terminal voltage of the storage battery 3 Since the terminal voltage of the electric double layer capacitor 2 is low, the electric double layer capacitor 2 is charged with a large current for a short time.
After charging, the charging current from the storage battery 3 to the electric double layer capacitor 2 is blocked by the diode D and does not flow because the switch body SW is opened.
On the contrary, since the charging current from the electric double layer capacitor 2 to the storage battery 3 flows, the terminal voltage of the electric double layer capacitor 2 becomes equal to the terminal voltage of the storage battery 3.
Therefore, if the rated voltage of the electric double layer capacitor 2 is made higher than the terminal voltage of the storage battery 3, the electric double layer capacitor 2 will not always be fully charged, and the resistance value of the suppression resistor R2 is increased. However, no current loss occurs during charging.

次に、電源1の端子電圧が電力貯蔵媒体の端子電圧より低下した場合には、電力貯蔵装置に蓄積されたエネルギーを放電する放電モードとなる。この場合、制御装置は電圧低下を検出してスイッチ体SWを閉路状態にする。これにより、電気二重層キャパシタ2からの電流Icは電流抑制されることなく電源側に流出するが、蓄電池3からの放電電流Ibは放電抑制抵抗R2によって抑制されながらスイッチ体SWを通って放電する。すなわち、電気二重層キャパシタ2は大電流Icによって充放電されるが、蓄電池3は長時間をかけて徐々に放電されて両電力貯蔵媒体の特徴が有効利用される。   Next, when the terminal voltage of the power source 1 is lower than the terminal voltage of the power storage medium, a discharge mode for discharging the energy stored in the power storage device is set. In this case, the control device detects a voltage drop and places the switch body SW in a closed state. Thereby, the current Ic from the electric double layer capacitor 2 flows out to the power supply side without being suppressed, but the discharge current Ib from the storage battery 3 is discharged through the switch body SW while being suppressed by the discharge suppression resistor R2. . That is, the electric double layer capacitor 2 is charged / discharged by the large current Ic, but the storage battery 3 is gradually discharged over a long period of time, and the features of both power storage media are effectively utilized.

前述のように、充電後は蓄電池3から電気二重層キャパシタ2への充電電流は流れない。
また、放電時の電気二重層キャパシタと蓄電池の端子電圧は、Vc+Ic×Rc=(Rb+R2)×Ib+Vbとなる。(ただし、Vcは電気二重層キャパシタ端子電圧、Vbは蓄電池の端子電圧)
このことから、次のことが可能となる。
<放電電流が急激に停止した場合>
放電電流が急激に停止した場合には、Ic=Ib=0となり、電気二重層キャパシタの端子電圧はVc、蓄電池の端子電圧はVbとなる。すなわち、Ic×Rcが(Rb+R2)×Ibより大きくなるよう設計することにより、電気二重層キャパシタの端子電圧Vcを蓄電池の端子電圧Vbより低い値とすることができる。この端子電圧関係において、充電時にはスイッチ体SWが開放されているため、放電終了後はVc<Vbの状態が維持され、次ぎの充電時には電気二重層キャパシタに大きな充電電流を流すことが可能となる。
<放電電流がゆっくり減少した場合>
放電電流IcとIbがゆっくり減少することにより、電気二重層キャパシタの電圧Vcと蓄電池の電圧Vbは同電位となる。このため、放電電流を監視し、一定電流以下となったとき放電途中でスイッチ体SWを開放し、電気二重層キャパシタのみでの放電を行うことでVcがVbより低くなるような制御を行う。
As described above, the charging current from the storage battery 3 to the electric double layer capacitor 2 does not flow after charging.
Further, the terminal voltage of the electric double layer capacitor and the storage battery at the time of discharging is Vc + Ic × Rc = (Rb + R2) × Ib + Vb. (However, Vc is the electric double layer capacitor terminal voltage and Vb is the storage battery terminal voltage.)
From this, the following becomes possible.
<When the discharge current stops suddenly>
When the discharge current stops suddenly, Ic = Ib = 0, the terminal voltage of the electric double layer capacitor is Vc, and the terminal voltage of the storage battery is Vb. That is, by designing so that Ic × Rc is larger than (Rb + R2) × Ib, the terminal voltage Vc of the electric double layer capacitor can be made lower than the terminal voltage Vb of the storage battery. In this terminal voltage relationship, since the switch body SW is opened at the time of charging, the state of Vc <Vb is maintained after the end of discharging, and a large charging current can be supplied to the electric double layer capacitor at the next charging. .
<When discharge current decreases slowly>
As the discharge currents Ic and Ib slowly decrease, the voltage Vc of the electric double layer capacitor and the voltage Vb of the storage battery have the same potential. For this reason, the discharge current is monitored, and the switch body SW is opened in the middle of the discharge when the current is equal to or less than a certain current, and control is performed such that Vc becomes lower than Vb by discharging only the electric double layer capacitor.

本発明の実施形態を示す充電時の等価回路図。The equivalent circuit diagram at the time of charge which shows embodiment of this invention. 本発明の放電時の等価回路図。The equivalent circuit figure at the time of discharge of this invention.

符号の説明Explanation of symbols

1… 電源
2… 電気二重層キャパシタ
3… 蓄電池
4… 充放電抑制部
DESCRIPTION OF SYMBOLS 1 ... Power supply 2 ... Electric double layer capacitor 3 ... Storage battery 4 ... Charge / discharge suppression part

Claims (2)

充放電挙動の異なる充放電時の端子電圧の変化が小さい電力貯蔵媒体と端子電圧の変化が大きい電力貯蔵媒体を並列接続して構成した電力貯蔵装置であって
前記端子電圧の変化が小さい電力貯蔵媒体と電源間にのみ充放電抑制部を設け、この充放電抑制部を、充電に対しては順方向に設けられるダイオードと充電抑制抵抗の直列回路と、この直列回路と並列に接続された放電抑制抵抗とスイッチ体の直列回路により構成し、並列接続された各電力貯蔵媒体の充電時には前記スイッチ体を開放し、並列接続された各電力貯蔵媒体の放電時には前記スイッチ体を閉路するよう構成した電力貯蔵装置の充放電制御方法において、
前記充放電挙動の異なる電力貯蔵媒体として、電気二重層キャパシタを用いて電池を並列接続し、前記電気二重層キャパシタの(内部抵抗×放電電流)が、前記蓄電池の((内部抵抗+放電抑制抵抗)×放電電流)より大きくなるようにしたことを特徴とした電力貯蔵装置の充放電制御方法。
A different charging and discharging time of the electric power storage device configured by parallel connection of power storage medium change is large in change is small power storage medium and the terminal voltage of the terminal voltage of the charge-discharge behavior,
A charge / discharge suppression unit is provided only between the power storage medium and the power source where the change in the terminal voltage is small, and this charge / discharge suppression unit is a series circuit of a diode and a charge suppression resistor provided in the forward direction for charging, Consists of a series circuit of a discharge suppression resistor and a switch body connected in parallel with the series circuit, and when the power storage medium connected in parallel is charged, the switch body is opened, and when the power storage medium connected in parallel is discharged In the charge / discharge control method of the power storage device configured to close the switch body ,
Examples different power storage medium of charging and discharging behavior, are connected in parallelbattery with an electric double layer capacitor, the electric double layer capacitor (internal resistance × discharge current), the battery ((internal resistance + discharge suppression The charge / discharge control method for a power storage device, characterized in that it is greater than (resistance) × discharge current) .
前記電気二重層キャパシタと蓄電池の放電電流を監視し、一定電流以下となったときに前記スイッチ体を開路して電気二重層キャパシタ側のみでの放電を継続することを特徴とした請求項1記載の電力貯蔵装置の充放電制御方法。 The discharge current of the electric double layer capacitor and the storage battery is monitored, and the switch body is opened when the electric current drops below a predetermined current to continue the discharge only on the electric double layer capacitor side. Charge / discharge control method for power storage device.
JP2008203682A 2008-08-07 2008-08-07 Charge / discharge control method for power storage device Expired - Fee Related JP5359103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008203682A JP5359103B2 (en) 2008-08-07 2008-08-07 Charge / discharge control method for power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008203682A JP5359103B2 (en) 2008-08-07 2008-08-07 Charge / discharge control method for power storage device

Publications (2)

Publication Number Publication Date
JP2010041865A JP2010041865A (en) 2010-02-18
JP5359103B2 true JP5359103B2 (en) 2013-12-04

Family

ID=42013824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008203682A Expired - Fee Related JP5359103B2 (en) 2008-08-07 2008-08-07 Charge / discharge control method for power storage device

Country Status (1)

Country Link
JP (1) JP5359103B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103713A (en) * 2015-12-04 2017-06-08 株式会社 松金 Radio communication apparatus, battery charger, and battery charger and radio communication apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633627A (en) * 1986-06-23 1988-01-08 松下電工株式会社 Charging circuit
JP3624333B2 (en) * 1996-03-13 2005-03-02 富士重工業株式会社 Vehicle power supply device using electric double layer capacitor
JP3896258B2 (en) * 2001-04-25 2007-03-22 株式会社日立製作所 Automotive power supply

Also Published As

Publication number Publication date
JP2010041865A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
US9520613B2 (en) Battery control with block selection
JP4886562B2 (en) Power converter and multi-input / output power converter
US20130170311A1 (en) Power Supply, Associated Management Unit and Method
US20160111907A1 (en) Apparatus and method for providing bidirectional voltage support
JP2015532574A (en) Electronic network for self-propelled vehicles
US11482878B2 (en) Parallel string voltage support
US9178367B2 (en) Balance correction apparatus and electric storage system
JP2008301638A (en) Battery charging circuit
EP2320536A1 (en) Electric energy storage module control device
JP5565603B2 (en) Power supply system and electronic device
JP2023062164A (en) battery management
JP2012095525A (en) Voltage stabilizer for energy storing body, and method for the same
JP4054776B2 (en) Hybrid system
JP4006476B2 (en) Capacitor power storage controller
JP5359103B2 (en) Charge / discharge control method for power storage device
JP4828511B2 (en) Backup power supply and control method thereof
EP3673558B1 (en) System and method for providing bidirectional transient voltage support and power
JP6895088B2 (en) Auxiliary power supply control device for vehicles and auxiliary power supply device for vehicles
JP2008072836A (en) Power supply
KR101158214B1 (en) Device and method for stabilizing of voltage of energy storage
KR101509323B1 (en) Second battery charging circuit using linear regulator
JP2018050355A (en) On-vehicle emergency power supply device
JP2014230461A (en) Power source device
JP6116260B2 (en) Balance correction device and power storage device
JP2013034309A (en) Voltage balance controller for battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees