JP5358527B2 - Spectrophotometer and absorbance measurement method - Google Patents

Spectrophotometer and absorbance measurement method Download PDF

Info

Publication number
JP5358527B2
JP5358527B2 JP2010162411A JP2010162411A JP5358527B2 JP 5358527 B2 JP5358527 B2 JP 5358527B2 JP 2010162411 A JP2010162411 A JP 2010162411A JP 2010162411 A JP2010162411 A JP 2010162411A JP 5358527 B2 JP5358527 B2 JP 5358527B2
Authority
JP
Japan
Prior art keywords
light
sample
signal
reference light
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010162411A
Other languages
Japanese (ja)
Other versions
JP2012026730A (en
Inventor
裕一 関谷
昌美 青木
剛 兎澤
恒治 筒田
大輔 栗本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010162411A priority Critical patent/JP5358527B2/en
Publication of JP2012026730A publication Critical patent/JP2012026730A/en
Application granted granted Critical
Publication of JP5358527B2 publication Critical patent/JP5358527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spectrophotometer which is capable of obtaining absorption spectra in an ultraviolet region and a visible region by preventing the rise of a noise ratio when using a light source of which the amount of light is reduced by changes in wavelength. <P>SOLUTION: A signal from an optical detector for reference light and a signal from an optical detector for sample light transmitted through a sample are integrated to store quantities of light. When the quantity of reference light becomes lower than a preliminarily set threshold, integration times of the optical detector for reference light and the optical detector for sample light transmitted through the sample are extended, and AD conversion periods of a signal of reference light and a signal of sample light, which are obtained by integration, are extended. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、分光光度計、および吸光度測定方法に関するものである。   The present invention relates to a spectrophotometer and an absorbance measurement method.

分光光度計は光が照射された試料が、その光を吸収した割合い、すなわち吸光度を測定し、波長を横軸とした吸収スペクトルを作成して、試料の成分を分析するものである。   The spectrophotometer measures the proportion of the sample irradiated with light, that is, absorbs the light, that is, absorbs light, creates an absorption spectrum with the wavelength as the horizontal axis, and analyzes the components of the sample.

試料に照射されるリファレンス光の強度と、試料を透過したサンプル光の強度を測定し、両者の比を底を10とする対数で表したものが吸光度である。単位はAU(Absorbance Unit)を用い、10分の1の場合1AU、1万分の1の場合4AUとよぶ。吸光度は、リファレンス光に対するサンプル光の吸収割合であり、液体試料の場合は透過率になる。また、吸光度は、試料濃度に比例する。   The intensity of the reference light irradiated to the sample and the intensity of the sample light transmitted through the sample are measured, and the absorbance is the logarithm with the ratio of the two as the base. The unit is AU (Absorbance Unit), which is called 1 AU for 1/10 and 4 AU for 1 / 10,000. Absorbance is the absorption ratio of sample light to reference light, and in the case of a liquid sample, it is transmittance. The absorbance is proportional to the sample concentration.

波長を横軸とした吸収スペクトルを作成する場合、波長が変わってリファレンス光の強度が低下すると、光検知器の測定誤差の影響が現れ、データの精度が低下する。したがって、リファレンス光は、波長が変わっても光量が変わらないことが望ましい。   When creating an absorption spectrum having the wavelength as the horizontal axis, if the wavelength changes and the intensity of the reference light decreases, the influence of the measurement error of the photodetector appears and the accuracy of the data decreases. Therefore, it is desirable that the reference light does not change even if the wavelength changes.

しかし、可視域の光源として用いられるタングステンランプは、波長によって光量が変化する。また、紫外域の光源として用いられる重水素放電管も、波長によって光量が変化する。点滅を繰り返すのに適しているXeF(フッ化キセノン)ランプは、可視光域の分光分布が太陽光に近いが、重水素放電管やタングステンランプと比較すると、紫外域を含めた光量差が大きく、かつ絶対光量が少ない。また、XeFランプは、点灯と消灯を繰り返して使用されるため、点灯エラーが発生した場合には、得られたデータが不良となる懸念がある。   However, the amount of light of a tungsten lamp used as a light source in the visible range varies depending on the wavelength. Also, the amount of light of the deuterium discharge tube used as a light source in the ultraviolet region varies depending on the wavelength. The XeF (xenon fluoride) lamp, which is suitable for repeated blinking, has a spectral distribution in the visible light region close to that of sunlight, but the light intensity difference including the ultraviolet region is large compared to deuterium discharge tubes and tungsten lamps. And there is little absolute light quantity. Further, since the XeF lamp is repeatedly turned on and off, there is a concern that the obtained data may be defective when a lighting error occurs.

光源の光量が変化しても、光検知器の出力信号を積分して蓄積時間を長くすることで、波長が変わってもデータの分解能が変わらないようにする技術が提案されている(例えば、特許文献1参照)。   A technique has been proposed in which the resolution of data does not change even if the wavelength changes by integrating the output signal of the light detector and extending the accumulation time even if the light amount of the light source changes (for example, Patent Document 1).

特開平5−264352号公報JP-A-5-264352

上記特許文献1には、積分値が一定値になるまで光検知器の積分時間を出力信号レベルに応じて変えることが記載されている。しかし、積分周期は一定なので、光量が少ない場合、データを得るまでの時間がかかってしまう。   Patent Document 1 describes that the integration time of the photodetector is changed according to the output signal level until the integration value becomes a constant value. However, since the integration period is constant, it takes time to obtain data when the amount of light is small.

本発明は、波長の変化により光量が少なくなる光源を使用したときに、ノイズの比率の上昇を防ぎ、紫外域および可視域での良好な吸収スペクトルを得ることができる分光光度計を提供することを目的とする。   The present invention provides a spectrophotometer capable of preventing an increase in the ratio of noise and obtaining a good absorption spectrum in the ultraviolet region and visible region when using a light source that reduces the amount of light due to a change in wavelength. With the goal.

上記課題を解決するために、本発明の実施態様は、リファレンス光の光検知器と試料を透過したサンプル光の光検知器のそれぞれを積分して光量を蓄積するとともに、リファレンス光の光量が予め設定された閾値を下回った場合、リファレンス光の光検知器と試料を透過したサンプル光の光検知器のそれぞれの積分時間を拡大するとともに、積分により得られたリファレンス光の信号およびサンプル光の信号のAD変換の周期を拡大することを特徴とする。   In order to solve the above-described problems, the embodiment of the present invention integrates the light detector of the reference light and the light detector of the sample light transmitted through the sample to accumulate the light amount, and the light amount of the reference light is previously set. When the threshold value is below the set threshold, the integration time of the reference light detector and the sample light detector that has passed through the sample is expanded, and the reference light signal and sample light signal obtained by integration are expanded. The AD conversion cycle is expanded.

本発明によれば、波長の変化により光量が少なくなる光源を使用したときに、ノイズの比率の上昇を防ぎ、紫外域および可視域での良好な吸収スペクトルを得ることができる分光光度計を提供することができる。   According to the present invention, there is provided a spectrophotometer capable of preventing an increase in the ratio of noise and obtaining a good absorption spectrum in the ultraviolet region and the visible region when a light source whose amount of light is reduced due to a change in wavelength is used. can do.

可視紫外分光光度計の主要な構成を示す構成図である。It is a block diagram which shows the main structures of a visible ultraviolet spectrophotometer. 光源の不点灯処理を示すフローチャートである。It is a flowchart which shows the non-lighting process of a light source. 光源の光量が少ないときの積分時間処理を示すフローチャートである。It is a flowchart which shows the integration time process when the light quantity of a light source is small. 出力信号の時間的変化を示すタイムチャートである。It is a time chart which shows the time change of an output signal.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、分光光度計の一例の可視紫外分光光度計の主要な構成を示す構成図である。光源電源1から電源が供給された光源2から発生したリファレンス光は、分光器16内の回折格子3で特定の波長に分光され、単波長の測定波長となる。制御部12は、光源電源1へパルス状の点灯信号を与え、XeFランプである光源2は、パルス発光する。回折格子3は、制御部12により制御される波長駆動モータ13で駆動される。測定波長のリファレンス光は、ハーフミラーにより二方向に分けられ、リファレンス光検知器6で検知されるとともに、試料セル5を透過してサンプル光としてサンプル光検知器9で検知される。   FIG. 1 is a configuration diagram showing a main configuration of a visible ultraviolet spectrophotometer as an example of a spectrophotometer. The reference light generated from the light source 2 to which power is supplied from the light source power source 1 is split into a specific wavelength by the diffraction grating 3 in the spectroscope 16 and becomes a single measurement wavelength. The control unit 12 gives a pulsed lighting signal to the light source power source 1, and the light source 2 which is a XeF lamp emits pulses. The diffraction grating 3 is driven by a wavelength driving motor 13 controlled by the control unit 12. The reference light of the measurement wavelength is divided into two directions by a half mirror, detected by the reference light detector 6, and transmitted through the sample cell 5 and detected by the sample light detector 9 as sample light.

リファレンス光検知器6からは、パルス状のリファレンス光信号がリファレンス光積分アンプ7へ送られ、積分されてリファレンス光積分アンプ出力信号となり、リファレンス光信号AD変換器8にてアナログ信号からパルス状のリファレンス光AD変換信号に変換され、リファレンスデータとして制御部12の図示しない記憶部に格納される。   From the reference light detector 6, a pulsed reference light signal is sent to the reference light integrating amplifier 7 and integrated to become a reference light integrating amplifier output signal. The reference light signal AD converter 8 converts the pulse signal from the analog signal to the pulse light. It is converted into a reference light AD conversion signal and stored as reference data in a storage unit (not shown) of the control unit 12.

サンプル光検知器9で検知されたパルス状のサンプル光は、サンプル光積分アンプ10にて積分されてサンプル光積分アンプ出力信号となり、サンプル光信号AD変換器11にてアナログ信号からパルス状のサンプル光AD変換信号に変換され、サンプルデータとして制御部12の図示しない記憶部に格納される。   The pulsed sample light detected by the sample light detector 9 is integrated by the sample light integration amplifier 10 to become a sample light integration amplifier output signal, and the sample light signal AD converter 11 converts the pulsed sample light from the analog signal. It is converted into an optical AD conversion signal and stored as sample data in a storage unit (not shown) of the control unit 12.

制御部12には、コンピュータ15と、データ表示装置14が接続され、制御部12で実行される一連の制御の指示、あるいは測定データの画面表示が行われる。制御部12では、格納されたリファレンスデータとサンプルデータから吸光度を演算し、コンピュータ15やデータ表示装置14に吸光度データを送信する。   A computer 15 and a data display device 14 are connected to the control unit 12, and a series of control instructions executed by the control unit 12 or a screen display of measurement data is performed. The controller 12 calculates the absorbance from the stored reference data and sample data, and transmits the absorbance data to the computer 15 and the data display device 14.

図2は、光源の不点灯処理を示すフローチャートである。図1に示した光源2は、制御部12から送られる点灯信号に従って、パルス状の点灯を行うが、点灯しないエラーが発生した場合、継続取得しているデータに欠落が生じてしまう。そこで、制御装置12は、以下に示すプログラミングされた手順を実行する。初期測定および条件設定において、分光器16の各機器の初期化、測定波長の設定が行われる(ステップ21)。次に、基本データ測定として、ある測定波長におけるリファレンス光を、適正なエネルギーレベルで測定し(ステップ22)、基本データ(X)を取得し、図示しない記憶部へ格納する(ステップ23)。次に、ある波長について、実際のデータ測定を行い、リファレンス光の実データ(Yt)を取得する(ステップ24)。次に、光源の点灯エラーの有無を判定する(ステップ25)。基本データ(X)を閾値Xとし、実データ測定毎に実データ(Yt)の値を比較し、実データ(Yt)が基本データ(X)の10分の1程度以下等、十分小さい場合には、不点灯エラー発生有と判断する。そして、実データへ不点灯であることを示すタグを付け、必要に応じて実データの収集を停止する(ステップ26)。ステップ25で光源の点灯エラーがない場合は、次の波長について実データ(Yt)を取得する。以下これを繰り返す。   FIG. 2 is a flowchart showing the light source non-lighting process. The light source 2 shown in FIG. 1 performs pulsed lighting in accordance with the lighting signal sent from the control unit 12. However, when an error that does not light is generated, data that is continuously acquired is lost. The control device 12 then executes the programmed procedure shown below. In the initial measurement and condition setting, each instrument of the spectrometer 16 is initialized and the measurement wavelength is set (step 21). Next, as basic data measurement, reference light at a certain measurement wavelength is measured at an appropriate energy level (step 22), and basic data (X) is acquired and stored in a storage unit (not shown) (step 23). Next, actual data measurement is performed for a certain wavelength, and actual data (Yt) of reference light is acquired (step 24). Next, it is determined whether or not there is a light source lighting error (step 25). When the basic data (X) is set as the threshold value X, the actual data (Yt) is compared for each actual data measurement, and the actual data (Yt) is sufficiently small, such as about 1/10 or less of the basic data (X). Determines that a non-lighting error has occurred. Then, a tag indicating non-lighting is attached to the actual data, and collection of the actual data is stopped as necessary (step 26). If there is no light source lighting error in step 25, actual data (Yt) is acquired for the next wavelength. This is repeated below.

図3は、光源の光量が低いときの積分時間処理を示すフローチャートである。吸収スペクトルには、避けられない一定レベルの固定ノイズが重畳しているが、光源の光量が少ないと、光量に対する固定ノイズの割合が大きくなり、データの精度に影響を与える。初期測定および条件設定において、分光器16の各機器の初期化、測定波長の設定が行われる(ステップ31)。次に、ひとつの波長をnとしたとき、基本データ測定として、リファレンス光の設定された全波長領域における光量を測定し(ステップ32)、基本データ(Xa n)として図示しない記憶部へ格納し、例えば、基本データのうちの最大光量(Xa max.)の4分の1を閾値Eとする(ステップ33)。これにより、実データが、最大光量の4分の1より低い光量の波長についてのみ、積分時間処理を行うようにする。次に、ステップ33で記憶部へ格納した基本データ(Xa n)と閾値Eとを比較し(ステップ34)、基本データ(Xa n)が閾値Eより同じか大きい場合は、積分周期を光源2の点灯の周期tと同じままとして(ステップ35)、実データ(Yt)の測定を行う(ステップ36)。基本データ(Xa n)が閾値Eより小さい場合は、積分周期を光源2の点灯の周期tの2倍として(ステップ37)、実データ(Y2t)の測定を行う(ステップ38)。以上のように、制御装置12は、基本データの測定から閾値を決め、光量判定の後、光量が低い場合には、実データを例えば通常の2倍の時間で測定して積分しAD変換を行う積分時間制御を行うので、AD変換器からの信号のノイズの比率の上昇を防ぐことができ、紫外域および可視域での良好な吸収スペクトルを得ることができる。   FIG. 3 is a flowchart showing the integration time process when the light amount of the light source is low. In the absorption spectrum, fixed noise of a certain level that cannot be avoided is superimposed. However, if the light amount of the light source is small, the ratio of the fixed noise to the light amount increases, which affects the data accuracy. In the initial measurement and condition setting, each instrument of the spectrometer 16 is initialized and the measurement wavelength is set (step 31). Next, when one wavelength is n, as the basic data measurement, the light quantity in the entire wavelength region where the reference light is set is measured (step 32), and is stored in the storage unit (not shown) as the basic data (Xan). For example, ¼ of the maximum light amount (Xa max.) In the basic data is set as the threshold value E (step 33). As a result, the integration time processing is performed only for the wavelength of light whose actual data is lower than a quarter of the maximum light. Next, the basic data (Xan) stored in the storage unit in step 33 is compared with the threshold value E (step 34). If the basic data (Xan) is equal to or larger than the threshold value E, the integration period is set to the light source 2. The actual data (Yt) is measured (step 36) while keeping the same lighting cycle t as in step 35. When the basic data (Xan) is smaller than the threshold value E, the integration cycle is set to twice the lighting cycle t of the light source 2 (step 37), and actual data (Y2t) is measured (step 38). As described above, the control device 12 determines the threshold value from the measurement of the basic data, and after the light quantity determination, when the light quantity is low, the actual data is measured and integrated by, for example, twice the normal time to perform AD conversion. Since the integration time control is performed, it is possible to prevent an increase in the noise ratio of the signal from the AD converter and to obtain a good absorption spectrum in the ultraviolet region and the visible region.

図4は、出力信号の時間的変化を示すタイムチャートである。図1に示した光源2の点灯エラーや光量が低下したとき以外の正常時では、光源2から得られる光量は、波形41で示すような、周期tのパルス状の波形をしている。図1で説明したように、リファレンス光はリファレンス光積分アンプ7で、サンプル光はサンプル光積分アンプ10で積分され、波形42で示すような出力信号が出力される。続いてリファレンス光積分アンプ7からの出力がリファレンス光信号AD変換器8で、サンプル光積分アンプ10からの出力がサンプル光信号AD変換器11で、波形43に示すような周期tの矩形波に成形され、リファレンスデータおよびサンプルデータとして制御部12へ送信される。   FIG. 4 is a time chart showing temporal changes in the output signal. In the normal state other than when the light source 2 is turned on or the light amount is reduced as shown in FIG. 1, the light amount obtained from the light source 2 has a pulse-like waveform with a period t as shown by a waveform 41. As described in FIG. 1, the reference light is integrated by the reference light integrating amplifier 7 and the sample light is integrated by the sample light integrating amplifier 10, and an output signal as shown by the waveform 42 is output. Subsequently, the output from the reference light integrating amplifier 7 is a reference light signal AD converter 8, and the output from the sample light integrating amplifier 10 is a sample light signal AD converter 11. Molded and transmitted to the control unit 12 as reference data and sample data.

次に、不点灯処理を説明する。光源2の波形51は、正常点灯波形aに対してリファレンス光積分アンプ7とサンプル光積分アンプ10から波形52の波形a′の出力信号が、周期tで出力される。しかし、点灯しない場合の波形bに対しては、周期tのときにあるべき波形51の変化がないため、波形52も、周期tに対応する時間区間内で、波形b′で示されるように変化しない。図2に示した閾値Xを波形52に重ね合わせると図4に示すようになる。点灯しない場合は、図2のステップ24で実データ(Yt)を測定するごとに実行されるステップ25の、実データ(Yt)の波形52が閾値Xを超えるかどうかの判定で閾値Xを超えないので、不点灯と判断できる。   Next, the non-lighting process will be described. As for the waveform 51 of the light source 2, the output signal of the waveform a ′ of the waveform 52 is output from the reference light integrating amplifier 7 and the sample light integrating amplifier 10 with a period t with respect to the normal lighting waveform a. However, since there is no change in the waveform 51 that should be in the period t with respect to the waveform b when the lamp is not lit, the waveform 52 is also represented by the waveform b ′ within the time interval corresponding to the period t. It does not change. When the threshold value X shown in FIG. 2 is superimposed on the waveform 52, the result is as shown in FIG. If not lit, the threshold value X is exceeded in the determination of whether or not the waveform 52 of the actual data (Yt) exceeds the threshold value X in step 25, which is executed every time the actual data (Yt) is measured in step 24 of FIG. Since it is not, it can be judged that it is not lit.

次に、光源の光量が低いときの処理を説明する。光源2は周期tで点灯して波形61になるが、光量が少ないと、リファレンス光がリファレンス光積分アンプ7で積分された波形62、または、サンプル光がサンプル光積分アンプ10で積分された波形62が、図3のステップ33で定義された閾値Eを超えないので、ステップ34で光量不足と判定される。この場合、ステップ37で、制御装置12により、リファレンス光積分アンプ7またはサンプル光積分アンプ10での積分の周期が、正常時の周期tの2倍に設定され、AD変換を行い、波形63を得る。これにより、AD変換器からの信号のノイズの比率の上昇を防ぐことができ、紫外域および可視域での良好な吸収スペクトルを得ることができる。   Next, processing when the light amount of the light source is low will be described. The light source 2 is lit at a period t and becomes a waveform 61. However, when the light amount is small, the waveform 62 in which the reference light is integrated by the reference light integrating amplifier 7 or the waveform in which the sample light is integrated by the sample light integrating amplifier 10 is used. 62 does not exceed the threshold value E defined in step 33 of FIG. 3, it is determined in step 34 that the amount of light is insufficient. In this case, in step 37, the control device 12 sets the integration period in the reference light integrating amplifier 7 or the sample light integrating amplifier 10 to be twice the normal period t, performs AD conversion, and generates the waveform 63. obtain. Thereby, an increase in the noise ratio of the signal from the AD converter can be prevented, and a good absorption spectrum in the ultraviolet region and the visible region can be obtained.

このように、本発明の実施例は、リファレンス光の光検知器と試料を透過したサンプル光の光検知器のそれぞれを積分して光量を蓄積するとともに、リファレンス光の光量が予め設定された閾値を下回った場合、リファレンス光の光検知器と試料を透過したサンプル光の光検知器のそれぞれの積分時間を拡大するとともに、積分により得られたリファレンス光の信号およびサンプル光の信号のAD変換の周期を拡大することを特徴としている。   As described above, the embodiment of the present invention integrates the light detector of the reference light and the light detector of the sample light transmitted through the sample to accumulate the light amount, and sets the light amount of the reference light to a preset threshold value. Below, the integration time of the reference light detector and the sample light detector that has passed through the sample is expanded, and the AD conversion of the reference light signal and the sample light signal obtained by the integration is performed. It is characterized by expanding the period.

これにより、波長の変化により光量が少なくなる光源を使用したときに、ノイズの比率の上昇を防ぎ、紫外域および可視域での吸収スペクトルを得ることができる可視紫外分光光度計を提供することができる。また、光源の点灯エラーが発生したときに、そのときのデータに点灯エラーであることを示す印を付加するとともに、必要に応じてデータの測定を停止させ、点灯エラー時のデータを他と区別するので、分析データ全体の信頼性が向上するという効果を得ることができる。   This provides a visible ultraviolet spectrophotometer that can prevent an increase in the ratio of noise and obtain an absorption spectrum in the ultraviolet region and the visible region when using a light source that reduces the amount of light due to a change in wavelength. it can. In addition, when a light source lighting error occurs, a mark indicating that it is a lighting error is added to the data at that time, and measurement of the data is stopped as necessary to distinguish the data at the time of the lighting error from others. Therefore, the effect that the reliability of the entire analysis data is improved can be obtained.

2 光源
3 回折格子
6 リファレンス光検知器
7 リファレンス光積分アンプ
8 リファレンス光信号AD変換器
9 サンプル光検知器
10 サンプル光積分アンプ
11 サンプル光信号AD変換器
12 制御部
14 データ表示装置
15 コンピュータ
2 light source 3 diffraction grating 6 reference light detector 7 reference light integrating amplifier 8 reference light signal AD converter 9 sample light detector 10 sample light integrating amplifier 11 sample light signal AD converter 12 control unit 14 data display device 15 computer

Claims (4)

特定の周期で特定の波長の光を試料に照射し、波長を変化させたときの前記試料の吸光度を得る分光光度計において、
前記光をリファレンス光とサンプル光へ分けるハーフミラーと、
前記リファレンス光の光検知器からの信号を積分するリファレンス光積分アンプと、
前記リファレンス光積分アンプからの信号をディジタル信号へ変換するリファレンス光信号AD変換器と、
前記試料を透過したサンプル光の光検知器からの信号を積分するサンプル光積分アンプと、
前記サンプル光積分アンプからの信号をディジタル信号へ変換するサンプル光信号AD変換器と、
前記リファレンス光の光量が予め設定された閾値を下回った場合、前記リファレンス光の光検知器と前記試料を透過したサンプル光の光検知器のそれぞれの積分時間を拡大するとともに、前記積分により得られたリファレンス光の信号およびサンプル光の信号のAD変換の周期を拡大する制御装置とを備えたことを特徴とする分光光度計。
In a spectrophotometer that irradiates a sample with light of a specific wavelength at a specific period and obtains the absorbance of the sample when the wavelength is changed,
A half mirror that separates the light into reference light and sample light;
A reference light integrating amplifier that integrates a signal from the photodetector of the reference light;
A reference optical signal AD converter for converting a signal from the reference optical integration amplifier into a digital signal;
A sample light integrating amplifier that integrates the signal from the light detector of the sample light transmitted through the sample;
A sample optical signal AD converter for converting a signal from the sample optical integration amplifier into a digital signal;
When the light amount of the reference light falls below a preset threshold value, the integration time of each of the reference light photodetector and the sample light photodetector transmitted through the sample is expanded and obtained by the integration. A spectrophotometer comprising: a control device that expands the AD conversion period of the reference light signal and the sample light signal.
請求項1に記載の外分光光度計において、
前記積分時間は、前記試料に照射される光の周期の2倍であり、かつ、前記AD変換の周期は、前記試料に照射される光の周期の2倍であることを特徴とする分光光度計。
The outer spectrophotometer according to claim 1,
The spectrophotometer characterized in that the integration time is twice the period of light irradiated on the sample, and the period of AD conversion is twice the period of light irradiated on the sample. Total.
特定の周期で特定の波長の光を試料に照射し、波長を変化させたときの前記試料の吸光度を得る分光光度計の吸光度測定方法において、In the absorbance measurement method of the spectrophotometer that obtains the absorbance of the sample when the wavelength is changed by irradiating the sample with light of a specific wavelength in a specific cycle,
前記光をリファレンス光と前記試料を透過するサンプル光とに分け、前記リファレンス光の光検知器と前記サンプル光の光検知器のそれぞれを積分して光量を蓄積するとともに、前記リファレンス光の蓄積された光量が予め設定された閾値を下回った場合、前記リファレンス光の光検知器と前記サンプル光の光検知器のそれぞれの積分時間を拡大するとともに、前記積分により得られた前記リファレンス光の信号および前記サンプル光の信号のAD変換の周期を拡大することを特徴とする吸光度測定方法。The light is divided into a reference light and a sample light that passes through the sample, and each of the reference light detector and the sample light detector is integrated to accumulate a light amount, and the reference light is accumulated. When the amount of light falls below a preset threshold value, the integration time of each of the reference light photodetector and the sample light photodetector is expanded, and the reference light signal obtained by the integration and A method for measuring absorbance, comprising: expanding an AD conversion cycle of the signal of the sample light.
請求項3に記載の吸光度測定方法において、The absorbance measurement method according to claim 3, wherein
前記積分時間は、The integration time is
前記試料に照射される光の周期の2倍であり、かつ、前記AD変換の周期は、前記試料に照射される光の周期の2倍であることを特徴とする吸光度測定方法。The absorbance measurement method characterized in that the period of light irradiated on the sample is twice and the period of AD conversion is twice the period of light irradiated on the sample.
JP2010162411A 2010-07-20 2010-07-20 Spectrophotometer and absorbance measurement method Expired - Fee Related JP5358527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162411A JP5358527B2 (en) 2010-07-20 2010-07-20 Spectrophotometer and absorbance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162411A JP5358527B2 (en) 2010-07-20 2010-07-20 Spectrophotometer and absorbance measurement method

Publications (2)

Publication Number Publication Date
JP2012026730A JP2012026730A (en) 2012-02-09
JP5358527B2 true JP5358527B2 (en) 2013-12-04

Family

ID=45779864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162411A Expired - Fee Related JP5358527B2 (en) 2010-07-20 2010-07-20 Spectrophotometer and absorbance measurement method

Country Status (1)

Country Link
JP (1) JP5358527B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167920B2 (en) * 2014-01-31 2017-07-26 株式会社島津製作所 Spectrophotometer
CN104897579A (en) * 2015-06-25 2015-09-09 南京信息工程大学 Water turbidity measuring system and method based on gating double optical paths
JP6729336B2 (en) * 2016-12-08 2020-07-22 コニカミノルタ株式会社 Reflection/transmission characteristic measuring device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113384A (en) * 1978-02-24 1979-09-04 Hitachi Ltd Multi-wave spectroscopic photometer
JPS57128823A (en) * 1981-02-02 1982-08-10 Shimadzu Corp Spectrum measuring device
JPS59178339A (en) * 1983-03-29 1984-10-09 Toshiba Corp Measuring apparatus for absorbance
JPH06307933A (en) * 1993-04-21 1994-11-04 Shimadzu Corp Multiwavelength spectrophotometer
DE19511782C2 (en) * 1995-03-30 1997-07-31 Kurandt System Gmbh Process for checking color printing originals and device for carrying out the process
JPH1019679A (en) * 1996-07-05 1998-01-23 Shimadzu Corp Spectrophotometer
JP3297737B2 (en) * 2000-02-16 2002-07-02 埼玉大学長 Spectral imaging device
JP2006153898A (en) * 2006-03-16 2006-06-15 Dainippon Screen Mfg Co Ltd Absorbance meter

Also Published As

Publication number Publication date
JP2012026730A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
US10508988B2 (en) Method and system for gas detection
JP2007218787A (en) Wavelength calibration method and device
JP5358527B2 (en) Spectrophotometer and absorbance measurement method
JP2008256380A (en) Optical measuring instrument and adjustment method therefor
JP2016109432A (en) Spectrometric measurement device and spectrometric measurement method
US10816398B2 (en) Spectrometer and spectrum measurement method thereof
US20150021491A1 (en) Method and apparatus for measuring concentration of advanced-oxidation active species
JP6167920B2 (en) Spectrophotometer
CN104422516A (en) Wavelength calibration method for monochromator, and spectrophotometer
JP5556362B2 (en) Spectral characteristic measuring apparatus and calibration method thereof
JP5900137B2 (en) Solar cell evaluation apparatus and method
WO2011102377A1 (en) Spectrophotometer and method for measuring performance thereof
US20130107255A1 (en) Spectrophotometer
JP6646204B2 (en) Measuring device using ultraviolet light source
JP5741774B1 (en) Solar cell absolute spectral sensitivity measuring apparatus and method
JP2008096241A (en) Spectrophotometer
JP3142018U (en) Spectroscopic analyzer
JPH10185686A (en) Spectrophotometer
JP5895691B2 (en) Solar cell evaluation apparatus and method
Shaw et al. Measurement of the ultraviolet-induced fluorescence yield from integrating spheres
WO2013046861A1 (en) Spectrophotometer and signal integration method for spectrophotometer
JP2005037242A (en) Spectroanalytical instrument
JP2013234895A (en) Solar cell evaluating device and method
JP5654778B2 (en) Image sensor, spectroscopic device, and method of operating image sensor
JP2003185498A (en) Spectrophotometer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees