JP5357825B2 - Ethylene-based copolymer and composition - Google Patents

Ethylene-based copolymer and composition Download PDF

Info

Publication number
JP5357825B2
JP5357825B2 JP2010104592A JP2010104592A JP5357825B2 JP 5357825 B2 JP5357825 B2 JP 5357825B2 JP 2010104592 A JP2010104592 A JP 2010104592A JP 2010104592 A JP2010104592 A JP 2010104592A JP 5357825 B2 JP5357825 B2 JP 5357825B2
Authority
JP
Japan
Prior art keywords
copolymer
ethylene
mol
foam
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010104592A
Other languages
Japanese (ja)
Other versions
JP2011231260A (en
Inventor
洋樹 江端
健晴 伊崎
隆俊 八百板
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2010104592A priority Critical patent/JP5357825B2/en
Publication of JP2011231260A publication Critical patent/JP2011231260A/en
Application granted granted Critical
Publication of JP5357825B2 publication Critical patent/JP5357825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition having good foamability and moldability; and a copolymer included in the composition to improve foamability and moldability in a small amount to be added. <P>SOLUTION: The copolymer includes structure units derived from ethylene A, &alpha;-olefin B, and VNBC, is synthesized using a metallocene catalyst, wherein the structure unit derived from B is 5-45 mol.%, the structure unit derived from VNB is 0.1-0.8 mol.%, and melt flow rate [MFR(g/10 minutes)] is 0.3-10, as measured at 190&deg;C under load of 2.16 Kg; and satisfies the formula (A): 13&gt; degree of strain hardening during measurement of elongation viscosity (&chi;<SB POS="POST">max</SB>) &gt;3... (A). <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、エチレン系共重合体、該共重合体を含む組成物およびそれを用いた発泡体に関する。より詳しくは、少ない添加量で発泡性や成形性、および発泡成形品の外観や物性を改質可能な共重合体、柔軟で良好な外観を有する発泡体を提供する組成物およびそれから得られる発泡体に関する。   The present invention relates to an ethylene-based copolymer, a composition containing the copolymer, and a foam using the same. More specifically, a copolymer capable of modifying foamability and moldability and the appearance and physical properties of a foamed molded product with a small addition amount, a composition providing a foam having a flexible and good appearance, and foam obtained therefrom About the body.

熱可塑性樹脂の発泡体にはこれまで、発泡成形が比較的容易であることから、ポリスチレンなどの非晶性樹脂が多く用いられてきたが、最近では耐熱性や耐衝撃性に対する要求から直鎖状の高密度ポリエチレンを使用した発泡体開発が盛んに行われている。他方、軟質発泡体としては、ポリウレタン(例えば、特許文献1参照)が多く使用されているが、発泡成形時に有機溶剤、架橋剤、触媒等を添加しているため環境への負荷が大きい問題から、ポリオレフィンを用いた柔軟な発泡体開発が強く望まれている。
オレフィン系樹脂における発泡の多くは、溶融混合物中で不揮発性ガスを膨張させることで行われるが、オレフィン系樹脂は一般に結晶性であるために、樹脂の温度を高くすると溶融粘度と溶融強度が急激に低下してしまい、ガスを保持できずに樹脂中から逸散して発泡倍率が上がらず、かつ破泡に伴う製品表面の外観悪化が問題となる。直鎖状の高密度ポリエチレンでは比較的結晶化温度が高く、僅かな温度変化により粘弾性が大きく変化するため、発泡成形のための加工温度適正範囲が極めて狭いという課題を有している。逆に樹脂の溶融粘度や溶融強度を上げるために発泡温度を下げたり、電子線架橋や架橋剤を用いることで架橋度を上げたりすると、十分かつ均一に発泡させることが困難となる。
Up to now, foaming of thermoplastic resin has been relatively easy to foam, so amorphous resins such as polystyrene have been used in many cases. However, recently, linear resins are required due to demands for heat resistance and impact resistance. The development of foams using high-density polyethylene in the form of foam is being actively conducted. On the other hand, polyurethane (for example, see Patent Document 1) is often used as the soft foam, but because of the problem that the load on the environment is large because an organic solvent, a crosslinking agent, a catalyst, and the like are added during foam molding. Therefore, development of a flexible foam using polyolefin is strongly desired.
Most of the foaming in the olefinic resin is performed by expanding a non-volatile gas in the molten mixture. However, since the olefinic resin is generally crystalline, when the temperature of the resin is increased, the melt viscosity and the melt strength are rapidly increased. As a result, the gas cannot be retained, dissipates from the resin and the expansion ratio does not increase, and the appearance of the product surface deteriorates due to foam breakage. Linear high-density polyethylene has a relatively high crystallization temperature, and viscoelasticity is greatly changed by a slight temperature change. Therefore, there is a problem that an appropriate processing temperature range for foam molding is extremely narrow. Conversely, if the foaming temperature is lowered to increase the melt viscosity or melt strength of the resin, or the degree of crosslinking is increased by using electron beam crosslinking or a crosslinking agent, it becomes difficult to foam sufficiently and uniformly.

このため、耐熱性や耐衝撃性に優れ、良好な外観を有する高発泡倍率のポリエチレン発泡体を得る方法として、(1)分岐状の低密度ポリエチレンと直鎖状の低密度ポリエチレンを混合する方法(例えば、特許文献2参照)、(2)溶融張力の高いポリエチレンにポリオレフィン系ワックスを混合する方法(例えば、特許文献3参照)が提案されている。   For this reason, as a method for obtaining a high foaming ratio polyethylene foam having excellent heat resistance and impact resistance and a good appearance, (1) a method of mixing a branched low density polyethylene and a linear low density polyethylene (For example, refer patent document 2) (2) The method (For example, refer patent document 3) of mixing polyolefin wax with polyethylene with high melt tension is proposed.

しかしながら、上記特許文献2の方法では、分岐状の低密度ポリエチレンと直鎖状の低密度ポリエチレンを大量に添加することが必要であり、結果、耐熱性やその他物性が大幅に低下してしまう。また、上記特許文献3で提案されている方法においては、発泡体の収縮や独立気泡率の低下に伴う機械強度の低下といった問題が生じ、高い発泡倍率の発泡体が得られ難い。   However, in the method of Patent Document 2, it is necessary to add a large amount of branched low-density polyethylene and linear low-density polyethylene, and as a result, heat resistance and other physical properties are greatly reduced. Moreover, in the method proposed in Patent Document 3, problems such as shrinkage of the foam and a decrease in mechanical strength due to a decrease in the closed cell ratio occur, and it is difficult to obtain a foam having a high expansion ratio.

そこで、ポリエチレンなどのポリオレフィン樹脂の特性を悪化させることなく成形性と発泡成形体の外観や物性を改良可能な改質剤の開発が強く望まれている。   Therefore, there is a strong demand for the development of a modifier that can improve the moldability and the appearance and physical properties of the foamed molded product without deteriorating the properties of polyolefin resin such as polyethylene.

特開2006−131754JP 2006-131754 A 特開2005−154729JP-A-2005-154729 特開2006−199872JP 2006-199872 A

本発明は、上記のような従来技術に伴う問題を解決しようとするものであって、少量の添加で充分な高発泡性と成形性を改良可能な共重合体、該共重合体を含む組成物を発泡することで得られる、柔軟かつ良好な外観を有する高発泡成形体を提供することを目的としている。   The present invention is intended to solve the problems associated with the prior art as described above, and a copolymer capable of improving sufficiently high foamability and moldability by addition of a small amount thereof, and a composition containing the copolymer An object of the present invention is to provide a highly foamed molded article having a soft and good appearance, obtained by foaming a product.

本発明者らは、上記課題を達成するために鋭意研究を重ねた結果、メタロセン触媒を用いて特定のジエンを共重合することで得られるエチレン系共重合体が、少量の添加によってポリオレフィンの高発泡性と成形性を改良し、該組成物から得られる発泡成形体が、柔軟かつ良好な外観を有することを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that an ethylene-based copolymer obtained by copolymerizing a specific diene using a metallocene catalyst can increase the polyolefin content by adding a small amount. The foamability and moldability were improved, and the foamed molded product obtained from the composition was found to have a flexible and good appearance, and the present invention was completed.

すなわち本発明のエチレン系共重合体(X)は、エチレン[A]、炭素原子数3〜20のα−オレフィン[B]、および5−ビニル−2−ノルボルネン(VNB)[C]に由来する構造単位を含む、メタロセン触媒を用いて合成される共重合体であって、(1)炭素原子数3〜20のα−オレフィン[B]に由来する構造単位が、全構造単位100モル%中、5〜45モル%であり、(2)VNBに由来する構造単位が、全構造単位100モル%中、0.1〜0.8モル%であり、(3)190℃、2.16Kg荷重で測定したメルトフローレート[MFR(g/10分)]が0.3〜10であり、(4)下記式(A)を満たすことを特徴とする。
13 > 伸長粘度測定における歪硬化度(χmax) > 3 ・・・(A)
本発明の共重合体は、下記式(iii’)で表される構造を有する触媒を用いて合成されることは、生産性の点で好ましい態様である。
That is, the ethylene copolymer (X) of the present invention is derived from ethylene [A], α-olefin [B] having 3 to 20 carbon atoms, and 5-vinyl-2-norbornene (VNB) [C]. A copolymer containing a structural unit and synthesized using a metallocene catalyst, wherein (1) the structural unit derived from an α-olefin [B] having 3 to 20 carbon atoms is contained in 100 mol% of all the structural units. 5 to 45 mol%, and (2) the structural unit derived from VNB is 0.1 to 0.8 mol% in 100 mol% of all structural units, and (3) 190 ° C, 2.16 kg load The melt flow rate [MFR (g / 10 min)] measured in (3) is 0.3 to 10, and (4) satisfies the following formula (A).
13> degree of strain hardening in elongational viscosity measurement (χ max )> 3 (A)
It is a preferable embodiment in terms of productivity that the copolymer of the present invention is synthesized using a catalyst having a structure represented by the following formula (iii ′).

式(III’)中、R'は、水素原子、炭素数1〜20のヒドロカルビル基であり、R"は、炭素数1〜20のヒドロカルビル基または水素原子であり、Mはチタンであり、Yは、−NR*−であり、Z*は、−SiR* 2−であり、前記R*は、それぞれ独立に、水素原子または、炭素数1〜20のヒドロカルビル基であり、pおよびqのうち一方は0であり、他方は1であり、pが0かつqは1である場合には、Mは+2の酸化状態であり、X'は1,4−ジフェニル−1,3−ブタジエンまたは1,3−ペンタジエンであり、pが1かつqが0である場合には、Mは+3の酸化状態であり、Xは2−(N,N−ジメチルアミノ)ベンジルである。 In the formula (III ′), R ′ is a hydrogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, R ″ is a hydrocarbyl group having 1 to 20 carbon atoms or a hydrogen atom, M is titanium, Y Is —NR * —, Z * is —SiR * 2 —, and each R * is independently a hydrogen atom or a hydrocarbyl group having 1 to 20 carbon atoms, and of p and q When one is 0, the other is 1, p is 0 and q is 1, M is in the +2 oxidation state and X ′ is 1,4-diphenyl-1,3-butadiene or 1 , 3-pentadiene, when p is 1 and q is 0, M is in the +3 oxidation state and X is 2- (N, N-dimethylamino) benzyl.

本発明の組成物は、前記共重合体を含むことを特徴とする。
本発明の組成物は、190℃、2.16Kg荷重で測定したMFRが0.1〜30g/10分であるポリオレフィン樹脂および/またはエラストマー(Y)60〜95重量部と、該エチレン系共重合体(X)が40〜5重量部とを含むことが好ましい。
The composition of the present invention is characterized by containing the copolymer.
The composition of the present invention comprises 60 to 95 parts by weight of a polyolefin resin and / or elastomer (Y) having an MFR of 0.1 to 30 g / 10 minutes measured at 190 ° C. and a load of 2.16 kg, and the ethylene-based copolymer. It is preferable that union (X) contains 40 to 5 parts by weight.

本発明の共重合体を含む組成物は、良好な発泡性と成形性を有し、該組成物を発泡させることにより耐熱性と耐衝撃性に優れ、良好な外観を有する発泡成形体を得ることができる。該成形体は緩衝材、断熱材、吸音材等の各種用途に好適に用いられる。 The composition containing the copolymer of the present invention has good foamability and moldability. By foaming the composition, a foamed molded article having excellent heat resistance and impact resistance and good appearance is obtained. be able to. The molded body is suitably used for various applications such as a buffer material, a heat insulating material, and a sound absorbing material.

以下、本発明について具体的に説明する。
〔エチレン系共重合体(X)〕
本発明のエチレン系共重合体(X)は、エチレン[A]、炭素原子数3〜20のα−オレフィン[B]、および5−ビニル−2−ノルボルネン(VNB)[C]に由来する構造単位を含む、メタロセン触媒を用いて合成される共重合体であって、(1)炭素原子数3〜20のα−オレフィン[B]に由来する構造単位が、全構造単位100モル%中、5〜45モル%であり、(2)VNBに由来する構造単位が、全構造単位100モル%中、0.1〜0.8モル%であり、(3)190℃、2.16Kg荷重で測定したメルトフローレート[MFR(g/10分)]が0.3〜10であり、(4)下記式(A)を満たすことを特徴とする。
Hereinafter, the present invention will be specifically described.
[Ethylene copolymer (X)]
The ethylene copolymer (X) of the present invention has a structure derived from ethylene [A], an α-olefin [B] having 3 to 20 carbon atoms, and 5-vinyl-2-norbornene (VNB) [C]. A copolymer containing a unit and synthesized using a metallocene catalyst, wherein (1) a structural unit derived from an α-olefin [B] having 3 to 20 carbon atoms is 100 mol% in all structural units, 5 to 45 mol%, and (2) the structural unit derived from VNB is 0.1 to 0.8 mol% in 100 mol% of all structural units, and (3) at 190 ° C. and a load of 2.16 kg. The measured melt flow rate [MFR (g / 10 min)] is 0.3 to 10, and (4) satisfies the following formula (A).

13 > 伸長粘度測定における歪硬化度(χmax) > 3 ・・・(A) 13> degree of strain hardening in elongational viscosity measurement (χ max )> 3 (A)

なお、本明細書において、前記(1)〜(4)をそれぞれ要件(1)〜(4)とも記す。 本発明の共重合体は、エチレン[A]、炭素原子数3〜20のα−オレフィン[B]、5−ビニル−2−ノルボルネン(VNB)を単量体とし、該原料に由来する構造単位を有する共重合体である。   In addition, in this specification, said (1)-(4) is also described as requirements (1)-(4), respectively. The copolymer of the present invention comprises ethylene [A], α-olefin [B] having 3 to 20 carbon atoms, and 5-vinyl-2-norbornene (VNB) as monomers, and a structural unit derived from the raw material. It is a copolymer having.

なお、本明細書において、エチレン[A]を成分[A]、炭素原子数3〜20のα−オレフィン[B]を成分[B]、5−ビニル−2−ノルボルネン(VNB)[C]を成分[C]とも記す。   In the present specification, ethylene [A] is component [A], α-olefin [B] having 3 to 20 carbon atoms is component [B], and 5-vinyl-2-norbornene (VNB) [C] is Also referred to as component [C].

〔成分[A]〕
本発明の共重合体は、エチレン[A]に由来する構造単位が、全構造単位100モル%中、55〜95モル%であり、好ましくは60〜90モル%である。
[Component [A]]
In the copolymer of the present invention, the structural unit derived from ethylene [A] is 55 to 95 mol%, preferably 60 to 90 mol%, in 100 mol% of all structural units.

〔成分[B]〕
前記炭素原子数3〜20のα−オレフィン[B]としては、具体的には、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−ヘプテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−エイコセン等が挙げられる。これらのうち、特にプロピレン、1−ブテン、1−ヘキセン、1−オクテン等の炭素原子数が3〜8のα−オレフィンが好ましい。このようなα−オレフィンは、原料コストが比較的安価であり、かつ得られる共重合体が優れた機械的性質を示すことから好適である。
[Component [B]]
Specific examples of the α-olefin [B] having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1- Examples include octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-eicocene. Of these, α-olefins having 3 to 8 carbon atoms such as propylene, 1-butene, 1-hexene and 1-octene are particularly preferable. Such an α-olefin is preferable because the raw material cost is relatively low and the resulting copolymer exhibits excellent mechanical properties.

なお、本発明の共重合体は、少なくとも1種の炭素原子数3〜20のα−オレフィン[B]に由来する構成単位を含んでおり、2種以上の炭素原子数3〜20のα−オレフィン[B]に由来する構成単位を含んでいてもよい。   In addition, the copolymer of this invention contains the structural unit derived from an at least 1 sort (s) of C3-C20 alpha-olefin [B], and has 2 or more types of C3-C20 alpha-. A structural unit derived from olefin [B] may be included.

なお、本発明の共重合体は、上述の成分[A]、成分[B]、成分[C]のほかに非共役ジエンに由来する構成単位を全構造単位100モル%中、0.1〜5.0モル%含んでいてもよい。非共役ジエン成分としては下記のような脂肪族ポリエン、脂環族ポリエンなどが挙げられる。   The copolymer of the present invention contains, in addition to the above-mentioned component [A], component [B], and component [C], a structural unit derived from a non-conjugated diene containing 0.1 to It may contain 5.0 mol%. Examples of the non-conjugated diene component include the following aliphatic polyenes and alicyclic polyenes.

前記脂肪族ポリエンの具体例としては、1,4-ヘキサジエン、1,5-ヘプタジエン、1,6-オクタジエン、1,7-ノナジエン、1,8-デカジエン、1,12- テトラデカジエン、3-メチル-1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、4-エチル-1,4-ヘキサジエン、3,3-ジメチル-1,4-ヘキサジエン、5-メチル-1,4-ヘプタジエン、5-エチル-1,4-ヘプタジエン、5-メチル-1,5-ヘプタジエン、6-メチル-1,5-ヘプタジエン、5-エチル-1,5-ヘプタジエン、4-メチル-1,4-オクタジエン、5-メチル-1,4-オクタジエン、4-エチル-1,4-オクタジエン、5-エチル-1,4-オクタジエン、5-メチル-1,5-オクタジエン、6-メチル-1,5-オクタジエン、5-エチル-1,5-オクタジエン、6-エチル-1,5-オクタジエン、6-メチル-1,6-オクタジエン、7-メチル-1,6-オクタジエン、6-エチル-1,6-オクタジエン、6-プロピル-1,6-オクタジエン、6-ブチル-1,6-オクタジエン、7-メチル-1,6-オクタジエン、4-メチル-1,4-ノナジエン、5-メチル-1,4-ノナジエン、4-エチル-1,4-ノナジエン、5-エチル-1,4-ノナジエン、5-メチル-1,5-ノナジエン、6-メチル-1,5-ノナジエン、5-エチル-1,5-ノナジエン、6-エチル-1,5-ノナジエン、6-メチル-1,6-ノナジエン、7-メチル-1,6-ノナジエン、6-エチル-1,6-ノナジエン、7-エチル-1,6-ノナジエン、7-メチル-1,7-ノナジエン、8-メチル-1,7-ノナジエン、7-エチル-1,7-ノナジエン、5-メチル-1,4-デカジエン、5-エチル-1,4-デカジエン、5-メチル-1,5-デカジエン、6-メチル-1,5-デカジエン、5-エチル-1,5-デカジエン、6-エチル-1,5-デカジエン、6-メチル-1,6-デカジエン、6-エチル-1,6-デカジエン、7-メチル-1,6-デカジエン、7-エチル-1,6-デカジエン、7-メチル-1,7-デカジエン、8-メチル-1,7-デカジエン、7-エチル-1,7-デカジエン、8-エチル-1,7-デカジエン、8-メチル-1,8-デカジエン、9-メチル-1,8-デカジエン、8-エチル-1,8-デカジエン、6-メチル-1,6-ウンデカジエン、9-メチル-1,8-ウンデカジエンなどが挙げられる。本発明においては、これらの脂肪族ポリエンを1種または2種以上組み合わせて用いることができる。好ましくは7-メチル-1,6-オクタジエンなどが用いられる。   Specific examples of the aliphatic polyene include 1,4-hexadiene, 1,5-heptadiene, 1,6-octadiene, 1,7-nonadiene, 1,8-decadiene, 1,12-tetradecadiene, 3- Methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 4-ethyl-1,4-hexadiene, 3,3-dimethyl-1,4-hexadiene, 5-methyl-1,4-heptadiene, 5-ethyl-1,4-heptadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene, 5-ethyl-1,5-heptadiene, 4-methyl-1,4-octadiene, 5-methyl-1,4-octadiene, 4-ethyl-1,4-octadiene, 5-ethyl-1,4-octadiene, 5-methyl-1,5-octadiene, 6-methyl-1,5-octadiene, 5-ethyl-1,5-octadiene, 6-ethyl-1,5-octadiene, 6-methyl-1,6-octadiene, 7-methyl-1,6-octadiene, 6-ethyl-1,6-octadiene, 6-propiene -1,6-octadiene, 6-butyl-1,6-octadiene, 7-methyl-1,6-octadiene, 4-methyl-1,4-nonadiene, 5-methyl-1,4-nonadiene, 4-ethyl -1,4-nonadiene, 5-ethyl-1,4-nonadiene, 5-methyl-1,5-nonadiene, 6-methyl-1,5-nonadiene, 5-ethyl-1,5-nonadiene, 6-ethyl -1,5-nonadiene, 6-methyl-1,6-nonadiene, 7-methyl-1,6-nonadiene, 6-ethyl-1,6-nonadiene, 7-ethyl-1,6-nonadiene, 7-methyl -1,7-nonadiene, 8-methyl-1,7-nonadiene, 7-ethyl-1,7-nonadiene, 5-methyl-1,4-decadiene, 5-ethyl-1,4-decadiene, 5-methyl -1,5-decadiene, 6-methyl-1,5-decadiene, 5-ethyl-1,5-decadiene, 6-ethyl-1,5-decadiene, 6-methyl-1,6-decadiene, 6-ethyl -1,6-decadiene, 7-methyl-1,6-decadiene, 7-ethyl-1,6-decadiene, 7-methyl-1,7-decadiene, 8-methyl-1, 7-decadiene, 7-ethyl-1,7-decadiene, 8-ethyl-1,7-decadiene, 8-methyl-1,8-decadiene, 9-methyl-1,8-decadiene, 8-ethyl-1, Examples include 8-decadiene, 6-methyl-1,6-undecadiene, 9-methyl-1,8-undecadiene, and the like. In the present invention, these aliphatic polyenes can be used singly or in combination of two or more. Preferably, 7-methyl-1,6-octadiene is used.

前記脂環族ポリエンとしては、1個の炭素・炭素二重結合(不飽和結合)を有する脂環部分と、内部オレフィン結合(炭素・炭素二重結合)を有する鎖状部分とから構成されるポリエンがあげられ、具体例としては、5−エチリデン−2−ノルボルネン(ENB)、5−プロピリデン−2−ノルボルネン、5−ブチリデン−2−ノルボルネンなどが挙げられ、5−エチリデン−2−ノルボルネン(ENB)が好ましく用いられる。その他の脂環族ポリエンとしては、具体的には、例えば、2−メチル−2,5−ノルボルナジエン、2−エチル−2,5−ノルボルナジエンなどが挙げられる。   The alicyclic polyene is composed of an alicyclic portion having one carbon / carbon double bond (unsaturated bond) and a chain portion having an internal olefin bond (carbon / carbon double bond). Specific examples thereof include 5-ethylidene-2-norbornene (ENB), 5-propylidene-2-norbornene, 5-butylidene-2-norbornene, and the like. 5-ethylidene-2-norbornene (ENB) ) Is preferably used. Specific examples of the other alicyclic polyenes include 2-methyl-2,5-norbornadiene and 2-ethyl-2,5-norbornadiene.

〔要件(1)〕
本発明の共重合体は、炭素原子数3〜20のα−オレフィン[B]に由来する構造単位が、全構造単位100モル%中、5〜45モル%であり、好ましくは10〜40モル%である。
[Requirement (1)]
In the copolymer of the present invention, the structural unit derived from the α-olefin [B] having 3 to 20 carbon atoms is 5 to 45 mol%, preferably 10 to 40 mol in 100 mol% of all structural units. %.

成分[B]に由来する構造単位(モル%)が前記範囲にあると、本発明の共重合体を含む組成物から得られる、発泡体の柔軟性と耐衝撃性との観点から好適である。   When the structural unit (mol%) derived from the component [B] is in the above range, it is preferable from the viewpoint of the flexibility and impact resistance of the foam obtained from the composition containing the copolymer of the present invention. .

なお、前記モル比は、1H−NMRにより求めることができる。
〔要件(2)〕
本発明の共重合体は、VNB[C]に由来する構造単位が、全構造単位100モル%中、0.1〜0.8モル%であり、好ましくは0.1〜0.6モル%、さらに好ましくは0.1〜0.5モル%である。
The molar ratio can be determined by 1 H-NMR.
[Requirement (2)]
In the copolymer of the present invention, the structural unit derived from VNB [C] is 0.1 to 0.8 mol%, preferably 0.1 to 0.6 mol%, in 100 mol% of all structural units. More preferably, it is 0.1 to 0.5 mol%.

成分[C]に由来する構造単位(モル%)が前記範囲にあると、本発明の共重合体を含む組成物から得られる、発泡体の発泡倍率と外観との観点から好適である。   When the structural unit (mol%) derived from the component [C] is in the above range, it is preferable from the viewpoint of the expansion ratio and appearance of the foam obtained from the composition containing the copolymer of the present invention.

なお、前記モル比は、1H−NMRにより求めることができる。
具体的には、共重合体の1H−NMRスペクトルを下記条件で求め、各重合体のエチレンに由来する構造単位の量、プロピレンに由来する構造単位の量およびVNBに由来する構造単位の量を積分強度から求めることができる。
装置;ECX400P型核磁気共鳴装置(日本電子社製)
測定条件
周波数:400MHz
パルス幅:6.00μ秒(45°)
繰り返し時間:7.0秒
積算回数:512回
測定溶媒:ODCB−d
測定温度:120℃
The molar ratio can be determined by 1 H-NMR.
Specifically, the 1 H-NMR spectrum of the copolymer is obtained under the following conditions, and the amount of structural units derived from ethylene, the amount of structural units derived from propylene, and the amount of structural units derived from VNB in each polymer. Can be obtained from the integrated intensity.
Apparatus: ECX400P type nuclear magnetic resonance apparatus (manufactured by JEOL Ltd.)
Measurement condition frequency: 400 MHz
Pulse width: 6.00 μsec (45 °)
Repeat time: 7.0 seconds Integration count: 512 times Measurement solvent: ODCB-d 4
Measurement temperature: 120 ° C

〔要件(3)〕
本発明の共重合体は、190℃、2.16Kg荷重で測定したメルトフローレート[MFR(g/10分)]が0.3〜10であり、好ましくは0.3〜8、さらに好ましくは0.4〜6である。
[Requirement (3)]
The copolymer of the present invention has a melt flow rate [MFR (g / 10 min)] measured at 190 ° C. and a load of 2.16 Kg of 0.3 to 10, preferably 0.3 to 8, more preferably 0.4-6.

MFRが前記範囲内にあると、本発明の共重合体を含む組成物の成形加工性が良好であり、また、発泡体の外観との観点から好適である。
なお、前記MFRは、ASTM D1238に準拠して測定することができる。
When the MFR is within the above range, the moldability of the composition containing the copolymer of the present invention is good, and it is preferable from the viewpoint of the appearance of the foam.
The MFR can be measured according to ASTM D1238.

〔要件(4)〕
本発明の共重合体は、下記式(A)を満たし、好ましくは下記式(A’)を満たす。
13 > 伸長粘度測定における歪硬化度(χmax) > 3 ・・・(A)
11 > 伸長粘度測定における歪硬化度(χmax) > 3.5 ・・・(A’)
[Requirement (4)]
The copolymer of the present invention satisfies the following formula (A), and preferably satisfies the following formula (A ′).
13> degree of strain hardening in elongational viscosity measurement (χ max )> 3 (A)
11> degree of strain hardening in elongational viscosity measurement (χ max )> 3.5 (A ′)

一般に紡糸成形、フィルム成形、ブロー成形、発泡成形のような自由表面を持った変形は伸長変形が支配的となる。ポリマー溶融物の伸長変形下における挙動は、変形様式が最も単純な一軸伸長変形下における粘度測定により評価される。ポリマー溶融物の一軸伸長粘度は与えたひずみの増加により、伸長粘度が線形領域の伸長粘度に比べ増加するひずみ硬化性が観察される。伸長粘度測定におけるひずみ硬化度は伸長変形下での成形加工にとって重要な指標であり、ひずみ硬化度が大きいものはブロー成形時成形品の肉厚を均一にする他、発泡成形時の気泡セルを均一に成長させる働きがあることが知られており、そのひずみ硬化度は下記式(A)で表される。
ひずみ硬化度(χmax)=ηEmax/ηlin (A)
ηEmax;最大到達伸長粘度、ηlin;線形粘度
In general, deformation having a free surface such as spinning molding, film molding, blow molding, and foam molding is dominated by elongational deformation. The behavior of the polymer melt under elongation deformation is evaluated by measuring the viscosity under uniaxial elongation deformation with the simplest deformation mode. With respect to the uniaxial elongation viscosity of the polymer melt, a strain hardening property is observed in which the elongation viscosity increases as compared with the elongation viscosity in the linear region due to an increase in applied strain. The degree of strain hardening in the measurement of elongational viscosity is an important index for molding processing under elongation deformation, and those with a large degree of strain hardening have a uniform cell thickness during blow molding, as well as cell cells during foam molding. It is known that it has a function of growing uniformly, and the degree of strain hardening is represented by the following formula (A).
Strain hardening degree (χ max ) = η Emax / η lin (A)
η Emax ; maximum reached extensional viscosity, η lin ; linear viscosity

ここで、ηEmaxはひずみ量が3となるまでの伸長粘度の最大値であり、ηlinは一定ひずみ速度下における一軸伸長粘度測定により求められた時間−伸長粘度曲線(対数プロット)において、ひずみ硬化を起こす直前の粘度を直線で近似し、伸長粘度が最大値となる時間までの近似直線上の粘度である。 Here, η Emax is the maximum value of the extension viscosity until the strain amount becomes 3, and η lin is a strain in a time-extension viscosity curve (logarithmic plot) obtained by uniaxial extension viscosity measurement under a constant strain rate. The viscosity immediately before curing is approximated by a straight line, and is the viscosity on the approximate straight line up to the time when the extensional viscosity becomes the maximum value.

上記ひずみ硬化度は長い緩和時間を持つ、高分子量成分や分岐成分の導入により大きくなることから、直鎖ポリマーの場合は高分子量成分の量、分岐ポリマーの場合は分岐の形態や長鎖分岐の量を表す有用な指標とされる。   The degree of strain hardening has a long relaxation time and increases with the introduction of a high molecular weight component or a branched component. It is a useful indicator of quantity.

ひずみ硬化度の測定方法に関しては、一軸伸長粘度を測定できれば、どのような方法でも同一の値が得られるが、 本発明においては一軸伸長治具(Sentmanat Extensional Rheometer)を備え付けた粘弾性装置(アントンパール社製の粘弾性試験機(型式MCR301))を用いて測定した。また、測定試料には予め酸化防止剤を適量(例えば1000ppm)配合することが好ましい。伸長粘度測定用試料として、共重合体を210℃でプレスして得た厚み2mmのシートを、幅10mm、長さ20mmに切り出した。このサンプルを用い、210℃、ひずみ速度0.1sec−1にて伸長粘度測定を行い、上記算出方法によりひずみ硬化度を求めた。 With respect to the method for measuring the strain hardening degree, the same value can be obtained by any method as long as the uniaxial elongation viscosity can be measured. In the present invention, however, a viscoelastic device (Anton) equipped with a uniaxial elongation jig (Sentmanat Extended Rheometer) is used. This was measured using a viscoelasticity tester (model MCR301) manufactured by Pearl. Moreover, it is preferable to mix | blend a suitable quantity (for example, 1000 ppm) of antioxidant previously with a measurement sample. As a sample for measuring extensional viscosity, a sheet having a thickness of 2 mm obtained by pressing the copolymer at 210 ° C. was cut into a width of 10 mm and a length of 20 mm. Using this sample, the elongational viscosity was measured at 210 ° C. and a strain rate of 0.1 sec −1 , and the strain hardening degree was determined by the above calculation method.

本発明の共重合体は、前述のようにメタロセン触媒を用いて合成される共重合体であるが、本発明においては、メタロセン触媒として、下記式(I)、(II)または(III)で表わされる触媒が好ましい。   The copolymer of the present invention is a copolymer synthesized using a metallocene catalyst as described above. In the present invention, the metallocene catalyst is represented by the following formula (I), (II) or (III). The catalysts represented are preferred.

式(I)で表される化合物について説明する。   The compound represented by formula (I) will be described.

式(I)中、Rは、それぞれ独立に、ヒドロカルビル、ハロヒドロカルビル、シリル、ゲルミルおよびこれらの組み合わせから選ばれる基または水素原子であり、該基が含有する水素以外の原子の数は20個以下である。
Mは、チタン、ジルコニウムまたはハフニウムである。
Yは−O−、−S−、−NR*−または−PR*−である。
In formula (I), each R is independently a group or hydrogen atom selected from hydrocarbyl, halohydrocarbyl, silyl, germyl, and combinations thereof, and the number of atoms other than hydrogen contained in the group is 20 or less. It is.
M is titanium, zirconium or hafnium.
Y is -O-, -S-, -NR * -or -PR * -.

*は、水素原子、ヒドロカルビル基、ヒドロカルビルオキシ基、シリル基、ハロゲン化アルキル基またはハロゲン化アリール基であり、R*が水素でない場合には、R*は20個までの水素以外の原子を含有する。 R * is a hydrogen atom, hydrocarbyl group, hydrocarbyloxy group, silyl group, halogenated alkyl group or halogenated aryl group, and when R * is not hydrogen, R * represents up to 20 non-hydrogen atoms. contains.

Zは、ホウ素または14族元素を含有し、かつ、窒素、リン、硫黄または酸素を含有する2価の基であり、該2価の基が有する水素原子以外の原子の数は60個以下である。   Z is a divalent group containing boron or a group 14 element and containing nitrogen, phosphorus, sulfur or oxygen, and the divalent group has 60 or less atoms other than hydrogen atoms. is there.

Xは、Xが複数存在する場合にはそれぞれ独立に、原子の数が60個以下のアニオン性配位子である(ただし、π電子が非局在化した環状配位子を除く)。   X is an anionic ligand having 60 or less atoms independently when a plurality of X are present (except for a cyclic ligand in which π electrons are delocalized).

X’は、X’が複数存在する場合にはそれぞれ独立に、原子の数が20個以下の中性の連結化合物である。
pは0、1または2である。
qは0または1である。
X ′ is a neutral linking compound having 20 or less atoms, independently when there are a plurality of X ′.
p is 0, 1 or 2.
q is 0 or 1.

ただし、pが2でqが0の場合、Mは+4の酸化状態にあり、Xはハライド、ヒドロカルビル、ヒドロカルビルオキシ、ジ(ヒドロカルビル)アミド、ジ(ヒドロカルビル)ホスフィド、ヒドロカルビルスルフィド、シリル基、これらのハロ置換誘導体、ジ(ヒドロカルビル)アミノ置換誘導体、ヒドロカルビルオキシ置換誘導体およびジ(ヒドロカルビル)ホスフィノ置換誘導体から選ばれるアニオン性配位子であり、該Xの水素原子以外の原子の数は20個以下である。またpが1でqが0の場合、Mは+3の酸化状態にあり、Xはアリル、2−(N,N’−ジメチルアミノメチル)フェニルおよび2−(N,N’−ジメチル)アミノベンジルから選ばれるアニオン性安定化配位子であるか、あるいはMが+4の酸化状態にあって、Xが2価共役ジエン誘導体でMとメタラシクロペンテンを形成する。またpが0でqが1の場合、Mは+2の酸化状態にあり、X’は1以上のヒドロカルビル基で置換されてもよい中性の共役もしくは非共役ジエンで、かつ、炭素原子を40個以下の数で含有しMとπ錯体を形成する。   However, when p is 2 and q is 0, M is in the +4 oxidation state, X is halide, hydrocarbyl, hydrocarbyloxy, di (hydrocarbyl) amide, di (hydrocarbyl) phosphide, hydrocarbyl sulfide, silyl group, An anionic ligand selected from a halo-substituted derivative, a di (hydrocarbyl) amino-substituted derivative, a hydrocarbyloxy-substituted derivative and a di (hydrocarbyl) phosphino-substituted derivative, wherein the number of atoms other than hydrogen atoms of X is 20 or less is there. When p is 1 and q is 0, M is in the +3 oxidation state, X is allyl, 2- (N, N′-dimethylaminomethyl) phenyl and 2- (N, N′-dimethyl) aminobenzyl. Or M is in an oxidation state of +4, and X is a divalent conjugated diene derivative to form metallacyclopentene with M. When p is 0 and q is 1, M is in the +2 oxidation state, X ′ is a neutral conjugated or nonconjugated diene which may be substituted with one or more hydrocarbyl groups, and has 40 carbon atoms. It is contained in a number of 1 or less and forms a π complex with M.

式(II)で表される化合物について説明する。   The compound represented by formula (II) will be described.

式(II)中、R1およびR2は、水素原子または炭素原子数1〜6のアルキル基であり、R1およびR2の少なくとも1つは水素原子ではない。
3〜R6は、それぞれ独立に、水素原子または炭素原子数1〜6のアルキル基である。
また、R1〜R6は互いに結合して環を形成してもよい。
Mはチタンである。
Yは−O−、−S−、−NR*−または−PR*−である。
*はSiR* 2、CR* 2、SiR* 2SiR* 2、CR* 2CR* 2、CR*=CR*、CR* 2SiR* 2またはGeR* 2である。
In formula (II), R 1 and R 2 are a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and at least one of R 1 and R 2 is not a hydrogen atom.
R 3 to R 6 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
R 1 to R 6 may be bonded to each other to form a ring.
M is titanium.
Y is -O-, -S-, -NR * -or -PR * -.
Z * is SiR * 2, CR * 2, SiR * 2 SiR * 2, CR * 2 CR * 2, CR * = CR *, CR * 2 SiR * 2 , or GeR * 2.

*は、それぞれ独立に、水素原子、ヒドロカルビル基、ヒドロカルビルオキシ基、シリル基、ハロゲン化アルキル基またはハロゲン化アリール基であり、R*が水素でない場合には、R*は20個までの水素以外の原子を含有する。Z*に結合する2つのR*(R*が水素でない場合)は環を形成してもよいし、Z*に結合するR*とYに結合するR*が環を形成してもよい。
pは0、1または2である。
qは0または1である。
Each R * is independently a hydrogen atom, hydrocarbyl group, hydrocarbyloxy group, silyl group, halogenated alkyl group or halogenated aryl group, and when R * is not hydrogen, R * is up to 20 hydrogen atoms; Contains atoms other than. Z two binding of the * R * (when R * is not hydrogen) may also form a ring, R * binding to R * and Y bonded to Z * may form a ring.
p is 0, 1 or 2.
q is 0 or 1.

ただし、pが2の場合、qは0であり、Mは+4の酸化状態にあり、Xはそれぞれ独立にメチル基またはベンジル基である。またpが1の場合、qは0であり、Mは+3の酸化状態にあり、Xは2−(N、N’−ジメチル)アミノベンジル基であるか、あるいはqは0であり、Mは+4の酸化状態にあり、Xは1,3−ブタジエニルである。またpが0の場合、qは1であり、Mは+2の酸化状態にあり、Xは1,4−ジフェニル−1,3−ブタジエン、2,4−ヘキサジエンまたは1,3−ペンタジエンである。   However, when p is 2, q is 0, M is in a +4 oxidation state, and X is independently a methyl group or a benzyl group. When p is 1, q is 0, M is in an oxidation state of +3, X is a 2- (N, N′-dimethyl) aminobenzyl group, or q is 0, and M is In the +4 oxidation state, X is 1,3-butadienyl. When p is 0, q is 1, M is in the +2 oxidation state, and X is 1,4-diphenyl-1,3-butadiene, 2,4-hexadiene, or 1,3-pentadiene.

式(III)で表される化合物について説明する。   The compound represented by formula (III) will be described.

式(III)中、R'は、水素原子、ヒドロカルビル基、ジ(ヒドロカルビルアミノ)基、またはヒドロカルビレンアミノ基であり、前記R'が炭素原子を有する場合の炭素数は20以下である。
式(III)中、R"は、炭素数1〜20のヒドロカルビル基または水素原子である。
式(III)中、Mはチタンである。
式(III)中、Yは、−O−、−S−、−NR*−、−PR*−、−NR2 *、または−PR2 *である。
式(III)中、Z*は、−SiR* 2−、−CR* 2−、−SiR* 2SiR* 2−、−CR* 2CR* 2−、−CR*=CR*−、−CR* 2SiR* 2−、または−GeR* 2−である。
In formula (III), R ′ is a hydrogen atom, a hydrocarbyl group, a di (hydrocarbylamino) group, or a hydrocarbyleneamino group, and when R ′ has a carbon atom, the number of carbon atoms is 20 or less.
In formula (III), R ″ is a hydrocarbyl group having 1 to 20 carbon atoms or a hydrogen atom.
In the formula (III), M is titanium.
In formula (III), Y, -O -, - S -, - NR * -, - PR * -, - NR 2 *, or -PR 2 *.
Wherein (III), Z * is, -SiR * 2 -, - CR * 2 -, - SiR * 2 SiR * 2 -, - CR * 2 CR * 2 -, - CR * = CR * -, - CR * 2 SiR * 2- or -GeR * 2- .

前記R*は、複数存在する場合にはそれぞれ独立に、水素原子または、ヒドロカルビル、ヒドロカルビルオキシ、シリル、ハロゲン化アルキル、およびハロゲン化アリールからなる群から選択される少なくとも1種を含む基であり、前記R*は原子番号2〜20までの原子を含み、任意にZ*が有する2つのR*(R*が水素原子でない場合)が環を形成してもよく、Z*のR*とYのR*とが環を形成してもよい。 Each of R * is independently a hydrogen atom or a group containing at least one selected from the group consisting of hydrocarbyl, hydrocarbyloxy, silyl, alkyl halide, and aryl halide, when there are a plurality of R * , R * includes atoms from 2 to 20, and two R * s (if R * is not a hydrogen atom) that Z * optionally may form a ring, and R * and Y of Z * R * in the above may form a ring.

式(III)中、Xは、π電子が非局在化した環状配位子を除く、原子数60以下の一価のアニオン性配位子である。X'は、原子数20以下の中性の連結基である。X"は、原子数60以下の二価のアニオン性配位子である。pは、0、1または2である。qは、0または1である。rは、0または1である。   In formula (III), X is a monovalent anionic ligand having 60 or less atoms, excluding a cyclic ligand in which π electrons are delocalized. X ′ is a neutral linking group having 20 or less atoms. X ″ is a divalent anionic ligand having 60 or less atoms. P is 0, 1 or 2. q is 0 or 1. r is 0 or 1.

pが2の場合、qおよびrは0であり、Mは+4の酸化状態(但し、Yが−NR* 2または−PR* 2である場合を除く)、またはMは+3の酸化状態(但し、Yが−NR* 2または−PR* 2である)であり、Xはハライド基、ヒドロカルビル基、ヒドロカルビルオキシ基、ジ(ヒドロカルビル)アミド基、ジ(ヒドロカルビル)ホスフィド基、ヒドロカルビルスルフィド基、およびシリル基、ならびに、これらの基がハロゲン置換された基、これらの基がジ(ヒドロカルビル)アミノ置換された基、これらの基がヒドロカルビルオキシ置換された基およびこれらの基がジ(ヒドロカルビル)ホスフィノ置換された基よりなる群から選択されるアニオン性配位子であり、前記基は原子番号2〜30までの原子を含む。 When p is 2, q and r are 0 and M is an oxidation state of +4 (except when Y is -NR * 2 or -PR * 2 ), or M is an oxidation state of +3 (provided that , Y is —NR * 2 or —PR * 2 , and X is a halide group, hydrocarbyl group, hydrocarbyloxy group, di (hydrocarbyl) amide group, di (hydrocarbyl) phosphide group, hydrocarbyl sulfide group, and silyl Groups, as well as groups in which these groups are halogen substituted, groups in which these groups are di (hydrocarbyl) amino substituted, groups in which these groups are hydrocarbyloxy substituted and groups in which these groups are di (hydrocarbyl) phosphino substituted An anionic ligand selected from the group consisting of the above groups, wherein the group comprises atoms having atomic numbers from 2 to 30.

rが1の場合、pおよびqは0であり、Mは+4の酸化状態であり、X"はヒドロカルバジル基、オキシヒドロカルビル基、およびヒドロカルビレンジオキシ基よりなる群から選択されるジアニオン性配位子であり、前記X"は原子番号2〜30までの原子を有する。pが1の場合、qおよびrは0であり、Mは+3の酸化状態であり、Xは、アリル、2−(N,N−ジメチルアミノ)フェニル、2−(N,N−ジメチルアミノメチル)フェニル、および2−(N,N−ジメチルアミノ)ベンジルよりなる群から選択されるアニオン性安定化配位子である。pおよびrが0の場合、qは1であり、Mは+2の酸化状態であり、X'は、任意に1以上のヒドロカルビル基で置換された、中性の共役ジエンまたは中性のジ共役ジエンであり、前記X'は炭素の原子数が40以下であり、Mとπ−π相互作用による結合を形成する。   When r is 1, p and q are 0, M is in the +4 oxidation state, and X ″ is a dianionic selected from the group consisting of a hydrocarbazyl group, an oxyhydrocarbyl group, and a hydrocarbylene dioxy group A ligand, wherein X ″ has atoms of atomic numbers 2 to 30. When p is 1, q and r are 0, M is the oxidation state of +3, X is allyl, 2- (N, N-dimethylamino) phenyl, 2- (N, N-dimethylaminomethyl) ) An anionic stabilizing ligand selected from the group consisting of phenyl and 2- (N, N-dimethylamino) benzyl. When p and r are 0, q is 1, M is in the +2 oxidation state, and X ′ is a neutral conjugated diene or neutral diconjugated, optionally substituted with one or more hydrocarbyl groups It is a diene, and the X ′ has a carbon atom number of 40 or less and forms a bond with M by π-π interaction.

より好ましい態様としては、式(III)中、pが2であり、qおよびrが0である場合、Mは+4の酸化状態であり、Xは、各々独立に、メチル、ベンジル、またはハライドであり、pおよびqが0である場合、rは1であり、Mは+4の酸化状態であり、X"は、Mとメタラシクロペンテン環を形成する1,4−ブタジエニル基であり、pが1である場合、qおよびrは0であり、Mは+3の酸化状態であり、Xは、2−(N,N−ジメチルアミノ)ベンジルであり、pおよびrが0である場合、qは1であり、Mは+2の酸化状態であり、X'は1,4−ジフェニル−1,3−ブタジエンまたは1,3−ペンタジエンである。
式(III)の中でも下記式(III’)で表される化合物が特に好ましい。
In a more preferred embodiment, in formula (III), when p is 2 and q and r are 0, M is in the +4 oxidation state, and each X is independently methyl, benzyl, or halide. Yes, when p and q are 0, r is 1, M is in the +4 oxidation state, X ″ is a 1,4-butadienyl group that forms a metallacyclopentene ring with M, and p is 1 Q and r are 0, M is in the +3 oxidation state, X is 2- (N, N-dimethylamino) benzyl, and when p and r are 0, q is 1 Where M is the +2 oxidation state and X ′ is 1,4-diphenyl-1,3-butadiene or 1,3-pentadiene.
Of the formula (III), a compound represented by the following formula (III ′) is particularly preferable.

上記式(III’)中、R'が水素原子、炭素数1〜20のヒドロカルビル基であり、R"は、炭素数1〜20のヒドロカルビル基または水素原子であり、Mはチタンであり、Yは、−NR*−であり、Z*は、−SiR* 2−であり、前記R*は、それぞれ独立に、水素原子または、炭素数1〜20のヒドロカルビル基であり、pおよびqのうち一方は0であり、他方は1であり、pが0かつqは1である場合には、Mは+2の酸化状態であり、X'は1,4−ジフェニル−1,3−ブタジエンまたは1,3−ペンタジエンであり、pが1かつqが0である場合には、Mは+3の酸化状態であり、Xは2−(N,N−ジメチルアミノ)ベンジルである。 In the above formula (III ′), R ′ is a hydrogen atom and a hydrocarbyl group having 1 to 20 carbon atoms, R ″ is a hydrocarbyl group or hydrogen atom having 1 to 20 carbon atoms, M is titanium, Y Is —NR * —, Z * is —SiR * 2 —, and each R * is independently a hydrogen atom or a hydrocarbyl group having 1 to 20 carbon atoms, and of p and q When one is 0, the other is 1, p is 0 and q is 1, M is in the +2 oxidation state and X ′ is 1,4-diphenyl-1,3-butadiene or 1 , 3-pentadiene, when p is 1 and q is 0, M is in the +3 oxidation state and X is 2- (N, N-dimethylamino) benzyl.

炭素数1〜20のヒドロカルビル基としてはメチル基、エチル基、ブチル基などの直鎖状アルキル基、t-ブチル基、ネオペンチル基などの分岐状アルキル基が挙げられ、ヒドロカルビルオキシ基としては、メチルオキシ基、エチルオキシ基、ブチルオキシ基などの直鎖状アルキルオキシ基、t-ブチルオキシ基、ネオペンチルオキシ基などの分岐状アルキルオキシ基が挙げられ、ハロゲン化アルキル基としては、前記の直鎖状アルキル基や分岐状アルキル基をクロル化、臭素化、フッ素化したものが挙げられる。またはハロゲン化アリール基として、クロル化フェニル基、クロル化ナフチル基などが挙げられる。
上記式(III’)中、R"が水素原子またはメチルであるのが好ましく、メチルである場合が好ましい。
Examples of the hydrocarbyl group having 1 to 20 carbon atoms include linear alkyl groups such as a methyl group, an ethyl group and a butyl group, and branched alkyl groups such as a t-butyl group and a neopentyl group. Examples include linear alkyloxy groups such as oxy group, ethyloxy group, and butyloxy group, and branched alkyloxy groups such as t-butyloxy group and neopentyloxy group. And chlorinated, brominated or fluorinated groups or branched alkyl groups. Examples of the halogenated aryl group include a chlorinated phenyl group and a chlorinated naphthyl group.
In the above formula (III ′), R ″ is preferably a hydrogen atom or methyl, and is preferably methyl.

特に好ましい触媒は、(t−ブチルアミド)ジメチル(η5−2−メチル−s−インダセン−1−イル)シランチタニウム(II)2,4−ヘキサジエン(IV)、(t−ブチルアミド)−ジメチル(η5−2−メチル−s−インダセン−1−イル)シラン−チタニウム(IV)ジメチル(V)、(t−ブチルアミド)−ジメチル(η5−2,3−ジメチルインデニル)シランチタニウム(II)1,4−ジフェニル−1,3−ブタジエン(VI)、(t−ブチル−アミド)−ジメチル(η5−2,3−ジメチル−s−インダセン−1−イル)シランチタニウム(IV)ジメチル(VII)、(t−ブチルアミド)−ジメチル(η5−2−メチル−s−インダセン−1−イル)シランチタニウム(II)1,3−ペンタジエン(VIII)である。
その中でも、(t−ブチルアミド)−ジメチル(η5−2−メチル−s−インダセン−1−イル)シランチタニウム(II)1,3−ペンタジエン(VIII)が特に好ましい。
Particularly preferred catalysts are (t-butylamido) dimethyl (η 5 -2-methyl-s-indasen-1-yl) silane titanium (II) 2,4-hexadiene (IV), (t-butylamido) -dimethyl (η 5-methyl -s- indacene-1-yl) silane - titanium (IV) dimethyl (V), (t-butylamido) - dimethyl (eta 5-2,3-dimethyl indenyl) silane titanium (II) 1 , 4-diphenyl-1,3-butadiene (VI), (t-butyl-amido) -dimethyl (η 5 -2,3-dimethyl-s-indasen-1-yl) silane titanium (IV) dimethyl (VII) , (T-Butylamido) -dimethyl (η 5 -2-methyl-s-indasen-1-yl) silane titanium (II) 1,3-pentadiene (VIII) .
Among them, (t-butylamido) -dimethyl (η 5 -2-methyl-s-indacene-1-yl) silanetitanium (II) 1,3-pentadiene (VIII) is particularly preferable.

特に上記式(VIII)で表される構造を有する触媒を用いると、本発明の共重合体を得るための重合反応が、5−ビニル−2−ノルボルネン(VNB)の共重合体性に優れ、例えばVNB末端の二重結合を効率よく取り込み、分岐を高い割合で導入することができる。また、得られる共重合体の分子量分布と組成分布が狭く、非常に均一な分子構造を有する共重合体を調製することができるため、分岐生成に伴い懸念される、成形体表面のゲル状ブツの形成が顕著に抑制される。その結果、このような共重合体を含んでなる成形体は、ゲル状ブツを含まないためにその表面外観に優れ、また形状保持性に優れるため生産安定性も良好である。
これらの触媒は、周知の合成手法を用いて調製することができる。例えば国際公開WO98/49212に開示されている。
In particular, when a catalyst having a structure represented by the above formula (VIII) is used, the polymerization reaction for obtaining the copolymer of the present invention is excellent in the copolymer property of 5-vinyl-2-norbornene (VNB), For example, a double bond at the VNB end can be efficiently incorporated and branching can be introduced at a high rate. In addition, since the molecular weight distribution and composition distribution of the obtained copolymer are narrow and a copolymer having a very uniform molecular structure can be prepared, gel-like irregularities on the surface of the molded body, which are concerned with branch formation, are also a concern. Formation is significantly suppressed. As a result, a molded body containing such a copolymer does not contain gel-like particles, so that the surface appearance is excellent, and because the shape retention is excellent, the production stability is also good.
These catalysts can be prepared using well-known synthetic techniques. For example, it is disclosed in International Publication WO98 / 49212.

<共重合体の製造方法>
本発明の共重合体を合成する際には、メタロセン触媒、好ましくは上記に例示される構造を有する触媒を用いる。より詳しくは、上記触媒を主触媒とし、共触媒としてホウ素系化合物および/またはトリアルキル化合物等の有機アルミニウム化合物を用い、ヘキサン等の脂肪族炭化水素を溶媒とし、攪拌機つき反応器による連続法またはバッチ法が挙げられる。
<Method for producing copolymer>
When synthesizing the copolymer of the present invention, a metallocene catalyst, preferably a catalyst having the structure exemplified above is used. More specifically, the above catalyst is used as a main catalyst, an organoaluminum compound such as a boron compound and / or a trialkyl compound is used as a cocatalyst, an aliphatic hydrocarbon such as hexane is used as a solvent, and a continuous process using a reactor with a stirrer or A batch method is mentioned.

ホウ素系化合物としては、例えばトリメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジ(水素化タローアルキル)メチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(sec−ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムn−ブチルトリス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムベンジルトリス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(4−(t−ブチルジメチルシリル)−2,3,5,6−テトラフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(4−(トリイソプロピルシリル)−2,3,5,6−テトラフルオロフェニル)ボレート、N,N−ジメチルアニリニウムペンタフルオロフェノキシトリス(ペンタフルオロフェニル)ボレート、N,N−ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチル−2,4,6−トリメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリメチルアンモニウムテトラキス(2,3,4,6−テトラフルオロフェニル)ボレート、トリエチルアンモニウムテトラキス(2,3,4,6−テトラフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(2,3,4,6−テトラフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(2,3,4,6−テトラフルオロフェニル)ボレート、N,N−ジエチルアニリニウムテトラキス(2,3,4,6−テトラフルオロフェニル)ボレート、及びN,N−ジメチル−2,4,6−トリメチルアニリニウムテトラキス(2,3,4,6−テトラフルオロフェニル)ボレート;ジアルキルアンモニウム塩、例えば、ジ−(i−プロピル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(2,3,4,6−テトラフルオロフェニル)ボレート、ジメチル(t−ブチル)アンモニウムテトラキス(2,3,4,6−テトラフルオロフェニル)ボレート、及びジシクロヘキシルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート;三置換されたホスホニウム塩、例えば、トリフェニルホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(o−トリル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、及びトリ(2,6−ジメチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート;二置換されたオキソニウム塩、例えば、ジフェニルオキソニウムテトラキス(ペンタフルオロフェニル)ボレート、ジ−(o−トリル)オキソニウムテトラキス(ペンタフルオロフェニル)ボレート、及びジ(2,6−ジメチルフェニル)オキソニウムテトラキス(ペンタフルオロフェニル)ボレート;二置換されたスルホニウム塩、例えば、ジフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ジ(o−トリル)スルホニウムテトラキス(ペンタフルオロフェニル)ボレート、及びビス(2,6−ジメチルフェニル)スルホニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。   Examples of boron compounds include trimethylammonium tetrakis (pentafluorophenyl) borate, di (hydrogenated tallow alkyl) methylammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (penta Fluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (sec-butyl) ammonium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium n-butyltris (pentafluorophenyl) borate, N, N-dimethylanilinium base Diltris (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (4- (t-butyldimethylsilyl) -2,3,5,6-tetrafluorophenyl) borate, N, N-dimethylanilinium tetrakis ( 4- (triisopropylsilyl) -2,3,5,6-tetrafluorophenyl) borate, N, N-dimethylanilinium pentafluorophenoxytris (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (penta Fluorophenyl) borate, N, N-dimethyl-2,4,6-trimethylanilinium tetrakis (pentafluorophenyl) borate, trimethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, triethylammonium Trakis (2,3,4,6-tetrafluorophenyl) borate, tripropylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, N, N-dimethylanilinium tetrakis (2,3,4, 6-tetrafluorophenyl) borate, N, N-diethylanilinium tetrakis (2,3,4,6-tetrafluorophenyl) borate, and N, N-dimethyl-2,4,6-trimethylanilinium tetrakis (2 , 3,4,6-tetrafluorophenyl) borate; dialkylammonium salts such as di- (i-propyl) ammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (2,3,4, 6-tetrafluorophenyl) borate, dimethyl (t-butyl) E) ammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, and dicyclohexylammonium tetrakis (pentafluorophenyl) borate; trisubstituted phosphonium salts such as triphenylphosphonium tetrakis (pentafluorophenyl) borate, Tri (o-tolyl) phosphonium tetrakis (pentafluorophenyl) borate and tri (2,6-dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) borate; disubstituted oxonium salts such as diphenyloxonium tetrakis (pentafluoro Phenyl) borate, di- (o-tolyl) oxonium tetrakis (pentafluorophenyl) borate, and di (2,6-dimethylphenyl) oxonium tetrakis (Pentafluorophenyl) borate; disubstituted sulfonium salts such as diphenylsulfonium tetrakis (pentafluorophenyl) borate, di (o-tolyl) sulfonium tetrakis (pentafluorophenyl) borate, and bis (2,6-dimethylphenyl) ) Sulfonium tetrakis (pentafluorophenyl) borate and the like.

有機アルミニウム化合物としては、トリイソブチルアルミニウム(以下「TIBA」ともいう。)が例示される。反応温度は、高温でも触媒が失活しないので100℃まで上げることができる。重合圧力は、0を超えて〜8MPa(ゲージ圧)、好ましくは0を超えて〜5MPa(ゲージ圧)の範囲である。また、反応時間(共重合が連続法で実施される場合には平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なるが、通常0.5分間〜5時間、好ましくは10分間〜3時間である。さらに、共重合に際しては、水素などの分子量調節剤を用いることもできる。   Examples of the organoaluminum compound include triisobutylaluminum (hereinafter also referred to as “TIBA”). The reaction temperature can be raised to 100 ° C. because the catalyst is not deactivated even at high temperatures. The polymerization pressure is in the range of more than 0 to -8 MPa (gauge pressure), preferably more than 0 to -5 MPa (gauge pressure). The reaction time (average residence time when copolymerization is carried out in a continuous process) varies depending on conditions such as catalyst concentration and polymerization temperature, but is usually 0.5 minutes to 5 hours, preferably 10 minutes to 3 hours. Further, in the copolymerization, a molecular weight regulator such as hydrogen can be used.

エチレン[A]と上記α−オレフィン[B]とのモル(仕込み)比([A]/[B])は、25/75〜90/10、好ましくは30/70〜80/20である。   The molar (feed) ratio ([A] / [B]) of ethylene [A] to the α-olefin [B] is 25/75 to 90/10, preferably 30/70 to 80/20.

エチレン[A]と5−ビニル−2−ノルボルネン(VNB)[C]とのモル(仕込み)比([A]/[C])は、70/30〜99.9/0.1、好ましくは80/20〜99.5/0.5である。   The molar (feed) ratio ([A] / [C]) of ethylene [A] and 5-vinyl-2-norbornene (VNB) [C] is 70/30 to 99.9 / 0.1, preferably 80/20 to 99.5 / 0.5.

上記触媒を用いて重合することによって、二重結合を有する非共役ポリエン等が高い転化率で共重合され、得られる共重合体に適量の分岐を導入することができるので好ましい。   Polymerization using the above catalyst is preferable because a non-conjugated polyene having a double bond is copolymerized at a high conversion rate, and an appropriate amount of branching can be introduced into the resulting copolymer.

このようにして得られる本発明の共重合体は、炭素原子数3〜20のα−オレフィン[B]に由来する構造単位が、全構造単位100モル%中、5〜45モル%であり、好ましくは10〜40モル%である。また、VNBに由来する構造単位が、全構造単位100モル%中、0.1〜0.8モル%であり、好ましくは0.1〜0.6モル%である。   In the copolymer of the present invention thus obtained, the structural unit derived from the α-olefin [B] having 3 to 20 carbon atoms is 5 to 45 mol% in 100 mol% of all structural units, Preferably it is 10-40 mol%. Moreover, the structural unit derived from VNB is 0.1-0.8 mol% in 100 mol% of all structural units, Preferably it is 0.1-0.6 mol%.

上記触媒を用いて重合することによって、VNBが高い転化率で共重合され、得られる共重合体に多量の分岐を導入することができるので好ましい。   Polymerization using the above catalyst is preferable because VNB is copolymerized at a high conversion and a large amount of branching can be introduced into the resulting copolymer.

〔ポリオレフィン系樹脂(Y)〕
本発明に用いられるポリオレフィン系樹脂は、190℃、2.16Kg荷重で測定したMFRが0.1〜30g/10分であり、好ましくは1.0〜30g/10分、さらに好ましくは5.0〜25g/10分であることが好ましい。
[Polyolefin resin (Y)]
The polyolefin resin used in the present invention has an MFR measured at 190 ° C. and a load of 2.16 kg of 0.1 to 30 g / 10 minutes, preferably 1.0 to 30 g / 10 minutes, more preferably 5.0. It is preferably ˜25 g / 10 minutes.

MFRが前記範囲内にあると、本発明のエチレン系共重合体(X)を含む組成物の成形加工性が良好であり、また、発泡体の外観との観点から好適である。なお、前記MFRは、ASTM D1238に準拠して測定することができる。
ポリオレフィン樹脂(Y)としては、ポリエチレン、ポリプロピレン、ポリブテンおよびエチレン-αオレフィン共重合体等があげられ、中でも直鎖状低密度ポリエチレンが特に好ましく、密度[d(kg/m)]が925〜965kg/mの範囲が好適に用いられる。この範囲では、発泡時の成形加工性と発泡成形品の耐熱性の観点から好適である。なお、前記密度は、JIS K6760(1995年)に準拠して測定することができる。
When the MFR is within the above range, the moldability of the composition containing the ethylene copolymer (X) of the present invention is good, and it is preferable from the viewpoint of the appearance of the foam. The MFR can be measured according to ASTM D1238.
Examples of the polyolefin resin (Y) include polyethylene, polypropylene, polybutene, and an ethylene-α olefin copolymer, among which linear low-density polyethylene is particularly preferable, and the density [d (kg / m 3 )] is 925 to 925. A range of 965 kg / m 3 is preferably used. In this range, it is suitable from the viewpoints of moldability during foaming and heat resistance of the foamed molded product. The density can be measured according to JIS K6760 (1995).

<組成物>
本発明の組成物中、エチレン系共重合体(X)とポリオレフィン樹脂(Y)の混合比率は、(X)/(Y)=40/60〜5/95、好ましくは35/65〜10/90、さらに好ましくは35/65〜15/85である。エチレン系共重合体(X)の比率が40重量%を超えると、成型加工性の悪化が見られ、比率が5重量%より少ないと、歪硬化度が小さくなるため、高発泡倍率化が困難になるとともに、発泡成形品の外観が悪化する。
また、本発明の組成物には、前記共重合体、ポリオレフィン樹脂以外の他の成分が含まれていてもよい。他の成分としては、例えば、老化防止剤(安定剤)、帯電防止剤、防曇剤、抗ブロッキング防止剤、ガラス繊維などの無機充填剤、または補強剤、有機充填剤または補強剤、軟化剤、難燃剤など、公知の添加剤を配合することができる。
<Composition>
In the composition of the present invention, the mixing ratio of the ethylene copolymer (X) and the polyolefin resin (Y) is (X) / (Y) = 40/60 to 5/95, preferably 35/65 to 10 /. 90, more preferably 35/65 to 15/85. When the ratio of the ethylene-based copolymer (X) exceeds 40% by weight, the molding processability is deteriorated. When the ratio is less than 5% by weight, the strain hardening degree becomes small, so it is difficult to increase the expansion ratio. At the same time, the appearance of the foam-molded product deteriorates.
The composition of the present invention may contain components other than the copolymer and the polyolefin resin. Other components include, for example, anti-aging agents (stabilizers), antistatic agents, antifogging agents, antiblocking agents, inorganic fillers such as glass fibers, reinforcing agents, organic fillers or reinforcing agents, softening agents. A known additive such as a flame retardant can be blended.

本発明の組成物は、本発明の共重合体とその他の成分を、例えば、インターナルミキサー、ニーダー、ロール混錬機などのバッチ式混合機、短軸/二軸押出機などの連続式混合機によって行われる。安定した品質の樹脂組成物を得るため、混合温度としては150℃〜250℃が望ましい。   The composition of the present invention comprises the copolymer of the present invention and other components, for example, a batch mixer such as an internal mixer, a kneader, a roll kneader, or a continuous mixer such as a short / double screw extruder. Done by machine. In order to obtain a resin composition with stable quality, the mixing temperature is preferably 150 ° C to 250 ° C.

本発明のエチレン系共重合体組成物を使用した押出発泡体の製造方法としては、発泡体が得られる限りいかなる方法を用いても良く、例えば、上記エチレン系共重合体組成物と、必要に応じて添加するタルク等の気泡調整剤、収縮防止剤等とを押出機に供給し加熱溶融、混錬し、更に発泡剤を供給して発泡性溶融樹脂混合物とした後、押出樹脂温度、押出ダイ内部圧力、吐出量などを調整して、押出機先端に取り付けたダイから低圧域に押出して発泡させる方法が挙げられる。また、目的とする発泡体の形状に応じて、押出機先端に取り付けるダイを選択することにより、丸棒状発泡体、シート発泡体、板状発泡体、などの各種形状の押出発泡体を製造することができる。例えば、ストランドダイを取り付ければ丸棒状の発泡体を得ることができ、環状ダイを取り付ければシート状の発泡体を得ることができ、スリットダイを取り付ければ板状の発泡体を製造することができる。   As a method for producing an extruded foam using the ethylene copolymer composition of the present invention, any method may be used as long as the foam is obtained. For example, the ethylene copolymer composition and the above-described method may be used. Supply the air conditioning agent such as talc and shrinkage inhibitor added to the extruder according to the heat, melt and knead, and supply the foaming agent to make the foamable molten resin mixture. Examples of the method include adjusting the internal pressure of the die, the discharge amount, and the like, and extruding into a low pressure region from a die attached to the tip of the extruder for foaming. Also, extrusion foams of various shapes such as round bar foams, sheet foams, plate foams, etc. are manufactured by selecting a die attached to the tip of the extruder according to the desired foam shape. be able to. For example, if a strand die is attached, a round bar-like foam can be obtained; if an annular die is attached, a sheet-like foam can be obtained; and if a slit die is attached, a plate-like foam can be produced. .

本発明における押出発泡体は、上記組成物、添加剤、発泡剤等を押出機に供給し、加熱溶融混練して発泡性溶融樹脂混合物とした後、押出機樹脂温度を適正範囲内に調整して押出機から低圧域に押し出すことによって形成することができる。すなわち押出樹脂温度が適正範囲内に調整された発泡性溶融樹脂混合物は、発泡剤の発泡力に抗する溶融張力を有し、均一に発泡すると考えられる。   The extruded foam in the present invention is prepared by supplying the above composition, additive, foaming agent, etc. to an extruder, heating and kneading to obtain a foamable molten resin mixture, and then adjusting the extruder resin temperature within an appropriate range. Then, it can be formed by extruding from an extruder to a low pressure region. That is, it is considered that the foamable molten resin mixture whose extrusion resin temperature is adjusted within an appropriate range has a melt tension that resists the foaming force of the foaming agent and foams uniformly.

具体的な押出樹脂温度は、上記ポリオレフィン樹脂(Y)の融点を基準として、発泡性
溶融樹脂の押出樹脂温度を[上記オレフィン樹脂(Y)の融点-10℃]〜[上記オレフィン樹脂(Y)の融点+10℃]の範囲内に調整することが好ましく、[上記オレフィン樹脂(Y)の融点-5℃]〜[上記オレフィン樹脂(Y)の融点+5℃]の範囲内に調整することが好ましい。押出樹脂温度が、[上記のオレフィン樹脂(Y)の融点-10℃]を下回る場合は、ダイ部での結晶化が起こり、発泡体が得られ難くなる。一方、押出温度が[上記のオレフィン樹脂(Y)の融点+10℃]を超える温度である場合には、得られる発泡体の気泡が破泡し、不均一となる。
The specific extrusion resin temperature is based on the melting point of the polyolefin resin (Y), and the extrusion resin temperature of the foamable molten resin is [the melting point of the olefin resin (Y) −10 ° C.] to [the olefin resin (Y). It is preferable to adjust within the range of [melting point of the olefin resin (Y) −5 ° C.] to [melting point of the olefin resin (Y) + 5 ° C.]. Is preferred. When the extrusion resin temperature is lower than [the melting point of the above-mentioned olefin resin (Y) −10 ° C.], crystallization occurs at the die portion, and it becomes difficult to obtain a foam. On the other hand, when the extrusion temperature is higher than [the melting point of the olefin resin (Y) + 10 ° C.], the foam of the resulting foam breaks and becomes non-uniform.

また、押出発泡成形の際の発泡剤としては、例えば二酸化炭素、窒素、アルゴン、空気
等の無機ガス発泡剤;プロパン、ブタン、ペンタン、ヘキサン、シクロブタン、シクロヘ
キサン、トリクロロフロロメタン、ジクロロジフロロメタン等の揮発性発泡剤;常温で液
体または固体であって、加熱により気体を発生するアゾジカルボンアミド、アゾジカルボ
ン酸バリウム、N,N-ジニトロソペンタメチレンテトラミン、4,4'-オキシビス(ベンゼンスルホニルヒドラジド)、ジフェニルスルホン-3,3'-ジスルホニルヒドラジド、p-トルエンスルホニルセミカルバジド、トリヒドラジノトリアジン、ビウレア、炭酸亜鉛等の化学発泡体剤等を挙げることができ、該発泡剤の添加量としては、本発明のエチレン系共重合体(X)とポリオレフィン樹脂(Y)の合計100重量部に対し1〜20重量部であることが好ましく、特に5〜15重量部の範囲であることが好ましい。発泡倍率は5〜50倍が好ましい。本発明の樹脂組成物は低温押出加工性に優れ、耐熱性、発泡成形性が良好であり、密度の高い直鎖状のポリオレフィン系樹脂が本来有している優れた特性を保持したままで、表面特性に優れると共に独立気泡、高発泡倍率である未架橋ポリオレフィン系樹脂の発泡体が得られる。
Examples of the foaming agent in extrusion foam molding include inorganic gas foaming agents such as carbon dioxide, nitrogen, argon, and air; propane, butane, pentane, hexane, cyclobutane, cyclohexane, trichlorofluoromethane, dichlorodifluoromethane, and the like. Volatile foaming agents: azodicarbonamide, barium azodicarboxylate, N, N-dinitrosopentamethylenetetramine, 4,4'-oxybis (benzenesulfonylhydrazide) that is liquid or solid at room temperature and generates gas when heated ), Chemical foaming agents such as diphenylsulfone-3,3′-disulfonylhydrazide, p-toluenesulfonyl semicarbazide, trihydrazinotriazine, biurea, zinc carbonate, and the like. The ethylene-based copolymer (X) and polyolefin resin (Y) of the present invention Preferably 1-20 parts by weight with respect to total 100 parts by weight, particularly preferably in the range of 5 to 15 parts by weight. The expansion ratio is preferably 5 to 50 times. The resin composition of the present invention is excellent in low-temperature extrusion processability, heat resistance and foam moldability, and retains the excellent properties inherent in high-density linear polyolefin-based resins. An uncrosslinked polyolefin resin foam having excellent surface characteristics and closed cells and a high expansion ratio can be obtained.

本発明の発泡体は、耐熱性と柔軟性に優れ、かつ発泡倍率が高いために、例えば、緩衝材、断熱材、吸音材などの各種用途に好適に用いられる。   Since the foam of the present invention is excellent in heat resistance and flexibility and has a high expansion ratio, it is suitably used for various applications such as a cushioning material, a heat insulating material, and a sound absorbing material.

次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
得られた共重合体の各物性は、以下に従い測定した。
EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these.
Each physical property of the obtained copolymer was measured according to the following.

〔炭素原子数3〜20のα−オレフィン[B]に由来する構造単位のモル量〕
1H−NMRスペクトルメーターによる強度測定によって求めた。
[Molar amount of structural unit derived from α-olefin [B] having 3 to 20 carbon atoms]
It calculated | required by the intensity | strength measurement by a < 1 > H-NMR spectrum meter.

〔VNB[C]に由来する構造単位のモル量〕
1H−NMRスペクトルメーターによる強度測定によって求めた。
[Molar amount of structural unit derived from VNB [C]]
It calculated | required by the intensity | strength measurement by a < 1 > H-NMR spectrum meter.

〔メルトフローレート[MFR](g/10分)〕
190℃、2.16Kg荷重で測定したメルトフローレート[MFR(g/10分)]
[Melt flow rate [MFR] (g / 10 min)]
Melt flow rate measured at 190 ° C. and 2.16 kg load [MFR (g / 10 min)]

〔伸長粘度測定におけるひずみ硬化度〕
伸長粘度測定におけるひずみ硬化度は伸長変形下での成形加工にとって重要な指標であり、ひずみ硬化度が大きいものはブロー成形時成形品の肉厚を均一にする他、発泡成形時の気泡セルを均一に成長させる働きがあることが知られており、そのひずみ硬化度は下記式(A)で表される。
ひずみ硬化度(χmax)=ηEmax/ηlin (A)
ηEmax;最大到達伸長粘度、ηlin;線形粘度
ここで、ηEmaxはひずみ量が3となるまでの伸長粘度の最大値であり、ηlinは一定ひずみ速度下における一軸伸長粘度測定により求められた時間−伸長粘度曲線(対数プロット)において、ひずみ硬化を起こす直前の粘度を直線で近似し、伸長粘度が最大値となる時間までの近似直線上の粘度である。
[Strain hardening in elongational viscosity measurement]
The degree of strain hardening in the measurement of elongational viscosity is an important index for molding processing under elongation deformation, and those with a large degree of strain hardening have a uniform cell thickness during blow molding, as well as cell cells during foam molding. It is known that it has a function of growing uniformly, and the degree of strain hardening is represented by the following formula (A).
Strain hardening degree (χ max ) = η Emax / η lin (A)
η Emax ; maximum reached elongation viscosity, η lin ; linear viscosity Here, η Emax is the maximum value of elongation viscosity until the strain amount becomes 3, and η lin is obtained by uniaxial elongation viscosity measurement under a constant strain rate. In the time-extension viscosity curve (logarithmic plot), the viscosity immediately before the strain hardening is approximated by a straight line, and the viscosity is on the approximate straight line up to the time when the elongational viscosity becomes the maximum value.

上記ひずみ硬化度は長い緩和時間を持つ、高分子量成分や分岐成分の導入により大きくなることから、直鎖ポリマーの場合は高分子量成分の量、分岐ポリマーの場合は分岐の形態や長鎖分岐の量を表す有用な指標とされる。   The degree of strain hardening has a long relaxation time and increases with the introduction of a high molecular weight component or a branched component. It is a useful indicator of quantity.

ひずみ硬化度の測定方法に関しては、一軸伸長粘度を測定できれば、どのような方法でも同一の値が得られるが、ここでは、一軸伸長治具(Sentmanat Extensional Rheometer)を備え付けた粘弾性装置(アントンパール社製の粘弾性試験機(型式MCR301))を用いて測定した。伸長粘度測定用試料として、共重合体を210℃でプレスして得た厚み2mmのシートを、幅10mm、長さ20mmに切り出した。このサンプルを用い、210℃、ひずみ速度0.1sec−1にて伸長粘度測定を行い、上記算出方法によりひずみ硬化度を算出した。 As for the method for measuring the strain hardening degree, the same value can be obtained by any method as long as the uniaxial elongation viscosity can be measured. Here, however, the viscoelastic device (Anton Paar) equipped with a uniaxial extension jig (Sentmanat Extended Rheometer) It measured using the viscoelasticity testing machine made from a company (model MCR301). As a sample for measuring extensional viscosity, a sheet having a thickness of 2 mm obtained by pressing the copolymer at 210 ° C. was cut into a width of 10 mm and a length of 20 mm. Using this sample, the elongational viscosity was measured at 210 ° C. and a strain rate of 0.1 sec −1 , and the strain hardening degree was calculated by the above calculation method.

〔実施例1〕
攪拌翼を備えた容積300Lの重合器を用いて連続的に、成分[A]:エチレン、成分[B]:プロピレン、成分[C]:5−ビニル−2−ノルボルネン(VNB)からなる三元共重合体の重合反応を90℃にて行った。
[Example 1]
Continuously using a polymerization vessel having a volume of 300 L equipped with a stirring blade, a ternary composed of component [A]: ethylene, component [B]: propylene, component [C]: 5-vinyl-2-norbornene (VNB) The polymerization reaction of the copolymer was performed at 90 ° C.

重合溶媒としてはヘキサン(フィード量30.4Kg/h)を用いて、エチレンフィード量を7.6Kg/h、プロピレンフィード量を3.7Kg/h、VNBフィード量を90g/h、および水素(H)フィード量を85NL/hとして重合器に連続供給した。重合圧力を1.6MPaに保ちながら主触媒として、上記式(VIII)で表される構造を有する触媒である(t−ブチルアミド)−ジメチル(η5−2−メチル−s−インダセン−1−イル)シランチタニウム(II)1,3−ペンタジエンを用いて、0.04mmol/hとなるよう重合器に連続的に供給した。また、共触媒として(C65)3CB(C65)4を0.15mmol/h、有機アルミニウム化合物としてトリイソブチルアルミニウム(以下「TIBA」ともいう。)を25mmol/hとなるように、それぞれを重合器に連続的に供給した。 As a polymerization solvent, hexane (feed amount 30.4 Kg / h) was used, ethylene feed amount 7.6 Kg / h, propylene feed amount 3.7 Kg / h, VNB feed amount 90 g / h, and hydrogen (H 2 ) The feed amount was continuously supplied to the polymerization reactor at 85 NL / h. (T-Butylamido) -dimethyl (η 5 -2-methyl-s-indacene-1-yl) is a catalyst having a structure represented by the above formula (VIII) as a main catalyst while maintaining the polymerization pressure at 1.6 MPa. ) Using silane titanium (II) 1,3-pentadiene, it was continuously fed to the polymerization vessel so as to be 0.04 mmol / h. Further, (C 6 H 5 ) 3 CB (C 6 F 5 ) 4 is 0.15 mmol / h as a cocatalyst, and triisobutylaluminum (hereinafter also referred to as “TIBA”) is 25 mmol / h as an organoaluminum compound. Each was continuously fed to the polymerization vessel.

このようにして、エチレン、プロピレン、VNBからなる共重合体を、14.9重量%含む重合液を得た。重合器下部から抜き出した重合液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にて重合体を溶媒から分離した後、80℃で一昼夜減圧乾燥した。得られた共重合体の物性を表1に示す。   In this way, a polymer solution containing 14.9% by weight of a copolymer composed of ethylene, propylene, and VNB was obtained. A small amount of methanol was added to the polymerization solution extracted from the lower part of the polymerization vessel to stop the polymerization reaction. The polymer was separated from the solvent by a steam stripping treatment, and then dried under reduced pressure at 80 ° C. overnight. The physical properties of the obtained copolymer are shown in Table 1.

〔実施例2〕
エチレン、プロピレン、VNBのフィード量を変更した以外は実施例1と同様にして合成した。得られた共重合体の物性を表1に示す。
[Example 2]
The synthesis was performed in the same manner as in Example 1 except that the feed amounts of ethylene, propylene and VNB were changed. The physical properties of the obtained copolymer are shown in Table 1.

〔実施例3〕
エチレン、プロピレン、VNBのフィード量を変更した以外は実施例1と同様にして合成した。得られた共重合体の物性を表1に示す。
Example 3
The synthesis was performed in the same manner as in Example 1 except that the feed amounts of ethylene, propylene and VNB were changed. The physical properties of the obtained copolymer are shown in Table 1.

〔実施例4〕
攪拌翼を備えた容積300Lの重合器を用いて連続的に、成分[A]:エチレン、成分[B]:プロピレン、成分[C]:5−ビニル−2−ノルボルネン(VNB)、および5−エチリデン−2−ノルボルネン(ENB)からなる四元共重合体の重合反応を95℃にて行った。
Example 4
Using a 300 L capacity polymerization vessel equipped with a stirring blade, component [A]: ethylene, component [B]: propylene, component [C]: 5-vinyl-2-norbornene (VNB), and 5- A polymerization reaction of a quaternary copolymer composed of ethylidene-2-norbornene (ENB) was carried out at 95 ° C.

重合溶媒としてはヘキサン(フィード量26.6Kg/h)を用いて、エチレンフィード量を5.5Kg/h、プロピレンフィード量を4.9Kg/h、VNBフィード量を96g/h、ENBフィード量を929g/h、および水素(H)フィード量を120NL/hとして重合器に連続供給した。
その他条件は実施例1と同様にして合成した。得られた共重合体の物性を表1に示す。
As a polymerization solvent, hexane (feed amount 26.6 kg / h) is used, ethylene feed amount is 5.5 kg / h, propylene feed amount is 4.9 kg / h, VNB feed amount is 96 g / h, ENB feed amount is 929 g / h and a hydrogen (H 2 ) feed amount of 120 NL / h were continuously fed to the polymerization reactor.
The other conditions were synthesized in the same manner as in Example 1. The physical properties of the obtained copolymer are shown in Table 1.

〔比較例1〕
エチレン、プロピレンのフィード量をそれぞれ7.5Kg/h、3.2Kg/hに変更し、VNBのフィードをカットした以外は実施例1と同様にして合成した。得られた共重合体の物性を表1に示す。
[Comparative Example 1]
The synthesis was performed in the same manner as in Example 1 except that the feed amounts of ethylene and propylene were changed to 7.5 kg / h and 3.2 kg / h, respectively, and the feed of VNB was cut. The physical properties of the obtained copolymer are shown in Table 1.

〔比較例2〕
エチレン、プロピレン、VNBおよびENBのフィード量を変更した以外は実施例4と同様にして合成した。得られた共重合体の物性を表1に示す。
[Comparative Example 2]
Synthesis was performed in the same manner as in Example 4 except that the feed amounts of ethylene, propylene, VNB and ENB were changed. The physical properties of the obtained copolymer are shown in Table 1.

〔比較例3〕
エチレン・プロピレン・5−エチリデン−2−ノルボルネン三元共重合体〔商品名:三井エラストマーK−9720(商標)、三井化学(株)製、エチレン含量88mol%、ENB含量2.8mol%、MFR(190℃、2.16Kg荷重)2g/10min〕
以下、組成物の各物性の測定方法を示す。
[Comparative Example 3]
Ethylene / propylene / 5-ethylidene-2-norbornene terpolymer [trade name: Mitsui Elastomer K-9720 (trademark), manufactured by Mitsui Chemicals, Inc., ethylene content 88 mol%, ENB content 2.8 mol%, MFR ( 190 ° C., 2.16 kg load) 2 g / 10 min]
Hereafter, the measuring method of each physical property of a composition is shown.

〔独立気泡率〕
発泡成形体の独立気泡率:S(%)は、ASTM D2856−70に記載されている手順Cに準拠し、東洋精機製作所製(M−1型)の空気比較式比重計を使用して測定される発泡体の実容積(独立気泡の容積と樹脂部分の容積との和):Vx(L)から、下記式により算出される値である。
S(%)=(Va−Vx)×100/(Va−W/ρ)
Va:測定に使用した発泡体試験片の外寸法から計算される見かけ容積(L)
W :試験片の重量
ρ :試験片を構成する樹脂の密度(g/L)
[Closed cell ratio]
The closed cell ratio of the foamed molded product: S (%) was measured using an air comparison type hydrometer manufactured by Toyo Seiki Seisakusho (M-1 type) in accordance with Procedure C described in ASTM D2856-70. The actual volume of the foam (the sum of the volume of closed cells and the volume of the resin part): a value calculated from the following formula from Vx (L).
S (%) = (Va−Vx) × 100 / (Va−W / ρ)
Va: Apparent volume (L) calculated from the outer dimensions of the foam specimen used for the measurement
W: Weight of test piece ρ: Density of resin constituting the test piece (g / L)

なお、試験片を構成する樹脂の密度ρ(g/L)および試験片の重量W(g)は、発泡体試験片を加圧プレスにより気泡を脱泡させてから冷却する操作を行い、得られた試験片から求めることができる。   The density ρ (g / L) of the resin constituting the test piece and the weight W (g) of the test piece are obtained by performing an operation of defoaming the foam test piece with a pressure press and then cooling it. It can be obtained from the obtained test piece.

〔発泡倍率〕
発泡成形体から直径5cm×長さ10cmの円筒状の発泡体を切り出し、重量W2(g)を測定し、JIS K6767に準拠して、次式で見かけ密度を算出する。
見かけ密度(g/cm)=W2/(2.5×2.5×π×10)
発泡倍率は、見かけ密度より次式より算出した。
発泡倍率=1/見かけ密度
[Foaming ratio]
A cylindrical foam having a diameter of 5 cm and a length of 10 cm is cut out from the foamed molded product, the weight W2 (g) is measured, and the apparent density is calculated according to the following formula according to JIS K6767.
Apparent density (g / cm 3 ) = W2 / (2.5 × 2.5 × π × 10)
The expansion ratio was calculated from the following equation based on the apparent density.
Expansion ratio = 1 / apparent density

〔発泡体形状〕
発泡成形品の外観、および断面における気泡の状態を目視にて評価した。
○;円滑な表面の発泡体形状、×;凹凸の発泡体形状
(Foam shape)
The appearance of the foam molded product and the state of bubbles in the cross section were visually evaluated.
○: Smooth surface foam shape, ×: Concave foam shape

〔実施例5〕
得られた実施例1〔エチレン系共重合体(X)〕と市販の高密度ポリエチレン〔ポリオレフィン系樹脂(Y)〕(東ソー(株)製、商品名ニポロン2500、MFR=8.0g/10min、密度961kg/m)を15:85(エチレン系共重合体(X):ポリオレフィン系樹脂(Y)、重量比)
の比率で混合した組成物100重量部に対して、帯電防止剤としてステアリン酸モノグリセライド(融点65℃、理研ビタミン株式会社製、「S−100」)1重量部、気泡調整剤として大日本精化株式会社製「ファインセルマスター SSC−PO208K」を組成物100重量部に対して、1重量部添加し、これを押出機に投入してポリエチレン系樹脂溶融物とした。そして、バレルの途中に揮発性液体注入用のバレル孔を有する単軸押出機(直径50mm、L/D=36、日本製鋼所社製)の発泡成形用押出設備を用い、前記ポリエチレン系樹脂組成物を10Kg/hで供給し、溶融混練を行った後、揮発性液体であるブタンを発泡剤として、700g/hでバレル孔から圧入して、該ブタンを分散させ、発泡成形体表面に凹凸が発生しない最低の樹脂温度である135℃に設定した丸棒用ダイ(径13mmΦ)により棒状の発泡成形体を押出した。該棒状発泡成形体の外側に空気を吹きつけ、5.0m/minで引き取り、発泡成形体を得た。
Example 5
Example 1 [ethylene copolymer (X)] obtained and commercially available high-density polyethylene [polyolefin resin (Y)] (trade name Nipolon 2500, MFR = 8.0 g / 10 min, manufactured by Tosoh Corporation) Density 961 kg / m 3 ) 15:85 (ethylene copolymer (X): polyolefin resin (Y), weight ratio)
1 part by weight of stearic acid monoglyceride (melting point: 65 ° C., “S-100”, manufactured by Riken Vitamin Co., Ltd.) and 100% by weight of the composition mixed at a ratio of 1 part by weight of “Finecell Master SSC-PO208K” manufactured by Co., Ltd. was added to 100 parts by weight of the composition, and this was put into an extruder to obtain a polyethylene resin melt. And the said polyethylene-type resin composition is used for the foaming extrusion equipment of the single screw extruder (diameter 50mm, L / D = 36, Nippon Steel Works Co., Ltd.) which has the barrel hole for volatile liquid injection in the middle of a barrel. After supplying the product at 10 Kg / h and performing melt-kneading, the butane, which is a volatile liquid, is used as a foaming agent, and is injected from the barrel hole at 700 g / h to disperse the butane, and the surface of the foamed molded product is uneven. A rod-shaped foamed molded product was extruded by a round bar die (diameter 13 mmΦ) set at 135 ° C., which is the lowest resin temperature at which no occurrence of slag occurs. Air was blown to the outside of the rod-like foamed molded article and taken up at 5.0 m / min to obtain a foamed molded article.

上記製造法にて作成した発泡成形体について、発泡倍率、発泡体形状、気泡形状を評価した。得られた発泡体の物性を表2に示した。なお、表2にはエチレン系共重合体(X)、ポリオレフィン樹脂(Y)の種類と配合量も併せて示した。   About the foaming molding produced with the said manufacturing method, foaming magnification, foam shape, and bubble shape were evaluated. Table 2 shows the physical properties of the obtained foam. Table 2 also shows the types and blending amounts of the ethylene copolymer (X) and the polyolefin resin (Y).

〔実施例6〕
ポリオレフィン系樹脂(Y)を、直鎖状低密度ポリエチレン(東ソー(株)製、商品名ニポロンZ ZF260、MFR=2.0g/10min、密度936kg/m)に変更した以外は、実施例5と同様に行った。得られた発泡体の物性を表2に示した。
Example 6
Example 5 except that the polyolefin resin (Y) was changed to linear low-density polyethylene (trade name Nipolon Z ZF260, MFR = 2.0 g / 10 min, density 936 kg / m 3 , manufactured by Tosoh Corporation). As well as. Table 2 shows the physical properties of the obtained foam.

〔実施例7〕
エチレン系共重合体(X)を、実施例2に変更した以外は、実施例5と同様に行った。得られた発泡体の物性を表2に示した。
Example 7
The same procedure as in Example 5 was carried out except that the ethylene copolymer (X) was changed to Example 2. Table 2 shows the physical properties of the obtained foam.

〔実施例8〕
エチレン系共重合体(X)を、実施例3に変更した以外は、実施例5と同様に行った。得られた発泡体の物性を表2に示した。
Example 8
The same procedure as in Example 5 was performed except that the ethylene copolymer (X) was changed to Example 3. Table 2 shows the physical properties of the obtained foam.

〔実施例9〕
エチレン系共重合体(X)を、実施例4に変更した以外は、実施例5と同様に行った。得られた発泡体の物性を表2に示した。
Example 9
The same procedure as in Example 5 was carried out except that the ethylene copolymer (X) was changed to Example 4. Table 2 shows the physical properties of the obtained foam.

〔実施例10〕
エチレン系共重合体(X)とポリオレフィン系樹脂(Y)の混合比を変更した以外は、実施例5と同様に行った。得られた発泡体の物性を表2に示した。
Example 10
It carried out similarly to Example 5 except having changed the mixing ratio of ethylene-type copolymer (X) and polyolefin-type resin (Y). Table 2 shows the physical properties of the obtained foam.

〔比較例4〕
ポリオレフィン系樹脂(Y)のみを使用し、エチレン系共重合体(X)を混合しなかった以外は、実施例5と同様に行った。得られた発泡体の物性を表2に示した。
[Comparative Example 4]
The same operation as in Example 5 was carried out except that only the polyolefin resin (Y) was used and the ethylene copolymer (X) was not mixed. Table 2 shows the physical properties of the obtained foam.

〔比較例5〕
エチレン系共重合体(X)を、比較例1に変更した以外は、実施例5と同様に行った。得られた発泡体の物性を表2に示した。
[Comparative Example 5]
The same procedure as in Example 5 was carried out except that the ethylene copolymer (X) was changed to Comparative Example 1. Table 2 shows the physical properties of the obtained foam.

〔比較例6〕
エチレン系共重合体(X)を、比較例2に変更した以外は、実施例5と同様に行った。得られた発泡体の物性を表2に示した。
[Comparative Example 6]
The same procedure as in Example 5 was carried out except that the ethylene copolymer (X) was changed to Comparative Example 2. Table 2 shows the physical properties of the obtained foam.

〔比較例7〕
エチレン系共重合体(X)を、比較例3に変更した以外は、実施例5と同様に行った。得られた発泡体の物性を表2に示した。
[Comparative Example 7]
The same procedure as in Example 5 was carried out except that the ethylene copolymer (X) was changed to Comparative Example 3. Table 2 shows the physical properties of the obtained foam.

本発明の発泡成型体は、充分な高発泡性を示すエチレン系樹脂組成物を発泡することにより得られ、良好な発泡体外観を有するとともに、耐熱性や耐衝撃性に優れる。そのため該成形体は緩衝材、断熱材、吸音材等の各種用途に好適に用いることができる。 The foamed molded article of the present invention is obtained by foaming an ethylene-based resin composition exhibiting sufficiently high foamability, and has a good foam appearance and is excellent in heat resistance and impact resistance. Therefore, this molded object can be used suitably for various uses, such as a shock absorbing material, a heat insulating material, and a sound-absorbing material.

Claims (4)

エチレン[A]、炭素原子数3〜20のα−オレフィン[B]および5−ビニル−2−ノルボルネン(VNB)[C]に由来する構造単位を含む、メタロセン触媒を用いて合成されるエチレン系共重合体(X)40〜5重量部と、190℃、2.16Kg荷重で測定したMFRが0.1〜30g/10分であるポリオレフィン系樹脂(Y)60〜95重量部とを含むことを特徴とするポリオレフィン系樹脂組成物であって、
前記エチレン系共重合体(X)が下記(1)〜(4)を満たすことを特徴とする前記ポリオレフィン系樹脂組成物。
(1)炭素原子数3〜20のα−オレフィン[B]に由来する構造単位が、全構造単位100モル%中、5〜45モル%であり、
(2)VNB[C]に由来する構造単位が、全構造単位100モル%中、0.1〜0.8モル%であり、
(3)190℃、2.16Kg荷重で測定したメルトフローレート[MFR(g/10分)]が0.3〜10であり、
(4)下記式(A)を満たす。
13 > 伸長粘度測定における歪硬化度(χmax) > 3 ・・・(A)
An ethylene system synthesized using a metallocene catalyst comprising a structural unit derived from ethylene [A], an α-olefin [B] having 3 to 20 carbon atoms and 5-vinyl-2-norbornene (VNB) [C] It contains 40 to 5 parts by weight of copolymer (X) and 60 to 95 parts by weight of polyolefin resin (Y) having an MFR of 0.1 to 30 g / 10 minutes measured at 190 ° C. under a load of 2.16 kg. A polyolefin resin composition characterized by comprising:
The polyolefin resin composition, wherein the ethylene copolymer (X) satisfies the following (1) to (4).
(1) The structural unit derived from the α-olefin [B] having 3 to 20 carbon atoms is 5 to 45 mol% in 100 mol% of all structural units,
(2) The structural unit derived from VNB [C] is 0.1 to 0.8 mol% in 100 mol% of all structural units,
(3) The melt flow rate [MFR (g / 10 min)] measured at 190 ° C. and a load of 2.16 kg is 0.3 to 10,
(4) The following formula (A) is satisfied.
13> degree of strain hardening in elongational viscosity measurement (χ max )> 3 (A)
エチレン系共重合体(X)が下記式(III')で表される構造を有する触媒を用いて合成されることを特徴とする請求項1に記載のポリオレフィン系樹脂組成物。
式(III')中、R'は、水素原子、炭素数1〜20のヒドロカルビル基であり、R"は、炭素数1〜20のヒドロカルビル基または水素原子であり、Mはチタンであり、Yは、−NR*−であり、Z*は、−SiR* 2−であり、前記R*は、それぞれ独立に、水素原子または、炭素数1〜20のヒドロカルビル基であり、pおよびqのうち一方は0であり、他方は1であり、pが0かつqは1である場合には、Mは+2の酸化状態であり、X'は1,4−ジフェニル−1,3−ブタジエンまたは1,3−ペンタジエンであり、pが1かつが0である場合には、Mは+3の酸化状態であり、Xは2−(N,N−ジメチルアミノ)ベンジルである。
The polyolefin resin composition according to claim 1, wherein the ethylene copolymer (X) is synthesized using a catalyst having a structure represented by the following formula ( III ') .
In the formula (III ′), R ′ is a hydrogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, R ″ is a hydrocarbyl group having 1 to 20 carbon atoms or a hydrogen atom, M is titanium, Y Is —NR * —, Z * is —SiR * 2 —, and each R * is independently a hydrogen atom or a hydrocarbyl group having 1 to 20 carbon atoms, and of p and q When one is 0, the other is 1, p is 0 and q is 1, M is in the +2 oxidation state and X ′ is 1,4-diphenyl-1,3-butadiene or 1 , 3-pentadiene, when p is 1 and q is 0, M is in the +3 oxidation state and X is 2- (N, N-dimethylamino) benzyl.
発泡剤を含有していることを特徴とする請求項1または2に記載のポリオレフィン系樹脂組成物。 The polyolefin-based resin composition according to claim 1 or 2 , further comprising a foaming agent. 請求項3に記載の樹脂組成物を発泡して得られる発泡体であって、発泡倍率が5〜50倍であることを特徴とする発泡体。 A foam obtained by foaming the resin composition according to claim 3 , wherein the foaming ratio is 5 to 50 times.
JP2010104592A 2010-04-28 2010-04-28 Ethylene-based copolymer and composition Active JP5357825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010104592A JP5357825B2 (en) 2010-04-28 2010-04-28 Ethylene-based copolymer and composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010104592A JP5357825B2 (en) 2010-04-28 2010-04-28 Ethylene-based copolymer and composition

Publications (2)

Publication Number Publication Date
JP2011231260A JP2011231260A (en) 2011-11-17
JP5357825B2 true JP5357825B2 (en) 2013-12-04

Family

ID=45320907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104592A Active JP5357825B2 (en) 2010-04-28 2010-04-28 Ethylene-based copolymer and composition

Country Status (1)

Country Link
JP (1) JP5357825B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122495A1 (en) 2014-02-14 2015-08-20 三井化学株式会社 ETHYLENE/α-OLEFIN/NON-CONJUGATED POLYENE COPOLYMER, PRODUCTION METHOD THEREFOR, AND USE THEREFOR
CN106414568B (en) 2014-05-29 2019-08-06 埃克森美孚化学专利公司 Polyethylene film and its production
US10124528B2 (en) 2014-05-29 2018-11-13 Exxonmobil Chemical Patents Inc. Cyclic-diene additives in polyethylene films and enhanced film orientation balance in production thereof
US10125247B2 (en) 2014-05-29 2018-11-13 Exxonmobil Chemical Patents Inc. Polyethylene compositions
KR101846412B1 (en) 2016-12-06 2018-05-18 한화케미칼 주식회사 Transition metal compound used to prepare catalyst for polymerizing olefin, catalyst for polymerizing olefin comprising the same and polyolefin polymerized by using the same
CN110582536A (en) 2017-03-29 2019-12-17 埃克森美孚化学专利公司 Polyethylene composition
US11905348B2 (en) 2018-03-20 2024-02-20 Mitsui Chemicals, Inc. Ethylene/alpha-olefin/non-conjugated polyene copolymer, method for producing the same, and use thereof
WO2023189302A1 (en) * 2022-03-29 2023-10-05 日本ゼオン株式会社 Resin composition, molded article, and optical member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3383155B2 (en) * 1996-06-26 2003-03-04 三菱化学株式会社 Ethylene polymer
US6319998B1 (en) * 1998-03-04 2001-11-20 Exxon Mobil Chemical Patents Inc. Method for making polymer blends by using series reactors
US7943711B2 (en) * 2007-05-14 2011-05-17 Exxonmobil Chemical Patents Inc. Ethylene elastomer compositions
CN101883819B (en) * 2007-12-05 2013-03-20 三井化学株式会社 Rubber composition, crosslinked product and foam thereof, molded product therefrom, and use thereof

Also Published As

Publication number Publication date
JP2011231260A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5357825B2 (en) Ethylene-based copolymer and composition
JP5563989B2 (en) Copolymer, rubber composition, crosslinked rubber, crosslinked foam and use thereof
JP5357643B2 (en) Rubber composition and use thereof
KR20060113988A (en) Thermoplastic olefinic compositions
JP5680678B2 (en) Foaming agent and production method / former thereof, rubber composition, crosslinked foam and production method thereof, and rubber molded product
CN109476893B (en) Ethylene/alpha-olefin/diene interpolymer compositions
JP5476172B2 (en) Flame-retardant rubber composition and rubber molded body
JP5912830B2 (en) Ethylene / α-olefin / non-conjugated polyene copolymer composition, foam obtained from the composition, and molding method thereof
KR20110138409A (en) Propylene polymer resin composition
JP2013001826A (en) Resin composition for injection foam, injection foam molded article, and method for producing the article
JP5925295B2 (en) Railroad track pad
JP2014083770A (en) Ethylene based polymer and resin composition for foam blow molding
JP2006199872A (en) Foamed molding of uncross-linked polyethylene
JP6091871B2 (en) Ethylene / α-olefin / non-conjugated polyene copolymer composition, cross-linked foam obtained from the composition, and method for producing the same
JP2013100418A (en) Polyethylene-based resin composition, polyethylene extruded foam sheet, and container consisting of the same
JP2009275153A (en) Extrusion-foamed non-crosslinked polyethylene article
JP5357846B2 (en) Rubber composition for sponge and rubber molded body
JP2012136598A (en) Foamed sheet and container
JP2017043784A (en) Weather Strip Sponge
JP5825071B2 (en) Polyethylene resin composition, foam and method for producing the same
JP2012136599A (en) Foamed blow molded product
JP2011162731A (en) Abs resin composition for foaming and expanded molding
JP6709640B2 (en) Foam molded article, method for producing the same, and use
JP2013057023A (en) Foamed container
JP2013136681A (en) Polyethylene resin composition and polyethylene resin foamed hollow molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130830

R150 Certificate of patent or registration of utility model

Ref document number: 5357825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250