JP5357690B2 - Film forming method, solar cell manufacturing method, and catalytic CVD apparatus - Google Patents

Film forming method, solar cell manufacturing method, and catalytic CVD apparatus Download PDF

Info

Publication number
JP5357690B2
JP5357690B2 JP2009230599A JP2009230599A JP5357690B2 JP 5357690 B2 JP5357690 B2 JP 5357690B2 JP 2009230599 A JP2009230599 A JP 2009230599A JP 2009230599 A JP2009230599 A JP 2009230599A JP 5357690 B2 JP5357690 B2 JP 5357690B2
Authority
JP
Japan
Prior art keywords
catalyst wire
catalyst
power
constant
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009230599A
Other languages
Japanese (ja)
Other versions
JP2011082199A (en
Inventor
幹英 甲斐
修司 大園
智彦 岡山
英之 小形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Ulvac Inc
Original Assignee
Sanyo Electric Co Ltd
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Ulvac Inc filed Critical Sanyo Electric Co Ltd
Priority to JP2009230599A priority Critical patent/JP5357690B2/en
Publication of JP2011082199A publication Critical patent/JP2011082199A/en
Application granted granted Critical
Publication of JP5357690B2 publication Critical patent/JP5357690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of operating a catalytic CVD device, along with a film forming method by a catalytic CVD method using the device and a solar cell manufacturing method, capable of prolonging the service life of a catalyst wire. <P>SOLUTION: Concerning a method of energizing the catalyst wire in forming a film using the catalytic CVD device, energization control to the catalyst wire is executed by constant current control when temperature rise is started and by constant power control in deposition, thereby preventing deterioration of the catalyst wire due to overheating to prolong the service life. Further, abnormal temperature rise of a substrate due to overheating of the catalyst wire in the deposition is avoided to prevent abnormal conditions of film quality. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、触媒CVD法による膜の形成方法、太陽電池の製造方法及び触媒CVD装置に関する。   The present invention relates to a film forming method by a catalytic CVD method, a solar cell manufacturing method, and a catalytic CVD apparatus.

一般的に、太陽電池などの各種半導体デバイスなどを製造する際に、基板上に所定の堆積膜を形成する方法として、CVD法(化学気相成長法)が従来から知られている。このようなCVD法の一種として、近年、触媒化学気相成長(Catalytic Chemical Vapor Deposition)を利用した触媒CVD法が検討されている(例えば、特許文献1)。   In general, a CVD method (chemical vapor deposition method) is conventionally known as a method for forming a predetermined deposited film on a substrate when manufacturing various semiconductor devices such as solar cells. As one type of such a CVD method, a catalytic CVD method using catalytic chemical vapor deposition (catalytic chemical vapor deposition) has recently been studied (for example, Patent Document 1).

触媒CVD法では、通電によって加熱された触媒線に原料ガスを供給し、生成された分解種を基材上に堆積させて成膜を行う。このような触媒CVD法を実用化するにあたっては触媒線の長寿命化が課題となっており、この課題を解決するために、触媒線としてタンタル線の表面にホウ化物層が形成されたものを用いることが提案されている(例えば、特許文献2)。この触媒線によれば、タングステンやタンタルを用いた場合に比べて、触媒線の寿命を飛躍的に向上することができる。   In the catalytic CVD method, a raw material gas is supplied to a catalyst wire heated by energization, and the generated decomposition species is deposited on a substrate to form a film. In putting such a catalytic CVD method into practical use, it is a problem to extend the life of the catalyst wire. To solve this problem, a catalyst wire having a boride layer formed on the surface of a tantalum wire is used. It has been proposed to use it (for example, Patent Document 2). According to this catalyst wire, the life of the catalyst wire can be drastically improved as compared with the case of using tungsten or tantalum.

特開2005−327995号公報JP 2005-327995 A 特開2008−300793号公報JP 2008-300793 A

上記のように、触媒線そのものについては長寿命化を図るための種々の検討がなされている。一方で、それ以外の点では触媒線の長寿命化を可能とするための試みは殆どなされていない。   As described above, various studies have been made to extend the life of the catalyst wire itself. On the other hand, in other respects, almost no attempt has been made to extend the life of the catalyst wire.

そこで、本発明は、上述した状況に鑑みてなされたものであり、触媒線の通電方法に着目することにより、触媒線の長寿命化を可能とする膜の形成方法、太陽電池の製造方法及び触媒CVD装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described situation, and by paying attention to the method of energizing the catalyst wire, a method for forming a film that can extend the life of the catalyst wire, a method for manufacturing a solar cell, and An object is to provide a catalytic CVD apparatus.

本発明に係る膜の形成方法は、触媒線を備える触媒CVD装置を用いた膜の形成方法であって、触媒線の昇温開始時には、触媒線への通電を定電流制御で行い、成膜時には、触媒線への通電を定電力制御で行うことを要旨とする。   The film forming method according to the present invention is a film forming method using a catalytic CVD apparatus equipped with a catalyst wire, and at the start of the temperature rise of the catalyst wire, energization of the catalyst wire is performed by constant current control, and the film is formed. The gist of the invention is that constant current control is applied to the catalyst wire.

このように、昇温開始時に触媒線への通電を定電流制御することによって、定電力制御する場合に比べて、昇温初期における触媒線の温度上昇の傾きを小さくすることができる。そのため、昇温初期における基材の温度上昇を小さくできるので、成膜時に基材の温度を好ましい範囲内に制御しやすくなる。また昇温開始時に触媒線への通電を定電流制御することによって、触媒線に流れる電流がオーバーシュートすることを抑制できる。その結果、成膜する膜の膜質を向上できると共に、触媒線寿命を長寿命化することができる。   Thus, by controlling the current supply to the catalyst line at a constant current at the start of the temperature rise, the inclination of the temperature rise of the catalyst line at the initial stage of the temperature rise can be made smaller than in the case of constant power control. Therefore, since the temperature rise of the base material at the initial stage of temperature rise can be reduced, it becomes easy to control the temperature of the base material within a preferable range during film formation. Moreover, it is possible to suppress overshooting of the current flowing through the catalyst wire by performing constant current control of energization to the catalyst wire at the start of temperature increase. As a result, the film quality of the film to be formed can be improved and the life of the catalyst wire can be extended.

また、成膜時に定電力制御することによって、定電流制御する場合に比べて、長時間使用する場合でも触媒線の過熱を抑制できるとともに、基材の温度を好ましい温度範囲内に制御しやすくなる。そのため、膜質を向上できるとともに、触媒線を長寿命化することができる。   In addition, by controlling constant power during film formation, overheating of the catalyst wire can be suppressed even when used for a long time compared to when constant current control is performed, and the temperature of the substrate can be easily controlled within a preferable temperature range. . Therefore, the film quality can be improved and the life of the catalyst wire can be extended.

本発明に係る膜の形成方法において、電源は、定電流制御によって触媒線に通電される電力値が、定電力制御によって触媒線に通電される電力値以下になるように、定電流制御の設定電流値及び定電力制御の設定電力値を設定してもよい。   In the film forming method according to the present invention, the power source is set to constant current control so that the power value applied to the catalyst line by constant current control is equal to or less than the power value applied to the catalyst line by constant power control. A current value and a set power value for constant power control may be set.

本発明に係る膜の形成方法は、反応室と、反応室内に設置される触媒線と、触媒線に通電する電源とを備える触媒CVD装置を用いる膜の形成方法であって、定電流制御及び定電力制御のいずれかを選択して触媒線に通電可能に電源を制御する工程を備えることを要旨とする。   A film forming method according to the present invention is a film forming method using a catalytic CVD apparatus including a reaction chamber, a catalyst wire installed in the reaction chamber, and a power source for energizing the catalyst wire, the constant current control and The gist of the invention is to include a step of selecting one of the constant power controls and controlling the power source so that the catalyst wire can be energized.

本発明に係る太陽電池の製造方法は、原料ガスを分解する触媒線を備える触媒CVD装置を用いた太陽電池の製造方法であって、触媒線の昇温開始時には、触媒線への通電を定電流制御で行い、成膜時には、触媒線への通電を定電力制御で行うことを要旨とする。   A method for manufacturing a solar cell according to the present invention is a method for manufacturing a solar cell using a catalytic CVD apparatus provided with a catalyst wire for decomposing a raw material gas. The gist is that the current control is performed, and that the catalyst wire is energized by constant power control during film formation.

本発明に係る触媒CVD装置は、反応室と、反応室内に設置される触媒線と、触媒線に通電する電源とを備え、電源は、触媒線への通電を、定電流制御又は定電力制御で制御可能であり、定電流制御及び定電力制御のいずれか一方を選択する選択手段を備えることを要旨とする。   The catalytic CVD apparatus according to the present invention includes a reaction chamber, a catalyst wire installed in the reaction chamber, and a power source for energizing the catalyst wire, and the power source controls the energization of the catalyst wire by constant current control or constant power control. The gist of the present invention is to provide a selection means for selecting one of constant current control and constant power control.

本発明に係る触媒CVD装置において、電源は、定電力制御において、供給される原料ガスの分解温度に応じて触媒線に供給される電力値が制御されてもよい。   In the catalytic CVD apparatus according to the present invention, the power supply may control the power value supplied to the catalyst wire in accordance with the decomposition temperature of the supplied source gas in the constant power control.

本発明に係る触媒CVD装置において、電源は、定電流制御によって触媒線に通電される電力値が、定電力制御によって触媒線に通電される電力値以下になるように、定電流制御の設定電流値及び定電力制御の設定電力値を設定してもよい。   In the catalytic CVD apparatus according to the present invention, the power source has a constant current control setting current so that a power value applied to the catalyst line by the constant current control is equal to or less than a power value supplied to the catalyst line by the constant power control. A value and a set power value for constant power control may be set.

本発明に係る触媒CVD装置は、触媒線に流れる電流値が設定電流値に達しているか否か、及び触媒線に通電される電力値が設定電力値に達しているか否かを判断する判断手段をさらに備え、選択手段は、触媒線に流れる電流値が設定電流値に達した、或いは、触媒線に通電される電力値が設定電力値に達したと判断手段によって判断された場合、定電流制御及び定電力制御のうちいずれか一方を選択してもよい。   The catalytic CVD apparatus according to the present invention determines whether or not the value of the current flowing through the catalyst line has reached a set current value, and whether or not the value of the power supplied to the catalyst line has reached the set power value. And the selecting means has a constant current when the determining means determines that the current value flowing through the catalyst line has reached the set current value or that the power value energized through the catalyst line has reached the set power value. Either one of control and constant power control may be selected.

本発明によれば、触媒線の長寿命化を可能とすると共に、膜質の良好な堆積膜及び特性の良好な太陽電池の製造を可能とする膜の形成方法及び太陽電池の製造方法を提供することができる。また、触媒線の長寿命化を可能とすると共に、膜質の良好な堆積膜の製造を可能とする触媒CVD装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while providing the lifetime of a catalyst wire, the formation method of a film | membrane and the manufacturing method of a solar cell which enable manufacture of the deposited film with favorable film quality, and the manufacture of a solar cell with the favorable characteristic are provided. be able to. In addition, it is possible to provide a catalytic CVD apparatus capable of extending the life of the catalyst wire and producing a deposited film with good film quality.

実施形態に係る触媒CVD装置100の構成を示す図である。1 is a diagram illustrating a configuration of a catalytic CVD apparatus 100 according to an embodiment. 実施形態に係る電源13の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the power supply 13 which concerns on embodiment. 触媒線に通電される予想電力と時間との関係を示すグラフである。It is a graph which shows the relationship between the estimated electric power with which electricity is supplied to a catalyst line, and time. 実施例1及び比較例1に係る触媒線の温度推移を示すグラフである。4 is a graph showing a temperature transition of catalyst wires according to Example 1 and Comparative Example 1. 実施例1及び比較例1に係る基板の温度推移を示すグラフである。6 is a graph showing temperature transition of substrates according to Example 1 and Comparative Example 1. 実施例2及び比較例2に係る成膜フローを説明するための図である。6 is a diagram for explaining a film formation flow according to Example 2 and Comparative Example 2. FIG. 実施例2及び比較例2に係る触媒線の抵抗増加率の推移を示すグラフである。It is a graph which shows transition of the resistance increase rate of the catalyst wire which concerns on Example 2 and Comparative Example 2. FIG.

以下において、本発明の実施形態に係る触媒CVD装置について、図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。   Hereinafter, a catalytic CVD apparatus according to an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.

ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   However, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones. Therefore, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

[触媒線への通電と触媒線の寿命の関係]
従来、触媒線に通電する電源の制御方法としては、定電流電源による定電流制御と定電圧電源による定電力制御の2つの通電方法が知られている。しかしながら、本発明者等が鋭意検討したところによると、これらの方法にはそれぞれ以下の問題が生じることが明らかとなった。
[Relationship between energization of catalyst wire and life of catalyst wire]
2. Description of the Related Art Conventionally, there are two known energization methods for controlling a power source for energizing a catalyst wire, constant current control using a constant current power source and constant power control using a constant voltage power source. However, as a result of extensive studies by the present inventors, it has become clear that these methods have the following problems.

すなわち、触媒線には通電による加熱に伴う延びが発生し、通電時間が長くなるに従い太さが次第に細くなり、これに伴い触媒線の抵抗が増大する。また、原料ガスの種類などの条件によっては、シリサイド化に伴う触媒線の抵抗の増大も生じる。このため、定電流制御で通電し続けると、通電時間の積算時間の増大と共に発熱量が大きくなり、触媒線の延びが加速されるため、触媒線の寿命の低下を生じさせてしまう。また、このように発熱量が大きくなると膜を堆積すべき基材の温度も上昇するため、成膜時の基材の温度が好ましい温度範囲を超えてしまい、基材上に堆積した膜の膜質を低下させる。   That is, the catalyst wire is elongated due to heating by energization, and the thickness gradually decreases as the energization time increases, and the resistance of the catalyst wire increases accordingly. Further, depending on the conditions such as the type of source gas, the resistance of the catalyst wire is increased due to silicidation. For this reason, if energization is continued with constant current control, the amount of heat generation increases with an increase in the integration time of the energization time, and the extension of the catalyst wire is accelerated, resulting in a decrease in the life of the catalyst wire. Moreover, since the temperature of the base material on which the film is to be deposited increases as the amount of generated heat increases in this way, the temperature of the base material at the time of film formation exceeds the preferred temperature range, and the film quality of the film deposited on the base material Reduce.

一方、定電力制御を用いると、抵抗の増大に従い電流が小さくなるよう制御するため、定電流制御のような課題は生じない。しかしながら、成膜のための昇温開始時は触媒線の温度が成膜時に比べて低温であり抵抗が小さいため、成膜時に比べると大きな電流が流れる。従って、定電力制御の場合、昇温初期に触媒線に流れる電流が大きくなるため、触媒線の温度上昇の傾きが定電流制御に比べて大きくなる。そのため、基材の温度が上昇し易く、膜質の低下が生じるおそれがある。また、触媒線に流れる電流がオーバーシュートし、過剰な電流が流れる場合がある。この場合には、触媒線の寿命の低下が生じるおそれがある。   On the other hand, when constant power control is used, control is performed so that the current decreases as the resistance increases, so that a problem such as constant current control does not occur. However, since the temperature of the catalyst wire is lower than that at the time of film formation and the resistance is low at the start of temperature increase for film formation, a larger current flows than at the time of film formation. Therefore, in the case of constant power control, since the current flowing through the catalyst line becomes large at the beginning of temperature rise, the inclination of the temperature rise of the catalyst line becomes larger than that in constant current control. Therefore, the temperature of the base material is likely to rise, and the film quality may be deteriorated. In addition, the current flowing through the catalyst wire may overshoot and excessive current may flow. In this case, the life of the catalyst wire may be reduced.

本発明は、触媒線の通電方法に着目して、触媒線の長寿命化を図らんとするものである。また、堆積される膜の膜質を向上せんとするものである。以下、触媒線の通電方法に主眼を置いて説明する。   The present invention aims at extending the life of the catalyst wire by focusing on the method of energizing the catalyst wire. Further, it is intended to improve the quality of the deposited film. Hereinafter, the description will be made with a focus on the method of energizing the catalyst wire.

[触媒CVD装置の構成]
以下において、本実施形態に用いる触媒CVD装置の構成について、図面を参照しながら説明する。図1は、触媒CVD装置100の構成を示す図である。
[Configuration of catalytic CVD equipment]
Below, the structure of the catalytic CVD apparatus used for this embodiment is demonstrated, referring drawings. FIG. 1 is a diagram illustrating a configuration of the catalytic CVD apparatus 100.

図1に示すように、触媒CVD装置100は、触媒CVD法により、反応室10内で加熱された触媒線11に原料ガスを供給し、生成された分解種を基材200上に堆積させて成膜を行う装置である。基材200は、基材トレー300に保持され、堆積膜が形成される被成膜基材である。   As shown in FIG. 1, the catalytic CVD apparatus 100 supplies a source gas to the catalyst wire 11 heated in the reaction chamber 10 by the catalytic CVD method, and deposits the generated decomposition species on the substrate 200. An apparatus for forming a film. The substrate 200 is a substrate on which the deposited film is formed by being held on the substrate tray 300.

触媒CVD装置100は、反応室10、触媒線11、取付け部12、電源13、ガス供給管20及びガス排出管30を備える。   The catalytic CVD apparatus 100 includes a reaction chamber 10, a catalyst wire 11, a mounting portion 12, a power supply 13, a gas supply pipe 20, and a gas discharge pipe 30.

反応室10は、基材トレー300を収容する真空容器である。   The reaction chamber 10 is a vacuum container that accommodates the substrate tray 300.

触媒線11は、加熱されることによって、反応室10内に供給される原料ガスを分解する。触媒線11の両端は、取付け部12に取付けられており、反応室10の底面に対して垂直に配置されている。触媒線11は、通電によって、原料ガスを分解することができる温度(以下、「分解温度」という。例えば、1600℃〜2000℃)に昇温される。原料ガスは、触媒線11によって分解され、分解種が基材200に到達することによって、基材200上に堆積膜(例えば、半導体膜やSiN膜など)が形成される。   The catalyst wire 11 decomposes the source gas supplied into the reaction chamber 10 by being heated. Both ends of the catalyst wire 11 are attached to the attachment portion 12 and are arranged perpendicular to the bottom surface of the reaction chamber 10. The catalyst wire 11 is heated to a temperature at which the source gas can be decomposed (hereinafter referred to as “decomposition temperature”, for example, 1600 ° C. to 2000 ° C.) by energization. The source gas is decomposed by the catalyst wire 11, and when a decomposition species reaches the base material 200, a deposited film (for example, a semiconductor film or an SiN film) is formed on the base material 200.

触媒線11の材料としては、Ta,Mo,Wなどを用いることができる。また、触媒線11は、表面に異種層を有していてもよい。この一例として、表面にホウ化物層が形成されたタンタル線が挙げられる。また、触媒線11としては、直径が0.3mm〜2.0mm、好ましくは0.5mm〜1.0mmのものが用いられる。   As a material of the catalyst wire 11, Ta, Mo, W, or the like can be used. Moreover, the catalyst wire 11 may have a heterogeneous layer on the surface. An example of this is a tantalum wire having a boride layer formed on the surface. The catalyst wire 11 has a diameter of 0.3 mm to 2.0 mm, preferably 0.5 mm to 1.0 mm.

取付け部12は、導電性を有する材料によって構成される。取付け部12は、反応室10の外部に配置された電源13に電気的に接続されている。   The attachment portion 12 is made of a conductive material. The attachment portion 12 is electrically connected to a power source 13 disposed outside the reaction chamber 10.

電源13は、取付け部12を介して、触媒線11に通電する。電源13としては、定電流制御と定電力制御を選択可能な定電流/定電圧電源を用いることができる。定電流制御では、設定電流値で触媒線11への通電を制御し、定電力制御では、設定電力値で触媒線11への通電を制御する。従って、電源13は、定電流制御のための設定電流値を入力する電流設定部と、定電力制御のための設定電力値を入力する電力設定部とを有している。なお、設定電流値は、電流のリミッタ値として機能し、設定電力値は、電力のリミッタ値として機能する。電源13の構成については後述する。   The power source 13 energizes the catalyst wire 11 via the attachment portion 12. As the power source 13, a constant current / constant voltage power source capable of selecting constant current control and constant power control can be used. In the constant current control, the energization to the catalyst wire 11 is controlled with the set current value, and in the constant power control, the energization to the catalyst wire 11 is controlled with the set power value. Therefore, the power supply 13 includes a current setting unit that inputs a set current value for constant current control and a power setting unit that inputs a set power value for constant power control. The set current value functions as a current limiter value, and the set power value functions as a power limiter value. The configuration of the power supply 13 will be described later.

ガス供給管20は、反応室10内に原料ガス(例えば、SiHとHとの混合気やSiHなど)を供給するための流路である。 The gas supply pipe 20 is a flow path for supplying a source gas (for example, a mixture of SiH 4 and H 2 or SiH 4 ) into the reaction chamber 10.

ガス排出管30は、反応室10内から原料ガスを排出するための流路である。ガス排出管30は、反応室10から気体を排出することによって、反応室10内を真空状態にすることができる。   The gas discharge pipe 30 is a flow path for discharging the source gas from the reaction chamber 10. The gas discharge pipe 30 can evacuate the reaction chamber 10 by discharging gas from the reaction chamber 10.

[電源の構成]
図2は、電源13の構成を示す機能ブロック図である。図2に示すように、電源13は、電流センサ131、電力センサ132及び制御部133を備える。
[Power supply configuration]
FIG. 2 is a functional block diagram showing the configuration of the power supply 13. As shown in FIG. 2, the power supply 13 includes a current sensor 131, a power sensor 132, and a control unit 133.

電流センサ131は、触媒線11に流れる電流を検出する。電力センサ132は、触媒線11に供給される電力を検出する。   The current sensor 131 detects the current flowing through the catalyst wire 11. The power sensor 132 detects the power supplied to the catalyst wire 11.

制御部133は、基材200上への成膜を行わない非成膜時において、触媒線11の温度が原料ガスの分解温度より低い所定の温度(以下、「待機温度」という。)となるように、触媒線11への通電を制御する。このときの制御方法は、定電流制御及び定電力制御のどちらでもよい。   The controller 133 has a predetermined temperature (hereinafter referred to as “standby temperature”) at which the temperature of the catalyst wire 11 is lower than the decomposition temperature of the source gas when no film is formed on the substrate 200. Thus, the current supply to the catalyst wire 11 is controlled. The control method at this time may be either constant current control or constant power control.

また、基材200上への成膜のために触媒線11の昇温を開始するとき、制御部133は触媒線11への通電を定電流制御によって制御し、触媒線11を昇温する。   When the temperature of the catalyst wire 11 is started for film formation on the substrate 200, the control unit 133 controls the energization of the catalyst wire 11 by constant current control to raise the temperature of the catalyst wire 11.

また、基材200上への成膜時、制御部133は触媒線11への通電を定電力制御によって制御し、触媒線11の温度を所定の反応温度に制御する。   Further, at the time of film formation on the substrate 200, the control unit 133 controls energization to the catalyst wire 11 by constant power control, and controls the temperature of the catalyst wire 11 to a predetermined reaction temperature.

具体的には、昇温を開始するとき、電流設定部を用いて定電流制御するための設定電流値を入力するとともに、電力設定部を用いて定電力制御するための設定電力値を入力する。   Specifically, when starting temperature rise, a set current value for constant current control is input using a current setting unit, and a set power value for constant power control is input using a power setting unit. .

このとき、設定電流値は、触媒線11への通電を定電力制御のみによって制御すると仮定したときに、触媒線11の温度が昇温開始直前の所定の温度(待機温度)において触媒線11に流れると想定される電流値より小さい電流値である。設定電流値は、前述したように、電流のリミッタ値としても機能するので、昇温開始時には、触媒線11は設定電流値で定電流制御される。なお、設定電流値は、非成膜時における待機温度の触媒線11に流れる電流値より大きい。   At this time, when it is assumed that the energization to the catalyst wire 11 is controlled only by the constant power control, the set current value is applied to the catalyst wire 11 at a predetermined temperature (standby temperature) immediately before the temperature rise starts. The current value is smaller than the current value assumed to flow. As described above, since the set current value also functions as a current limiter value, the catalyst wire 11 is controlled at a constant current with the set current value at the start of temperature rise. Note that the set current value is larger than the current value flowing through the catalyst wire 11 at the standby temperature during non-film formation.

また、設定電力値は、触媒線11への通電を定電流制御のみによって制御すると仮定したときに、原料ガスの分解温度において触媒線11に通電されると想定される電力値より小さい電力値である。設定電力値は、前述したように、電力のリミッタ値としても機能するので、触媒線11の温度が所定の反応温度のとき、触媒線11は設定電力値で定電力制御される。なお、設定電力値は、原料ガスの分解温度に触媒線11を昇温できる電力値に設定される。   The set power value is smaller than the power value assumed to be energized to the catalyst wire 11 at the decomposition temperature of the raw material gas when it is assumed that the energization to the catalyst wire 11 is controlled only by constant current control. is there. As described above, the set power value also functions as a power limiter value. Therefore, when the temperature of the catalyst wire 11 is a predetermined reaction temperature, the catalyst wire 11 is controlled at a constant power with the set power value. The set power value is set to a power value that can raise the temperature of the catalyst wire 11 to the decomposition temperature of the source gas.

以下に、設定電流値と設定電力値との関係を、触媒線11に通電される電力を例にして説明する。   Hereinafter, the relationship between the set current value and the set power value will be described using the power supplied to the catalyst wire 11 as an example.

図3は、昇温開始時刻(t=t)以降において、触媒線11に通電される電力と時間との関係を模式的に示すグラフである。 FIG. 3 is a graph schematically showing the relationship between the power supplied to the catalyst wire 11 and time after the temperature rise start time (t = t 0 ).

図3において、実線Aは、触媒線11への通電制御を設定電力値での定電力制御のみによって行うと仮定したときに、触媒線11に通電されることが予想される電力の推移である。同図において、Eは設定電力値であり、触媒線11への通電は設定電力値Eで制御される。 In FIG. 3, a solid line A is a transition of electric power expected to be energized to the catalyst line 11 when it is assumed that energization control to the catalyst line 11 is performed only by constant power control with a set power value. . In the figure, E A is the set power value, the energization of the catalytic wire 11 is controlled by the set power value E A.

破線Bは、触媒線11への通電制御を設定電流値での定電流制御のみによって行うと仮定したときに、触媒線11に通電されることが予想される電力の推移である。同図に示すように、設定電流値は、時刻t以降において触媒線11に通電されると予想される電力が、設定電力値Eより大きくなるように設定される。 A broken line B represents a transition of electric power expected to be energized to the catalyst line 11 when it is assumed that the energization control to the catalyst line 11 is performed only by the constant current control at the set current value. As shown in the figure, the set current value, the power that is expected to be energized in the catalyst line 11 at time t 1 later, is set to be larger than the set power value E A.

(1)時刻t〜tの間
図3に示すように、時刻t(昇温開始時刻)からtの間は、前述の通り、触媒線11の温度が低く抵抗が小さいため、定電流制御によって触媒線11に通電されることが予想される電力は、定電力制御のための設定電力値Eで触媒線11に通電されることが予想される電力よりも小さい。このため、時刻t〜tの間は、触媒線11への通電は設定電流値によって定電流制御される。従って、昇温開始時には、触媒線11への通電は定電流制御される。
(1) Between time t 0 and t 1 As shown in FIG. 3, between time t 0 (temperature rise start time) and t 1 , as described above, the temperature of the catalyst wire 11 is low and the resistance is small. power is expected to be energized in the catalyst line 11 by the constant current control is less than the power that is expected to be energized in the catalyst line 11 at the set power value E a for the constant power control. Thus, between times t 0 ~t 1, energization of the catalytic wire 11 is constant-current controlled by the set current value. Therefore, at the start of the temperature increase, the energization to the catalyst wire 11 is controlled with a constant current.

(2)時刻t以降
時刻t以降は、定電力制御のための設定電力値Eは、定電流制御によって触媒線11に通電されることが予想される電力より小さい。このため、時刻t以降は、触媒線11への通電は設定電力値によって定電力制御される。従って、成膜時には、触媒線11への通電は定電力制御される。
(2) the time t 1 after the time t 1 after a setting power value E A for the constant power control, the power is less than that expected to be energized in the catalyst line 11 by the constant current control. Therefore, after time t 1, power supply to the catalytic wire 11 is constant power control by setting the power value. Therefore, at the time of film formation, the energization to the catalyst wire 11 is controlled at a constant power.

以上のようにして、本発明によれば、制御部133によって定電流制御と定電力制御との切り替えが行われる。すなわち、制御部133は、触媒線11への通電を定電流制御又は定電力制御で制御可能であり、定電流制御及び定電力制御のいずれか一方を選択する「選択手段」として機能する。   As described above, according to the present invention, the control unit 133 switches between constant current control and constant power control. That is, the control unit 133 can control the energization of the catalyst wire 11 by constant current control or constant power control, and functions as a “selection unit” that selects one of constant current control and constant power control.

なお、定電流制御と定電力制御との切り替えが行われる時刻tは、設定電流値と設定電力値によって変更可能であり、時刻tにおける触媒線11の温度が原料ガスの分解が始まる分解開始温度近傍の温度となるように、設定電流値と設定電力値を設定すればよい。例えば、触媒線11の温度が原料ガスの分解温度に到達する直前に定電流制御と定電力制御との切り替えが行われてもよいし、触媒線11の温度が原料ガスの分解温度に到達した直後に定電流制御と定電力制御との切り替えが行われてもよい。従って、成膜時初期の一部において触媒線11への通電が定電流制御によって行われてもよいし、成膜時直前の一部において触媒線11への通電が定電力制御によって行われてもよい。このように、電源の制御は、昇温開始時には定電流制御によって行われ、成膜時は定電力制御によって行われる。 Note that the time t 1 at which switching between the constant current control and the constant power control is performed can be changed according to the set current value and the set power value, and the temperature of the catalyst wire 11 at the time t 1 is decomposed at which decomposition of the raw material gas starts. The set current value and the set power value may be set so that the temperature is close to the start temperature. For example, switching between constant current control and constant power control may be performed immediately before the temperature of the catalyst wire 11 reaches the decomposition temperature of the raw material gas, or the temperature of the catalyst wire 11 reaches the decomposition temperature of the raw material gas. Immediately after that, switching between constant current control and constant power control may be performed. Therefore, energization to the catalyst wire 11 may be performed by constant current control in a part of the initial stage during film formation, or energization to the catalyst wire 11 may be performed by constant power control in a part immediately before the film formation. Also good. As described above, the power source is controlled by constant current control at the start of temperature rise and by constant power control at the time of film formation.

[膜の形成方法]
次に、触媒CVD装置100を用いた膜の形成方法の一例について、図面を参照しながら説明する。
[Method of forming film]
Next, an example of a film forming method using the catalytic CVD apparatus 100 will be described with reference to the drawings.

なお、以下の説明において、触媒CVD装置100には、図示しない仕込み室及び取出し室のそれぞれがゲートバルブを介して連結されていることとする。仕込み室は、基材200を大気中から真空雰囲気内に取り込むための真空容器である。取出し室は、基材200を真空雰囲気内から大気中へ取出すための真空容器である。なお、仕込み室、反応室10及び取出し室は、定常運転状態において、成膜時以外は約1×10−4Pa以下の圧力に排気されている。 In the following description, it is assumed that a preparation chamber and a take-out chamber (not shown) are connected to the catalytic CVD apparatus 100 via gate valves. The preparation chamber is a vacuum container for taking the substrate 200 from the atmosphere into the vacuum atmosphere. The take-out chamber is a vacuum container for taking out the substrate 200 from the vacuum atmosphere to the atmosphere. The charging chamber, the reaction chamber 10 and the take-out chamber are evacuated to a pressure of about 1 × 10 −4 Pa or less except during film formation in a steady operation state.

(1)基板搬入
まず、基材200を仕込み室に搬入し、仕込み室の圧力を約1×10−4Pa以下に排気する。
(1) Loading of substrate First, the base material 200 is carried into the preparation chamber, and the pressure in the preparation chamber is exhausted to about 1 × 10 −4 Pa or less.

次に、ランプヒータやシースヒータなどの加熱機構を用いて基材200及び基材トレー300を加熱することによって、基材200及び基材トレー300に吸着した水分を除去する。   Next, the substrate 200 and the substrate tray 300 are heated using a heating mechanism such as a lamp heater or a sheath heater to remove moisture adsorbed on the substrate 200 and the substrate tray 300.

次に、基材200が保持された基材トレー300を仕込み室から反応室10に搬入して、基材200を触媒線11と対向させる。   Next, the substrate tray 300 holding the substrate 200 is carried into the reaction chamber 10 from the preparation chamber, and the substrate 200 is opposed to the catalyst wire 11.

なお、反応室10内の触媒線11には予め通電されており、所定の温度(待機温度:例えば、500℃〜700℃)に保持されている。このときの制御は、定電流制御でもよいし定電力制御でもよい。   Note that the catalyst wire 11 in the reaction chamber 10 is energized in advance and is maintained at a predetermined temperature (standby temperature: for example, 500 ° C. to 700 ° C.). The control at this time may be constant current control or constant power control.

(2)触媒線の昇温開始
次に、電源13に定電流制御のための設定電流値(例えば、3.3×10A/m〜4.3×10A/m)を設定するとともに、定電力制御のための設定電力値(例えば、1.8kW/cm〜3.0kW/cm)を設定する。前述の通り、設定電流値は、触媒線11の温度が待機温度のときに定電力制御によって触媒線11に流れると想定される電流値よりも小さな電流値である。
(2) Temperature rise start of catalyst wire Next, a set current value for constant current control (for example, 3.3 × 10 7 A / m 2 to 4.3 × 10 7 A / m 2 ) is supplied to the power source 13. In addition to setting, a set power value (for example, 1.8 kW / cm 3 to 3.0 kW / cm 3 ) for constant power control is set. As described above, the set current value is a current value smaller than the current value assumed to flow through the catalyst wire 11 by constant power control when the temperature of the catalyst wire 11 is the standby temperature.

また、設定電力値は、触媒線11の温度が所定の反応温度のときに定電流制御によって触媒線11に通電されると想定される電力値よりも小さな電力値である。   The set power value is a power value smaller than the power value assumed to be energized to the catalyst wire 11 by constant current control when the temperature of the catalyst wire 11 is a predetermined reaction temperature.

なお、この設定電流値及び設定電力値は、触媒線11の種類や原料ガスの種類などによって適宜変更されることに留意すべきである。   It should be noted that the set current value and the set power value are appropriately changed depending on the type of catalyst wire 11 and the type of source gas.

このように設定することによって、制御部133は、昇温開始から所定の時間経過後であって、触媒線11の温度が原料ガスの分解開始温度近傍の所定の温度に到達するまでは、触媒線11への通電を定電流制御で制御し、前記所定の温度に到達した後は、触媒線11への通電を定電力制御で制御する。   By setting in this way, the control unit 133 allows the catalyst until the temperature of the catalyst wire 11 reaches a predetermined temperature near the decomposition start temperature of the raw material gas after a predetermined time has elapsed since the start of the temperature increase. The energization to the wire 11 is controlled by constant current control, and after reaching the predetermined temperature, the energization to the catalyst wire 11 is controlled by constant power control.

(3)成膜
触媒線11の昇温開始後、反応室10内にガス供給管20から原料ガスを供給し、反応室10内の圧力を所定の反応圧力(例えば、約0.5Pa〜10Pa)にする。原料ガスを供給するタイミングは特に限定されるものではないが、触媒線11に劣化(例えば、シリサイド化)を生じさせるような原料ガスを用いる場合には、触媒線11の温度が原料ガスによって劣化されない温度に達した後に原料ガスの供給を開始することが好ましい。反応室10への原料ガスの供給を継続することによって、基材200上への成膜が進行する。
(3) Film formation After the temperature rise of the catalyst wire 11 is started, source gas is supplied into the reaction chamber 10 from the gas supply pipe 20, and the pressure in the reaction chamber 10 is set to a predetermined reaction pressure (for example, about 0.5 Pa to 10 Pa). ). The timing of supplying the source gas is not particularly limited, but when a source gas that causes deterioration (for example, silicidation) in the catalyst wire 11 is used, the temperature of the catalyst wire 11 is deteriorated by the source gas. It is preferable to start the supply of the raw material gas after reaching a temperature that is not performed. By continuing the supply of the source gas to the reaction chamber 10, film formation on the substrate 200 proceeds.

(4)触媒線の降温、基材搬出
次に、原料ガスの供給を停止するとともに、触媒線11へ通電する電流を小さくし、触媒線11を待機温度に降温する。このときの触媒線11への通電制御は、定電流制御でもよいし定電力制御でもよい。
(4) Lowering the temperature of the catalyst wire and carrying out the base material Next, the supply of the raw material gas is stopped, the current supplied to the catalyst wire 11 is reduced, and the temperature of the catalyst wire 11 is lowered to the standby temperature. The energization control to the catalyst wire 11 at this time may be constant current control or constant power control.

次に、基材200を取出し室に搬出し、大気中へ取出す。   Next, the substrate 200 is taken out into the take-out chamber and taken out into the atmosphere.

[作用及び効果]
以上のように、本実施形態に係る膜の形成方法では、触媒線11への通電方法に着目して、触媒線11への通電制御を昇温開始時には定電流制御で行い、成膜時には定電力制御で行っている。
[Action and effect]
As described above, in the film forming method according to the present embodiment, focusing on the method of energizing the catalyst wire 11, the energization control of the catalyst wire 11 is performed by constant current control at the start of temperature rise, and is constant during film formation. It is done with power control.

このように、昇温開始時に触媒線11を定電流制御することによって、定電力制御する場合に比べて、昇温初期における触媒線11の温度上昇の傾きを小さくできる。そのため、基材200の温度上昇を小さくできるので、膜質を向上できる。また、触媒線11に流れる電流がオーバーシュートすることを抑制できるので、触媒線を長寿命化することができる。   Thus, by controlling the constant current of the catalyst wire 11 at the start of temperature increase, the inclination of the temperature increase of the catalyst wire 11 at the initial temperature increase can be reduced compared to the case of constant power control. Therefore, since the temperature rise of the base material 200 can be reduced, the film quality can be improved. Moreover, since it can suppress that the electric current which flows into the catalyst wire 11 overshoots, a catalyst wire can be extended in life.

また、成膜時に定電力制御することによって、定電流制御し続ける場合に比べて、触媒線11の過熱を抑制できるとともに、基材200の温度を好ましい温度範囲内に制御しやすくなる。そのため、膜質を向上できるとともに、触媒線を長寿命化することができる。   In addition, by controlling constant power during film formation, overheating of the catalyst wire 11 can be suppressed and the temperature of the substrate 200 can be easily controlled within a preferable temperature range as compared with the case where constant current control is continued. Therefore, the film quality can be improved and the life of the catalyst wire can be extended.

このように、本実施形態に係る膜の形成方法によれば、触媒線11を長寿命化できると共に、膜質の良好な堆積膜を製造することができる。   Thus, according to the film forming method of the present embodiment, the life of the catalyst wire 11 can be extended, and a deposited film with good film quality can be manufactured.

また、本実施形態に係る形成方法のような制御を可能とする触媒CVD装置によれば、触媒線の長寿命化を可能とすると共に、膜質の良好な堆積膜を製造することができる。   In addition, according to the catalytic CVD apparatus that enables control as in the forming method according to the present embodiment, it is possible to extend the life of the catalyst wire and to manufacture a deposited film with good film quality.

[その他の実施形態]
本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[Other embodiments]
Although the present invention has been described with reference to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、上述した実施形態では具体的に触れていないが、触媒CVD装置100は、非晶質Si膜などの半導体膜やSiN膜などの半導体膜以外の膜の形成に用いることができる。さらに、触媒CVD装置100は、半導体膜及び半導体以外の膜の少なくとも一方を備える太陽電池などの半導体デバイスの製造方法にも用いることができる。   For example, although not specifically mentioned in the above-described embodiment, the catalytic CVD apparatus 100 can be used to form a semiconductor film such as an amorphous Si film or a film other than a semiconductor film such as a SiN film. Furthermore, the catalytic CVD apparatus 100 can also be used in a method for manufacturing a semiconductor device such as a solar cell including at least one of a semiconductor film and a film other than a semiconductor.

また、上述した実施形態では、触媒CVD装置100は、一の反応室10のみを備える構成としたが、これに限られるものではない。触媒CVD装置100は、複数の反応室を備えていてもよい。これによって、同種膜或いは異種膜を基材200上に重ねて形成することができる。   In the above-described embodiment, the catalytic CVD apparatus 100 includes only one reaction chamber 10, but is not limited thereto. The catalytic CVD apparatus 100 may include a plurality of reaction chambers. As a result, the same kind of film or a different kind of film can be formed on the substrate 200 in an overlapping manner.

また、上述した実施形態では、電源13は、定電流制御と定電力制御との両方が可能な定電流/定電圧電源を用いることとしたが、これに限られるものではない。例えば、電源13として、定電流制御が可能な定電流電源と定電力制御が可能な定電圧電源との2つの電源を用いてもよい。   In the above-described embodiment, the power source 13 uses a constant current / constant voltage power source capable of both constant current control and constant power control. However, the present invention is not limited to this. For example, as the power source 13, two power sources, that is, a constant current power source capable of constant current control and a constant voltage power source capable of constant power control may be used.

以下、本発明に係る膜の形成方法の実施例について具体的に説明するが、本発明は、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することができるものである。   Hereinafter, examples of the film forming method according to the present invention will be specifically described. However, the present invention is not limited to those shown in the following examples. It can be changed and implemented.

[実施例1]
まず、触媒線として表面がホウ化されたタンタル線を準備した。
[Example 1]
First, a tantalum wire whose surface was borated was prepared as a catalyst wire.

次に、基板を反応室内に配置した。なお、反応室内の触媒線は、予め待機温度(500℃〜700℃)にされている。   Next, the substrate was placed in the reaction chamber. Note that the catalyst wire in the reaction chamber is set to a standby temperature (500 ° C. to 700 ° C.) in advance.

次に、電源の設定電流値を3.3×10A/m〜4.3×10A/m、設定電力値を1.8kW/cm〜3.0kW/cmに設定し、触媒線の昇温を開始した。昇温開始時は、前述の通り、触媒線への通電制御は定電流制御によって行った。 Then, set the power of the set current value 3.3 × 10 7 A / m 2 ~4.3 × 10 7 A / m 2, a set power value 1.8kW / cm 3 ~3.0kW / cm 3 Then, the heating of the catalyst wire was started. At the start of the temperature increase, as described above, the energization control of the catalyst wire was performed by constant current control.

次に、原料ガスとしてSiH(流量100sccm〜1000sccm)とH(流量100sccm〜1000sccm)が混合された原料ガスの供給を開始した。 Next, supply of a raw material gas in which SiH 4 (flow rate: 100 sccm to 1000 sccm) and H 2 (flow rate: 100 sccm to 1000 sccm) were mixed as the raw material gas was started.

次に、触媒線の温度が原料ガスの分解温度(1600℃〜2000℃)に到達すると、原料ガスが分解され、基板上への非晶質シリコン膜の成膜が開始された。なお、成膜時は、前述の通り、触媒線への通電制御は定電力制御によって行った。   Next, when the temperature of the catalyst line reached the decomposition temperature of the source gas (1600 ° C. to 2000 ° C.), the source gas was decomposed and the formation of an amorphous silicon film on the substrate was started. In addition, at the time of film-forming, as above-mentioned, the electricity supply control to a catalyst wire was performed by constant power control.

[比較例1]
比較例1では、定電力制御のみによって触媒線の温度を待機温度から原料ガスの分解温度まで昇温させた。他の工程は、実施例1と同様とした。
[Comparative Example 1]
In Comparative Example 1, the temperature of the catalyst wire was raised from the standby temperature to the decomposition temperature of the raw material gas only by constant power control. Other steps were the same as those in Example 1.

[触媒線の温度推移と基板の温度推移]
図4は、触媒線の温度推移を示すグラフである。図5は、基板の温度推移を示すグラフである。
[Catalyst wire temperature transition and substrate temperature transition]
FIG. 4 is a graph showing the temperature transition of the catalyst wire. FIG. 5 is a graph showing the temperature transition of the substrate.

図4及び図5に示すように、比較例1では、実施例1に比べて、昇温初期における触媒線の温度上昇の傾きが大きかった。また、比較例1では、実施例1に比べて、基板の温度上昇が大きかった。これは、比較例1では、触媒線への通電制御を定電力制御のみで行ったことにより、実施例1に比べて大きな傾きで触媒線が昇温されたためである。   As shown in FIGS. 4 and 5, in Comparative Example 1, the inclination of the temperature rise of the catalyst wire at the initial stage of temperature rise was larger than that in Example 1. In Comparative Example 1, the temperature increase of the substrate was larger than that in Example 1. This is because in Comparative Example 1, the energization control of the catalyst wire was performed only by constant power control, and thus the temperature of the catalyst wire was increased with a larger slope than in Example 1.

この結果から、定電力制御で触媒線に通電する場合には、定電流制御で触媒線に通電する場合に比べて、触媒線の温度上昇の傾きが大きく、基板の温度上昇が大きくなりやすいことが確認された。   From this result, when energizing the catalyst wire with constant power control, the inclination of the temperature rise of the catalyst wire is larger and the temperature rise of the substrate tends to be larger than when energizing the catalyst wire with constant current control. Was confirmed.

また、比較例1では、触媒線の温度上昇の傾きが大きく、触媒線が過熱されやすいので、実施例1に比べて、触媒線の寿命が短くなると考えられる。   Further, in Comparative Example 1, since the inclination of the temperature rise of the catalyst wire is large and the catalyst wire is easily overheated, it is considered that the life of the catalyst wire is shortened compared to Example 1.

また、実施例1では、基板の温度上昇が小さく、基板温度を好ましい温度範囲に制御し易いことが確認された。このため、本発明によれば、基板上に形成される膜の膜質を向上することができるものと考えられる。   Further, in Example 1, it was confirmed that the temperature rise of the substrate was small and it was easy to control the substrate temperature within a preferable temperature range. For this reason, according to the present invention, it is considered that the quality of the film formed on the substrate can be improved.

[実施例2]
まず、触媒線として表面がホウ化されたタンタル線を反応室内に配置した。
[Example 2]
First, a tantalum wire having a borated surface as a catalyst wire was placed in the reaction chamber.

次に、図6に示すフローに従って、触媒線の昇温と降温を繰り返し行った。   Next, according to the flow shown in FIG. 6, the catalyst wire was repeatedly raised and lowered.

具体的には、まず、反応室内を事前に真空排気する工程において、触媒線に通電することによって触媒線の温度を待機温度に保持した。   Specifically, first, in the step of evacuating the reaction chamber in advance, the temperature of the catalyst wire was kept at the standby temperature by energizing the catalyst wire.

次に、電源の設定電流値を3.3×10A/m〜4.3×10A/m、設定電力値を1.8kW/cm〜3.0kW/cmに設定し、触媒線の昇温を開始した。昇温開始時は、前述の通り、触媒線への通電制御は定電流制御によって行った。 Then, set the power of the set current value 3.3 × 10 7 A / m 2 ~4.3 × 10 7 A / m 2, a set power value 1.8kW / cm 3 ~3.0kW / cm 3 Then, the heating of the catalyst wire was started. At the start of the temperature increase, as described above, the energization control of the catalyst wire was performed by constant current control.

次に、原料ガスの供給を開始した。触媒線の温度が原料ガスの分解温度(1600℃〜2000℃)に到達すると、原料ガスの分解が開始された。このときの触媒線の通電制御は、定電力制御によって行った。   Next, supply of source gas was started. When the temperature of the catalyst wire reached the decomposition temperature of the source gas (1600 ° C. to 2000 ° C.), decomposition of the source gas was started. The energization control of the catalyst wire at this time was performed by constant power control.

次に、原料ガスの分解を所定時間行った後、原料ガスの供給を停止し反応室内の排気を開始すると共に、触媒線の降温を開始した。降温時の触媒線の通電制御は定電流制御で行った。これによって、触媒線の温度を待機温度まで降温した。   Next, after the raw material gas was decomposed for a predetermined time, the supply of the raw material gas was stopped, the exhaust of the reaction chamber was started, and the temperature of the catalyst wire was started to be lowered. The current control of the catalyst wire during the temperature drop was performed by constant current control. As a result, the temperature of the catalyst wire was lowered to the standby temperature.

そして、以上の工程を、触媒線の抵抗増加率が7.0%に達するまで繰り返し行った。   The above steps were repeated until the resistance increase rate of the catalyst wire reached 7.0%.

なお、触媒線の抵抗増加率は、触媒線の延びやシリサイド化に略対応しており、触媒線の寿命評価の目安として用いることができる。   The resistance increase rate of the catalyst wire substantially corresponds to the extension of the catalyst wire or silicidation, and can be used as a guide for evaluating the life of the catalyst wire.

[比較例2]
比較例2では、定電流制御のみによって触媒線への通電制御を行った。そして、実施例2と同様に、触媒線の抵抗増加率が7.0%に達するまで繰り返し行った。
[Comparative Example 2]
In Comparative Example 2, energization control to the catalyst wire was performed only by constant current control. And it carried out repeatedly until the resistance increase rate of the catalyst line reached 7.0% similarly to Example 2.

[触媒線の抵抗増加率の推移]
図7は、実施例2及び比較例2に係る触媒線の抵抗増加率の推移を示すグラフである。図7における抵抗増加率は、触媒線に供給される電力と電流のモニタ値から求められる触媒線の抵抗値に基づいて算出した。また、図7における高温通電積算時間は、触媒線が原料ガスの分解温度(1600℃〜2000℃)に保持されていた時間の和である。
[Changes in resistance increase rate of catalyst wires]
FIG. 7 is a graph showing changes in the resistance increase rate of the catalyst wires according to Example 2 and Comparative Example 2. The resistance increase rate in FIG. 7 was calculated based on the resistance value of the catalyst wire obtained from the monitor value of the power and current supplied to the catalyst wire. Moreover, the high-temperature energization integration time in FIG. 7 is the sum of the time during which the catalyst wire is held at the decomposition temperature (1600 ° C. to 2000 ° C.) of the raw material gas.

図7に示すように、比較例2では、実施例2に比べて短時間で触媒線の抵抗増加率が上昇した。これは、比較例2では、定電流制御によって触媒線を高温に保持したので、触媒線の太さが細くなるに従って触媒線が過剰に昇温されたからである。   As shown in FIG. 7, in Comparative Example 2, the rate of increase in the resistance of the catalyst wire increased in a shorter time than in Example 2. This is because in Comparative Example 2, since the catalyst wire was held at a high temperature by constant current control, the temperature of the catalyst wire was excessively increased as the thickness of the catalyst wire was reduced.

一方で、実施例2では、定電力制御によって触媒線を高温に保持したので、触媒線の太さが細くなった場合であっても触媒線が過剰に昇温されることを抑制できた。   On the other hand, in Example 2, since the catalyst wire was kept at a high temperature by constant power control, it was possible to prevent the catalyst wire from being excessively heated even when the thickness of the catalyst wire was reduced.

10…反応室
11…触媒線
12…取付け部
13…電源
20…ガス供給管
30…ガス排出管
100…触媒CVD装置
131…電流センサ
132…電力センサ
133…制御部
200…基材
300…基材トレー
DESCRIPTION OF SYMBOLS 10 ... Reaction chamber 11 ... Catalyst wire 12 ... Attachment part 13 ... Power supply 20 ... Gas supply pipe 30 ... Gas discharge pipe 100 ... Catalytic CVD apparatus 131 ... Current sensor 132 ... Electric power sensor 133 ... Control part 200 ... Base material 300 ... Base material tray

Claims (8)

触媒線を備える触媒CVD装置を用いた膜の形成方法であって、
前記触媒線の昇温開始時には、前記触媒線への通電を定電流制御で行い、
成膜時には、前記触媒線への通電を定電力制御で行う
ことを特徴とする膜の形成方法。
A method of forming a film using a catalytic CVD apparatus provided with a catalyst wire,
At the start of raising the temperature of the catalyst wire, energization of the catalyst wire is performed with constant current control,
A method for forming a film, characterized in that energization of the catalyst wire is performed with constant power control during film formation.
前記触媒線に通電する電源は、前記定電流制御によって前記触媒線に通電される電力値が、前記定電力制御によって前記触媒線に通電される電力値以下になるように、前記定電流制御の設定電流値及び前記定電力制御の設定電力値を設定する
ことを特徴とする請求項1に記載の膜の形成方法。
The power source for energizing the catalyst line is configured to control the constant current control so that the power value energized to the catalyst line by the constant current control is equal to or less than the power value energized to the catalyst line by the constant power control. The film forming method according to claim 1, wherein a set current value and a set power value for the constant power control are set.
反応室と、前記反応室内に設置される触媒線と、前記触媒線に通電する電源とを備える触媒CVD装置を用いる膜の形成方法であって、
定電流制御及び定電力制御のいずれかを選択して前記触媒線に通電可能に前記電源を制御する工程を備える
ことを特徴とする膜の形成方法。
A method for forming a film using a catalytic CVD apparatus comprising a reaction chamber, a catalyst wire installed in the reaction chamber, and a power source for energizing the catalyst wire,
A method of forming a film, comprising: selecting either constant current control or constant power control and controlling the power source so that the catalyst wire can be energized.
原料ガスを分解する触媒線を備える触媒CVD装置を用いた太陽電池の製造方法であって、
前記触媒線の昇温開始時には、前記触媒線への通電を定電流制御で行い、
成膜時には、前記触媒線への通電を定電力制御で行うことを特徴とする太陽電池の製造方法。
A method for producing a solar cell using a catalytic CVD apparatus comprising a catalyst wire for decomposing a raw material gas,
At the start of raising the temperature of the catalyst wire, energization of the catalyst wire is performed with constant current control,
A method for manufacturing a solar cell, wherein energization of the catalyst wire is performed by constant power control during film formation.
反応室と、
前記反応室内に設置される触媒線と、
前記触媒線に通電する電源と
を備え、
前記電源は、前記触媒線への通電を、定電流制御又は定電力制御で制御可能であり、前記定電流制御及び前記定電力制御のいずれか一方を選択する選択手段を備える
ことを特徴とする触媒CVD装置。
A reaction chamber;
A catalyst wire installed in the reaction chamber;
A power source for energizing the catalyst wire,
The power source is capable of controlling energization of the catalyst wire by constant current control or constant power control, and includes a selection unit that selects either the constant current control or the constant power control. Catalytic CVD equipment.
前記電源は、前記定電力制御において、供給される原料ガスの分解温度に応じて前記触媒線に供給される電力値が制御される
ことを特徴とする請求項5に記載の触媒CVD装置。
6. The catalytic CVD apparatus according to claim 5, wherein the power source controls a power value supplied to the catalyst wire in accordance with a decomposition temperature of the supplied raw material gas in the constant power control.
前記電源は、前記定電流制御によって前記触媒線に通電される電力値が、前記定電力制御によって前記触媒線に通電される電力値以下になるように、前記定電流制御における設定電流値及び前記定電力制御の設定電力値を設定する
ことを特徴とする請求項5又は6に記載の触媒CVD装置。
The power source has a set current value in the constant current control and the power value that is applied to the catalyst line by the constant current control is equal to or less than a power value that is supplied to the catalyst line by the constant power control. The catalytic CVD apparatus according to claim 5 or 6, wherein a set power value for constant power control is set.
前記触媒線に流れる電流値が前記設定電流値に達しているか否か、及び前記触媒線に通電される電力値が前記設定電力値に達しているか否かを判断する判断手段をさらに備え、
前記選択手段は、前記触媒線に流れる電流値が前記設定電流値に達した、或いは、前記触媒線に通電される電力値が前記設定電力値に達したと前記判断手段によって判断された場合、前記定電流制御及び前記定電力制御のうちいずれか一方を選択する
ことを特徴とする請求項7に記載の触媒CVD装置。
A judgment means for judging whether or not a current value flowing through the catalyst line has reached the set current value, and whether or not a power value energized through the catalyst line has reached the set power value;
The selection means, when it is determined by the determination means that the current value flowing through the catalyst line has reached the set current value, or the power value energized to the catalyst line has reached the set power value, The catalytic CVD apparatus according to claim 7, wherein one of the constant current control and the constant power control is selected.
JP2009230599A 2009-10-02 2009-10-02 Film forming method, solar cell manufacturing method, and catalytic CVD apparatus Active JP5357690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230599A JP5357690B2 (en) 2009-10-02 2009-10-02 Film forming method, solar cell manufacturing method, and catalytic CVD apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230599A JP5357690B2 (en) 2009-10-02 2009-10-02 Film forming method, solar cell manufacturing method, and catalytic CVD apparatus

Publications (2)

Publication Number Publication Date
JP2011082199A JP2011082199A (en) 2011-04-21
JP5357690B2 true JP5357690B2 (en) 2013-12-04

Family

ID=44075987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230599A Active JP5357690B2 (en) 2009-10-02 2009-10-02 Film forming method, solar cell manufacturing method, and catalytic CVD apparatus

Country Status (1)

Country Link
JP (1) JP5357690B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095937A (en) * 2016-12-15 2018-06-21 三菱重工機械システム株式会社 Electrode state evaluation device, film deposition apparatus, and electrode state evaluation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4231589B2 (en) * 1999-04-15 2009-03-04 キヤノンアネルバ株式会社 Chemical vapor deposition method and chemical vapor deposition apparatus
JP2004107689A (en) * 2002-09-13 2004-04-08 Ulvac Japan Ltd Diamond like carbon film deposition method and deposition system
JP4691377B2 (en) * 2005-03-28 2011-06-01 株式会社アルバック Thin film formation method
JP4769592B2 (en) * 2006-02-07 2011-09-07 キヤノン株式会社 Fixing device
JP4842208B2 (en) * 2007-05-14 2011-12-21 株式会社アルバック CVD apparatus, semiconductor device, and photoelectric conversion apparatus
JP2009130255A (en) * 2007-11-27 2009-06-11 Ulvac Japan Ltd Deposition device

Also Published As

Publication number Publication date
JP2011082199A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
TWI508181B (en) High mobility monolithic p-i-n diodes
KR101399177B1 (en) Cleaning method, method of manufacturing semiconductor device, substrate processing apparatus and recording medium
JP5358956B2 (en) Mounting table device, processing device, temperature control method, and storage medium
JP6181075B2 (en) Method and apparatus for cleaning a substrate surface using atomic hydrogen
TW201207939A (en) Method of improving oxide growth rate of selective oxidation processes
KR101743339B1 (en) Film forming method and film forming device
KR101976559B1 (en) Methods for cleaning a surface of a substrate using a hot wire chemical vapor deposition (hwcvd) chamber
JP4706260B2 (en) Process for oxidizing object, oxidation apparatus and storage medium
TWI722238B (en) Steam oxidation initiation for high aspect ratio conformal radical oxidation
TW200936801A (en) Plasma film-forming method and plasma CVD device
US20220157628A1 (en) Substrate processing apparatus, substrate suppport and method of manufacturing semiconductor device
JP5357690B2 (en) Film forming method, solar cell manufacturing method, and catalytic CVD apparatus
JP2001358077A (en) Thin film forming device
US20090188428A1 (en) Substrate processing apparatus
JP2010269982A (en) Method for manufacturing carbon nanotube assembly
JP2013197421A (en) Substrate processing apparatus
JP5377760B2 (en) Film forming equipment and film forming method
CN112740376A (en) Method for manufacturing semiconductor device, substrate processing apparatus, and program
KR101224529B1 (en) Heat treatment apparatus
JP5586199B2 (en) Catalytic CVD apparatus, film forming method, and solar cell manufacturing method
JP2021190333A (en) Manufacturing method and manufacturing apparatus for energization heating wire
WO2012054688A2 (en) Methods for enhancing tantalum filament life in hot wire chemical vapor deposition processes
JP3839930B2 (en) Thin film production apparatus and thin film production method
JP2009182006A (en) Method and apparatus for manufacturing semiconductor device
JP2024047289A (en) SUBSTRATE PROCESSING METHOD, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, SUBSTRATE PROCESSING APPARATUS AND PROGRAM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130830

R150 Certificate of patent or registration of utility model

Ref document number: 5357690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250