JP5356888B2 - Tank for liquefied gas - Google Patents

Tank for liquefied gas Download PDF

Info

Publication number
JP5356888B2
JP5356888B2 JP2009089471A JP2009089471A JP5356888B2 JP 5356888 B2 JP5356888 B2 JP 5356888B2 JP 2009089471 A JP2009089471 A JP 2009089471A JP 2009089471 A JP2009089471 A JP 2009089471A JP 5356888 B2 JP5356888 B2 JP 5356888B2
Authority
JP
Japan
Prior art keywords
tank
pressure
liquefied gas
guiding tube
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009089471A
Other languages
Japanese (ja)
Other versions
JP2010243210A (en
Inventor
祥二 神谷
由史 木村
雅彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2009089471A priority Critical patent/JP5356888B2/en
Publication of JP2010243210A publication Critical patent/JP2010243210A/en
Application granted granted Critical
Publication of JP5356888B2 publication Critical patent/JP5356888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To display a liquid level accurately and stably, by reducing the fluctuation in the liquid level display caused by generation of bubbles in a connecting tube, when using a differential pressure type level gauge for a tank for liquified gas. <P>SOLUTION: The differential pressure type level gage 10 is connected to the tank 1 for liquified gas through each connecting tube 11, 13 on the low-pressure side and on the high-pressure side. A tip part 14, including an opening end 14a of a high-pressure side connecting tube 13, is inserted horizontally to the inside of a periphery of a bottom part of the tank 1. It is particularly preferable, that a plurality of small holes 14b, penetrating a wall surface of the connecting tube 13, be provided on an upper half part of the tip part 14 of the connecting tube 13. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

請求項に係る発明は、液体窒素や液体水素等を入れる液化ガス用タンクであって、導圧管を介して差圧式液面計が接続されたものに関する。   The invention according to the claims relates to a liquefied gas tank into which liquid nitrogen, liquid hydrogen, or the like is placed, to which a differential pressure type level gauge is connected via a pressure guiding tube.

液体窒素や液体水素等を入れる液化ガス用タンクにおいて、内部の液化ガスの量を知る手段として差圧式液面計が多用されている。図10は、液化ガス用タンク6における差圧式液面計60の一般的な使用態様を示す。図のようにタンク6は内槽6aと外槽6bとを有し、両槽間に断熱層としての真空層6cが設けられている。差圧式液面計60はタンク6の外に取り付けられ、タンク6の内槽6aのうち上部の気相と下部の液相の底部とに対し、それぞれ低圧側および高圧側の導圧管61・63にて接続される。それぞれの導圧管61・63における圧力の差が上記液面計60において検知され、液面高さとして表示される。液化ガス用タンクにおけるこうした差圧式液面計の使用は、たとえば下記の特許文献1・2に記載されている。   In a liquefied gas tank containing liquid nitrogen, liquid hydrogen, or the like, a differential pressure type liquid level gauge is frequently used as a means for knowing the amount of liquefied gas inside. FIG. 10 shows a general usage mode of the differential pressure type level gauge 60 in the liquefied gas tank 6. As shown in the figure, the tank 6 has an inner tank 6a and an outer tank 6b, and a vacuum layer 6c as a heat insulating layer is provided between both tanks. The differential pressure type liquid level gauge 60 is attached to the outside of the tank 6, and the low pressure side and high pressure side pressure guiding pipes 61 and 63 with respect to the upper gas phase and the lower liquid phase bottom of the inner tank 6 a of the tank 6, respectively. Connected at. The difference in pressure between the pressure guiding pipes 61 and 63 is detected by the liquid level gauge 60 and displayed as the liquid level height. The use of such a differential pressure level gauge in a liquefied gas tank is described in, for example, Patent Documents 1 and 2 below.

特許文献1・2の例を含めて、従来、差圧式液面計において、差圧検出部と液相底部とを接続する高圧側導圧管は、タンクの底部に対し図11または図12(a)のように取り付けられている。すなわち、図11のように高圧側導圧管63の先端部64に鉛直部分64dを設け、その鉛直部分64dをタンク6の内槽6aの内部に差し入れて上向きに開口させるか、または図12(a)のように、内槽6a内に差し入れた鉛直部分64dの先に逆U字状の管64fをつなぐかするが従来の一般的な取付け形態である。図11の例だと導圧管63内に開口端64eから不純物が入りやすいが、それを改めたのが図12(a)の例である。   In the conventional differential pressure type liquid level gauge, including the examples of Patent Documents 1 and 2, the high pressure side pressure guiding pipe that connects the differential pressure detecting unit and the liquid phase bottom is shown in FIG. 11 or FIG. ) Is attached. That is, as shown in FIG. 11, a vertical portion 64d is provided at the distal end portion 64 of the high-pressure side pressure guiding tube 63, and the vertical portion 64d is inserted into the inner tank 6a of the tank 6 and opened upward, or FIG. As shown in FIG. 4B, the inverted U-shaped tube 64f is connected to the tip of the vertical portion 64d inserted into the inner tub 6a. In the example of FIG. 11, impurities are likely to enter the pressure guiding tube 63 from the opening end 64 e, but this is modified in the example of FIG.

実開昭55−139425号公報Japanese Utility Model Publication No. 55-139425 特開2000−310396号公報JP 2000-310396 A

液化ガス用タンクでは、液面計がタンク外に設けられるため、導圧管の表面からその内側に向けて入熱があり、その結果、液相に接続された高圧側導圧管の内部にガスが発生する。すなわち図11に示すように、高圧側導圧管63のうち液面計寄りの部分にはガス部Yができ、先端部64付近においては液化ガス中に導入管の入熱による気泡Zが発生する。それは図12(a)の例においても同様であり、逆U字状の管64fの頂部から液面計にかけての部分にはガス部Yができ、その逆U字状の管の先の部分では、液化ガス中に気泡Zが発生する。   In the liquefied gas tank, since the liquid level gauge is provided outside the tank, heat is input from the surface of the pressure guiding tube toward the inside thereof, and as a result, gas is introduced into the high pressure side pressure guiding tube connected to the liquid phase. Occur. That is, as shown in FIG. 11, a gas portion Y is formed near the liquid level gauge in the high pressure side pressure guiding pipe 63, and bubbles Z are generated in the liquefied gas in the vicinity of the distal end portion 64 due to heat input from the introduction pipe. . The same applies to the example of FIG. 12 (a), where a gas portion Y is formed from the top of the inverted U-shaped tube 64f to the liquid level gauge, and at the tip of the inverted U-shaped tube, Bubbles Z are generated in the liquefied gas.

高圧側導圧管を図11や図12(a)のように設ける従来の液化ガス用タンクでは、差圧式液面計が検知する差圧に脈動が生じる結果、その表示する液面が不安定に変動しがちである。その現象は、常温にて液相に保たれる一般液体用のタンクにおいては発生し得ない、液化ガス用タンクに特有のものだが、上記した気泡の発生と関連があるものと推測される。すなわち、図11の例において導圧管63の鉛直部分64dに気泡Zが発生してその量が変わると、液面計に伝わる圧力も変動する。とくに、気泡Zがそれぞれ大きくなったり気泡Z同士がつながってスラグ状になったりすると、圧力の変化は大きくなる。図12(a)の例では、逆U字状の管64fにガスが多く溜まって開口端64gから抜け出ると、検知される差圧(液位)は同(b)に示すように変化するものと考えられる。   In the conventional liquefied gas tank in which the high-pressure side pressure guiding tube is provided as shown in FIGS. 11 and 12 (a), the pulsation is generated in the differential pressure detected by the differential pressure level gauge, so that the displayed liquid level is unstable. Tend to fluctuate. This phenomenon is unique to a liquefied gas tank, which cannot occur in a general liquid tank that is kept in a liquid phase at room temperature, but is presumed to be related to the generation of bubbles. That is, in the example of FIG. 11, when bubbles Z are generated in the vertical portion 64d of the pressure guiding tube 63 and the amount thereof changes, the pressure transmitted to the liquid level gauge also varies. In particular, when the bubbles Z become large or the bubbles Z are connected to each other to form a slag, the change in pressure becomes large. In the example of FIG. 12A, when a large amount of gas accumulates in the inverted U-shaped pipe 64f and escapes from the opening end 64g, the detected differential pressure (liquid level) changes as shown in FIG. 12B. it is conceivable that.

請求項に係る発明は、液化ガス用タンクに差圧式液面計を使用する場合の上記のような差圧変動を小さくし、正確で安定した液面表示を可能にするものである。   The invention according to the claims makes it possible to reduce the above-described differential pressure fluctuation when a differential pressure type liquid level gauge is used for a liquefied gas tank, and to enable accurate and stable liquid level display.

請求項に係る発明は、高圧側および低圧側の各導圧管を介して差圧式液面計が接続された液化ガス用タンクであって、高圧側導圧管のうち開口端を含む先端部が、上記タンクの底部付近の内部に水平(ほぼ水平である場合を含む。以下同様)に差し入れられていることを特徴とする。たとえば図1・図2のように、液化ガス用タンク(2槽構造のタンクであればその内槽)に差し入れられる高圧側導圧管の先端部を水平にし、少なくともタンクの内壁よりも内側の部分、すなわちタンクの内部に鉛直部分や逆U字状の部分がないようにするのである。なお、タンク内の気相に接続する低圧側の導圧管は、開口端を含む先端部を気相内に任意の向きに設け、それより任意の経路で差圧式液面計に接続すればよい。
なお、上記の「底部付近」「内部」「ほぼ水平」についてはつぎのとおりとする。
1)底部付近: タンク底面よりも上方であって導圧管取付の都合上特段の支障が生じない底部近傍をいう。ただし、タンク底面から導圧管までの距離Xは、タンク底面と導圧管の溶接部の干渉を避けるために、タンク底面板厚tの5倍以上とする。
2)内部: 高圧側導圧管の先端部をタンクの内部に差し入れるとは、先端部がタンク内部に突出するように差し入れるだけではなく、先端部がタンク内部の内面と面一になるよう差し入れることをも含む。
3)ほぼ水平: 水平だけではなく、上向きに1°〜10°程度傾斜させたものを含む。
高圧側導圧管等が上記のように取り付けられると、高圧側・低圧側の両導圧管の差圧の変動が抑制され、差圧式液面計による液面表示が正確かつ安定したものとなる。それは、後述する試験によって確認されたが、以下のような理由によると考えることができる。すなわち、高圧側導圧管の先端部が水平であると、その内部に気泡が発生したりその量が変化したりしても、導圧管内の液化ガスのヘッドはほとんど変化しない。図11のように導圧管の先端部が鉛直であるなら、その鉛直部分における気泡の量によってヘッドが大きく変化するが、導圧管の先端部が水平であればその変化の幅は小さいわけである。また、図12のように鉛直部分の先に逆U字状の部分があれば、そこにガスが溜まったり抜けたりすることによる圧力変動が生じるが、導圧管の先端部が水平であればガスが溜まることもない。
また、図11や図12(a)の例のように導圧管先端部の鉛直部分がタンクの底部からさらに下方へ続くと、その部分における液面との位置の関係で差圧にドリフト(ずれ)が生じ、結果として液面計による液面表示を補正する必要があるが、先端部に鉛直部分がないなら、当該先端部での圧力が正確に検出されるため、補正をせずに正確な液面を知ることができる。そのほか、先端部が水平であると、図11の例とは違って開口端から不純物が入る恐れもない。
The invention according to the claim is a liquefied gas tank to which a differential pressure type level gauge is connected via high pressure side and low pressure side pressure guiding pipes, and a tip portion including an open end of the high pressure side pressure guiding pipes, It is characterized by being inserted horizontally (including a case where it is almost horizontal, the same applies hereinafter) inside the vicinity of the bottom of the tank. For example, as shown in FIGS. 1 and 2, the tip of the high-pressure side pressure guiding tube inserted into the liquefied gas tank (in the case of a tank of two tanks, the inner tank) is leveled, and at least the portion inside the inner wall of the tank That is, there are no vertical parts or inverted U-shaped parts inside the tank. In addition, the pressure guiding pipe on the low pressure side connected to the gas phase in the tank may be provided with a tip including an open end in an arbitrary direction in the gas phase, and then connected to the differential pressure type level gauge via an arbitrary path. .
The above “near the bottom”, “inside”, and “almost horizontal” are as follows.
1) Near the bottom: This is the area near the bottom that is above the bottom of the tank and that does not cause any particular problems for the installation of the impulse tube. However, the distance X from the bottom surface of the tank to the pressure guiding tube is at least five times the tank bottom surface thickness t in order to avoid interference between the tank bottom surface and the welded portion of the pressure guiding tube.
2) Inside: Inserting the tip of the high pressure side impulse line into the tank not only so that the tip protrudes into the tank, but also the tip is flush with the inner surface of the tank. Includes inserting.
3) Nearly horizontal: Including not only horizontal but also slanted upward by 1 ° to 10 °.
When the high-pressure side pressure guiding tube or the like is attached as described above, fluctuations in the differential pressure between both the high-pressure side and low-pressure side pressure guiding tubes are suppressed, and the liquid level display by the differential pressure type liquid level gauge becomes accurate and stable. This has been confirmed by the test described later, but can be considered as follows. That is, if the tip of the high pressure side pressure guiding tube is horizontal, the head of the liquefied gas in the pressure guiding tube hardly changes even if bubbles are generated or the amount thereof is changed. If the tip of the pressure guiding tube is vertical as shown in FIG. 11, the head changes greatly depending on the amount of bubbles in the vertical portion, but if the tip of the pressure guiding tube is horizontal, the width of the change is small. . In addition, if there is an inverted U-shaped part at the tip of the vertical part as shown in FIG. 12, pressure fluctuation occurs due to gas accumulation or removal, but if the tip of the pressure guiding tube is horizontal, the gas Will not accumulate.
Further, as shown in FIG. 11 and FIG. 12A, when the vertical portion of the pressure guiding tube tip portion continues further downward from the bottom of the tank, the pressure drifts (displaces) due to the position of the liquid surface at that portion. As a result, it is necessary to correct the liquid level display by the liquid level gauge. However, if there is no vertical part at the tip, the pressure at the tip is accurately detected. You can know the correct liquid level. In addition, when the tip is horizontal, unlike the example of FIG. 11, there is no possibility that impurities enter from the opening end.

上記高圧側導圧管の先端部における上半部(またはその一部)に、当該導圧管の壁面を貫通する小孔が複数設けられていると好ましい。小孔は、当該導圧管の開口端付近の上半部に、たとえば図1(b)や図2(b)のように設ける。
そのように小孔があると、上記導圧管内に発生した気泡が、それら小孔を通じて速やかにタンク内に放出され、その導圧管内に溜まりにくい。導圧管内に気泡が溜まりにくいと、それが一気に抜け出ることによる導圧管内の圧力変化も発生しがたく、したがって差圧式液面計に伝わる差圧の変動がさらに抑制される。
It is preferable that a plurality of small holes penetrating the wall surface of the pressure guiding tube are provided in the upper half (or a part thereof) at the tip of the high pressure side pressure guiding tube. The small hole is provided in the upper half near the opening end of the pressure guiding tube, for example, as shown in FIG.
If there is such a small hole, bubbles generated in the pressure guiding tube are quickly discharged into the tank through the small hole and are not easily accumulated in the pressure guiding tube. If bubbles do not easily accumulate in the pressure guiding tube, it is difficult for pressure changes in the pressure guiding tube due to the bubbles to escape, so that fluctuations in the differential pressure transmitted to the differential pressure level gauge are further suppressed.

上記高圧側導圧管の先端部における開口端に、両端の開口した短管が軸心を縦(鉛直またはほぼ鉛直)にして接続されているのも好ましい。短管は、内径の2〜5倍程度の長さをもつ、たとえば図3(a)のようなものである。
両端の開口した縦向きの短管内では、上記導圧管内で発生した気泡が上へ移動して上端の開口から出るとき、下端の開口から液化ガスが流入して短管内に流れが生じやすい。そしてそれにより、上記導圧管内の気泡は滞留することなく連続的にスムーズに排出され、排出にともなう上記導圧管内での圧力変動がさらに小さくなる。
なお、高圧側導圧管内の気泡が滞留することなく連続的にスムーズに排出されるようにするためには、図3(b)のように、当該導圧管の先端部付近を僅かに上向きに傾斜させるのもよい。つまり、開口端に近い部分が上になるよう、15°程度以下の範囲で先端部に傾斜を付けるのである。
It is also preferable that a short pipe having both ends opened is connected to the opening end of the tip portion of the high-pressure side pressure guiding tube with a longitudinal axis (vertical or almost vertical). The short pipe has a length of about 2 to 5 times the inner diameter, for example, as shown in FIG.
In the vertically oriented short pipe opened at both ends, when the bubbles generated in the pressure guiding pipe move upward and exit from the opening at the upper end, the liquefied gas flows from the opening at the lower end and tends to flow in the short pipe. Thereby, the bubbles in the pressure guiding tube are continuously and smoothly discharged without staying, and the pressure fluctuation in the pressure guiding tube due to the discharge is further reduced.
In order to continuously and smoothly discharge the bubbles in the high pressure side pressure guiding tube without stagnating, the vicinity of the tip of the pressure guiding tube is slightly upward as shown in FIG. It may be inclined. That is, the tip is inclined in a range of about 15 ° or less so that the portion close to the opening end is on the top.

上記タンクの底部の一部に、縦向き(鉛直または鉛直に近い)の壁面を有するポット(凹部)が設けられていて、当該ポットの縦向きの壁面から、上記高圧側導圧管の先端部が上記タンクの内部に差し入れられているのも好ましい。図2(a)・(b)はその例である。
タンクの底部に上記のようなポット部を設けると、タンクの形状がどのようなものであっても、高圧側導圧管の先端部をタンク底部の適切な位置に設けることができる。たとえば、上記タンクが図2(a)のように横長のものであってもそれが可能である。
A pot (concave portion) having a vertical (vertical or nearly vertical) wall surface is provided in a part of the bottom of the tank, and the tip of the high-pressure side pressure guiding tube extends from the vertical wall surface of the pot. It is also preferable that it is inserted into the tank. FIGS. 2A and 2B are examples.
When the pot portion as described above is provided at the bottom of the tank, the tip of the high-pressure side pressure guiding tube can be provided at an appropriate position on the tank bottom regardless of the shape of the tank. For example, even if the tank is horizontally long as shown in FIG.

上記高圧側導圧管および差圧式液面計が、圧力変動を抑制するためのダンパを有していないようにするのもよい。
液化ガス用タンクに差圧式液面計を設ける場合、従来は、高圧側導圧管または差圧式液面計にダンパを設けて、圧力変動による液面表示の変化を抑制するのが一般的であった。しかし、発明による液化ガス用タンクでは、上記のとおり差圧変動が抑制されて液面表示が安定することから、上記いずれの箇所にもダンパを付設する必要がない。ダンパを設けないなら、タンクに差圧式液面計を取り付けるための構成は大幅に簡素化され、必要なコストも顕著に削減される。
The high-pressure side pressure guiding tube and the differential pressure type liquid level gauge may not have a damper for suppressing pressure fluctuation.
When a differential pressure type level gauge is installed in the liquefied gas tank, conventionally, a damper is provided in the high pressure side pressure guiding tube or differential pressure type level gauge to suppress changes in the liquid level display due to pressure fluctuations. It was. However, in the liquefied gas tank according to the invention, as described above, the fluctuation of the differential pressure is suppressed and the liquid level display is stabilized. If a damper is not provided, the structure for attaching the differential pressure type level gauge to the tank is greatly simplified, and the required cost is significantly reduced.

上記タンクが、液体窒素、液体水素、液体酸素、液体ヘリウムまたはLNGのうちいずれかを入れたものであると有意義である。
それらの液化ガスは沸点が−160℃以下と低く、そのタンクの外に差圧式液面計を取り付けると高圧側導圧管の内部において活発に気泡が発生する。そのため、従来のように導圧管を設けると差圧式液面計での差圧変動がより激しく、正確で安定した液面表示を得ることは難しい。したがって、上記のような液化ガスのためのタンクにおいては、発明の構成がとくに有意義な作用効果を発揮するといえる。
It is meaningful that the tank is filled with liquid nitrogen, liquid hydrogen, liquid oxygen, liquid helium or LNG.
These liquefied gases have a low boiling point of −160 ° C. or lower, and when a differential pressure type liquid level gauge is attached outside the tank, bubbles are actively generated inside the high pressure side pressure guiding tube. Therefore, if a pressure guiding tube is provided as in the prior art, the differential pressure fluctuation in the differential pressure type liquid level gauge is more severe, and it is difficult to obtain an accurate and stable liquid level display. Therefore, in the tank for the liquefied gas as described above, it can be said that the configuration of the invention exhibits a particularly significant operational effect.

発明の液化ガス用タンクによれば、高圧側・低圧側の導圧管を通じて差圧式液面計に伝わる圧力の変動が抑制され、したがって差圧式液面計による液面表示が正確かつ安定したものとなる。鉛直部分の長さ等の関係で生じるドリフトを補正する必要がないうえ、高圧側導圧管の開口端から不純物が入る恐れがないという利点もある。   According to the liquefied gas tank of the invention, fluctuations in pressure transmitted to the differential pressure level gauge through the high pressure side and low pressure side pressure guiding pipes are suppressed, and therefore the liquid level display by the differential pressure level gauge is accurate and stable. Become. There is an advantage that it is not necessary to correct the drift caused by the length of the vertical portion and the like, and there is no risk of impurities entering from the opening end of the high pressure side impulse line.

更に、上記タンクの底部に縦向きの壁面を有するポットを設け、当該壁面から高圧側導圧管の先端部を差し入れると、タンクの形状によらず適切に導圧管を設けることができ好ましい液面表示を得ることができる。
また、上記高圧側導圧管および差圧式液面計に圧力変動抑制用のダンパを付設しないようにすると、構成を簡素化して設備コストを削減することができる。
液体窒素、液体水素、液体酸素、液体ヘリウムまたはLNG用のタンクに上記構成を採用する場合にはとくに有意義である。
Furthermore, by providing a pot having a vertical wall surface at the bottom of the tank, and inserting the tip of the high pressure side pressure guiding tube from the wall surface, the pressure guiding tube can be appropriately provided regardless of the shape of the tank. An indication can be obtained.
Further, if a damper for suppressing pressure fluctuation is not attached to the high pressure side pressure guiding tube and the differential pressure type liquid level gauge, the configuration can be simplified and the equipment cost can be reduced.
This is particularly significant when the above configuration is adopted for a tank for liquid nitrogen, liquid hydrogen, liquid oxygen, liquid helium or LNG.

図1(a)は、発明による液化ガス用タンクの一例を示す断面図であり、同(b),(c)は、同(a)における詳細として高圧側導圧管の先端部を示す図である。FIG. 1A is a cross-sectional view showing an example of a liquefied gas tank according to the invention, and FIGS. 1B and 1C are views showing a tip portion of a high-pressure side impulse line as a detail in FIG. is there. 図2(a)は、発明による液化ガス用タンクについて他の例を示す断面図であり、同(b)は、同(a)におけるb部詳細として高圧側導圧管の先端部を示す図である。FIG. 2A is a cross-sectional view showing another example of the liquefied gas tank according to the invention, and FIG. 2B is a view showing a tip portion of a high-pressure side impulse line as a detail of a portion b in FIG. is there. 図3(a)・(b)は、高圧側導圧管の先端部について図1・図2の例とは異なる例を示す断面図である。3A and 3B are cross-sectional views showing an example different from the example of FIGS. 1 and 2 with respect to the distal end portion of the high-pressure side pressure guiding tube. 各種形式の高圧側導圧管を使用して行った実験について、設備の概要を示す断面図および仕様一覧である。It is sectional drawing and the specification list which show the outline | summary of an installation about the experiment conducted using the various types of high pressure side impulse lines. 図4の設備により行った実験の結果であって、高圧側導圧管の先端部にタイプ1のものを使用した場合に検知された差圧等を示す線図である。FIG. 5 is a diagram showing a result of an experiment performed by the facility of FIG. 4 and showing a differential pressure detected when a type 1 tube is used at the tip of the high pressure side pressure guiding tube. 図4の設備により行った実験の結果であって、高圧側導圧管の先端部にタイプ2のものを使用した場合に検知された差圧等を示す線図である。FIG. 5 is a diagram showing a result of an experiment performed by the facility of FIG. 4 and showing a differential pressure and the like detected when a type 2 tube is used at the tip of the high-pressure side pressure guiding tube. 図4の設備により行った実験の結果であって、高圧側導圧管の先端部にタイプ3のものを使用した場合に検知された差圧等を示す線図である。FIG. 5 is a diagram showing a result of an experiment performed by the facility of FIG. 4 and showing a differential pressure detected when a type 3 tube is used at the tip of the high pressure side pressure guiding tube. 図4の設備により行った実験の結果であって、高圧側導圧管の先端部にタイプ4のもの(発明品)を使用した場合に検知された差圧等を示す線図である。FIG. 5 is a diagram showing a result of an experiment performed by the facility of FIG. 4 and showing a differential pressure detected when a type 4 (invention) is used at the tip of a high-pressure side pressure guiding tube. 図4の設備により行った実験の結果であって、上記の各先端部を使用した場合に検知された液面精度を示す線図である。It is a result of the experiment conducted by the facility of FIG. 4, and is a diagram showing the liquid level accuracy detected when each of the tip portions is used. 従来の一般的な液化ガス用タンクを示す断面図である。It is sectional drawing which shows the conventional general tank for liquefied gas. 従来の液化ガス用タンクに使用される高圧側導圧管の先端部の形態を示す断面図である。It is sectional drawing which shows the form of the front-end | tip part of the high voltage | pressure side impulse line used for the conventional tank for liquefied gas. 図2(a)は、従来の液化ガス用タンクに使用される、図10のものとは異なる高圧側導圧管の先端部の形態を示す断面図で、同(b)は、その高圧側導圧管を使用する場合に発生する差圧の変化を示す模式図である。FIG. 2A is a cross-sectional view showing the form of the tip of a high-pressure side pressure guiding tube used in a conventional liquefied gas tank, which is different from that of FIG. 10, and FIG. It is a schematic diagram which shows the change of the differential pressure | voltage which generate | occur | produces when using a pressure pipe.

図1〜図9に発明の実施の形態を紹介する。まず図1〜図3は、発明による液化ガス用タンクの構成をそれぞれ示している。   1 to 9 show an embodiment of the invention. First, FIG. 1 to FIG. 3 respectively show the configuration of a liquefied gas tank according to the invention.

図1に示す液化ガス用タンク1は、液体窒素や液体水素等の液化ガスXを保持する縦型円筒形状のもので、内槽1aと外槽1b、およびそれらの間に断熱層として設けられた真空層1cとから構成されている。内部の液化ガスの量を知るために、タンク1の外側には差圧式液面計10が取り付けられ、低圧側および高圧側の導圧管11・13によって内槽1a内に接続されている。すなわち低圧側導圧管11は、液面計10に近い部分から先が真空層1c内に通されており、内槽1aの壁面を貫通してその先端部12が気相の上部に開口している。一方の高圧側導圧管13は、やはり液面計10の近くから先が真空層1c内に配置されていて、先端部14が内槽1aの壁面を貫通して液相の底部に開口している。図10に示した例と同様、双方の導圧管11・13に伝わる圧力の差を上記の液面計10が検知し、その差圧を液化ガスXの液面として表示する。なお導圧管11・13としては、液化ガスへの入熱を少なくするために、直径(内径)が5〜15mm程度の細い管(金属管等)を使用する。   A liquefied gas tank 1 shown in FIG. 1 has a vertical cylindrical shape for holding a liquefied gas X such as liquid nitrogen or liquid hydrogen, and is provided as an inner tank 1a and an outer tank 1b and a heat insulating layer therebetween. And a vacuum layer 1c. In order to know the amount of the internal liquefied gas, a differential pressure type liquid level gauge 10 is attached to the outside of the tank 1 and connected to the inside of the inner tank 1a by the pressure guiding pipes 11 and 13 on the low pressure side and the high pressure side. That is, the low pressure side pressure guiding tube 11 is passed through the vacuum layer 1c from a portion close to the liquid level gauge 10, and penetrates the wall surface of the inner tank 1a so that the tip 12 opens to the upper part of the gas phase. Yes. One high pressure side pressure guiding tube 13 is also arranged in the vacuum layer 1c from the vicinity of the liquid level gauge 10, and the front end portion 14 penetrates the wall surface of the inner tank 1a and opens to the bottom of the liquid phase. Yes. Similar to the example shown in FIG. 10, the liquid level gauge 10 detects the difference in pressure transmitted to both the pressure guiding pipes 11 and 13 and displays the differential pressure as the liquid level of the liquefied gas X. As the pressure guide tubes 11 and 13, thin tubes (metal tubes or the like) having a diameter (inner diameter) of about 5 to 15 mm are used in order to reduce heat input to the liquefied gas.

図1の例では、高圧側導圧管13の先端部14を水平にし、タンク1における内槽1aの鉛直壁面を貫通させて取り付けている。内槽1aのその壁面から開口端14aまでの突出長さは、たとえば0〜100mm程度とする。水平にしたこの先端部14には、液面計10に近い側が高位となる鉛直な部分を連続させて液面計10に接続し、図11の例のように開口端に近い側が上になるような鉛直部分は設けていない。
そして図1(b)のように、導圧管13の先端部14のうち開口端14aに近い部分における上半部の一部に、導圧管13の壁面を貫通する小孔14bを複数形成している。小孔14bは直径を1〜3mm程度とし、その数はたとえば5〜30個程度とする。
In the example of FIG. 1, the distal end portion 14 of the high-pressure side pressure guiding tube 13 is horizontal, and the vertical wall surface of the inner tank 1 a in the tank 1 is penetrated and attached. The protruding length from the wall surface of the inner tank 1a to the opening end 14a is, for example, about 0 to 100 mm. The front end portion 14 that is leveled is connected to the liquid level meter 10 by continuing a vertical portion whose side closer to the level meter 10 is higher, and the side closer to the opening end is on the upper side as in the example of FIG. Such vertical parts are not provided.
1B, a plurality of small holes 14b penetrating the wall surface of the pressure guiding tube 13 are formed in a part of the upper half portion of the tip portion 14 of the pressure guiding tube 13 near the opening end 14a. Yes. The small holes 14b have a diameter of about 1 to 3 mm, and the number thereof is about 5 to 30, for example.

この例では、導圧管13の先端部14が水平であることから、その内部に気泡が発生したり気泡の量が変化したりしても導圧管13内の圧力はほとんど変化しない。そのため、高圧側導圧管13と低圧側導圧管11との間の差圧の変動が小さく、差圧式液面計による液面表示が正確かつ安定したものとなる。
また、先端部14に複数の小孔14bがあるため、発生した気泡が小孔14bを通じてスムーズにタンク1内に放出され、導圧管13内には溜まりにくい。したがって、気泡が抜け出ることによる導圧管13内の圧力変化が小さく、液面計10に伝わる上記差圧の変動がさらに抑制される。導圧管13の先端部14の作用で差圧の変動が抑制されるため、導圧管11・13にも差圧式液面計10にも、圧力変動抑制用のダンパを付設する必要はない。
In this example, since the distal end portion 14 of the pressure guiding tube 13 is horizontal, the pressure in the pressure guiding tube 13 hardly changes even if bubbles are generated or the amount of bubbles is changed. Therefore, the variation in the differential pressure between the high pressure side pressure guiding tube 13 and the low pressure side pressure guiding tube 11 is small, and the liquid level display by the differential pressure type liquid level gauge becomes accurate and stable.
Further, since there are a plurality of small holes 14 b in the tip end portion 14, the generated bubbles are smoothly discharged into the tank 1 through the small holes 14 b and are not easily accumulated in the pressure guiding tube 13. Therefore, the pressure change in the pressure guiding tube 13 due to the escape of the bubbles is small, and the fluctuation of the differential pressure transmitted to the level gauge 10 is further suppressed. Since the fluctuation of the differential pressure is suppressed by the action of the distal end portion 14 of the pressure guiding tube 13, it is not necessary to attach a damper for suppressing pressure fluctuation to the pressure guiding tubes 11, 13 or the differential pressure type level gauge 10.

図2(a)・(b)に示す液化ガス用タンク2も液化ガスXを保持するもので、中心線を水平にした横型円筒形状のものである。このタンク2も内槽2aと外槽2b、および断熱層としての真空層2cとで構成されている。外側に差圧式液面計20が取り付けられ、図1の例と同様、低圧側および高圧側の導圧管21・23によって内槽2a内の気相および液相底部にそれぞれ接続されている。導圧管21・23の直径についても、図1の例と同様である。   The liquefied gas tank 2 shown in FIGS. 2A and 2B also holds the liquefied gas X, and has a horizontal cylindrical shape with a horizontal center line. This tank 2 is also composed of an inner tank 2a, an outer tank 2b, and a vacuum layer 2c as a heat insulating layer. A differential pressure type liquid level gauge 20 is attached to the outside and is connected to the gas phase and the liquid phase bottom in the inner tank 2a by low pressure side and high pressure side pressure guiding pipes 21 and 23, respectively, as in the example of FIG. The diameters of the pressure guiding tubes 21 and 23 are the same as in the example of FIG.

この例では、図2(b)のように、タンク2の底部の一部に鉛直壁面を有するポット2dを設け、当該鉛直壁面を貫通させることにより、高圧側導圧管23の先端部24を内槽2a内に突き出させている。内槽2a内に入れた先端部24は、開口端24aを含めて水平とし、やはり0〜100mm程度が内槽2a内に突出するようにする。この水平の先端部24には、図2(a)のように水平の部分をつづけ、さらには次第に高位となる部分を設けて液面計20に接続している。開口端24aに近い側が上になるような鉛直部分等は、この導圧管23にも設けていない。
そしてこの導圧管23の先端部24においても、図2(b)のように、開口端24aに近い部分の上半部に、導圧管23の壁面を貫通する小孔24bを複数形成している。小孔24bの直径や個数は、図1(b)の例と同様である。
In this example, as shown in FIG. 2 (b), a pot 2d having a vertical wall surface is provided in a part of the bottom of the tank 2, and the distal end portion 24 of the high-pressure side impulse line 23 is placed inside by passing through the vertical wall surface. It protrudes into the tank 2a. The front end portion 24 placed in the inner tank 2a is horizontal including the opening end 24a, so that about 0 to 100 mm protrudes into the inner tank 2a. The horizontal tip 24 is connected to the liquid level gauge 20 by continuing a horizontal portion as shown in FIG. A vertical portion or the like such that the side close to the opening end 24 a is on the upper side is not provided in the pressure guiding tube 23.
Also in the tip portion 24 of the pressure guiding tube 23, as shown in FIG. 2B, a plurality of small holes 24b penetrating the wall surface of the pressure guiding tube 23 are formed in the upper half of the portion near the opening end 24a. . The diameter and number of the small holes 24b are the same as in the example of FIG.

この図2の例でも、先端部24が水平であるうえその上半部に複数の小孔14bがあるため、導圧管13内の圧力変化が抑制され、差圧式液面計10に伝わる差圧の変動が小さく、したがって液面計10による液面表示が正確かつ安定したものとなる。   In the example of FIG. 2 also, since the tip 24 is horizontal and there are a plurality of small holes 14b in the upper half, the pressure change in the pressure guiding tube 13 is suppressed, and the differential pressure transmitted to the differential pressure level gauge 10 Therefore, the liquid level display by the liquid level gauge 10 is accurate and stable.

高圧側導圧管において発生する気泡をスムーズにタンク内に放出するためには、高圧側導圧管の先端部を図1(b)・図2(b)のようにするばかりでなく、図3(a)または(b)のようにすることも好ましい。
図3(a)の例は、高圧側導圧管33の先端部34における開口端34aに、両端の開口した短管34cを鉛直向きに接続したものである。短管34cは、導圧管33と同程度の内径をもち、その内径の2〜5倍程度の長さを有するものにするとよい。短管34c内では、気泡Zの上向きの移動にともなって液化ガスの流れが生じるため、導圧管33内の気泡Zも連続的にスムーズに排出され、導圧管33内の圧力変動が効果的に抑制される。
In order to smoothly release bubbles generated in the high pressure side pressure guiding tube into the tank, the tip of the high pressure side pressure guiding tube is not only made as shown in FIGS. 1B and 2B but also in FIG. It is also preferable to do as a) or (b).
In the example of FIG. 3A, short pipes 34 c that are open at both ends are connected to an open end 34 a at the tip 34 of the high-pressure side pressure guiding pipe 33 in the vertical direction. The short tube 34c may have an inner diameter that is approximately the same as that of the pressure guiding tube 33 and has a length that is approximately 2 to 5 times the inner diameter. In the short pipe 34c, the flow of the liquefied gas is generated with the upward movement of the bubble Z. Therefore, the bubble Z in the pressure guiding tube 33 is continuously discharged smoothly, and the pressure fluctuation in the pressure guiding tube 33 is effectively reduced. It is suppressed.

また図3(b)の例は、高圧側導圧管43の先端部44を、開口端44a寄りの部分がほぼ水平となるよう上向きに1〜10°程度傾斜させたものである。このようにすることによっても気泡Zが連続的にスムーズに排出されやすくなり、気泡Zの動きにともなう導圧管43内の圧力変動が小さくなる。   In the example of FIG. 3B, the tip end portion 44 of the high-pressure side pressure guiding tube 43 is inclined upward by about 1 to 10 ° so that the portion near the opening end 44a is substantially horizontal. This also makes it easy for the bubbles Z to be continuously and smoothly discharged, and the pressure fluctuation in the pressure guiding tube 43 accompanying the movement of the bubbles Z is reduced.

図4〜図9に、差圧式液面計の計測精度を確認するために行った実験について示す。まず図4は、実験に用いた小型の液化ガス用タンク3の縦断面図に、低圧導圧管51と高圧側導圧管53の仕様を併記したものである。図示のタンク3は、直径200mm・高さ400mmの内槽3aを外槽3b内に収容して両者間に真空層3cを設けたもので、内槽3aには試験液として液体窒素を貯留させる。内槽3a内の気相部分に低圧導圧管51を接続するとともに、内槽3aの底部の液相部分に高圧導圧管53を接続し、両導圧管51・53を差圧式液面計(図示省略)につないでいる。   4 to 9 show an experiment conducted for confirming the measurement accuracy of the differential pressure type level gauge. First, FIG. 4 is a longitudinal sectional view of a small liquefied gas tank 3 used in the experiment, along with the specifications of the low pressure impulse line 51 and the high pressure side impulse line 53. The illustrated tank 3 has an inner tank 3a having a diameter of 200 mm and a height of 400 mm accommodated in an outer tank 3b and provided with a vacuum layer 3c therebetween. The inner tank 3a stores liquid nitrogen as a test solution. . A low pressure impulse line 51 is connected to the gas phase portion in the inner tank 3a, and a high pressure impulse line 53 is connected to the liquid phase part at the bottom of the inner tank 3a. Omitted).

実験用の装置本体および使用した計測系の概要を表1および表2に示す。内槽3aの多数箇所に温度測定用のポイントセンサーを配置し、上記差圧式液面計による計測精度は、それらポイントセンサーによるデータに基づいて評価する。

Figure 0005356888
Figure 0005356888
Tables 1 and 2 show an outline of the experimental apparatus main body and the measurement system used. Point sensors for temperature measurement are arranged at a large number of locations in the inner tank 3a, and the measurement accuracy by the differential pressure type liquid level gauge is evaluated based on the data from the point sensors.
Figure 0005356888
Figure 0005356888

高圧側導圧管53には、内槽3aの液相底部に取り付ける先端部として4種類のものを用意し、いずれか1つを導圧管53につないで使用することとしている。その4種類とは図4に示すつぎのものである。すなわち、
タイプ1:曲げ半径70mmの逆U字状の管を鉛直部分の先に接続した先端部54A
タイプ2:曲げ半径30mmの逆U字状の管を鉛直部分の先に接続した先端部54B
タイプ3:上を向いた開口端につづく鉛直部分を有する先端部54C
タイプ4:内槽3aの側壁に取付けられた水平な先端部54D(本発明によるもの)
Four types of high pressure side pressure guiding pipes 53 are prepared as tip portions to be attached to the liquid phase bottom of the inner tank 3 a, and any one of them is connected to the pressure guiding pipe 53 for use. The four types are as shown in FIG. That is,
Type 1: Front end 54A in which an inverted U-shaped tube with a bending radius of 70 mm is connected to the tip of the vertical portion
Type 2: Tip portion 54B in which an inverted U-shaped tube having a bending radius of 30 mm is connected to the tip of the vertical portion.
Type 3: Front end portion 54C having a vertical portion following the opening end facing upward
Type 4: Horizontal tip 54D attached to the side wall of the inner tank 3a (according to the present invention)

高圧側導圧管53の先端部として、上記各タイプのものを接続した場合の差圧式液面計の差圧変動(つまり液面表示の変化)を、図5〜図8に示す。
タイプ1およびタイプ2の先端部(54A・54B)を使用した場合には、上記差圧はそれぞれ図5および図6のように、1〜2分前後の周期と0.1〜0.5kPa前後の振幅をもって大きく振動した。その周期・振幅は、先端部の曲げ形状に基づく気泡の動きに影響されるようで、曲げ半径の大きいタイプ1を使用する場合の周期は、曲げ半径の小さいタイプ2の場合の約2倍である。また、タイプ3の先端部(54C)を使用する場合には、図7のように、タイプ1・2の場合よりは短い周期にて0.05kPa前後の振幅で振動した。しかし、発明によるタイプ4の先端部(54D)を高圧側導圧管53に使用する場合には、図8のとおり、他のタイプのものと比べて差圧の振動はきわめて小さくなった。このタイプ4の場合は気泡が早く抜けるために液位精度がよいものと考えられ、タイプ3のものは、鉛直部分での気泡による液位振動を拾うことからタイプ4のものより精度が低くなると想像される。
FIG. 5 to FIG. 8 show differential pressure fluctuations (that is, changes in the liquid level display) of the differential pressure type liquid level gauge when the above-mentioned types are connected as the distal end portion of the high pressure side pressure guiding tube 53.
When Type 1 and Type 2 tip parts (54A and 54B) are used, the differential pressure is about 1-2 minutes as shown in FIGS. 5 and 6, respectively, and about 0.1-0.5 kPa. It oscillated greatly with the amplitude of. The period / amplitude seems to be affected by the movement of bubbles based on the bending shape of the tip, and the period when using Type 1 with a large bending radius is about twice that of Type 2 with a small bending radius. is there. Further, when the type 3 tip (54C) was used, as shown in FIG. 7, it vibrated with an amplitude of about 0.05 kPa with a shorter period than in the case of types 1 and 2. However, when the tip part (54D) of the type 4 according to the invention is used for the high pressure side pressure guiding tube 53, as shown in FIG. 8, the vibration of the differential pressure is extremely small as compared with other types. In the case of this type 4, it is considered that the liquid level accuracy is good because bubbles are quickly removed, and the type 3 type picks up the liquid level vibration due to the bubbles in the vertical part, so the accuracy is lower than the type 4 type. Imagine.

図9には、上記各タイプの先端部を使用した場合の、差圧式液面計が示す液面のドリフト(ずれ)について実測値を示す。図5〜図8の実験とは別に、図4のタンク3において内槽3aの液面高さを300mmに設定したうえ、高圧側導圧管53の先に各タイプの先端部を接続し、それぞれの場合における差圧式液面計の表示データを描いて図9の結果を得た。   FIG. 9 shows measured values of the liquid level drift (deviation) indicated by the differential pressure type liquid level gauge when the above-mentioned types of tip portions are used. Separately from the experiments of FIGS. 5 to 8, in the tank 3 of FIG. 4, the liquid surface height of the inner tank 3 a is set to 300 mm, and the tip of each type is connected to the tip of the high-pressure side impulse line 53. The result of FIG. 9 was obtained by drawing the display data of the differential pressure type level gauge in the case of.

図9に表れた表示液面のドリフトについて平均値をとり、上記先端部のタイプ別に整理すると表3のようになる。発明によるタイプ4の先端部(54D)を使用する場合には、ドリフトについても、他の先端部を使用する場合より好ましい結果が得られた。

Figure 0005356888
Table 3 shows the average value of the drift of the display liquid surface shown in FIG. When the type 4 tip (54D) according to the invention was used, more favorable results were obtained with respect to drift than when other tips were used.
Figure 0005356888

1・2・3 液化ガス用タンク
2d ポット
10・20 差圧式液面計
11・21・51 低圧側導圧管
13・23・33・43・53 高圧側導圧管
14・24・34・44・54(54A〜54D) 先端部
14a・24a・34a・44a 開口端
14b・24b 小孔
34c 短管
1 ・ 2 ・ 3 Tank for liquefied gas 2d Pot 10 ・ 20 Differential pressure level gauge 11 ・ 21 ・ 51 Low pressure side pressure guiding tube 13 ・ 23 ・ 33 ・ 43 ・ 53 High pressure side pressure guiding tube 14 ・ 24 ・ 34 ・ 44 ・ 54 (54A-54D) Tip portion 14a / 24a / 34a / 44a Open end 14b / 24b Small hole 34c Short tube

Claims (5)

導圧管を介して差圧式液面計が接続された液化ガス用タンクであって、
前記液化ガス用タンクは内槽と外槽とを有し、
高圧側導圧管のうち開口端を含む先端部が、上記内槽の壁面を貫通して内槽内に突出し、上記内槽の底部付近の内部に水平またはほぼ水平に差し入れられていること
および、上記高圧側導圧管の先端部における上半部に、当該導圧管の壁面を貫通する小孔が複数設けられていること
を特徴とする液化ガス用タンク。
A tank for liquefied gas to which a differential pressure type level gauge is connected via a pressure guiding pipe,
The liquefied gas tank has an inner tank and an outer tank,
The tip including the open end of the high pressure side pressure guiding tube penetrates the wall surface of the inner tank and protrudes into the inner tank, and is inserted horizontally or almost horizontally into the inside of the vicinity of the bottom of the inner tank ,
A liquefied gas tank , wherein a plurality of small holes penetrating the wall surface of the pressure guiding tube are provided in an upper half portion at a distal end portion of the high pressure side pressure guiding tube .
導圧管を介して差圧式液面計が接続された液化ガス用タンクであって、
前記液化ガス用タンクは内槽と外槽とを有し、
高圧側導圧管のうち開口端を含む先端部が、上記内槽の壁面を貫通して内槽内に突出し、上記内槽の底部付近の内部に水平またはほぼ水平に差し入れられていること、
および、上記高圧側導圧管の先端部における開口端に、両端の開口した短管が軸心を鉛直に接続されていること
を特徴とする液化ガス用タンク。
A tank for liquefied gas to which a differential pressure type level gauge is connected via a pressure guiding pipe,
The liquefied gas tank has an inner tank and an outer tank,
The tip including the open end of the high pressure side pressure guiding tube penetrates the wall surface of the inner tank and protrudes into the inner tank, and is inserted horizontally or almost horizontally into the inside of the vicinity of the bottom of the inner tank,
A liquefied gas tank, characterized in that a short pipe having both ends opened is vertically connected to an open end at a tip of the high pressure side pressure guiding pipe .
鉛直方向の壁面を有するポットが上記内槽の底部の一部に設けられていて、当該ポットの鉛直方向の壁面から、上記高圧側導圧管の先端部が上記内槽の内部に差し入れられていることを特徴とする請求項1または2に記載の液化ガス用タンク。 A pot having a vertical wall surface is provided at a part of the bottom of the inner tank, and the tip of the high-pressure side impulse line is inserted into the inner tank from the vertical wall surface of the pot. The liquefied gas tank according to claim 1 or 2 . 上記高圧側導圧管および差圧式液面計が、圧力変動を抑制するためのダンパを有していないことを特徴とする請求項1〜3のいずれかに記載の液化ガス用タンク。 The liquefied gas tank according to any one of claims 1 to 3 , wherein the high-pressure side pressure guiding tube and the differential pressure type liquid level gauge do not have a damper for suppressing pressure fluctuation. 液体窒素、液体水素、液体酸素、液体ヘリウムまたはLNGのうちいずれかを入れたものであることを特徴とする請求項1〜4のいずれかに記載の液化ガス用タンク。 The liquefied gas tank according to any one of claims 1 to 4 , wherein any one of liquid nitrogen, liquid hydrogen, liquid oxygen, liquid helium or LNG is contained.
JP2009089471A 2009-04-01 2009-04-01 Tank for liquefied gas Expired - Fee Related JP5356888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089471A JP5356888B2 (en) 2009-04-01 2009-04-01 Tank for liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089471A JP5356888B2 (en) 2009-04-01 2009-04-01 Tank for liquefied gas

Publications (2)

Publication Number Publication Date
JP2010243210A JP2010243210A (en) 2010-10-28
JP5356888B2 true JP5356888B2 (en) 2013-12-04

Family

ID=43096386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089471A Expired - Fee Related JP5356888B2 (en) 2009-04-01 2009-04-01 Tank for liquefied gas

Country Status (1)

Country Link
JP (1) JP5356888B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038002A (en) * 2012-08-13 2014-02-27 Ihi Corp Liquid surface display device, turbo compressor, and turbo refrigerator
US11092290B2 (en) 2018-12-27 2021-08-17 Toyota Jidosha Kabushiki Kaisha Method for measuring fluid level in liquid hydrogen tank and liquid hydrogen storage system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6282371B1 (en) * 2017-05-26 2018-02-21 Jfeアドバンテック株式会社 Liquid carrier
CN110081948B (en) * 2019-05-23 2024-01-30 江西制氧机有限公司 Liquid phase gasification pressure-taking structure of differential pressure liquid level meter for vacuum heat insulation tank body
CN110530583B (en) * 2019-08-23 2021-06-04 苏州赛智达智能科技有限公司 Detection device for differential pressure liquid level meter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584768B2 (en) * 1975-07-21 1983-01-27 株式会社日立製作所 Exhaust Gas
JPS5492763U (en) * 1977-12-14 1979-06-30
JPS54118171U (en) * 1978-02-07 1979-08-18
JPS61223617A (en) * 1985-03-29 1986-10-04 Toshiba Corp Liquid level indicator at cryogenic temperature
JPH0133065Y2 (en) * 1986-07-15 1989-10-06
JP2009036330A (en) * 2007-08-02 2009-02-19 Sumitomo Heavy Ind Ltd Liquefied gas storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038002A (en) * 2012-08-13 2014-02-27 Ihi Corp Liquid surface display device, turbo compressor, and turbo refrigerator
US11092290B2 (en) 2018-12-27 2021-08-17 Toyota Jidosha Kabushiki Kaisha Method for measuring fluid level in liquid hydrogen tank and liquid hydrogen storage system

Also Published As

Publication number Publication date
JP2010243210A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5356888B2 (en) Tank for liquefied gas
US9568342B2 (en) Sensor component housing
US7942066B1 (en) Non-intrusive two-phase flow measurement system
JP2014006260A (en) Temperature measuring device for measuring temperature of flowing medium
JP2009229377A (en) Vibration-prevention structure of detection section of magnetostrictive liquid-level meter
US20210215520A1 (en) Coriolis Flow Sensor Assembly
JP2017133908A (en) Device and method for detecting liquid level in liquid supply facility and liquid supply device
CN206920277U (en) A kind of direct insertion tuning fork densitometer
JP5748722B2 (en) Reinforcing bar strain detection structure for reinforcing bar insertion
US11543337B2 (en) Method for signaling a standard frequency of a density meter which has at least one vibratable measurement tube for conducting a medium
CN109211723A (en) A kind of direct insertion tuning fork densitometer
JP6422501B2 (en) Apparatus and method for measuring liquid level in a pressurization device, in particular a device in a urea factory
CN110081948B (en) Liquid phase gasification pressure-taking structure of differential pressure liquid level meter for vacuum heat insulation tank body
JP3609722B2 (en) Liquid level detector
BRPI1103889B1 (en) IMMERSION PROBE FOR GAS ANALYSIS IN CAST METAL
CN103148910A (en) Horizontal low temperature container and liquid level measurement device thereof
US10598531B2 (en) Coriolis flow meter with multiple actuators arranged on a flow tube and driven in different planes
US20220065676A1 (en) Vibronic measurement sensor having at least two temperature sensors
WO2021012136A1 (en) Method for calculating internal explosion load rate based on progressive extension distance of pipeline cracks
KR101370524B1 (en) Fpso
JP2017133817A (en) Refrigerant leakage detection device in refrigeration cycle
CN216621353U (en) Pressure measuring structure of differential pressure liquid level meter of cryogenic liquid storage tank
JP2011006130A (en) Liquid level detector for tanks
CN202853618U (en) Rapid line plummet stabilizing device
JP2012229970A (en) Differential pressure type liquid level detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5356888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees