JP5354653B2 - Spectral phase compensation method and spectral phase compensation apparatus - Google Patents

Spectral phase compensation method and spectral phase compensation apparatus Download PDF

Info

Publication number
JP5354653B2
JP5354653B2 JP2009012229A JP2009012229A JP5354653B2 JP 5354653 B2 JP5354653 B2 JP 5354653B2 JP 2009012229 A JP2009012229 A JP 2009012229A JP 2009012229 A JP2009012229 A JP 2009012229A JP 5354653 B2 JP5354653 B2 JP 5354653B2
Authority
JP
Japan
Prior art keywords
thickness
parallel plate
plate portion
phase compensation
spectral phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009012229A
Other languages
Japanese (ja)
Other versions
JP2010171194A (en
Inventor
隆行 鈴木
眞幸 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Original Assignee
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF ELECTRO-COMUNICATINS filed Critical THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority to JP2009012229A priority Critical patent/JP5354653B2/en
Publication of JP2010171194A publication Critical patent/JP2010171194A/en
Application granted granted Critical
Publication of JP5354653B2 publication Critical patent/JP5354653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To compensate a spectrum phase for generating an ultrashort light pulse of high repetition frequency with an inexpensive and simple device. <P>SOLUTION: The phase compensation for a spectrum of wide-band light Lw is performed by a spectrum phase compensation device 20 having a pair of optical elements 21A and 21B made of positively dispersed media. The optical elements 21A and 21B are each sectioned in a wedge-like shape, are arranged with slopes 21A<SB>1</SB>and 21B<SB>1</SB>facing each other, and variable in distance between a light incident surface 21A<SB>2</SB>and a light emitting surface 21B<SB>2</SB>parallel to each other by movement of at least one optical element along a slope of the another optical element, and form a parallel flat plate portion 21 having an adjustable thickness t adjusted to a thickness at which a phase difference between adjacent spectra is an integral multiple of 2&pi;. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うスペクトル位相補償方法及びスペクトル位相補償装置に関する。   The present invention relates to a spectral phase compensation method and a spectral phase compensation apparatus that perform spectral phase compensation for generating an ultrashort optical pulse having a high repetition frequency.

近年のレーザ技術の発展に伴い、100フェムト秒(10−15秒)以下のパルス幅を有する超短パルスレーザを容易に利用することが可能となり、このテラヘルツ領域の技術開発が急速に進展している。 With the development of laser technology in recent years, it has become possible to easily use an ultrashort pulse laser having a pulse width of 100 femtoseconds ( 10-15 seconds) or less, and the technological development in the terahertz region has rapidly advanced. Yes.

フェムト秒光パルスは、非線形光学応答を利用した非破壊、非侵襲の物質測定、ガラスや金属や半導体の超精細加工、細胞の切削や操作などに利用できるだけでなく、光の干渉性を利用して物体内部を撮像するOCT(Optical Coherence Tomography)や多光子顕微鏡の光源、X線に代わる検査用電磁波となる波長30μm〜3nmのテラヘルツ波発生装置などへの応用が期待されている。   Femtosecond light pulses can be used not only for non-destructive and non-invasive measurement of materials using nonlinear optical response, ultra-fine processing of glass, metal and semiconductors, cutting and manipulation of cells, but also using the coherence of light. Application to OCT (Optical Coherence Tomography) that images the inside of an object, a light source of a multiphoton microscope, a terahertz wave generator with a wavelength of 30 μm to 3 nm, which becomes an electromagnetic wave for inspection instead of X-rays, and the like is expected.

フェムト秒光パルスの発生は、時間幅が広がった光パルスのスペクトル成分間の相対位相を制御して、フーリエ変換限界程度に時間幅を圧縮する技術である。光パルスの時間軸上の拡がりは、光パルスのスペクトル成分間の相対位相関係によって生ずるので、周波数に対して相対位相を補償することによって、すなわちチャープさせてパルス圧縮が行われる。線形チャープは、光の伝搬定数が、一定の群速度分散を有する場合、すなわち、周波数の2乗依存性を有する場合に生じることから、二次分散とも呼ばれる。   The generation of femtosecond light pulses is a technique for controlling the relative phase between spectral components of an optical pulse having a wide time width and compressing the time width to the extent of the Fourier transform limit. Since the spread of the optical pulse on the time axis is caused by the relative phase relationship between the spectral components of the optical pulse, pulse compression is performed by compensating the relative phase with respect to the frequency, that is, chirping. Linear chirp is also called second-order dispersion because it occurs when the light propagation constant has a constant group velocity dispersion, that is, when it has a square dependence on frequency.

フェムト秒光パルスの時間幅をさらに狭くする要求が高まっているが、光パルスの時間幅を狭めると、それに対応して周波数スペクトル幅が拡大するので、拡大した周波数スペクトルの成分間全てにチャープを消すことが必要になり、従来よりも広い周波数範囲にわたって、広くチャープを補償することが必要になる。   There is an increasing demand for further narrowing the time width of femtosecond light pulses, but if the time width of the light pulse is narrowed, the frequency spectrum width is correspondingly expanded, so that chirping is applied between all components of the expanded frequency spectrum. Therefore, it is necessary to compensate for the chirp over a wider frequency range than before.

ここで、周波数チャープとは、光パルスの瞬時周波数が時間的に変化する現象であり、時間とともに線形に増加する場合を正チャープ、線形に減少する場合を負チャープと呼ぶ。   Here, the frequency chirp is a phenomenon in which the instantaneous frequency of an optical pulse changes with time. A case where it increases linearly with time is called a positive chirp, and a case where it decreases linearly is called a negative chirp.

従来の一般的な超短光パルスの生成方法としては、図11に示すように、広帯域光源の発生する光パルス(広帯域光)Lwのコヒーレントで広いスペクトルとそのスペクトルの位相をスペクトル成分毎に位相補償して合波することにより超短光パルスLxを生成する手法が一般的な超短光パルスの生成方法として、広く知られている。   As shown in FIG. 11, a conventional general method for generating an ultrashort optical pulse includes a coherent and broad spectrum of an optical pulse (wideband light) Lw generated by a broadband light source and a phase of the spectrum for each spectral component. A method of generating an ultrashort optical pulse Lx by compensating and multiplexing is widely known as a general method of generating an ultrashort optical pulse.

ここで、広帯域光源の発生する光パルス(広帯域光)Lwを図11の(A)に示し、その各スペクトル成分を図11の(B)を示し、スペクトル成分毎に位相補償した各スペクトル成分を図11の(C)に示し、生成した超短光パルスLxを図11の(D)に示す。   Here, an optical pulse (broadband light) Lw generated by a broadband light source is shown in FIG. 11A, each spectrum component thereof is shown in FIG. 11B, and each spectrum component phase-compensated for each spectrum component is shown. The generated ultrashort light pulse Lx shown in FIG. 11C is shown in FIG.

このように、超短光パルスの生成には、広帯域化だけでなく、相対位相を調整(分散補償)する必要がある。   Thus, in order to generate an ultrashort optical pulse, it is necessary not only to widen the band but also to adjust the relative phase (dispersion compensation).

そして、現実の透過媒質がほぼすべて正常分散媒質であることから、広帯域光源により、例えば図12の(A)に示すように、各スペクトル成分の位相が一定の広帯域光Lw0が得られたとしても、実際に使用される広帯域光Lwには、図12の(B)に示すように、上記広帯域光原の状態やその後の透過媒質の材料や量に応じた正分散が存在するので、図12の(C)に示すように、広帯域光Lwのスペクトルの相対位相を調整(分散補償)するための負分散の実現が主要なテーマとなっていた。従来、プリズム対や回折格子対、さらには負分散ミラーなどにより、分散補償を行っていた。   Since almost all of the actual transmission media are normal dispersion media, even if broadband light Lw0 having a constant phase of each spectral component is obtained by a broadband light source, for example, as shown in FIG. In the actually used broadband light Lw, as shown in FIG. 12B, there is positive dispersion according to the state of the broadband photogen and the material and amount of the transmission medium thereafter. As shown in (C), the realization of negative dispersion for adjusting (dispersion compensation) the relative phase of the spectrum of the broadband light Lw has been a main theme. Conventionally, dispersion compensation has been performed using a prism pair, a diffraction grating pair, and a negative dispersion mirror.

特開2003−337309号公報JP 2003-337309 A

しかしながら、従来のプリズム対、あるいは回折格子対を用い、この各対間の距離を変えて負チャープ量を変化させるスペクトル位相補償装置では、広い周波数スペクトル範囲にわたって大きな負チャープを加えようとすると線形チャープ、すなわち二次分散だけでなく、二次分散よりも高次の分散も加わってしまうという問題点がある。すなわち、プリズム対、回折格子対では、屈折及び回折によって生ずる波長毎の光路差を用いて、光に正又は負の大きな群速度分散を与えることができる。しかし、群速度分散よりさらに高次の位相分散も生じるため、広帯域に渡って位相を補償するためには、光学系の設計から光学材料の選定までに及ぶ精密な設計が必要になる。このため、プリズム対、回折格子対による位相補償は、実質的にある程度制限された波長域における位相補償手段であり、また、ダイナミックにまた任意の位相量を調整することはほとんど不可能である。
また、負分散ミラーは、屈折率(誘電率)の異なる光学薄膜を膜厚を制御して交互に複数積層し、この積層膜から反射する光が、周波数に比例した位相を持つようにしたもので、光エネルギーに対する損傷しきい値が高い光学物質、例えば、SiOやTiOを誘電体多層膜として使用するので、高エネルギー光パルスの使用に耐える。また、光パルスを誘電体多層膜で反射させるだけなので、装置が小型である。蒸着薄膜の膜厚を適切に設計して形成した誘電体多層膜鏡は、操作は非常に容易であるが、その反射原理から使用する帯域が限られかつ回転角と位相の間に一定の関数関係を有しているため、究極の極短パルスには到達できないと同時に、波長可変性についても制限されてしまう。
However, in a spectral phase compensator that uses a conventional prism pair or diffraction grating pair and changes the distance between each pair to change the amount of negative chirp, linear chirp is attempted when a large negative chirp is added over a wide frequency spectrum range. That is, there is a problem that not only the secondary dispersion but also higher order dispersion than the secondary dispersion is added. That is, in the prism pair and the diffraction grating pair, a large positive or negative group velocity dispersion can be given to the light by using the optical path difference for each wavelength caused by refraction and diffraction. However, since higher-order phase dispersion occurs than the group velocity dispersion, precise design ranging from the design of the optical system to the selection of the optical material is required to compensate the phase over a wide band. Therefore, the phase compensation by the prism pair and the diffraction grating pair is a phase compensation means in a wavelength range substantially limited to some extent, and it is almost impossible to dynamically adjust an arbitrary phase amount.
In addition, the negative dispersion mirror is made up of a plurality of optical thin films having different refractive indexes (dielectric constants) that are alternately stacked, and the light reflected from the laminated film has a phase proportional to the frequency. Thus, since an optical material having a high damage threshold against light energy, for example, SiO 2 or TiO 2 is used as the dielectric multilayer film, it can withstand the use of high energy light pulses. Further, since the light pulse is only reflected by the dielectric multilayer film, the apparatus is small. The dielectric multilayer mirror formed by appropriately designing the film thickness of the deposited thin film is very easy to operate, but the band to be used is limited due to its reflection principle, and a constant function between the rotation angle and phase. Due to the relationship, the ultimate ultrashort pulse cannot be reached and the wavelength variability is limited.

したがって、従来のプリズム対や回折格子対、誘電体多層膜鏡などの光学素子を用いた位相補償は、固定的であり、光パルスのスペクトル成分毎の位相が前もってわかっており、かつ、光パルスのスペクトル成分毎の位相が時間的に不変である場合にしか有効ではない。   Therefore, phase compensation using conventional optical elements such as a prism pair, a diffraction grating pair, and a dielectric multilayer mirror is fixed, the phase for each spectral component of the optical pulse is known in advance, and the optical pulse It is effective only when the phase of each spectral component is invariable in time.

一般に、光パルスに正チャープを加えることは容易であるが、負チャープを加えるためには複雑な機構を要する。   In general, it is easy to add a positive chirp to an optical pulse, but adding a negative chirp requires a complicated mechanism.

近年の技術革新により、超短光パルスの繰り返し周波数は年々上昇しており、高い繰り返し周波数は離散性の高いスペクトルを形成する。   Due to recent technological innovation, the repetition frequency of ultrashort light pulses is increasing year by year, and a high repetition frequency forms a highly discrete spectrum.

本発明の目的は、上述の如き従来の実情に鑑み、繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を安価で単純な装置で行うことができるようにすることにある。   An object of the present invention is to make it possible to perform compensation of a spectral phase for generating an ultrashort optical pulse having a high repetition frequency with an inexpensive and simple device in view of the conventional situation as described above.

本発明のさらに他の目的、本発明によって得られる具体的な利点は、以下において図面を参照して説明される実施に形態から一層明らかにされる。   Other objects of the present invention and specific advantages obtained by the present invention will become more apparent from the embodiments described below with reference to the drawings.

本発明では、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うにあたり、高い繰り返し周波数を持つ超短光パルスは離散性の高い光スペクトルを持つことに着目して、従来のように負分散によりスペクトル位相を補償するのではなく、簡単に実現可能な正分散によりスペクトル位相を補償して隣り合うスペクトルの位相差を2πの整数倍とする。   In the present invention, when performing spectral phase compensation for generating an ultrashort optical pulse having a high repetition frequency from broadband light, it is noted that an ultrashort optical pulse having a high repetition frequency has a highly discrete optical spectrum. Thus, the spectral phase is not compensated by negative dispersion as in the prior art, but the spectral phase is compensated by easily realizable positive dispersion so that the phase difference between adjacent spectra is an integral multiple of 2π.

すなわち、本発明に係るスペクトル位相補償方法は、隣り合うスペクトルの位相差を2πの整数倍とする厚さの正分散媒質からなる平行平板を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とする。   That is, the spectral phase compensation method according to the present invention transmits a parallel plate made of a positive dispersion medium having a thickness in which the phase difference between adjacent spectrums is an integer multiple of 2π, thereby allowing ultra-short and high repetition frequency from broadband light. Spectral phase compensation for generating optical pulses is performed.

本発明に係るスペクトル位相補償装置は、隣り合うスペクトルの位相差を2πの整数倍とする厚さの正分散媒質からなり、広帯域光が入射される平行平板を備え、上記平行平板を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とする。   The spectral phase compensator according to the present invention includes a parallel plate made of a positive dispersion medium having a thickness in which the phase difference between adjacent spectra is an integral multiple of 2π, and includes a parallel plate on which broadband light is incident, and transmits the parallel plate. Thus, the spectral phase is compensated for generating an ultrashort optical pulse having a high repetition frequency from broadband light.

また、本発明に係るスペクトル位相補償方法は、それぞれくさび形の断面形状を有し、互いに斜面を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面と出射面との距離が可変自在とされた正分散媒質からなる1対の光学素子により、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整された平行平板部を形成し、上記平行平板部を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とする。   Further, the spectral phase compensation method according to the present invention has a wedge-shaped cross-sectional shape, is arranged with the inclined surfaces facing each other, and at least one of the optical elements moves along the inclined surface so that the incident light is parallel to each other. A pair of optical elements made of a positive dispersion medium in which the distance between the surface and the exit surface can be changed to form a parallel plate portion adjusted to a thickness that makes the phase difference of adjacent spectra an integral multiple of 2π. By transmitting the parallel plate portion, spectral phase compensation for generating an ultrashort optical pulse having a high repetition frequency from broadband light is performed.

また、本発明に係るスペクトル位相補償装置は、それぞれくさび形の断面形状を有し、互いに斜面を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面と出射面との距離が可変自在とされ、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整される厚さが調整自在な平行平板部を形成する正分散媒質からなる1対の光学素子を有し、上記平行平板部を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とする。   The spectral phase compensators according to the present invention each have a wedge-shaped cross-sectional shape, are arranged with their inclined surfaces facing each other, and at least one of the optical elements moves along the inclined surface so that the incident light is parallel to each other. The distance between the surface and the exit surface is variable, and is composed of a positive dispersion medium that forms a parallel plate portion that can be adjusted to have a thickness that can be adjusted to a thickness in which the phase difference between adjacent spectra is an integral multiple of 2π. Spectral phase compensation is performed for generating ultrashort light pulses having a high repetition frequency from broadband light by having a pair of optical elements and transmitting the parallel plate portion.

また、本発明に係るスペクトル位相補償方法は、それぞれくさび形の断面形状を有し、互いに斜面を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面と出射面との距離が可変自在とされた正分散媒質からなる1対の光学素子により形成される厚さが調整自在な平行平板部に広帯域光を入射し、上記平行平板部を透過した光を検出し、その検出出力に基づいて上記1対の光学素子の少なくとも一方の光学素子が斜面に沿って移動させる駆動部を動作させ、上記平行平板部の厚さを隣り合うスペクトルの位相差を2πの整数倍とする厚さに制御し、上記平行平板部を透過させることにより、上記広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とする。   Further, the spectral phase compensation method according to the present invention has a wedge-shaped cross-sectional shape, is arranged with the inclined surfaces facing each other, and at least one of the optical elements moves along the inclined surface so that the incident light is parallel to each other. Broadband light is incident on a parallel plate portion having an adjustable thickness formed by a pair of optical elements made of a positive dispersion medium whose distance between the surface and the exit surface is variable, and transmitted through the parallel plate portion. Detecting light and operating a drive unit that moves at least one optical element of the pair of optical elements along a slope based on the detection output, and determining the thickness of the parallel plate part to the phase difference between adjacent spectra Is controlled to a thickness that is an integral multiple of 2π, and is transmitted through the parallel plate portion, thereby compensating the spectral phase for generating an ultrashort optical pulse having a high repetition frequency from the broadband light. The features.

さらに、本発明に係るスペクトル位相補償装置は、それぞれくさび形の断面形状を有し、互いに斜面を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面と出射面との距離が可変自在とされ、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整される厚さが調整自在な平行平板部を形成する正分散媒質からなる1対の光学素子と、上記1対の光学素子の少なくとも一方の光学素子が斜面に沿って移動させる駆動部と、上記平行平板部を透過した光を検出し、その検出出力に基づいて上記駆動部を動作させ、上記平行平板部の厚さを隣り合うスペクトルの位相差を2πの整数倍とする厚さに制御する制御部とを備え、上記平行平板部を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とする。   Furthermore, the spectral phase compensator according to the present invention has a wedge-shaped cross-sectional shape, is arranged with the inclined surfaces facing each other, and at least one of the optical elements moves along the inclined surfaces so that the incident light is parallel to each other. The distance between the surface and the exit surface is variable, and is composed of a positive dispersion medium that forms a parallel plate portion that can be adjusted to have a thickness that can be adjusted to a thickness in which the phase difference between adjacent spectra is an integral multiple of 2π. A pair of optical elements, a drive unit that moves at least one of the pair of optical elements along the slope, and detects the light transmitted through the parallel plate part, and the drive unit based on the detected output And controlling the thickness of the parallel plate portion to a thickness that makes the phase difference of adjacent spectra an integer multiple of 2π, and allowing the parallel plate portion to pass through to repeat from broadband light. It is characterized in that the spectral phase is compensated for generation of an ultrashort optical pulse having a high frequency.

本発明では、単純に正常分散媒質を透過させるだけで、位相の補償を実現する。繰り返し周波数がテラヘルツ領域の場合には、数センチメートルの厚さのガラス材で2次の位相分散を消去できる。光エネルギーの損失要因は媒質の吸収および表面反射しかないため、高透過率を確保することができる。また、分散媒質として通常の光学ガラス材料を利用できるため、損傷閾値が高いスペクトル位相補償装置を実現することができる。また、本発明によれば、各周波数成分を空間的に分離しない安定的な機構のスペクトル位相補償装置を実現することができる。さらに、 通常の光学部品のように誘電体膜や金属膜の蒸着を必要としないため安価なスペクトル位相補償装置を実現することができる。   In the present invention, phase compensation is realized by simply transmitting through a normal dispersion medium. When the repetition frequency is in the terahertz region, the second-order phase dispersion can be eliminated with a glass material having a thickness of several centimeters. Since the light energy loss factors are only absorption of the medium and surface reflection, a high transmittance can be secured. In addition, since a normal optical glass material can be used as the dispersion medium, a spectral phase compensator with a high damage threshold can be realized. Further, according to the present invention, it is possible to realize a spectral phase compensator having a stable mechanism that does not spatially separate frequency components. Further, since it is not necessary to deposit a dielectric film or a metal film unlike ordinary optical parts, an inexpensive spectral phase compensation device can be realized.

すなわち、本発明では、繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を、通常の正分散を持つ媒質によって実現するので、負分散を実現するための複雑な機構を必要とせず、安価で単純なスペクトル位相補償装置が実現できる。   In other words, in the present invention, since the compensation of the spectral phase for generating the ultrashort optical pulse with a high repetition frequency is realized by a normal medium having positive dispersion, a complicated mechanism for realizing negative dispersion is required. Therefore, an inexpensive and simple spectral phase compensation device can be realized.

本発明を適用した平行平板からなるスペクトル位相補償装置を備える超短光パルス生成装置の構成図である。It is a block diagram of an ultrashort optical pulse generator provided with a spectral phase compensator composed of parallel plates to which the present invention is applied. 上記スペクトル位相補償装置における正分散によるスペクトル位相の補償について説明するための図である。It is a figure for demonstrating compensation of the spectrum phase by the positive dispersion in the said spectrum phase compensation apparatus. 本発明を適用した厚さが調整自在な平行平板部を形成する1対の光学素子からなるスペクトル位相補償装置の構成図である。It is a block diagram of the spectrum phase compensation apparatus which consists of a pair of optical element which forms the parallel plate part to which the thickness to which this invention is adjustable is adjustable. 上記スペクトル位相補償装置における平行平板部の厚さの可変状態を示す図である。It is a figure which shows the variable state of the thickness of the parallel plate part in the said spectral phase compensation apparatus. 上記スペクトル位相補償装置における厚さが調整自在な平行平板部を形成する1対の光学素子の具体例を示す図である。It is a figure which shows the specific example of a pair of optical element which forms the parallel plate part in which the thickness in the said spectral phase compensation apparatus is adjustable. 上記スペクトル位相補償装置を実装した広帯域離散スペクトル発生装置の構成図である.It is a configuration diagram of a wideband discrete spectrum generator mounted with the spectral phase compensation device. 上記広帯域離散スペクトル発生装置の広帯域離散スペクトル生成用セルにおいてラマン過程を経て発生される高次のサイドバンドを示す図である。It is a figure which shows the high-order sideband produced | generated through a Raman process in the cell for a broadband discrete spectrum production | generation of the said broadband discrete spectrum generator. 上記広帯域離散スペクトル発生装置に実装した上記位相補償装置を通過した広帯域光のスペクトルの位相の各測定結果を示す図である。It is a figure which shows each measurement result of the phase of the spectrum of the broadband light which passed the said phase compensation apparatus mounted in the said broadband discrete spectrum generator. 上記広帯域離散スペクトル発生装置に実装した上記位相補償装置を通過した広帯域光の時間波形の各測定結果を示す図である。It is a figure which shows each measurement result of the time waveform of the broadband light which passed the said phase compensation apparatus mounted in the said broadband discrete spectrum generator. 制御部により平行平板部の厚さを隣り合うスペクトルの位相差を2πの整数倍とする厚さに自動制御する機能を備えるスペクトル位相補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of a spectrum phase compensation apparatus provided with the function which controls automatically the thickness of a parallel flat plate part to the thickness which makes the phase difference of an adjacent spectrum the integral multiple of 2pi by a control part. 従来の一般的な超短光パルスの生成方法を説明するための図である。It is a figure for demonstrating the production | generation method of the conventional general ultrashort light pulse. 負分散による位相補償について説明するための図である。It is a figure for demonstrating the phase compensation by negative dispersion.

以下、本発明を実施するための最良の形態について図面を参照して詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

本発明は、例えば図1に示すような構成の超短光パルス生成装置10におけるスペクトル位相補償装置2に適用される。   The present invention is applied to, for example, the spectral phase compensator 2 in the ultrashort optical pulse generator 10 configured as shown in FIG.

この超短光パルス生成装置10は、広帯域光Lwを出射する広帯域光原1と、上記広帯域光原1から出射された広帯域光Lwが入射されるスペクトル位相補償装置2からなる。   The ultrashort optical pulse generator 10 includes a broadband light source 1 that emits broadband light Lw and a spectral phase compensator 2 that receives the broadband light Lw emitted from the broadband light source 1.

上記広帯域光原1は、チタンサファイア結晶など広い利得帯域を持つレーザ媒質や、コヒーレント光の変調を利用することで広帯域光Lwを生成し、生成した広帯域光Lwを出射する。   The broadband light source 1 generates a broadband light Lw by using a laser medium having a wide gain band such as a titanium sapphire crystal, or modulation of coherent light, and emits the generated broadband light Lw.

そして、上記スペクトル位相補償装置2は、入射された広帯域光Lwのスペクトル位相の補償を行うことによって、上記広帯域光Lwから繰り返し周波数の高い超短光パルスを生成し、生成した超短光パルスLxを出射する。   The spectral phase compensator 2 generates an ultrashort optical pulse having a high repetition frequency from the broadband light Lw by compensating the spectral phase of the incident broadband light Lw, and generates the generated ultrashort optical pulse Lx. Is emitted.

ここで、超高繰返し周期を実現する離散的なスペクトルを対象にした位相分散補償の場合、各スペクトル成分が同一の位相を持つ条件以外にもパルス幅を最も短くする最適条件が存在する。離散スペクトルは等間隔の線スペクトルで形成されるため、隣り合うスペクトルの位相差を2πの整数倍に選ぶことができる。適当な2次分散を加えることで、もともと存在する2次分散を打ち消すことができる。   Here, in the case of phase dispersion compensation for a discrete spectrum that realizes an extremely high repetition period, there is an optimum condition for making the pulse width the shortest in addition to a condition in which each spectrum component has the same phase. Since the discrete spectrum is formed by equally spaced line spectra, the phase difference between adjacent spectra can be selected to be an integer multiple of 2π. By adding an appropriate secondary dispersion, it is possible to cancel the existing secondary dispersion.

この超短光パルス生成装置10におけるスペクトル位相補償装置2は、隣り合うスペクトルの位相差を2πの整数倍とする厚さtの正分散媒質からなり、広帯域光Lwが入射される平行平板2Aを備え、上記平行平板2Aを透過させることにより、広帯域光Lwから繰り返し周波数の高い超短光パルスLxの生成のためのスペクトル位相の補償を行う。   The spectral phase compensator 2 in the ultrashort optical pulse generator 10 is composed of a positive dispersion medium having a thickness t in which the phase difference between adjacent spectra is an integral multiple of 2π, and includes a parallel plate 2A on which broadband light Lw is incident. In addition, by transmitting the parallel plate 2A, the spectrum phase is compensated for generating the ultrashort optical pulse Lx having a high repetition frequency from the broadband light Lw.

上記平行平板2Aは、既知の分散特性を持つ光学ガラスを、取り除くべき2次分散の量に応じて厚さtを調整したもので、広帯域光Lwの光路に挿入することで2次分散を補償する。   The parallel plate 2A is an optical glass having a known dispersion characteristic, the thickness t of which is adjusted according to the amount of secondary dispersion to be removed, and the secondary dispersion is compensated by inserting it into the optical path of the broadband light Lw. To do.

すなわち、このスペクトル位相補償装置2では、図2に示すように、隣り合うスペクトルの位相差を2πの整数倍とする厚さtの正分散媒質からなる平行平板2Aを透過させることにより、広帯域光Lwから繰り返し周波数の高い超短光パルスLxの生成のためのスペクトル位相の補償を行う。   That is, in this spectral phase compensator 2, as shown in FIG. 2, broadband light is transmitted by transmitting through a parallel plate 2A made of a positive dispersion medium having a thickness t in which the phase difference between adjacent spectra is an integral multiple of 2π. Spectral phase compensation is performed to generate an ultrashort optical pulse Lx having a high repetition frequency from Lw.

ここで、広帯域光源の発生する広帯域光Lwのスペクトルと位相を図2の(A)に示し、上記広帯域光Lwの各スペクトル成分を図2の(B)を示し、スペクトル成分毎に位相補償した各スペクトル成分を図2の(C)に示し、生成した超短光パルスLxのスペクトルと位相を図2の(D)に示す。   Here, the spectrum and phase of the broadband light Lw generated by the broadband light source are shown in FIG. 2A, each spectral component of the broadband light Lw is shown in FIG. 2B, and phase compensation is performed for each spectral component. Each spectral component is shown in FIG. 2C, and the spectrum and phase of the generated ultrashort light pulse Lx are shown in FIG.

なお、上記超短光パルス生成装置10において、上記スペクトル位相補償装置2に入射される広帯域光Lwに存在する分散量は、上記広帯域光原1の状態やその後の透過媒質の材料や量によって変化するので、上記スペクトル位相補償装置2の平行平板2Aは、取り除くべき2次分散の量に応じた厚さtとしておく必要がある。   In the ultrashort optical pulse generator 10, the amount of dispersion existing in the broadband light Lw incident on the spectral phase compensator 2 varies depending on the state of the broadband light source 1 and the material and amount of the transmission medium thereafter. Therefore, the parallel plate 2A of the spectral phase compensator 2 needs to have a thickness t corresponding to the amount of secondary dispersion to be removed.

また、上記超短光パルス生成装置10は、固定の厚さtの平行平板2Aによりスペクトル位相の補償を行う上記スペクトル位相補償装置2に替えて、例えば、図3に示すような構成のスペクトル位相補償装置20を用いることにより、厚さtを可変自在とした平行平板部21により任意の補償量にてスペクトル位相の補償を行うことができる。   In addition, the ultrashort optical pulse generator 10 is replaced with the spectral phase compensator 2 that performs spectral phase compensation by a parallel plate 2A having a fixed thickness t, for example, a spectral phase having a configuration as shown in FIG. By using the compensator 20, the spectral phase can be compensated with an arbitrary compensation amount by the parallel plate portion 21 having a variable thickness t.

図3に示すスペクトル位相補償装置20は、それぞれくさび形の断面形状を有し、互いに斜面21A,21Bを対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面21Aと出射面21Bとの距離が可変自在とされ、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整される厚さtが調整自在な平行平板部21を形成する正分散媒質からなる1対の光学素子21A,21Bを有する。 The spectral phase compensator 20 shown in FIG. 3 has a wedge-shaped cross-sectional shape, is arranged with the inclined surfaces 21A 1 and 21B 1 facing each other, and at least one optical element moves along the inclined surface, be freely the distance between the parallel incidence plane 21A 2 together with the exit surface 21B 2 variable thickness is adjusted the phase difference between adjacent spectrum thickness of an integral multiple of 2π t is adjustable parallel plate portion A pair of optical elements 21 </ b> A and 21 </ b> B made of a positive dispersion medium forming 21 is provided.

このスペクトル位相補償装置20では、例えば、光学素子21Aを斜面21A,21Bに沿って移動させることにより、図4の(A),(B)に示すように、平行平板部21の厚さtを自由に変化させることができる。したがって、平行平板部21により任意の補償量にてスペクトル位相の補償を行うことができる。 In the spectral phase compensator 20, for example, by moving the optical element 21A along the inclined surfaces 21A 1 and 21B 1 , the thickness of the parallel plate portion 21 is shown in FIGS. 4A and 4B. t can be freely changed. Therefore, the spectral phase can be compensated with an arbitrary compensation amount by the parallel plate portion 21.

そして、このスペクトル位相補償装置20では、互いに平行な入射面21Aと出射面21Bとの距離が可変自在とされた正分散媒質からなる1対の光学素子21A,21Bにより、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整された平行平板部21を形成して、上記平行平板部21を透過させることにより、広帯域光Lwから繰り返し周波数の高い超短光パルスLxの生成のためのスペクトル位相の補償を行う。 In the spectral phase compensator 20, the adjacent spectral elements are made up of a pair of optical elements 21 A and 21 B made of a positive dispersion medium in which the distance between the entrance plane 21 A 2 and the exit plane 21 B 2 parallel to each other is variable. The parallel flat plate portion 21 having a thickness adjusted to an integer multiple of 2π is formed, and the parallel flat plate portion 21 is transmitted to generate the ultrashort optical pulse Lx having a high repetition frequency from the broadband light Lw. Spectral phase compensation for.

ここで、離散スペクトルの周波数間隔が10.6THzの場合、光学ガラス(BK7)では、32mm厚さを変化させれば、2次分散が補償される厚さが1度現れることが見積もられるので、図5に示すような断面形状の短辺21Aの長さが40mmの光学素子21Aと短辺21Bの長さが20mmの光学素子21Bを光学ガラス(BK7)にて作製して、上記スペクトル位相補償装置20として用い、図6に示すような構成の広帯域離散スペクトル発生装置30に実装して、離散スペクトルの周波数間隔が10.6THzの広帯域光Lwについてスペクトル位相の補償を行ったところ、平行平板部21の厚さtを10mm〜40mmまで変化させた場合、10mm付近と40mm付近でパルス幅が短くなり、超短光パルスLxを生成することができた。 Here, when the frequency interval of the discrete spectrum is 10.6 THz, in the optical glass (BK7), if the thickness is changed by 32 mm, it is estimated that the thickness for compensating the second order dispersion appears once. length length of the optical element 21A and the short side 21B 3 of 40mm short side 21A 3 of the cross-sectional shape as shown in FIG. 5 is 20mm optical element 21B was manufactured by optical glass (BK7), the spectrum When the phase compensator 20 is used as the phase compensator 20 and mounted on the wideband discrete spectrum generator 30 having the configuration shown in FIG. 6 and the spectrum phase is compensated for the broadband light Lw having a discrete spectrum frequency interval of 10.6 THz, it is parallel. When the thickness t of the flat plate portion 21 is changed from 10 mm to 40 mm, the pulse width is shortened around 10 mm and 40 mm, and an ultrashort light pulse Lx is generated. Rukoto could be.

この広帯域離散スペクトル発生装置30は、周波数が372THz(波長:806.3297nm)のレーザ光と383THz(波長:783.9316nm)のレーザ光とを発生し、同軸に重ね合わせて混合した二波長のレーザ光を出射するチタンサファイア(TI:SA)レーザ光源31と、上記レーザ光源31から出射された二波長のレーザ光が上記第1のハーフミラー32を介して入射される広帯域離散スペクトル生成用セル33と、上記広帯域離散スペクトル生成用セル33から出射された広帯域光Lwが第2のハーフミラー34を介して入射される第1の測定系35と、上記レーザ光源31から出射された二波長のレーザ光が上記第1のハーフミラー32により反射されて入射されるとともに、上記広帯域離散スペクトル生成用セル33から出射された広帯域光Lw’が第2のハーフミラー34により反射されて入射される第2の測定系36からなり、上記広帯域離散スペクトル生成用セル33と上記第2のハーフミラー34の間の光路中に上記位相補償装置20が設けられている。   This broadband discrete spectrum generator 30 generates a laser beam having a frequency of 372 THz (wavelength: 806.3297 nm) and a laser beam having a frequency of 383 THz (wavelength: 783.9316 nm), and is a two-wavelength laser that is coaxially superimposed and mixed. A titanium sapphire (TI: SA) laser light source 31 that emits light, and a broadband discrete spectrum generating cell 33 into which two-wavelength laser light emitted from the laser light source 31 is incident via the first half mirror 32. A first measurement system 35 in which the broadband light Lw emitted from the broadband discrete spectrum generating cell 33 is incident via a second half mirror 34, and a two-wavelength laser emitted from the laser light source 31. The light is reflected by the first half mirror 32 and incident, and the broadband discrete spectrum generating cell 3 is used. The broadband light Lw ′ emitted from the second half mirror 34 is reflected by the second half mirror 34 and is incident thereon, and is disposed between the broadband discrete spectrum generating cell 33 and the second half mirror 34. The phase compensator 20 is provided in the optical path.

上記広帯域離散スペクトル生成用セル33は、例えば、光学クライスタット内に固体パラ水素結晶を設置してなる非線形波長変換素子である。   The broadband discrete spectrum generating cell 33 is, for example, a nonlinear wavelength conversion element in which a solid parahydrogen crystal is installed in an optical crystat.

この広帯域離散スペクトル発生装置30では、上記レーザ光源31により周波数が372THz(波長:806.3297nm)のレーザ光と383THz(波長:783.9316nm)のレーザ光とを発生し、同軸に重ね合わせた混合した二波長のレーザ光を上記第1のハーフミラー31を介して励起レーザ光として上記広帯域離散スペクトル生成用セル33に入射させることにより、上記広帯域離散スペクトル生成用セル33において、図7に示すように、ラマン過程を経て高次のサイドバンドを発生させ、離散スペクトルの周波数間隔が10.6THzの広帯域光Lwを発生させる。   In the wideband discrete spectrum generator 30, a laser beam having a frequency of 372 THz (wavelength: 806.3297 nm) and a laser beam having a frequency of 383 THz (wavelength: 783.9316 nm) are generated by the laser light source 31 and mixed in a coaxial manner. As shown in FIG. 7, in the broadband discrete spectrum generating cell 33, the two-wavelength laser light is incident on the broadband discrete spectrum generating cell 33 as excitation laser light through the first half mirror 31. In addition, a high-order sideband is generated through a Raman process, and broadband light Lw having a frequency interval of a discrete spectrum of 10.6 THz is generated.

上記広帯域離散スペクトル生成用セル33と上記第2のハーフミラー34の間の光路中に設けられた上記位相補償装置20は、上述の如く、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整される厚さtが調整自在な平行平板部21を形成する正分散媒質からなる1対の光学素子21A,21Bにて構成されたもので、上記広帯域離散スペクトル生成用セル33から入射された広帯域離散スペクトルの広帯域光Lwが上記平行平板部21に入射され、上記平行平板部21により上記広帯域光Lwの各スペクトルの位相補償を行う。   As described above, the phase compensator 20 provided in the optical path between the broadband discrete spectrum generating cell 33 and the second half mirror 34 has a thickness that makes the phase difference between adjacent spectra an integral multiple of 2π. It is composed of a pair of optical elements 21A and 21B made of a positive dispersion medium forming a parallel flat plate portion 21 having an adjustable thickness t, and is incident from the broadband discrete spectrum generating cell 33. The broadband light Lw having the broadband discrete spectrum is incident on the parallel plate portion 21, and the parallel plate portion 21 performs phase compensation of each spectrum of the broadband light Lw.

上記第1の測定系35は、上記位相補償装置20を通過した広帯域光Lw’が上記第2のハーフミラー34を介して第1の測定光L1として入射される高調波発生用の非線形光学素子(BBO)35Aと、この非線形光学素子(BBO)35Aにより発生される高調波を検出する光検出器35Bからなる。   The first measurement system 35 includes a nonlinear optical element for generating harmonics in which the broadband light Lw ′ that has passed through the phase compensation device 20 is incident as the first measurement light L1 via the second half mirror 34. (BBO) 35A and a photodetector 35B for detecting harmonics generated by the nonlinear optical element (BBO) 35A.

この第1の測定系35は、上記非線形光学素子(BBO)35Aにより上記第1の測定光L1の高調波を発生し、発生した第二高調波(SH)を上記光検出器35Bにより検出する。   In the first measurement system 35, the nonlinear optical element (BBO) 35A generates a harmonic of the first measurement light L1, and the generated second harmonic (SH) is detected by the photodetector 35B. .

また、上記第2の測定系36は、上記レーザ光源31から出射された二波長のレーザ光が上記第1のハーフミラー32により反射されて参照光Lrefとして入射される遅延ステージ36Aと、この遅延ステージ36Aを介して上記参照光Lrefが入射されるとともに、上記位相補償装置20を通過した広帯域光Lw’が上記第2のハーフミラー34により反射されて第2の測定光L2として入射される凹面鏡36Bと、上記参照光Lrefと第2の測定光L2の混合光が上記凹面鏡36Bにより反射されて入射される高調波発生用の非線形光学素子(BBO)36Cと、この非線形光学素子(BBO)36Cにより発生される高調波が入射されるスペクトロメータ36Dからなる。   The second measurement system 36 includes a delay stage 36A on which the two-wavelength laser light emitted from the laser light source 31 is reflected by the first half mirror 32 and is incident as reference light Lref. A concave mirror in which the reference light Lref is incident through the stage 36A and the broadband light Lw ′ that has passed through the phase compensation device 20 is reflected by the second half mirror 34 and incident as the second measurement light L2. 36B, a non-linear optical element (BBO) 36C for generating harmonics in which a mixed light of the reference light Lref and the second measurement light L2 is reflected by the concave mirror 36B, and the non-linear optical element (BBO) 36C It consists of spectrometer 36D into which the harmonics generated by are incident.

この第2の測定系36は、上記遅延ステージ36Aにより上記参照光Lrefが通過する光路長さを可変して、上記参照光Lrefに与える遅延量を調整し、上記参照光Lrefと第2の測定光L2の混合光の高調波を上記非線形光学素子(BBO)36Cを発生し、上記混合光の高調波を上記スペクトロメータ36Dにより検出することにより、上記第2の測定光L2に含まれるスペクトルの位相、すなわち、上記位相補償装置20を通過した広帯域光Lw’のスペクトルの位相を測定する。   The second measurement system 36 adjusts the amount of delay given to the reference light Lref by changing the optical path length through which the reference light Lref passes by the delay stage 36A, and the second measurement system 36 and the second measurement light Lref. The nonlinear optical element (BBO) 36C generates harmonics of the mixed light of the light L2, and the harmonics of the mixed light is detected by the spectrometer 36D, whereby the spectrum included in the second measurement light L2 is detected. The phase, that is, the phase of the spectrum of the broadband light Lw ′ that has passed through the phase compensation device 20 is measured.

このような構成の広帯域離散スペクトル発生装置30において、上記位相補償装置20の上記平行平板部21の厚さtを10mm〜40mmまで変化させて、離散スペクトルの周波数間隔が10.6THzの広帯域光Lwについてスペクトル位相の補償を行い、上記平行平板部21の厚さtが10mm、15mm、20mm、25mm、30mm、35mm、40mmの場合に、上記第2の測定系36により上記位相補償装置20を通過した広帯域光Lw’のスペクトルの位相の各測定結果を図8にP(10mm)、P(15mm)、P(20mm)、P(25mm)、P(30mm)、P(35mm)、P(40mm)として示し、また、時間波形の各測定結果を図9にS(10mm)、S(15mm)、S(20mm)、S(25mm)、S(30mm)、S(35mm)、S(40mm)として示す。   In the broadband discrete spectrum generating apparatus 30 having such a configuration, the thickness t of the parallel plate portion 21 of the phase compensation apparatus 20 is changed from 10 mm to 40 mm, and the broadband light Lw having a discrete spectrum frequency interval of 10.6 THz. When the thickness t of the parallel plate portion 21 is 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, and 40 mm, the second measurement system 36 passes the phase compensation device 20. The measured results of the phase of the spectrum of the broadband light Lw ′ are shown in FIG. 8 as P (10 mm), P (15 mm), P (20 mm), P (25 mm), P (30 mm), P (35 mm), P (40 mm). In addition, each measurement result of the time waveform is shown in FIG. 9 as S (10 mm), S (15 mm), S (20 mm), and S (25 mm). S (30mm), S (35mm), shown as S (40 mm).

なお、図8には、上記位相補償装置20を設けない場合の広帯域光Lw’のスペクトルの位相特性をP(0)として示し、また、目的の位相特性をP(0π)、P(2π)、P(4π)として示してある。また、図9には、上記位相補償装置20を設けない場合の広帯域光Lw’の時間波形をS(0)として示し、また、理想状態の時間波形をS(R)として示してある。   In FIG. 8, the phase characteristic of the spectrum of the broadband light Lw ′ without the phase compensation device 20 is shown as P (0), and the target phase characteristics are P (0π) and P (2π). , P (4π). In FIG. 9, the time waveform of the broadband light Lw ′ without the phase compensation device 20 is shown as S (0), and the time waveform in the ideal state is shown as S (R).

このように、上記広帯域離散スペクトル発生装置30では、上記平行平板部21の厚さtを10mm〜40mmまで変化させた場合、10mm付近と40mm付近でパルス幅が短くなり、超短光パルスLxを生成することができた。   As described above, in the broadband discrete spectrum generating apparatus 30, when the thickness t of the parallel plate portion 21 is changed from 10 mm to 40 mm, the pulse width becomes short near 10 mm and 40 mm, and the ultrashort light pulse Lx is generated. Could be generated.

また、上記広帯域離散スペクトル発生装置30における上記スペクトル位相補償装置20は、例えば、図10に示すように、上記光学素子21Aを斜面21A,21Bに沿って移動させる駆動部22と、上記平行平板部21を透過した光を検出し、その検出出力に基づいて上記駆動部22を動作させ、上記平行平板部21の厚さtを隣り合うスペクトルの位相差を2πの整数倍とする厚さに制御する制御部23とを設け、上記制御部23により上記平行平板部21の厚さtを隣り合うスペクトルの位相差を2πの整数倍とする厚さに自動制御するようにすることもできる。 The spectral phase compensator 20 in the broadband discrete spectrum generator 30 includes, for example, a drive unit 22 that moves the optical element 21A along the inclined surfaces 21A 1 and 21B 1 and the parallel as shown in FIG. Thickness that detects light transmitted through the flat plate portion 21, operates the driving unit 22 based on the detection output, and sets the thickness t of the parallel flat plate portion 21 to a phase difference of adjacent spectra that is an integral multiple of 2π. The control unit 23 can automatically control the thickness t of the parallel plate portion 21 to a thickness that makes the phase difference of adjacent spectra an integral multiple of 2π. .

上記駆動部22は、例えばパルスモータによりウオームギヤを回転駆動して、上記光学素子21Aを斜面21A,21Bに沿って移動させる構造とする。 The drive unit 22 has a structure in which, for example, a worm gear is rotationally driven by a pulse motor to move the optical element 21A along the inclined surfaces 21A 1 and 21B 1 .

また、上記制御部23は、上記第1の測定系35の光検出器35Bにより検出される上記第1の測定光L1、すなわち、上記位相補償装置20を通過した広帯域光Lw’の2次高調波成分の検出出力に基づいて、上記広帯域光Lw’のパルス幅やピーク強度等を求めて、上記駆動部22の動作を制御することにより、上記平行平板部21の厚さtを、上記広帯域光Lw’のパルス幅が最短の状態又はピーク強度が最強の状態、すなわち、スペクトルの位相差を2πの整数倍とする厚さに自動制御する。   Further, the control unit 23 is the second harmonic of the first measurement light L1 detected by the photodetector 35B of the first measurement system 35, that is, the broadband light Lw ′ that has passed through the phase compensation device 20. Based on the detection output of the wave component, the pulse width, peak intensity, and the like of the broadband light Lw ′ are obtained, and the operation of the driving unit 22 is controlled, so that the thickness t of the parallel plate portion 21 is set to the broadband. The light Lw ′ is automatically controlled to have a state where the pulse width is the shortest or the peak intensity is the strongest, that is, the thickness where the phase difference of the spectrum is an integral multiple of 2π.

上記広帯域離散スペクトル発生装置30では、上記平行平板部21を透過した光を検出し、その検出出力に基づいて駆動部22を動作させ、上記平行平板部21の厚さtを隣り合うスペクトルの位相差を2πの整数倍とする厚さに制御する制御部23を上記スペクトル位相補償装置20に設けることにより、安定に且つ簡単に超短光パルスLxを生成することができる。   The broadband discrete spectrum generator 30 detects the light transmitted through the parallel plate portion 21, operates the drive unit 22 based on the detection output, and sets the thickness t of the parallel plate portion 21 to the position of the adjacent spectrum. By providing the spectral phase compensator 20 with the control unit 23 for controlling the thickness of the phase difference to an integral multiple of 2π, the ultrashort optical pulse Lx can be generated stably and easily.

なお、本発明は、以上の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。   In addition, this invention is not limited only to the above embodiment, Of course, a various change is possible in the range which does not deviate from the summary of this invention.

1 広帯域光原、2 スペクトル位相補償装置、2A 平行平板2A、10 超短光パルス生成装置、20 スペクトル位相補償装置、21 平行平板部21、21A,21B 斜面、21A 入射面、21B 出射面、21A,21B 光学素子、22 駆動部、23 制御部、30 広帯域離散スペクトル発生装置、31 レーザ光源、32 第1のハーフミラー、33 広帯域離散スペクトル生成用セル、34 第2のハーフミラー、35 第1の測定系、35A 非線形光学素子(BBO)、35B 光検出器、36 第2の測定系、36A 遅延ステージ36A、36B 凹面鏡、36C 非線形光学素子(BBO)、36D スペクトロメータ 1 wideband HikariHara, 2 spectral phase compensator, 2A parallel plate 2A, 10 ultrashort optical pulse generator, 20 spectral phase compensator 21 parallel plate portion 21, 21A 1, 21B 1 slope, 21A 2 incident surface, 21B 2 Output surface, 21A, 21B optical element, 22 drive unit, 23 control unit, 30 broadband discrete spectrum generator, 31 laser light source, 32 first half mirror, 33 broadband discrete spectrum generation cell, 34 second half mirror, 35 First measurement system, 35A Non-linear optical element (BBO), 35B photodetector, 36 Second measurement system, 36A Delay stage 36A, 36B Concave mirror, 36C Non-linear optical element (BBO), 36D spectrometer

Claims (8)

隣り合うスペクトルの位相差を2πの整数倍とする厚さの正分散媒質からなる平行平板を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とするスペクトル位相補償方法。   Spectral phase compensation for generation of ultrashort optical pulses with high repetition frequency from broadband light by transmitting through parallel plates made of positive dispersion media with a thickness that makes the phase difference between adjacent spectra an integral multiple of 2π. Spectral phase compensation method characterized by performing. 隣り合うスペクトルの位相差を2πの整数倍とする厚さの正分散媒質からなり、広帯域光が入射される平行平板を備え、
上記平行平板を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とするスペクトル位相補償装置。
It is composed of a positive dispersion medium having a thickness that makes the phase difference between adjacent spectra an integer multiple of 2π, and includes a parallel plate on which broadband light is incident.
A spectral phase compensator for compensating a spectral phase for generating an ultrashort optical pulse having a high repetition frequency from broadband light by transmitting the parallel plate.
それぞれくさび形の断面形状を有し、互いに斜面を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面と出射面との距離が可変自在とされた正分散媒質からなる1対の光学素子により、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整された平行平板部を形成し、
上記平行平板部を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とするスペクトル位相補償方法。
Each has a wedge-shaped cross-section, and is arranged with the inclined surfaces facing each other. At least one of the optical elements moves along the inclined surface, so that the distance between the entrance surface and the exit surface parallel to each other can be varied. A pair of optical elements made of a positive dispersion medium is used to form a parallel plate portion adjusted to a thickness in which the phase difference between adjacent spectra is an integral multiple of 2π,
A spectral phase compensation method for performing spectral phase compensation for generating an ultrashort optical pulse having a high repetition frequency from broadband light by transmitting the parallel plate portion.
上記平行平板部の厚さを、入射される広帯域光に存在する2次分散を打ち消して、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整することを特徴とする請求項3記載のスペクトル位相補償方法。   4. The thickness of the parallel plate portion is adjusted to a thickness that cancels second-order dispersion existing in incident broadband light and sets a phase difference between adjacent spectra to an integral multiple of 2π. The described spectral phase compensation method. それぞれくさび形の断面形状を有し、互いに斜面を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面と出射面との距離が可変自在とされ、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整される厚さが調整自在な平行平板部を形成する正分散媒質からなる1対の光学素子を有し、
上記平行平板部を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とするスペクトル位相補償装置。
Each has a wedge-shaped cross-section, and is arranged with the inclined surfaces facing each other. At least one of the optical elements moves along the inclined surface, so that the distance between the entrance surface and the exit surface parallel to each other can be varied. , Having a pair of optical elements made of a positive dispersion medium forming a parallel plate portion having an adjustable thickness that is adjusted to a thickness in which the phase difference between adjacent spectra is an integral multiple of 2π,
A spectral phase compensation apparatus for performing spectral phase compensation for generating ultrashort optical pulses having a high repetition frequency from broadband light by transmitting the parallel plate portion.
上記平行平板部は、入射される広帯域光に存在する2次分散を打ち消して、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整されることを特徴とする請求項5記載のスペクトル位相補償装置。   The said parallel plate part is adjusted to the thickness which cancels the secondary dispersion which exists in the incident broadband light, and makes the phase difference of an adjacent spectrum an integer multiple of 2 (pi). Spectral phase compensator. それぞれくさび形の断面形状を有し、互いに斜面を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面と出射面との距離が可変自在とされた正分散媒質からなる1対の光学素子により形成される厚さが調整自在な平行平板部に広帯域光を入射し、
上記平行平板部を透過した光を検出し、その検出出力に基づいて上記1対の光学素子の少なくとも一方の光学素子が斜面に沿って移動させる駆動部を動作させ、上記平行平板部の厚さを隣り合うスペクトルの位相差を2πの整数倍とする厚さに制御し、
上記平行平板部を透過させることにより、上記広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とするスペクトル位相補償方法。
Each has a wedge-shaped cross-section, and is arranged with the inclined surfaces facing each other. At least one of the optical elements moves along the inclined surface, so that the distance between the entrance surface and the exit surface parallel to each other can be varied. Broadband light is incident on a parallel plate portion having an adjustable thickness formed by a pair of optical elements made of a positive dispersion medium,
The light transmitted through the parallel plate portion is detected, and based on the detection output, at least one optical element of the pair of optical elements is operated along a slope, and the thickness of the parallel plate portion is operated. To a thickness that makes the phase difference between adjacent spectra an integer multiple of 2π,
A spectral phase compensation method for performing spectral phase compensation for generating an ultrashort optical pulse having a high repetition frequency from the broadband light by transmitting the parallel plate portion.
それぞれくさび形の断面形状を有し、互いに斜面を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面と出射面との距離が可変自在とされ、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整される厚さが調整自在な平行平板部を形成する正分散媒質からなる1対の光学素子と、
上記1対の光学素子の少なくとも一方の光学素子が斜面に沿って移動させる駆動部と、
上記平行平板部を透過した光を検出し、その検出出力に基づいて上記駆動部を動作させ、上記平行平板部の厚さを隣り合うスペクトルの位相差を2πの整数倍とする厚さに制御する制御部と
を備え、
上記平行平板部を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とするスペクトル位相補償装置。
Each has a wedge-shaped cross-section, and is arranged with the inclined surfaces facing each other. At least one of the optical elements moves along the inclined surface, so that the distance between the entrance surface and the exit surface parallel to each other can be varied. A pair of optical elements composed of a positive dispersion medium that forms a parallel plate portion having an adjustable thickness that is adjusted to a thickness that makes the phase difference between adjacent spectra an integer multiple of 2π;
A drive unit that moves at least one optical element of the pair of optical elements along a slope;
The light transmitted through the parallel plate portion is detected, the drive unit is operated based on the detection output, and the thickness of the parallel plate portion is controlled so that the phase difference between adjacent spectra is an integral multiple of 2π. And a control unit that
A spectral phase compensation apparatus for performing spectral phase compensation for generating ultrashort optical pulses having a high repetition frequency from broadband light by transmitting the parallel plate portion.
JP2009012229A 2009-01-22 2009-01-22 Spectral phase compensation method and spectral phase compensation apparatus Active JP5354653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012229A JP5354653B2 (en) 2009-01-22 2009-01-22 Spectral phase compensation method and spectral phase compensation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009012229A JP5354653B2 (en) 2009-01-22 2009-01-22 Spectral phase compensation method and spectral phase compensation apparatus

Publications (2)

Publication Number Publication Date
JP2010171194A JP2010171194A (en) 2010-08-05
JP5354653B2 true JP5354653B2 (en) 2013-11-27

Family

ID=42703038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012229A Active JP5354653B2 (en) 2009-01-22 2009-01-22 Spectral phase compensation method and spectral phase compensation apparatus

Country Status (1)

Country Link
JP (1) JP5354653B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8730570B2 (en) 2009-07-01 2014-05-20 Calmar Optcom, Inc. Optical pulse compressing based on chirped fiber bragg gratings for pulse amplification and fiber lasers
US8537866B2 (en) * 2011-05-20 2013-09-17 Calmar Optcom, Inc. Generating laser pulses of narrow spectral linewidth based on chirping and stretching of laser pulses and subsequent power amplification
US9696136B2 (en) 2013-09-25 2017-07-04 Carl Zeiss Meditec, Inc. Methods and systems for modifying second-order chromatic dispersion in optical coherence tomographic systems
JP6628287B2 (en) 2014-05-07 2020-01-08 国立大学法人電気通信大学 Laser equipment
JP6485624B2 (en) * 2014-10-28 2019-03-20 セイコーエプソン株式会社 Measuring device
DE102016110947A1 (en) * 2016-06-15 2017-12-21 Trumpf Laser Gmbh Dispersion matching unit
JP7265771B2 (en) * 2018-11-13 2023-04-27 国立大学法人電気通信大学 WAVELENGTH CONVERSION DEVICE AND LASER EQUIPMENT USING THE SAME
JP7232509B2 (en) * 2019-01-30 2023-03-03 国立大学法人電気通信大学 LASER APPARATUS, WAVELENGTH CONVERSION DEVICE, AND LIGHT OUTPUT METHOD

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5655399A (en) * 1999-09-08 2001-04-10 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Achromatic phase shift device and interferometer using achromatic phase shift device
JP2002368312A (en) * 2001-06-06 2002-12-20 Kobe University Very-short pulse laser
JP2007110089A (en) * 2005-09-15 2007-04-26 Aisin Seiki Co Ltd Method and device for generating high power short optical pulse
JP4913396B2 (en) * 2005-12-09 2012-04-11 古河電気工業株式会社 Ultra-short pulse light source
JP5099696B2 (en) * 2008-03-24 2012-12-19 国立大学法人電気通信大学 Broadband discrete spectrum generator and frequency control method thereof
JP5170748B2 (en) * 2008-03-24 2013-03-27 国立大学法人電気通信大学 Discrete spectrum spectral phase measurement apparatus and discrete spectrum spectral phase measurement method

Also Published As

Publication number Publication date
JP2010171194A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5354653B2 (en) Spectral phase compensation method and spectral phase compensation apparatus
Lu et al. Generation of intense supercontinuum in condensed media
US20110211600A1 (en) Laser system for output manipulation
Vainio et al. Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy
Ionin et al. Mode‐locked CO laser frequency doubling in ZnGeP2 with 25% efficiency
Lin et al. Optical parametric amplification of sub-cycle shortwave infrared pulses
Sutton et al. Improvements in filtered Rayleigh scattering measurements using Fabry–Perot etalons for spectral filtering of pulsed, 532-nm Nd: YAG output
JP2017187465A5 (en)
CN101615754B (en) Method and apparatus for dynamic compensation and pulse compression of higher harmonic inherent chirp
WO2017069132A1 (en) Terahertz time-resolved spectroscopic device
Schuster et al. Agile spectral tuning of high order harmonics by interference of two driving pulses
KR100809271B1 (en) Wavelength converted laser apparatus
Nazarov et al. Enhancement of THz generation by two-color TW laser pulses in a low-pressure gas
JP2014044365A (en) Pulse front inclined optical system and terahertz wave generator
Tang et al. Narrow band optical filter using Goos–Hänchen shift in a cascaded waveguide structure
Smirnova et al. Simple and high performance DFB laser based on dye-doped nanocomposite volume gratings
JP6501451B2 (en) Light source device and information acquisition device using the same
TWI738448B (en) Laser source apparatus with multiple plate continuum and measurement system therewith
Gorelik et al. Mesoporous photonic-crystal films for amplification and filtering of electromagnetic radiation
Mazur et al. Increase of an output optical signal of an acousto-optic monochromator upon frequency modulation of a control signal
CN103984114A (en) Small-size double-density grating pair femtosecond pulse compression device
Bierbach et al. Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape
Vabishchevich et al. Femtosecond relaxation dynamics of surface plasmon-polaritons in the vicinity of fano-type resonance
Krauß et al. Fiber-coupled high-speed asynchronous optical sampling with sub-50 fs time resolution
JP2000221555A (en) Laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5354653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250