JP5354558B1 - Rotor liquid cooling system - Google Patents

Rotor liquid cooling system Download PDF

Info

Publication number
JP5354558B1
JP5354558B1 JP2013091740A JP2013091740A JP5354558B1 JP 5354558 B1 JP5354558 B1 JP 5354558B1 JP 2013091740 A JP2013091740 A JP 2013091740A JP 2013091740 A JP2013091740 A JP 2013091740A JP 5354558 B1 JP5354558 B1 JP 5354558B1
Authority
JP
Japan
Prior art keywords
rotating shaft
liquid
rotor
adapter
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013091740A
Other languages
Japanese (ja)
Other versions
JP2014217142A (en
Inventor
吉弘 岡本
史人 神長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2013091740A priority Critical patent/JP5354558B1/en
Application granted granted Critical
Publication of JP5354558B1 publication Critical patent/JP5354558B1/en
Publication of JP2014217142A publication Critical patent/JP2014217142A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】回転軸を軸支する軸受を覆う外カバーに、アダプターを介して装着されて外カバーから外方に突出した回転軸の前端部分を受け入れる冷却液箱を有し、冷却液箱に、入液パイプと排液通路とが備え、摺動リングと固定リングとを有するメカニカルシールユニットによりハウジング内への冷却液の浸入を防止するようにした回転子の液冷却装置を不釣り合い質量と回転数とによって誘発される強制外力に起因するメカニカルシールユニット装着箇所での振動加速度の増加を抑制すると同時に、回転軸周りの撓み変形量に起因するメカニカルシールユニット装着箇所での振動加速度の増加を抑制して、耐久性を向上させる。
【解決手段】固定リング62を取付金具7の後端周縁部に外挿すると共に、アダプター3の前面に凹設したくぼみ部32に摺動リング61を直接嵌着し、摺動リングを前方に向けて付勢するコイルばね35をアダプターに内蔵する。
【選択図】図2
An outer cover that covers a bearing that supports a rotating shaft has a cooling liquid box that is attached via an adapter and receives a front end portion of the rotating shaft that protrudes outward from the outer cover. Rotor liquid cooling device equipped with a liquid inlet pipe and a liquid drainage passage, which prevents the intrusion of the liquid coolant into the housing by a mechanical seal unit having a sliding ring and a fixed ring. Suppresses the increase in vibration acceleration at the location where the mechanical seal unit is mounted due to the forced external force induced by the number, and also suppresses the increase in vibration acceleration at the location where the mechanical seal unit is mounted due to the amount of bending deformation around the rotation axis And improve durability.
A fixing ring 62 is extrapolated to the peripheral edge of the rear end of the mounting bracket 7, and a sliding ring 61 is directly fitted into a recessed portion 32 formed in a recess on the front surface of an adapter 3, so that the sliding ring is moved forward. A coil spring 35 that is biased toward the inside is built in the adapter.
[Selection] Figure 2

Description

本発明は、主として電動機の回転子を冷却するための回転子の液冷却装置に関する。   The present invention relates to a rotor liquid cooling apparatus mainly for cooling a rotor of an electric motor.

この種の回転子の液冷却装置は例えば特許文献1で知られている。このものは、回転軸に外挿される回転子とこの回転子を囲う固定子とが収納され、回転軸を軸支する、当該回転軸の軸線方向で前後一対の軸受が設けられたハウジングに密着して、反伝動側である前方の軸受を覆う外カバーに、アダプターを介して装着されて外カバーから外方に突出した回転軸の前端部分を受け入れる冷却液箱を有する。冷却液箱には、前端が開口する回転軸の内部通路に挿設される入液パイプと当該冷却液箱内に連通する排液通路とが備えられている。そして、冷却液が入液パイプの前端から当該入液パイプ内の往き通路を通して回転軸の内部通路へと流入され、回転軸の内周面と入液パイプの外周面との間の間隙からなる戻り通路を介して冷却液箱内に戻り、排液通路から排出されるようにしている。   This type of liquid cooling device for a rotor is known from Patent Document 1, for example. This housing accommodates a rotor that is extrapolated to the rotating shaft and a stator that surrounds the rotor, and is closely attached to a housing that supports the rotating shaft and is provided with a pair of front and rear bearings in the axial direction of the rotating shaft. And it has the cooling fluid box which receives the front-end part of the rotating shaft which was attached to the outer cover which covers the front bearing which is a non-transmission side via the adapter, and protruded outward from the outer cover. The cooling liquid box is provided with a liquid inlet pipe inserted into the internal passage of the rotating shaft whose front end is open and a drainage passage communicating with the cooling liquid box. Then, the coolant flows into the internal passage of the rotating shaft from the front end of the incoming pipe through the forward passage in the incoming pipe, and consists of a gap between the inner peripheral surface of the rotating shaft and the outer peripheral surface of the incoming pipe. It returns to the inside of the coolant box through the return passage and is discharged from the drain passage.

また、上記特許文献1記載のもの(以下、単に「従来例」という)は、アダプターの後端内面に設けた取付金具に回転軸の軸線方向に摺動自在な摺動リングが取り付られると共に、回転軸の前端部に外挿した他の取付金具に固定リングが取り付けられている。そして、アダプターに組み付けた付勢手段により摺動リングを前方に向けて付勢して摺動リングと固定リングとを面接触させ、これら摺動リングと固定リングとを有するメカニカルシールユニットによりハウジング内への冷却液の浸入を防止するようにしている。この場合、メカニカルシールユニットのシール性、耐摩耗性、機械的強度や変形剛性を確保するため、摺動リングは、上記取付金具で保持される付勢手段により付勢される基端部と、この基端部からアダプターの内面を貫通して前方に延出し、摺動リングの内周面とOリングを介して密着する断面視略Z字形状の接続部と、接続部の前端に設けたシール部とで構成されていた。   Further, the one described in Patent Document 1 (hereinafter simply referred to as “conventional example”) has a sliding ring which is slidable in the axial direction of the rotary shaft attached to a mounting bracket provided on the inner surface of the rear end of the adapter. The fixing ring is attached to another mounting bracket that is extrapolated to the front end of the rotating shaft. Then, the sliding ring is urged forward by the urging means assembled to the adapter to bring the sliding ring and the fixing ring into surface contact, and the mechanical seal unit having these sliding ring and the fixing ring allows the inside of the housing. Intrusion of coolant into the water is prevented. In this case, in order to ensure the sealing performance, wear resistance, mechanical strength and deformation rigidity of the mechanical seal unit, the sliding ring has a base end portion urged by a urging means held by the mounting bracket, From the base end portion, it penetrated the inner surface of the adapter and extended forward, and provided at the front end of the connection portion, and a connection portion having a substantially Z-shape in cross-sectional view that closely contacts the inner peripheral surface of the sliding ring via the O-ring. It consisted of a seal part.

上記従来例のメカニカルシールユニットは、特に摺動リングが軸線方向に長くて重量があり、しかも、前方の軸受から、取付金具の回転軸に対する固定箇所までの長さ(オーバーハング距離L)も長くなっている。このため、メカニカルシールユニットが設けられた箇所における回転軸周りの不釣合い重量によって誘発される強制外力に起因する振れ回り振動が増大するという問題があった。   In the conventional mechanical seal unit, the sliding ring is particularly long and heavy in the axial direction, and the length (overhang distance L) from the front bearing to the fixed portion of the mounting bracket with respect to the rotating shaft is also long. It has become. For this reason, there has been a problem that the whirling vibration caused by the forced external force induced by the unbalanced weight around the rotating shaft at the place where the mechanical seal unit is provided increases.

ここで、JIS B 0905−1992、回転機械の剛性ロータの釣合い良さの規格によれば、釣合い良さの等級がG0.4〜G4000まで11段階で規定されており、選定した釣合い良さの等級において、許容残留不釣り合いをUper(g・mm)、釣合いのバランスを図る剛性ロータの半径をR(mm)とすれば、許容不釣合い質量m(g)は、m=Uper/Rとなり、例えば、釣合良さの最も良いG0.4を選定して製作したとしても、不釣り合い質量mが残存することになる。   Here, according to JIS B 0905-1992, the standard of the balance of the rigidity rotor of the rotating machine, the grade of balance is defined in 11 stages from G0.4 to G4000. If the allowable residual unbalance is Upper (g · mm) and the radius of the rigid rotor that balances the balance is R (mm), the allowable unbalance mass m (g) is m = Upper / R. Even if G0.4 having the best quality is selected and manufactured, the unbalanced mass m remains.

上記回転軸回りの不釣合い質量mによって誘発されて回転軸に作用する振れ回りの強制外力をP、剛体ロータ(回転軸及び回転子)の回転数をn(min―1)とすると、P=mR・(2π×n/60)となる。この場合、δは、メカニカルシールユニットが設けられた箇所における回転軸周りの撓み変形量、Mは、メカニカルシールユニットが設けられた箇所での回転軸周りの質量、Cは、メカニカルシールユニットが設けられた箇所での回転軸周りの減衰係数、Kは、メカニカルシールユニットが設けられた箇所での回転軸周りの撓み変形ばね定数とすると、M・dδ/dt+C・dδ/dt+Kδ=mR・(2π×n/60)という振れ回りによる強制振動の運動方程式(1)が成立する。 Assuming that the forced external force acting on the rotating shaft induced by the unbalanced mass m around the rotating shaft is P, and the rotational speed of the rigid rotor (rotating shaft and rotor) is n (min −1 ), P = mR · (2π × n / 60) 2 In this case, δ is the amount of bending deformation around the rotation axis at the location where the mechanical seal unit is provided, M is the mass around the rotation axis at the location where the mechanical seal unit is provided, and C is the amount provided by the mechanical seal unit. The damping coefficient K around the rotation axis at a given location, where K is the flexural deformation spring constant around the rotation axis at the location where the mechanical seal unit is provided, is M · d 2 δ / dt 2 + C · dδ / dt + Kδ = The equation of motion (1) of forced vibration due to the swing of mR · (2π × n / 60) 2 is established.

上記式(1)から、強制外力Pに起因する振れ回りの振動の振幅は、不釣り合い質量mの1乗に比例し、回転数nの2乗に比例して増幅され、振れ回りの振動加速度はこの振動の振幅の増幅度合に比例して増大する。これと共に、メカニカルシールユニットが設けられた箇所における回転軸周りの撓み変形量δに起因する振れ回りの振動の振幅も、回転軸周りの撓み変形のばね定数Kに概ね反比例する。その結果、上記振れ回りの振動の振幅は、上記オーバーハング距離Lの3条に概ね比例して増幅されることになり、振れ回りの振動加速度もまた振動の振幅の増幅度合に比例して増大することになる。   From the above equation (1), the amplitude of the vibration of the run-out caused by the forced external force P is proportional to the first power of the unbalanced mass m, amplified in proportion to the square of the rotation speed n, and the vibration acceleration of the run-out Increases in proportion to the amplification degree of the amplitude of this vibration. At the same time, the amplitude of the vibration around the rotation axis caused by the amount of deformation δ around the rotation axis at the location where the mechanical seal unit is provided is also almost inversely proportional to the spring constant K of the deformation around the rotation axis. As a result, the amplitude of the vibration around the swing is amplified substantially in proportion to the three items of the overhang distance L, and the vibration acceleration around the swing is also increased in proportion to the amplification degree of the vibration amplitude. Will do.

ところで、近年では、更に高出力(例えば、200kW)で高速回転数(例えば、20000min−1〜35000min−1)の電動機が要望されることがあり、このような電動機の回転子の液冷却装置として上記従来例のものを適用すると、ハウジング内への冷却液の浸入を防止する摺動リングと固定リングとのシール面としての接触面に、引っ掻き摩耗や斑摩耗が発生し、これら摩耗に伴ってメカニカルシールユニットが破損するという問題を招来する。 By the way, in recent years, an electric motor having a higher output (for example, 200 kW) and a high-speed rotation speed (for example, 20000 min −1 to 35000 min −1 ) may be required, and as a liquid cooling device for the rotor of such an electric motor. When the above-mentioned conventional example is applied, scratching and spot wear occur on the contact surface as the sealing surface between the sliding ring and the fixing ring that prevents the coolant from entering the housing. This causes a problem that the mechanical seal unit is damaged.

特開第2738814号公報Japanese Patent Laid-Open No. 2738814

本発明は、以上の点に鑑み、不釣り合い質量と回転数とによって誘発される強制外力に起因するメカニカルシールユニット装着箇所での振動加速度の増加を抑制すると同時に、回転軸周りの撓み変形量に起因するメカニカルシールユニット装着箇所での振動加速度の増加を抑制して、摩耗に伴うメカニカルシールユニットの破損を抑制することができる耐久性の良い回転子の液冷却装置を提供することをその課題とするものである。   In view of the above points, the present invention suppresses an increase in vibration acceleration at a mechanical seal unit mounting location caused by a forced external force induced by an unbalanced mass and a rotational speed, and at the same time, reduces the amount of bending deformation around the rotation axis. It is an object of the present invention to provide a durable rotor liquid cooling device capable of suppressing an increase in vibration acceleration at a mechanical seal unit mounting location and preventing damage to the mechanical seal unit due to wear. To do.

上記の課題を解決するために、本発明の回転子の液冷却装置は、回転軸に外挿される回転子とこの回転子を囲う固定子とが収納され、回転軸を軸支する、当該回転軸の軸線方向で前後一対の軸受が夫々設けられたハウジングに密着して前方の軸受を覆う外カバーに、アダプターを介して装着されて外カバーから外方に突出した回転軸の前端部分を受け入れる冷却液箱を有し、冷却液箱に、前端が開口する回転軸の内部通路に挿設される入液パイプと当該冷却液箱内に連通する排液通路とが備えられ、冷却液が入液パイプの前端から回転軸の内部通路へと流入され、回転軸の内周面と入液パイプの外周面との間の間隙を介して冷却液箱に戻り、排液通路から排出されるように構成され、アダプターに回転軸の軸線方向に摺動自在な摺動リングが取り付られると共に、回転軸の前端部に外挿した取付金具に固定リングが取り付けられ、摺動リングを前方に向けて付勢して摺動リングと固定リングとを接触させ、これら摺動リングと固定リングとを有するメカニカルシールユニットによりハウジング内への冷却液の浸入を防止するようにし、固定リングを取付金具の後端周縁部に外挿すると共に、アダプターの前面に凹設したくぼみ部に摺動リングを嵌着し、当該摺動リングを前方に向けて付勢する付勢手段をアダプターに内蔵したことを特徴とする。   In order to solve the above-described problems, the rotor liquid cooling apparatus of the present invention includes a rotor that is extrapolated to a rotating shaft and a stator that surrounds the rotor, and supports the rotating shaft. In the axial direction of the shaft, the front end portion of the rotary shaft that protrudes outward from the outer cover is attached to the outer cover that covers the front bearing in close contact with the housing provided with a pair of front and rear bearings. A cooling liquid box is provided, and the cooling liquid box is provided with a liquid inlet pipe inserted into the internal passage of the rotating shaft whose front end is open and a drainage passage communicating with the cooling liquid box. It flows into the internal passage of the rotating shaft from the front end of the liquid pipe, returns to the cooling liquid box through the gap between the inner peripheral surface of the rotating shaft and the outer peripheral surface of the liquid inlet pipe, and is discharged from the drain passage. The adapter has a sliding ring that is slidable in the axial direction of the rotating shaft. At the same time, the fixing ring is attached to the mounting bracket that is extrapolated to the front end of the rotary shaft, and the sliding ring is urged forward to contact the sliding ring and the fixing ring. And a mechanical seal unit with a fixing ring to prevent the intrusion of coolant into the housing. The adapter is characterized in that the sliding ring is fitted and biasing means for biasing the sliding ring forward is built in the adapter.

本発明によれば、付勢手段をアダプターに内蔵することで、上記従来例で用いられていた、付勢手段を保持する取付金具を省略し、また、アダプターの前面に凹設したくぼみ部に摺動リングを直接嵌着することで、前方の軸受から、取付金具の回転軸に対する固定箇所までの長さ(オーバーハング距離)を上記従来例のものと比較して大幅に短くできる。その上、メカニカルシールユニット自体の重量も上記従来例のものと比較して大幅に軽くでき、その結果、不釣り合い質量と回転数とによって誘発される強制外力に起因するメカニカルシールユニット装着箇所での振動加速度を上記従来例と比較して大幅に抑制することができ、しかも、回転軸周りの撓み変形量に起因するメカニカルシールユニット装着箇所での振動加速度を上記従来例のものと比較して大幅に抑制することができる。   According to the present invention, since the biasing means is built in the adapter, the mounting bracket for holding the biasing means, which has been used in the above-described conventional example, is omitted, and the concave portion provided in the front surface of the adapter is provided. By directly fitting the sliding ring, the length (overhang distance) from the front bearing to the fixed portion of the mounting bracket with respect to the rotating shaft can be significantly shortened as compared with the conventional example. In addition, the weight of the mechanical seal unit itself can be significantly reduced as compared with the conventional example, and as a result, the mechanical seal unit is installed at the place where the mechanical seal unit is attached due to the forced external force induced by the unbalanced mass and the rotational speed. The vibration acceleration can be greatly suppressed compared to the above conventional example, and the vibration acceleration at the mechanical seal unit mounting location due to the bending deformation amount around the rotation axis is greatly compared to the above conventional example. Can be suppressed.

従って、本発明の回転子の液冷却装置を高出力で高速回転数の電動機に適用しても、ハウジング内への冷却液の浸入を防止する摺動リングと回転リングとのシール面としての接触面に、引っ掻き摩耗や斑摩耗が発生し難くすることができ、摩耗に伴うメカニカルシールユニットの破損を抑制して耐久性を向上することができる。   Therefore, even if the liquid cooling device for a rotor of the present invention is applied to an electric motor having a high output and a high speed, the contact between the sliding ring and the rotating ring as a sealing surface that prevents the liquid from entering the housing. Scratch wear and spot wear can be made difficult to occur on the surface, and damage to the mechanical seal unit accompanying wear can be suppressed and durability can be improved.

本発明において、前記前方及び後方の両軸受を夫々アンギュラ玉軸受とし、両アンギュラ玉軸受の向きを、当該アンギュラ玉軸受の接触角の延長線と前記回転軸の軸線との交点が当該回転軸の中心に向かうように夫々配置することが好ましい。これによれば、アンギュラ玉軸受の接触角の延長線と回転軸の軸線との交点、つまり、所謂回転子質量の作用点の位置が回転軸の中心に向かうように夫々配置されることで両アンギュラ玉軸受の回転子質量の作用点間の距離が短くなって、メカニカルシールユニットの破損に対して振動加速度の面から重畳的に悪影響を与え得る、不釣り合い質量と回転数とによって誘発される強制外力に起因するメカニカルシールユニット装着箇所での間接二次的な振動加速度を抑制することができ、しかも、回転軸周りの撓み変形量に起因するメカニカルシールユニット装着箇所での間接二次的な振動加速度を抑制することができ、メカニカルシールユニットを一層破損し難くできて耐久性を更に向上することができる。なお、アンギュラ玉軸受は回転軸の軸線方向に複数列設するようにしてもよい。   In the present invention, both the front and rear bearings are angular ball bearings, and the direction of both angular ball bearings is such that the intersection of the contact angle extension of the angular ball bearing and the axis of the rotary shaft is the axis of the rotary shaft. It is preferable to dispose each so as to go to the center. According to this, the intersection of the extension of the contact angle of the angular ball bearing and the axis of the rotating shaft, that is, the position of the so-called point of action of the rotor mass is arranged so as to be directed toward the center of the rotating shaft. Induced by unbalanced mass and rotational speed, the distance between the acting points of the angular ball bearing rotor mass is shortened and can adversely affect the mechanical seal unit damage in terms of vibration acceleration. Indirect secondary vibration acceleration at the location where the mechanical seal unit is mounted due to forced external force can be suppressed, and indirect secondary vibration at the location where the mechanical seal unit is mounted due to the amount of bending deformation around the rotation axis. Vibration acceleration can be suppressed, the mechanical seal unit can be made more difficult to break, and durability can be further improved. The angular ball bearings may be provided in a plurality of rows in the axial direction of the rotating shaft.

ところで、冷却液を入液パイプの前端から回転軸の内部通路へと流入させ、回転軸の内周面面と入液パイプの外周面との間の間隙(環状の通路)を介して冷却液箱に戻し、排液通路から排出するときに、冷却液が蒸発して気泡を発生してキャビテーション現象を引き起こし、これに起因してメカニカルシールユニットに対して付随的な振動(及び騒音)を発生させる場合がある。即ち、冷却液を入液パイプの前端から回転軸の内部空間へと流入させ、回転軸の内面と入液パイプの外周面との間の間隙を介して冷却液箱に戻し、排液通路から排出するまでの流路において、圧力をp、冷却液の密度をρ、冷却液の流速をVとすれば、ベルヌーイの定理からp+ρV/2=一定という式(2)が成立する。そして、上記流路の各箇所における断面積をS、回転子を冷却するのに必要となる冷却液の流量をQとすると、SV=Qという式(3)が成立する。 By the way, the coolant is caused to flow from the front end of the liquid inlet pipe into the internal passage of the rotary shaft, and the coolant is passed through a gap (annular passage) between the inner peripheral surface of the rotary shaft and the outer peripheral surface of the liquid inlet pipe. When it is returned to the box and discharged from the drainage passage, the cooling liquid evaporates and bubbles are generated, causing cavitation, resulting in incidental vibration (and noise) for the mechanical seal unit. There is a case to let you. That is, the cooling liquid is caused to flow from the front end of the liquid inlet pipe into the inner space of the rotary shaft, and is returned to the cooling liquid box through the gap between the inner surface of the rotary shaft and the outer peripheral surface of the liquid inlet pipe. in the flow path to be discharged, the pressure p, the density of the cooling liquid [rho, if the flow velocity of the cooling liquid and V, formula (2) is satisfied that p + pV 2/2 = constant from Bernoulli's theorem. Then, assuming that the cross-sectional area at each location of the flow path is S and the flow rate of the coolant necessary for cooling the rotor is Q, the equation (3) SV = Q is established.

上記式(3)から、流路の各箇所における断面積Sが変化すると、冷却液の流速Vが速くなる箇所と遅くなる箇所とが生じ、上記式(2)から、流路のうち断面積が狭くなる箇所では、圧力pが低く、この圧力pが冷却液の蒸気圧以下になると、冷却液が蒸発して気泡を発生する。そして、流路の断面積Sが広く、冷却液の流速Vが遅くなる流路の下流側の箇所では、圧力pが上昇することで気泡が潰れて急激な圧力変動が発生し、メカニカルシールユニットに対して付随的な振動(及び騒音)を発生させる。   From the above equation (3), when the cross-sectional area S at each location of the flow path changes, a location where the flow velocity V of the coolant increases and a location where it slows down are generated. Where the pressure becomes narrower, the pressure p is low, and when the pressure p becomes equal to or lower than the vapor pressure of the coolant, the coolant evaporates and bubbles are generated. And at the downstream side of the flow path where the cross-sectional area S of the flow path is wide and the flow velocity V of the cooling liquid is slow, the pressure p rises and bubbles are crushed and a sudden pressure fluctuation occurs. In addition, an incidental vibration (and noise) is generated.

そこで、本発明においては、前記取付金具に径方向に突出する膨出部を形成すると共に、前記アダプターに膨出部の周囲を囲う、排液通路に通じる排液口を備えた延出部を形成し、これら膨出部と延出部とで、回転軸の内面と入液パイプの外周面との間の通路の断面積と同等の断面積を有する狭窄通路を画成することが好ましい。これによれば、冷却液が、回転軸の内周面と入液パイプの外周面との間の間隙(環状の通路)を通って、比較的流路面積の広い、回転軸前端とこれに対向する冷却液箱の内面との間の流路に到達したとき、流速が遅くなって圧力上昇するが、その下流側に狭窄通路を備えるため、前記流路に達した冷却液が狭窄通路へと流れることで圧力上昇が抑制され、気泡が潰れて急激な圧力変動を発生することを抑制することができる。なお、本発明においては、同等の断面積には、断面積が厳密に一致している場合だけでなく、発生した気泡が潰れる程、圧力上昇しない場合を含む。   Therefore, in the present invention, the mounting bracket is formed with a bulging portion that protrudes in the radial direction, and the extension portion having a drainage port that surrounds the bulging portion and that leads to the drainage passage is formed in the adapter. Preferably, the swelled portion and the extending portion define a narrowed passage having a cross-sectional area equivalent to the cross-sectional area of the passage between the inner surface of the rotating shaft and the outer peripheral surface of the liquid inlet pipe. According to this, the coolant passes through the gap (annular passage) between the inner peripheral surface of the rotating shaft and the outer peripheral surface of the liquid inlet pipe, to the front end of the rotating shaft having a relatively large flow path area. When reaching the flow path between the inner surfaces of the opposing cooling liquid boxes, the flow rate becomes slow and the pressure rises, but since the narrow passage is provided on the downstream side, the coolant that has reached the flow path enters the narrow passage. And the pressure increase is suppressed, and bubbles can be prevented from being crushed and generating a sudden pressure fluctuation. In the present invention, the equivalent cross-sectional area includes not only the case where the cross-sectional areas are exactly the same, but also the case where the pressure does not increase as the generated bubbles are crushed.

また、本発明においては、前記外カバーに、前記前方の軸受に潤滑油を供給する給油孔が穿設された外輪間座を介して、当該前方の軸受の外輪を後方に向けて付勢する他の付勢手段が内蔵され、前方の軸受の外輪に対して所定のセット荷重が作用する構成を採用することが好ましい。これによれば、液冷却装置のハウジングへの組立時並びに、例えば給油孔のクリーニング、付勢手段の交換や点検を含むメンテナンス時に、付勢手段や外輪間座といった部品が前方の軸受よりハウジング外側に位置するため、軸受や回転軸自体はハウジングに組み付けた状態でよく、組立及び分解の作業性を向上することができる。   Further, in the present invention, the outer ring of the front bearing is biased rearward through an outer ring spacer in which the outer cover is provided with an oil supply hole for supplying lubricating oil to the front bearing. It is preferable to adopt a configuration in which other urging means is incorporated and a predetermined set load acts on the outer ring of the front bearing. According to this, during assembly of the liquid cooling device into the housing and during maintenance including cleaning of the oil supply holes, replacement of the urging means, and inspection, for example, the parts such as the urging means and the outer ring spacer are outside the housing from the front bearing. Therefore, the bearing and the rotary shaft itself may be assembled in the housing, and the assembling and disassembling workability can be improved.

本発明の回転子の液冷却装置を備えた電動機の断面図。Sectional drawing of the electric motor provided with the liquid cooling device of the rotor of this invention. 図1に示す液冷却装置を拡大して示す断面図。Sectional drawing which expands and shows the liquid cooling device shown in FIG. (a)〜(c)は回転軸のアンギュラ玉軸受による支持をモデル化して示す図。(A)-(c) is a figure which models and shows the support by the angular ball bearing of a rotating shaft. (a)は、本発明にてメカニカルシールユニットの装着箇所での回転軸周りの撓み変形量δを有限要素解析したときの変形図。(b)は、従来例にてメカニカルシールユニットの装着箇所での回転軸周りの撓み変形量δを有限要素解析したときの変形図。(A) is a deformation | transformation figure when the bending deformation amount (delta) around the rotating shaft in the attachment location of a mechanical seal unit is finite element analysis in this invention. (B) is a deformation | transformation figure when the bending deformation amount (delta) around the rotating shaft in the attachment location of a mechanical seal unit in a prior art example is analyzed by finite element.

以下、図面を参照して、電動機に本発明の回転子の液冷却装置を適用した実施形態を説明する。以下において、「上」、「下」、といった方向を示す用語は図1を基準とし、また、図1中、電動機の反伝動側である左側を前方、電動機の伝動側である右側を後方とする。   Hereinafter, an embodiment in which a rotor liquid cooling device of the present invention is applied to an electric motor will be described with reference to the drawings. In the following, terms indicating directions such as “up” and “down” are based on FIG. 1, and in FIG. 1, the left side which is the non-transmission side of the motor is the front, and the right side which is the transmission side of the motor is the rear. To do.

図1を参照して、EMは、本実施形態の回転子の液冷却装置CMを備えた電動機である。電動機EMはハウジング1を備え、ハウジング1には、当該ハウジング1の互いに向かい合う前後の壁面10a,10bに配置した一対の軸受11a,11bを介して回転軸12が軸支されている。回転軸12には回転子13が外挿され、この回転子13を囲うようにハウジング内には固定子14が配置されている。なお、電動機EMとしては公知の構造のものが利用できるため、これ以上の詳細な説明は省略する。そして、図1中、左側に位置するハウジング1の壁面10a外側に本実施形態の液冷却装置CMが取り付けられている。   With reference to FIG. 1, EM is an electric motor provided with the liquid cooling device CM of the rotor of this embodiment. The electric motor EM includes a housing 1, and a rotating shaft 12 is pivotally supported on the housing 1 via a pair of bearings 11 a and 11 b arranged on front and rear wall surfaces 10 a and 10 b facing each other. A rotor 13 is extrapolated to the rotary shaft 12, and a stator 14 is disposed in the housing so as to surround the rotor 13. In addition, since the thing of a well-known structure can be utilized as the electric motor EM, the detailed description beyond this is abbreviate | omitted. And the liquid cooling device CM of this embodiment is attached to the outer side of the wall surface 10a of the housing 1 located in the left side in FIG.

図2も参照して、液冷却装置CMは、ハウジング1の壁面10aに密着して前方の軸受11aを覆う外カバー2に、アダプター3を介して装着されて外カバー2から外方に突出した回転軸12の前端部分を受け入れる冷却液箱4を有する。外カバー2は、その後面がハウジング1にOリング2aを介して密接するように回転軸12に外挿されている。この場合、外カバー2の回転軸12との接触箇所には油切り溝21が形成されている。また、外カバー2の前面中央には、前方の軸受11aの抜止めを行うナット部材5を受け入れる第1凹部22が設けられると共に、第1凹部22の周囲に位置させて外カバー2の前面には、径方向に90度間隔で4個の第2凹部23が設けられている。そして、第2凹部23には、他の付勢手段としてのコイルばね24,24が夫々内蔵されている。コイルばね24,24は、ハウジング1に形成した給油通路15に連通する、潤滑油を供給する給油孔25aが穿設された外輪間座25を介して、前方の軸受11aの外輪を後方に向けて付勢し、前方の軸受11aの外輪に対して所定のセット荷重が作用するようにしている。更に、外カバー2の前面中央が凸状に形成され、この凸状の部分を介してアダプター3が嵌着されている。なお、第2凹部23及びコイルばね24の数については、4個〜16個の範囲で等配角度間隔で設けることができる。   Referring also to FIG. 2, the liquid cooling device CM is attached to the outer cover 2 that is in close contact with the wall surface 10 a of the housing 1 and covers the front bearing 11 a via the adapter 3 and protrudes outward from the outer cover 2. It has a coolant box 4 that receives the front end portion of the rotating shaft 12. The outer cover 2 is extrapolated to the rotary shaft 12 so that its rear surface is in close contact with the housing 1 via an O-ring 2a. In this case, an oil drain groove 21 is formed at a position where the outer cover 2 contacts the rotating shaft 12. A first recess 22 for receiving the nut member 5 for retaining the front bearing 11a is provided in the center of the front surface of the outer cover 2, and is positioned around the first recess 22 so as to be positioned on the front surface of the outer cover 2. Are provided with four second recesses 23 at intervals of 90 degrees in the radial direction. The second recess 23 incorporates coil springs 24 and 24 as other urging means. The coil springs 24, 24 are directed to the outer ring of the front bearing 11 a rearward through an outer ring spacer 25 provided with an oil supply hole 25 a that communicates with an oil supply passage 15 formed in the housing 1 and supplies lubricating oil. The predetermined set load acts on the outer ring of the front bearing 11a. Further, the center of the front surface of the outer cover 2 is formed in a convex shape, and the adapter 3 is fitted through the convex portion. In addition, about the number of the 2nd recessed parts 23 and the coil springs 24, it can provide in the range of 4-16 pieces at equal distribution angular intervals.

外カバー2にOリング2bを介してアダプター3を密着させて組み付けた状態では、外カバー2の前面とアダプター3の後面との間には、後述のメカニカルシールユニットのシール面から漏洩した冷却液を溜める漏液溜め部31が画成されるようにしている。そして、外カバー2に、漏液溜め部31に連通し、外カバー2の外周面に達するドレイン孔26が穿設され、漏液が外部へと排液されるようにしている。これにより、漏液が、外カバー2の油切り溝21、軸受11a、ひいては、ハウジング1内まで浸入することが確実に防止される。   In a state where the adapter 3 is closely attached to the outer cover 2 via the O-ring 2b, the coolant leaked from the sealing surface of the mechanical seal unit described later between the front surface of the outer cover 2 and the rear surface of the adapter 3. The liquid reservoir 31 for storing the water is defined. A drain hole 26 is formed in the outer cover 2 so as to communicate with the leakage reservoir 31 and reach the outer peripheral surface of the outer cover 2 so that the leakage is discharged to the outside. As a result, it is reliably prevented that the liquid leaks into the oil drain groove 21 of the outer cover 2, the bearing 11 a, and eventually into the housing 1.

アダプター3にOリング2cを介して密着されて組み付けられる冷却液箱4には、前端が開口する回転軸12の内部通路12aに同心に挿設される入液パイプ41と冷却液箱4内に連通する排液通路42とが備えられている。非圧縮性流体からなる冷却液が入液パイプ41の前端から入液パイプ41内の往き通路41aを通して回転軸12の内部通路12aへと流入され、内部通路12aの後端で跳ね返った冷却液が、回転軸12の内周面と入液パイプ41の外周面との間の間隙からなる戻り通路41bを介して冷却液箱4内に戻り、排液通路42から排出される(図1参照)。そして、このように冷却液を流したときにハウジング1内への冷却液の浸入を防止するために、メカニカルシールユニット6が設けられている。   The cooling liquid box 4 is assembled in close contact with the adapter 3 via the O-ring 2c. The cooling liquid box 4 is inserted into the cooling pipe 4 and the liquid inlet pipe 41 concentrically inserted in the internal passage 12a of the rotary shaft 12 whose front end is open. A drainage passage 42 communicating therewith is provided. The coolant made of incompressible fluid flows from the front end of the inlet pipe 41 through the forward passage 41a in the inlet pipe 41 into the internal passage 12a of the rotary shaft 12, and the coolant that has bounced back at the rear end of the internal passage 12a. Then, it returns to the cooling liquid box 4 through a return passage 41b formed by a gap between the inner peripheral surface of the rotating shaft 12 and the outer peripheral surface of the liquid inlet pipe 41, and is discharged from the drainage passage 42 (see FIG. 1). . A mechanical seal unit 6 is provided to prevent the coolant from entering the housing 1 when the coolant is flowed in this way.

メカニカルシールユニット6は、アダプター3に回転軸の軸線方向に摺動自在に取り付けれた摺動リング61と、取付金具7に取り付けられた固定リング62とを備える。この場合、アダプター3の前面中央には環状のくぼみ部32が凹設されると共に、くぼみ部32の底面には収容孔33が更に凹設されている。そして、摺動リング61をくぼみ部32にOリング34を介して挿入される基部61aとこの基部61aの前端から径方向内側に向けて連続してのびる環状の平坦部61bとで構成して、摺動リング61を前方に向けて付勢する付勢手段としてのコイルバネ35を収容孔33に内蔵した状態でくぼみ部32に摺動リング61が直接嵌着されている。他方で、取付金具7は、回転軸12の前端に外挿されてねじ71により固定され、取付金具7の後端周縁部にOリング73を介して固定リング62が外挿されている。この場合、固定リング62は、取付金具7の周面からその後面の外周縁部を覆うように形成されている。そして、摺動リング61を前方に向けて付勢して摺動リング61の前面に設けた環状の凸部を固定リング62の後面に面接触させることで、ハウジング1内への冷却液の浸入を防止するようにしている。   The mechanical seal unit 6 includes a sliding ring 61 that is slidably attached to the adapter 3 in the axial direction of the rotation shaft, and a fixing ring 62 that is attached to the mounting bracket 7. In this case, an annular recess 32 is recessed in the center of the front surface of the adapter 3, and a receiving hole 33 is further recessed in the bottom surface of the recess 32. The sliding ring 61 is composed of a base portion 61a inserted into the indented portion 32 via the O-ring 34 and an annular flat portion 61b extending continuously from the front end of the base portion 61a toward the inside in the radial direction. The sliding ring 61 is directly fitted into the indented portion 32 with the coil spring 35 as a biasing means for biasing the sliding ring 61 forward. On the other hand, the mounting bracket 7 is extrapolated to the front end of the rotating shaft 12 and fixed by a screw 71, and a fixing ring 62 is extrapolated to the rear peripheral edge portion of the mounting bracket 7 via an O-ring 73. In this case, the fixing ring 62 is formed so as to cover the outer peripheral edge portion of the rear surface from the peripheral surface of the mounting bracket 7. Then, the sliding ring 61 is urged forward, and the annular convex portion provided on the front surface of the sliding ring 61 is brought into surface contact with the rear surface of the fixing ring 62 so that the coolant enters the housing 1. Try to prevent.

以上によれば、コイルばね35をアダプター3に内蔵することで、上記従来例で用いられていた、付勢手段を保持する取付金具が省略でき、また、アダプター3の前面に凹設したくぼみ部32に摺動リング61を直接嵌着することで、前方の軸受11aから、取付金具7の回転軸12に対する固定箇所までの長さ、即ち、オーバーハング距離Lを大幅に短くできる(上記従来例より40%減)。その上、メカニカルシールユニット6自体の重量も大幅に軽くでき(上記従来例より40%減)、その結果、不釣り合い質量と回転数とによって誘発される強制外力に起因するメカニカルシールユニット装着箇所での振動加速度を上記従来例と比較して40%以上抑制することができ、しかも、回転軸周りの撓み変形量に起因するメカニカルシールユニット装着箇所での振動加速度を上記従来例のものと比較して45%以上抑制することができる。   According to the above, by installing the coil spring 35 in the adapter 3, the mounting bracket for holding the urging means used in the conventional example can be omitted, and the recessed portion provided in the front of the adapter 3 is recessed. By directly fitting the sliding ring 61 to 32, the length from the front bearing 11a to the fixed portion of the mounting bracket 7 with respect to the rotating shaft 12, that is, the overhang distance L can be significantly shortened (the above conventional example) 40% less). In addition, the weight of the mechanical seal unit 6 itself can be significantly reduced (40% less than the above conventional example). As a result, the mechanical seal unit 6 is installed at a place where the mechanical seal unit is attached due to the forced external force induced by the unbalanced mass and the rotational speed. Compared with the conventional example, the vibration acceleration at the mounting position of the mechanical seal unit due to the amount of bending deformation around the rotation axis can be suppressed by 40% or more. 45% or more.

ところで、上記実施形態のように、液冷却装置CMを構成し、回転軸12を回転させたときに、メカニカルシールユニット6の装着箇所での間接二次的な振動加速度を抑制することが望ましい。そこで、本実施形態においては、ハウジング1に夫々設けた軸受を、図1中左側の反伝動側に位置する前方の軸受11aをアンギュラ玉軸受とすると共に、図1中右側の伝動側に位置する後方の軸受11bもまたアンギュラ玉軸受とした。そして、両アンギュラ玉軸受11a,11bの向きを、当該アンギュラ玉軸受11a,11bの接触角の延長線と回転軸の軸線との交点が当該回転軸の中心に向かうように夫々配置している。そして、アンギュラ玉軸受11a,11bの接触角の延長線と回転軸の軸線との交点、つまり、所謂回転子質量の作用点の位置が回転軸の中心に向かうように夫々配置されることで両アンギュラ玉軸受11a,11bの回転子質量の作用点間の距離が短くなって、メカニカルシールユニット6の破損に対して振動加速度の面から重畳的に悪影響を与え得る、不釣り合い質量と回転数とによって誘発される強制外力に起因するメカニカルシールユニット6の装着箇所での間接二次的な振動加速度を抑制することができると共に、回転軸12周りの撓み変形量に起因するメカニカルシールユニット6の装着箇所での間接二次的な振動加速度を抑制することができる。つまり、回転子13回りの撓み変形量に起因する振動の振幅は、作用点間の距離の3乗に概ね比例して増減するため、当該距離lを短くすることで、メカニカルシールユニットに対して間接二次的に影響を与える振動加速度を減少させることができる。   By the way, as in the above embodiment, when the liquid cooling device CM is configured and the rotating shaft 12 is rotated, it is desirable to suppress indirect secondary vibration acceleration at the mounting position of the mechanical seal unit 6. Therefore, in the present embodiment, the bearings respectively provided in the housing 1 are angular ball bearings in which the front bearing 11a located on the counter-transmission side on the left side in FIG. 1 is positioned on the transmission side on the right side in FIG. The rear bearing 11b was also an angular ball bearing. The orientations of the angular ball bearings 11a and 11b are arranged such that the intersection of the extension line of the contact angle of the angular ball bearings 11a and 11b and the axis of the rotating shaft is directed to the center of the rotating shaft. The intersections of the extension lines of the contact angles of the angular ball bearings 11a and 11b and the axis of the rotary shaft, that is, the position of the so-called rotor mass acting point are arranged so as to be directed to the center of the rotary shaft, respectively. The unbalanced mass and the number of rotations, which can adversely affect the damage of the mechanical seal unit 6 in terms of vibration acceleration in a superimposed manner, because the distance between the acting points of the rotor masses of the angular ball bearings 11a and 11b is shortened. Indirect secondary vibration acceleration at the mounting position of the mechanical seal unit 6 due to the forced external force induced by the rotation can be suppressed, and the mechanical seal unit 6 mounted due to the amount of bending deformation around the rotating shaft 12 Indirect secondary vibration acceleration at a location can be suppressed. In other words, the amplitude of vibration caused by the amount of bending deformation around the rotor 13 increases or decreases in proportion to the cube of the distance between the operating points. Therefore, by reducing the distance l, the mechanical seal unit can be reduced. It is possible to reduce the vibration acceleration that indirectly influences.

ここで、図3(a)は、上記の如く、アンギュラ玉軸受の向きを当該アンギュラ玉軸受の接触角の延長線と回転軸12の軸線との交点(所謂回転子質量の作用点)が、回転子13の中心方向に向かうように配置したものをモデル化したものであり、回転軸12の質量の作用点、即ち、回転軸12の支点は夫々を単純支持の梁としてモデル化できる。ここで、回転軸の撓み変形量をδ´、回転子が外挿された箇所での回転軸に作用する振れ回りの強制外力P´、アンギュラ玉軸受の支点間の距離をl、回転軸の曲げ剛性EIとすると、撓み変形量δ´は、δ´=P´・l/48EIという式(4)で算出できる。これにより、モデル化の回転軸の撓み変形量が支点間距離lの3乗に比例して増加するため、当該支点間距離lを短縮すれば、撓み変形量δ´に起因する振動の振幅を概ね支点間距離lの3乗で縮小することができることができる。その結果、上記実施形態では、メカニカルシールユニット6に対する間接二次的であるものの重畳的に悪影響を与えるところの振動加速度を減少できる。 Here, in FIG. 3A, as described above, the direction of the angular ball bearing is the intersection of the contact angle extension line of the angular ball bearing and the axis of the rotary shaft 12 (so-called point of action of the rotor mass). This is a model in which the rotor 13 is arranged so as to be directed toward the center. The action point of the mass of the rotating shaft 12, that is, the fulcrum of the rotating shaft 12, can be modeled as a simply supported beam. Here, the amount of deflection deformation of the rotating shaft is δ ′, the forced external force P ′ acting on the rotating shaft at the location where the rotor is extrapolated, the distance between the fulcrums of the angular ball bearings, l, Assuming that the bending rigidity is EI, the bending deformation amount δ ′ can be calculated by the equation (4) of δ ′ = P ′ · l 3 / 48EI. As a result, the amount of bending deformation of the modeled rotating shaft increases in proportion to the cube of the distance l between the fulcrums. Therefore, if the distance between the fulcrums 1 is shortened, the amplitude of vibration caused by the amount of bending deformation δ ′ is reduced. It can be reduced by the cube of the distance l between the fulcrums. As a result, in the above-described embodiment, vibration acceleration that is indirect secondary to the mechanical seal unit 6 but has an adverse effect in a superimposed manner can be reduced.

本実施形態では、回転軸を互いに向かい合うハウジング1の壁面10a,10bに設けた夫々1個のアンギュラ玉軸受で回転軸を支持するものを例に説明したが、これに限定されるものではなく、反伝動側である前方のハウジング1の壁面10aに2個のアンギュラ玉軸受を列設してもよい。図3(b)は、アンギュラ玉軸受10a,10aの向きを当該アンギュラ玉軸受の接触角の延長線と回転軸12の軸線との交点(所謂回転子の質量の作用点)が、回転子13の中心方向に向かうように配置したものをモデル化したものであり、回転軸12の質量の作用点、即ち、回転軸12の支点のうち前方の支点は固定支持、後方の支点は単純支持の梁としてモデル化できる。そして、この場合の回転軸の撓み変形量をδ´は、δ´=1/√5×P´・l/48EIという式(5)で算出できる。これにより、上記式(4)から算出されるモデル化の回転軸の撓み変形量の1/√5に縮小することができ、それに伴って、メカニカルシールユニット6に対する間接二次的であるものの重畳的に悪影響を与えるところの振動加速度を更に減少できる。 In the present embodiment, the rotating shaft is supported by one angular ball bearing provided on the wall surfaces 10a and 10b of the housing 1 facing each other. However, the present invention is not limited to this. Two angular ball bearings may be arranged in a row on the wall surface 10a of the front housing 1 on the counter-transmission side. In FIG. 3B, the angular ball bearings 10 a, 10 a are oriented so that the intersection of the contact angle extension line of the angular ball bearing and the axis of the rotary shaft 12 (so-called mass operating point of the rotor) is the rotor 13. Of the rotating shaft 12, the front supporting point among the supporting points of the rotating shaft 12 is fixed support, and the rear supporting point is simply supported. Can be modeled as a beam. In this case, the bending deformation amount of the rotating shaft can be calculated by the equation (5) where δ ′ = 1 / √5 × P ′ · l 3 / 48EI. As a result, the amount of bending deformation of the modeled rotating shaft calculated from the above equation (4) can be reduced to 1 / √5, and accordingly, indirect secondary to the mechanical seal unit 6 is superimposed. The vibration acceleration that adversely affects the image can be further reduced.

他方で、ハウジング1の壁面10a,10bに夫々2個のアンギュラ玉軸受11a、11a,11b,11bを設けてもよい。図3(c)は、アンギュラ玉軸受11a、11a,11b,11bの向きを夫々当該アンギュラ玉軸受11a、11a,11b,11bの接触角の延長線と回転軸12の軸線との交点(所謂回転子の質量の作用点)が、回転子13の中心方向に向かうように配置したものをモデル化したものであり、回転軸12の質量の作用点、即ち、両支点は固定支持の梁としてモデル化できる。そして、この場合の回転軸12の撓み変形量をδ´は、δ´=1/4×P´・l/48EIという式(6)で算出できる。これにより、上記式(4)から算出されるモデル化の回転軸の撓み変形量の1/4に縮小することができ、それに伴って、メカニカルシールユニット6に対する間接二次的であるものの重畳的に悪影響を与えるところの振動加速度をより一層減少できる。 On the other hand, two angular ball bearings 11a, 11a, 11b, and 11b may be provided on the wall surfaces 10a and 10b of the housing 1, respectively. FIG. 3 (c) shows the direction of the angular ball bearings 11a, 11a, 11b, and 11b at the intersection of the contact angle extension of the angular ball bearings 11a, 11a, 11b, and 11b and the axis of the rotary shaft 12 (so-called rotation). The mass action point of the child is arranged so as to be directed toward the center of the rotor 13, and the mass action point of the rotating shaft 12, that is, both fulcrums are modeled as fixed support beams. Can be In this case, the bending deformation amount of the rotating shaft 12 can be calculated by the following equation (6): δ ′ = 1/4 × P ′ · l 3 / 48EI. As a result, it is possible to reduce the deformation amount of the rotating shaft of the modeling calculated from the above formula (4) to ¼, and accordingly, indirect secondary to the mechanical seal unit 6 is superimposed. It is possible to further reduce the vibration acceleration that adversely affects the vibration.

ここで、本発明の液冷却装置CMの効果を確認するために、上記実施形態の液冷却装置CMにおいて、メカニカルシールユニット6の装着箇所での回転軸12周りの撓み変形量δを有限要素解析し、この変形図を図4(a)に示す。なお、図4(b)は上記従来例に相当するものである。これによれば、回転軸12周りの撓み変形量δをメカニカルシールユニット6の小型、軽量化とオーバーハング距離Lの短縮化とが相俟って、上記従来例のものと比較して32.4%まで縮小したことが確認された。従って、メカニカルシールユニット6の装着箇所での回転軸周りの撓み変形量に起因する振れ回りの振動の振幅を67.6%減少することができた。   Here, in order to confirm the effect of the liquid cooling device CM of the present invention, in the liquid cooling device CM of the above embodiment, the bending deformation amount δ around the rotary shaft 12 at the mounting position of the mechanical seal unit 6 is analyzed by finite element analysis. FIG. 4A shows this modification. FIG. 4B corresponds to the conventional example. According to this, the amount of deformation δ around the rotating shaft 12 is 32.compared with that of the above-mentioned conventional example in combination with the reduction in size and weight of the mechanical seal unit 6 and the shortening of the overhang distance L. It was confirmed that it was reduced to 4%. Therefore, the amplitude of the vibration around the rotation due to the amount of bending deformation around the rotation axis at the mounting position of the mechanical seal unit 6 can be reduced by 67.6%.

ところで、非圧縮性流体からなる冷却液を入液パイプ41の前端から入液パイプ41内の往き通路41aを通して回転軸12の内部通路12aへと流入し、内部通路12aの後端で跳ね返った冷却液が戻り通路41bを介して冷却液箱4内に戻り、排液通路42から排出するときに、冷却液が蒸発して気泡を発生してキャビテーション現象を引き起こし、これに起因してメカニカルシールユニット6に対して付随的な振動(及び騒音)を発生させる場合がある。このため、このような付随的に発生し得る振動を抑制することが望ましい。   By the way, the cooling liquid made of an incompressible fluid flows into the internal passage 12a of the rotating shaft 12 through the forward passage 41a in the incoming pipe 41 from the front end of the incoming pipe 41 and bounces off at the rear end of the internal passage 12a. When the liquid returns into the cooling liquid box 4 through the return passage 41b and is discharged from the drainage passage 42, the cooling liquid evaporates to generate bubbles, thereby causing a cavitation phenomenon. 6 may generate incidental vibration (and noise). For this reason, it is desirable to suppress such incidental vibrations.

上記実施形態では、取付金具7の周囲に径方向に突出する膨出部72を形成すると共に、アダプター3に膨出部72の周囲を囲うように、排液通路42に通じる排液口36aを備えた筒状の延出部36を形成して、これら膨出部72と延出部36とで狭窄通路41cを画成した。そして、狭窄通路41cの断面積を戻り通路41bの断面積と同等とした。これにより、冷却液が、戻り通路41bを通って、比較的流路面積の広い、回転軸12の前端とこれに対向する冷却液箱4の内面4aとの間の流路に到達したとき、流速が遅くなって圧力上昇するが、その下流側に狭窄通路41cを備えるため、上記流路に達した冷却液が狭窄通路41cへと流れることで圧力上昇が抑制され、気泡が潰れて急激な圧力変動を発生することを抑制することができる。なお、同等の断面積には、断面積が厳密に一致している場合だけでなく、発生した気泡が潰れる程、圧力上昇しない場合を含む。   In the above-described embodiment, the bulging portion 72 that protrudes in the radial direction is formed around the mounting bracket 7, and the drainage port 36 a that communicates with the drainage passage 42 is provided in the adapter 3 so as to surround the bulging portion 72. The provided cylindrical extending portion 36 was formed, and the bulging portion 72 and the extending portion 36 defined a narrowed passage 41c. The cross-sectional area of the narrowed passage 41c is made equal to the cross-sectional area of the return passage 41b. Thus, when the coolant reaches the flow path between the front end of the rotating shaft 12 and the inner surface 4a of the coolant box 4 facing the front end of the rotating shaft 12 through the return passage 41b, the flow path area is relatively wide. Although the flow rate becomes slow and the pressure rises, the stenosis passage 41c is provided on the downstream side thereof, so that the coolant that reaches the flow passage flows into the stenosis passage 41c, thereby suppressing the pressure rise and causing the bubbles to collapse rapidly. Generation of pressure fluctuation can be suppressed. Note that the equivalent cross-sectional area includes not only the case where the cross-sectional areas are exactly the same, but also the case where the pressure does not rise so much that the generated bubbles are crushed.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態では、液冷却装置を電動機に適用したものを例に説明したが、発電機の回転軸の冷却に適用してもよい。   As mentioned above, although embodiment of this invention was described, this invention is not limited above. In the above embodiment, the liquid cooling device is applied to an electric motor as an example. However, the liquid cooling device may be applied to cooling a rotating shaft of a generator.

EM…電動機、CM…液冷却装置、1…ハウジング、11a,11b…アンギュラ玉軸受(軸受)、12…回転軸、12a…内部通路、13…回転子、14…固定子、2…外カバー、24…コイルばね(他の付勢手段)、25…外輪間座、25a…給油孔、3…アダプター、32…くぼみ部、35…コイルばね(付勢手段)、36…延出部、36a…排液口、4…冷却液箱、41…入液パイプ、41b…戻り通路(回転軸の内周面と入液パイプの外周面との間の間隙)、41c…狭窄通路、42…排液通路、6…メカニカルシールユニット、61…摺動リング、62…固定リング、7…取付金具、72…膨出部。
EM ... electric motor, CM ... liquid cooling device, 1 ... housing, 11a, 11b ... angular ball bearing (bearing), 12 ... rotary shaft, 12a ... internal passage, 13 ... rotor, 14 ... stator, 2 ... outer cover, 24 ... Coil spring (other biasing means), 25 ... Outer ring spacer, 25a ... Oil supply hole, 3 ... Adapter, 32 ... Recessed part, 35 ... Coil spring (biasing means), 36 ... Extension part, 36a ... Drain port, 4 ... Coolant box, 41 ... Inlet pipe, 41b ... Return passage (gap between the inner peripheral surface of the rotating shaft and the outer peripheral surface of the input pipe), 41c ... Constricted passage, 42 ... Drain A passage, 6 ... a mechanical seal unit, 61 ... a sliding ring, 62 ... a fixing ring, 7 ... a mounting bracket, 72 ... a bulging portion.

Claims (4)

回転軸に外挿される回転子とこの回転子を囲う固定子とが収納され、回転軸を軸支する、当該回転軸の軸線方向で前後一対の軸受が夫々設けられたハウジングに密着して前方の軸受を覆う外カバーに、アダプターを介して装着されて外カバーから外方に突出した回転軸の前端部分を受け入れる冷却液箱を有し、
冷却液箱に、前端が開口する回転軸の内部通路に挿設される入液パイプと当該冷却液箱内に連通する排液通路とが備えられ、冷却液が入液パイプの前端から回転軸の内部通路へと流入され、回転軸の内周面と入液パイプの外周面との間の間隙を介して冷却液箱に戻り、排液通路から排出されるように構成され、
アダプターに回転軸の軸線方向に摺動自在な摺動リングが取り付られると共に、回転軸の前端部に外挿した取付金具に固定リングが取り付けられ、摺動リングを前方に向けて付勢して摺動リングと固定リングとを接触させ、これら摺動リングと固定リングとを有するメカニカルシールユニットによりハウジング内への冷却液の浸入を防止するようにした回転子の液冷却装置において、
固定リングを取付金具の後端周縁部に外挿すると共に、アダプターの前面に凹設したくぼみ部に摺動リングを嵌着し、当該摺動リングを前方に向けて付勢する付勢手段をアダプターに内蔵したことを特徴とする回転子の液冷却装置。
A rotor extrapolated to the rotating shaft and a stator surrounding the rotor are accommodated, and the front of the rotating shaft is supported in close contact with a housing provided with a pair of front and rear bearings in the axial direction of the rotating shaft. A cooling liquid box that receives the front end portion of the rotating shaft that is mounted via an adapter and protrudes outward from the outer cover to the outer cover that covers the bearing of
The cooling liquid box is provided with a liquid inlet pipe inserted into an internal passage of the rotating shaft whose front end is open and a drainage passage communicating with the inside of the cooling liquid box. And is returned to the cooling liquid box through the gap between the inner peripheral surface of the rotating shaft and the outer peripheral surface of the liquid-intake pipe, and is discharged from the drainage passage.
A sliding ring that is slidable in the axial direction of the rotating shaft is attached to the adapter, and a fixing ring is attached to a mounting bracket that is externally attached to the front end of the rotating shaft, and the sliding ring is urged forward. In the liquid cooling device for the rotor, the sliding ring and the fixing ring are brought into contact with each other, and the infiltration of the cooling liquid into the housing is prevented by the mechanical seal unit having the sliding ring and the fixing ring.
A biasing means is provided for extrapolating the fixing ring to the peripheral edge of the rear end of the mounting bracket, and for fitting the sliding ring into a recessed portion recessed in the front surface of the adapter and biasing the sliding ring forward. A liquid cooling device for a rotor, which is built into an adapter.
前記前方及び後方の両軸受を夫々アンギュラ玉軸受とし、両アンギュラ玉軸受の向きを、当該アンギュラ玉軸受の接触角の延長線と前記回転軸の軸線との交点が当該回転軸の中心に向かうように夫々配置したことを特徴とする請求項1記載の回転子の液冷却装置。   Both the front and rear bearings are angular ball bearings, and the angular ball bearings are oriented so that the intersection of the contact angle extension of the angular ball bearing and the axis of the rotary shaft is directed to the center of the rotary shaft. The rotor liquid cooling device according to claim 1, wherein the liquid cooling device is arranged in each of the above. 前記取付金具に径方向に突出する膨出部を形成すると共に、前記アダプターに膨出部の周囲を囲う、排液通路に通じる排液口を備えた延出部を形成し、これら膨出部と延出部とで、回転軸の内面と入液パイプの外周面との間の通路の断面積と同等の断面積を有する狭窄通路を画成したことを特徴とする請求項1または請求項2記載の回転子の液冷却装置。   The mounting bracket is formed with a bulging portion projecting in the radial direction, and the adapter is formed with an extending portion surrounding the bulging portion and having a drainage port leading to a drainage passage. The narrowed passage having the cross-sectional area equivalent to the cross-sectional area of the passage between the inner surface of the rotating shaft and the outer peripheral surface of the liquid inlet pipe is defined by the extension portion and the extension portion. The rotor liquid cooling apparatus according to 2. 前記外カバーに、前記前方の軸受に潤滑油を供給する給油孔が穿設された外輪間座を介して、当該前方の軸受の外輪を後方に向けて付勢する他の付勢手段が内蔵され、前方の軸受の外輪に対して所定のセット荷重が作用するように構成したことを特徴とする請求項1〜3のいずれか1項に記載の回転子の液冷却装置。   Another urging means for urging the outer ring of the front bearing toward the rear is incorporated in the outer cover via an outer ring spacer provided with an oil supply hole for supplying lubricating oil to the front bearing. The rotor liquid cooling device according to any one of claims 1 to 3, wherein a predetermined set load is applied to an outer ring of a front bearing.
JP2013091740A 2013-04-24 2013-04-24 Rotor liquid cooling system Active JP5354558B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013091740A JP5354558B1 (en) 2013-04-24 2013-04-24 Rotor liquid cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013091740A JP5354558B1 (en) 2013-04-24 2013-04-24 Rotor liquid cooling system

Publications (2)

Publication Number Publication Date
JP5354558B1 true JP5354558B1 (en) 2013-11-27
JP2014217142A JP2014217142A (en) 2014-11-17

Family

ID=49765012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013091740A Active JP5354558B1 (en) 2013-04-24 2013-04-24 Rotor liquid cooling system

Country Status (1)

Country Link
JP (1) JP5354558B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359684A (en) * 2014-12-11 2015-02-18 重庆和平自动化工程股份有限公司 Loader structure of engine online testing platform
CN112213525A (en) * 2020-09-22 2021-01-12 陕西航空电气有限责任公司 Motor test switching structure and test structure thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2670601C9 (en) * 2014-09-30 2018-11-22 Сименс Акциенгезелльшафт Electric machine with liquid cooling
JP6647906B2 (en) * 2016-02-18 2020-02-14 株式会社神戸製鋼所 Electric motor that rotates the rotating machine body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359684A (en) * 2014-12-11 2015-02-18 重庆和平自动化工程股份有限公司 Loader structure of engine online testing platform
CN112213525A (en) * 2020-09-22 2021-01-12 陕西航空电气有限责任公司 Motor test switching structure and test structure thereof
CN112213525B (en) * 2020-09-22 2024-04-09 陕西航空电气有限责任公司 Motor test switching structure and test structure thereof

Also Published As

Publication number Publication date
JP2014217142A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
JP5354558B1 (en) Rotor liquid cooling system
KR101866406B1 (en) Bearing device for crankshaft of internal combustion engine
KR101588357B1 (en) Rotor assembly
JP5787631B2 (en) Bearing test equipment
JP5873954B2 (en) Passive dynamic inertia rotor balance system for turbomachinery
KR101941134B1 (en) Support device for balance correction
JP6276810B2 (en) Air turbine drive spindle
JP4232841B2 (en) Unbalance correction device for high-speed rotating equipment
JP2014070730A (en) Thrust bearing
JP5210893B2 (en) Damper structure and rotating machine
WO2018105162A1 (en) Tilting pad, gas bearing device, and compressor
CN102562525B (en) Compressor for household refrigerator
KR20110112185A (en) Wind turbine generator
JP5045456B2 (en) Spindle device
JP2010159863A (en) Aerostatic bearing spindle
JP6151133B2 (en) Axial flow turbine
JP6878063B2 (en) Rotating machine and rotor support rigidity adjustment method
KR101535175B1 (en) Scroll compressor
JP4325738B2 (en) Unbalance correction device for high-speed rotating equipment
JP4293288B2 (en) Unbalance correction device for high-speed rotating equipment
KR200406164Y1 (en) Vibration Isolation Air Mount for Precise and High Efficiency Vibration Control
CN214373118U (en) High-speed dynamic balancing machine supporting swing frame
JP6767720B2 (en) Turbomachinery
JP6677445B2 (en) Bearing device, rotating machine and method of operating rotating machine
JP2018021527A (en) Air turbine driving spindle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 5354558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250